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S1 Review of Network Structure based Control

S1.1 Structural Controllability

Mathematical control theory defines a time-invariant system as fully controllable if the
system can pass from any configuration to any other configuration in finite time. In gen-
eral, necessary and sufficient conditions for controllability do not exist for non-linear dy-
namical systems, such as those used to model bio-chemical dynamics. Instead, linear
approximations of the original system are studied.

Consider the states of IV variables given by the configuration vector X (t) = (x;(¢),...,zn(?)).
The network structure is expressed by a directed graph with the N x N connectivity ma-
trix A and specific connection weights a;; characterizing the directed interaction between
variables n; and n;. For the purposes of control, M input variables u(t) = (uy(t),. .., unm(t))
are added to the system with additional edges given by the N x M input connectivity
matrix B. The linear dynamics of the system are then given by the system of differential

equations:

dfl—t(t) — AX(t) + Bu(t) (1)

The above linear system, simply denoted by the matrix pair (A, B), is controllable if
and only if the N x NM controllability matrix C = (B, AB,A’B, ..., AN"!B) satis-
ties Kalman’s controllability rank condition [1]. Kalman’s controllability rank condition
equates to requiring the controllability matrix to have full rank: rank C' = N. A case of
little interest occurs when M = N; there are as many input signals as nodes so each node
can be independently manipulated to the desired final configuration. Instead, we would
like to find the minimum number of input variables M needed to control the network.

The problem appears more complicated when the exact values of the connection weights
a;; are difficult to measure or unknown altogether. Instead, the edge and input graphs are
reduced to structured matrices Agryct, Bstruet Which merely denote the presence or absence
of an interaction but ignore its magnitude. This is done by replacing the non-zero entries
of A, B with arbitrary weights a;; and b;; while retaining all of the zero entries [2].

Lin [3] defined a network to be structurally controllable if the linear system defined by
the pair of structural matrices (Astruct, Bstruct) 1S controllable. Structurally controllable ma-
trices are dense in the space of real-valued matrices[3]; a convenient property for working
with real-world networks since it implies results are tolerant of experimental error. Lin [3]
and Shields & Pearson [4] further showed there was a simple graph theoretic criteria for
structural controllability: the combined graph describing the network and inputs must
be spanned by cacti. Cacti are composed of two graph theoretic objects: stems (simple
paths) and buds (elementary cycles with an additional edge directed towards a vertex of
the cycle).

A graph is spanned by cacti if every variable is contained in either a stem or a bud.
This has the interpretation of every variable being accessible, or on a directed path from
an input variable[5]. The problem of finding spanning cacti on a directed graph can be
mapped to a dual problem involving maximum matchings on a graph [6, 7]. In this

5



dual problem the directed graph is represented as a bipartite, undirected graph with two
groups of nodes — one group denotes the “in” connections while the other denotes the
‘out” connections from the original graph. The covering of the original graph by cacti
can then be determined via a maximum matching algorithm for bipartite graphs (e.g.
the Hopcroft-Karp algorithm [8]). Nodes representing "in’-directed edges which are not
matched by the algorithm must be controlled via an input. These variables are called
driver variables or driver nodes. The resulting set of driver variables is not unique, but
depends on the maximum matching found. However, since the matching is maximum,
the cardinality of the set is unique and gives the minimum number of inputs required to
make the system (Astruct, Bstruet) completely controllable. The novelty of the method de-
veloped by Liu et al. [7] is the interpretation of the graph matching problems as an energy
function for statistical mechanics. This allows for the calculation of the average number
of driver nodes needed for structural controllability for an ensemble of statically similar
networks. It is important to note that while the number M of input nodes u,,() is equal to
the number of driver variables, the latter are not necessarily the only nodes which must
be manipulated by the former. Additional interventions from the input nodes, that were
not captured by the driver node metric, might be required to fully control the cycles in
the system.

A core assumption of structural controllability is that the structural matrices, which
are a linear approximation for the original system, accurately characterize the system
dynamics. Therefore, all interactions that define the dynamics must be specified by the
structural matrix, including self-interactions. Using the structural matrix as the linear ap-
proximation for the system is akin to assuming each node is a linear integrator of signals
transmitted over its edges (i.e. the nodal dynamics are specified by a weighted sum of
the properties on nodes connected by incoming edges), an oversimplification of many
important biological systems. These assumptions have important ramifications for inter-
preting the results of the structural controllability analysis, namely: they mischaracterize
the effect of self-loops.

Structural controllability has been used to identify key banks in interbank lending
networks [9], to inform the design of train service networks [10], and to relate circular
network motifs to control in transcription regulatory networks [11]. SC has also been used
to suggest that biological systems are harder to control and have appreciably different
control profiles than social or technological systems [12, 5].

Implementation

This study followed Commault et al. [6]; the problem of finding spanning cacti on a di-
rected graph was reinterpreted as the dual problem of finding a maximum matching on
the bipartite representation. The graph maximum matching was then solved using the
Hopcroft-Karp algorithm [8]. Code is available on the authors website.



S1.2 Minimal Dominated Sets

The Minimal Dominated Set method approaches the control problem from a different the-
oretical prospective. Under this interpretation, each node can influence adjacent nodes
independently, but this signal cannot propagate any further. Driver variables are iden-
tified as members of the minimal set such that every other variable is separated by at
most one interaction [13, 14]. The methodology has found success in solving problems
many combinatorial optimization problems including transportation routing, schedul-
ing, and facility location [14]. It has also been used to uncover potential anticancer drug
combinations [15] and to highlight biologically significant variables in protein interaction
networks [16]. It has also been used, for instance, to identify control variables in pro-
tein interaction networks [17, 16] and characterize how disease genes perturb the Human
regulatory network [18].

Perhaps unsurprisingly, the maximum degree and degree distribution of the network
has a large influence over the size of the minimum Dominated set [13]. The size of the
MDS is also dependent on whether the network is directed or undirected; undirected
network require relatively fewer controlled nodes [19].

Implementation

In general, the computation of a MDS is NP-hard. However, in both the directed and
undirected cases, the computation of a MDS can be recast in an integer linear program-
ming formulation and efficiently solved using optimized software [13, 19]. Enumeration
of all possible MDSs for a given network can be recast as the enumeration of all minimal
transversals in a hypergraph which can be solved in polynomial time only in some cases
[20]. Instead, since all of the networks considered here are extremely small (< 20 nodes), a
MDS was found and then the enumeration of all other sets of the same size was explored.

S2 Boolean Network Ensembles

S2.1 Boolean Network Ensembles

The set of all possible dynamical transition functions constrained by the fixed structural
network G = (X, E) can be considered independently for each node variable z;. For each
variable z; of G with k; > 0, there are 2% possible input patterns and |F;| = o2k possible
transition functions, where F; = {f;}. For instance, there are |F'| = 16 possible logical
functions of k = 2 inputs. The case of variables with no inputs (k; = 0) requires additional
consideration. In general Boolean network models of biochemical regulation, the value of
a variable with no inputs is specified outside of the considered model; such variables are
assumed to be in steady-state with respect to the temporal dynamics of the model. This
is traditionally implemented in one of two ways, both of which are problematic for our
treatment. The first uses a constant logic function to maintain a constant value. However,



this assumption predetermines the value of the constant; any change to the constant value
would correspond to a model modification. Therefore, perturbations cannot be applied to
such constants. The second uses the copy logic function to maintain the initial value of the
variable. However, the copy function technically corresponds to a Boolean function with
one input (k; = 1), leading some researchers to modify the network structure through the
addition of a self-loop when formulating the BN model[21].

Here, we are concerned with the interplay between network structure and control,
thus we only consider variables which can be manipulated given a fixed structure. There-
fore, we maintain the steady-state assumption using the copy logic without modifying the
network structure. If the network structure were to be modified in accordance with the
second traditional implementation, the self-loops introduced into the structural network
would affect the predictions of SC (but not MDS). Namely, SC is biased toward exclud-
ing variables with self-interactions from the set of potential driver variables. Finally, for
a given structure G of N = |X| variables, the full ensemble of BNs contains all possible
combinations of variable logic functions L = [~ | F}|.

S2.2 Determination of Dynamical Subset

As discussed in the main text, the full ensemble of Boolean Networks is partitioned into
three subsets: the non-contingent subset (NC), the reduced effective structure subset
(RES), and the full effective structure subset (FES). The NC subset contains any network
with at least one variable whose transition function is non-contingent (either a tautol-
ogy or a contradiction). The RES subset is composed of networks that are not already
classified as NC and which have at least one variable whose transition function is fully
canalizing. Fully canalizing functions are identified as those functions with at least one
variable which does not appear in any of the prime implicants found using the the Quine-
McCluskey algorithm [22]. The FES subset is composed of all remaining networks which
are not classified as either NC or RES. This classification schema was motivated by iden-
tifying networks whose structural graph accurately captured the set of input-output re-
lations used by the system dynamics. However, there are several other classification
schemes which might be appropriate. For example, one could consider classifying net-
works once the control variables were specified, in which case the above criteria would
only apply to transition functions of variables which were not being manipulated by the
controller.

$2.3 Extended Network Motif Analysis

Here we explore the controllability of several three and four variable network motifs com-
monly found in molecular biology, neurobiology, ecology, electrical circuits [23, 24, 25],
and the study of network controllability [5]. The motif structures are shown in Figure S1.



Figure S1: A) Feed-Forward motif, B) Chain motif, C) Loop motif, D) Loop motif with self-
interactions, E) Fan motif, F) Co-regulated motif, G) Co-regulating motif, H) BiParallel
motif, I) BiFan motif, and J) Dominated Loop motif.



S2.3.1 Feed-Forward motif

In the main text, we discussed the full ensemble of BN whose structure is given by the
Feed-Forward network motif of N = 3 variables shown in Figure S1A. As discussed there,
the full ensemble consists of 64 distinct BN of which 36 are NC, 8 have RES, and 20 have
FES. Both structural control methodologies predict that variable z; is capable of fully
controlling the network — i.e. facilitate transitions from any configuration to any other
configuration. However, our analysis shown in Figure S2 reveals that only 8 networks
from the ensemble (4 RES and 4 FES) can be fully controlled by this driver variable, iden-
tified by Ry,,; = 1. Indeed, D = {x;} fails to fully control 56 out of 64 possible BNs with
the same structure, since Ry,,; < 1 for most BNs. To guarantee full control for every pos-
sible contingent network, z; and either x; or z3 need to be driven (D = {x1, 22}, {1, z3}).
When the full ensemble is considered, all three variables need to be driven to render every
possible network fully controllable.

The trends in the control profiles can be better understood through comparison of the
population statistics shown in Figure S3. Here, we can also clearly see that the driver
variable z; predicted by structural control is better than the other two variables at con-
trolling the full ensemble; the average of R, over all networks in the full ensemble is 0.65
compared to an ensemble averaged R,, of 0.36 or an ensemble averaged R,, of 0.29. If
we consider the fraction of additional transitions induced by interventions to the different
driver variable sets as measured by C'p, we see that the average of C,, over all networks in
the full ensemble is 0.51 compared to an ensemble averaged C,, of 0.21 or an ensemble av-
eraged C,, of 0.14. Indeed, from the point of view of attractor control, the single-variable
driver set D = {z,} can control every network (Ap = 1.0) in the full ensemble regardless
of the dynamical subset. Neither of the other two variables, D = {z»}, {23}, can push the
dynamics from one attractor to another in any BN in the ensemble (Ap = 0.0).

The Feed-Forward network motif has been suggested as a sign-sensitive accelerator
or delay in biological transcription networks [26]. In this role, the suggested logic for
variable z3 is either AND or OR transition functions. It is interesting to note that, contrary
to the predictions of structural control, neither of these transition functions are associated
with networks that can be fully controlled by a single driver variable.

Nonetheless, the driver variable x; predicted by structural control is clearly better
than the other two variables at controlling the full ensemble; the average of R{xl} over
all networks in the full ensemble is 0.65 compared to an ensemble averaged Ry,,, of 0.36
or an ensemble averaged Ry,,; of 0.29; similar results hold for C'p as seen in Figure S3.
Indeed, from the point of view of attractor control, the single-variable driver set D = {z,}
can control every network in the full ensemble (Ap = 1.0); while neither of the other two
variables, D = {z,}, {z3}, can push the dynamics from one attractor to another in any BN
in the ensemble (Ap = 0.0).

Regarding the partitions of the BN ensemble, we can see that when D = {x,}, con-
trollability is on average higher for the FES subset than for the RES and non-contingent
cases. In other words, when the effective structure of interactions is least distinct from
the original interaction structure — when there are no fully canalizing or non-contingent
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functions — structure is naturally better at predicting control. This becomes even more
clear when we observe that the 4 fully controllable FES networks all contain an XOR tran-
sition function on variable z3, a function that always requires both inputs to be resolved
(no canalization at all). Similarly, the 4 fully controllable RES networks all treat the input
from z; to x5 as redundant, effectively reducing the structural graph to the chain motif
shown in Figure S1B with contingent functions on all variables which is always fully con-
trollable (see Figure S3). Thus, while structure is clearly insufficient to predict control of
the dynamics that can unfold on this motif (even for a majority of FES networks), it does
play a role.
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Figure S2: The average fraction of reachable configurations R and the average fraction
of controllable configurations C for the full ensemble of 64 BN with structure given by
the N = 3 variable Feed-Forward network motif shown in Figure S1A, as controlled
by the driver variable sets D = {x;},{z2}, {z3}, {z1, 22}, {x1, 23}, {22, 23}. There are 20
networks in the full effective structure (FES) subset shown with red circles, 8 networks in
the reduced effective structure (RES) subset shown with blue squares, and 36 networks
in the NC subset shown with green diamonds; the area of the object corresponds to the
number of networks. Both SC and MDS methods predict D = {z,} is sufficient to fully
control the system dynamics.
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Figure S3: Boxplots summarizing the controllability measures for the Feed-Forward net-
work motif. These population statistics are shown for the Full Ensemble (purple), FES
(red), RES (blue), and NC (green) subsets. The mean values for each measure and subset
are denoted by black dots, the median values for each measure and subset are shown by
the appropriately colored solid line, the box illustrates the interquartile range, and the
whiskers denote the minimum and maximum values. Subplots correspond to the same
driver variable sets as shown in Figure S2.
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S2.3.2 Chain Motif

Another network motif found in many real-world systems is the N = 3 variable Chain
network motif [27], specified by the structural network shown in Figure S1B. For this
network structure, there are 16 networks in the full ensemble of which 4 networks are in
the FES subset, 0 networks are in the RES subset, and 12 networks are in the NC subset.
The chain motif provides the first example where the two structural control methods (SC
and MDS) offer different predictions: SC predicts D = {x,} is sufficient to fully control
the system dynamics, while MDS predicts two variables (either D = {xy, 2}, {21, z3}) are
necessary. Analysis of the control profiles presented in Figure S4 shows that all of the
FES networks are fully controllable (R = 1.0) from interventions to the driver variable
set D = {x,} as predicted by SC. Interventions to this driver variable account for a large
number of additional transitions in the CSTG as quantified by large values of C' = 0.82
for all networks in the FES subset. Further population statistics for each of the measures
are summarized in Figure S5.
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Figure S4: The average fraction of reachable configurations R and the average fraction of
controllable configurations C for the full ensemble of 16 BN with structure given by the
N = 3 variable Chain network motif shown in Figure S1B, as controlled by the driver
variable sets D = {x1}, {xo}, {3}, {x1, 22}, {x1, 23}, {22, 23}. There are 4 networks in the
FES subset shown in red circles, 0 networks in the RES subset, and 12 networks in the
NC subset shown in green diamonds; the area of the object corresponds to the number of
networks. SC predicts D = {z,} is sufficient to fully control the system dynamics, while
MDS predicts two variables (either D = {z1, 22}, {z1, z3}) are necessary.
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Figure S5: Boxplots summarizing the controllability measures for the Chain network mo-
tif. These population statistics are shown for the Full Ensemble (purple), FES (red), and
NC (green) subsets. The mean values for each measure and subset are denoted by black
dots, the median values for each measure and subset are shown by the appropriately col-
ored solid line, the box illustrates the interquartile range, and the whiskers denote the
minimum and maximum values. Subplots correspond to the same driver variable sets as
shown in Figure 54.
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$2.3.3 Loop Motif

The Loop motif is shown in Figure S1C. Its full ensemble also consists of 64 distinct BN
of which 56 are in the NC subset, 0 are in the RES subset, and 8 are in the FES subset.
The control profiles for the full ensemble is shown in Figure S6 when D = {1}, {22}, {z3}
and D = {xy, 22}, {z1, 23}, {z2,z3}. The population statistics for each of the measures
are summarized in Figure S7. Again, the SC analysis predicts that any single variable is
capable of fully controlling the network, while the MDS analysis predicts two variables
are needed to fully control the network. Our controllability analysis shows that a single
driver variable (D = {z1}) or any pair of variables (D = {z;,x,}) fail to fully control
a large majority of the possible BN; to guarantee full control for every network in the
dynamical ensemble constrained by the Loop network structure, all three variables need
to be driven. However, it is interesting to note that, as in the case of the Chain motif,
the FES subset of network dynamics are fully controllable from just one driver variable.
This subset is split into two groups by the mean fraction of controlled configurations
(depending on the parity of the Boolean functions [28]).
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the N = 3 variable Loop network motif shown in Figure S1C, as controlled by the driver
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system dynamics, while MDS predicts any two variables ( D = {1, 22}, {z1, x5}, {72, x3})
are necessary.
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Figure S7: Boxplots summarizing the controllability measures for the Loop network mo-
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ored solid line, the box illustrates the interquartile range, and the whiskers denote the
minimum and maximum values. Subplots correspond to the same driver variable sets as
shown in Figure S6.
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S2.3.4 Loop Motif with self-Interactions

The full ensemble of BN whose structure is given by the N = 3 variable Loop network
motif with self-interactions (shown in Figure S1D) was discussed in the main text. Here,
we explicitly show the control profiles and population statistics for all driver variable sets
in Figures S8 and S9.

The control portraits in Figure S8 again demonstrate that structure fails to characterize
network control. There is a wide variation of both R, and C', values for all possible net-
works in the ensemble. In this case, SC predicts that any single variable is sufficient for
full controllability, while MDS requires any two variables to achieve the same. Yet con-
trollability varies greatly for both cases, depending on the particular transition functions
of each BN in the ensemble. For 77% (3168 of 4096) of the BN in the ensemble a single
variable is not capable of fully controlling dynamics; even two-variable driver sets fail
to control 44% (1792 of 4096) of the BN. We also observe that while the RES subset con-
tains networks with less controllability (measured by Rp or Cp ), both the RES and FES
subsets display large variation (Figure 4A). In particular, the FES subset — most coherent
with structural control — again contains many networks which are not fully controllable
as predicted by SC and MDS.

Similar results hold for the mean fraction of reachable attractors (4 ) shown in Figure
4B (middle, right). For 36% (1456 of 4096) of the BNs in the ensemble, a single variable is
not capable of fully controlling the system between attractors; even two-variable driver
sets fail to control 20% (808 of 4096) of the BNs, regardless of the dynamical subset.
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of controllable configurations C for the full ensemble of 4096 BN with structure given
by the N = 3 variable Loop network motif with self interactions, shown in Figure S1D,
as controlled by the driver variable sets D = {x1}, {wa}, {23}, {z1, 22}, {71, 23}, {w2, 23}
There are 1000 networks in the FES subset shown in red circles, 1744 networks in the
RES subset shown in blue squares, and 1352 networks in the NC subset shown in green
diamonds; the area of the object corresponds to the number of networks. SC predicts
any singleton set (D = {x;}, {z2}, {z3}) is sufficient to fully control the system dynamics,
while MDS predicts any two variables ( D = {1, zo}, {z1, 23}, {x2, x3}) are necessary.
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Figure S9: Boxplots summarizing the controllability measures for the Loop network motif
with self interactions. These population statistics are shown for the Full Ensemble (pur-
ple), FES (red), RES (blue) and NC (green) subsets. The mean values for each measure
and subset are denoted by black dots, the median values for each measure and subset are
shown by the appropriately colored solid line, the box illustrates the interquartile range,
and the whiskers denote the minimum and maximum values. Subplots correspond to the
same driver variable sets as shown in Figure S8.
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S2.3.5 Fan Motif

The full ensemble of BN whose structure is given by the N = 3 variable Fan network
motif (specified in Figure S1E) consists of 4 BNs with FES and 12 BNs with NC. The
Fan motif is the smallest example from the family of motifs known as single-input mod-
ules [25], commonly found in gene regulatory networks and associated with coordinated
expression of genes with a shared expression. From a structural controllability view-
point, the Fan motif is the smallest example of a network with a dilation [5]. This dilation
motivates SC to predict that two variables are needed for fully controlling the network
(D = {x1,22}, {x1,23}), while MDS predicts only one variable is needed to fully con-
trol the network (D = {z}). The control profiles in Figure S10 clearly demonstrate that
controlling any one variable in the network fails to fully control any of the networks in
the full ensemble. However, controlling variable D = {z,} is sufficient to control every
BN between its two attractors, as shown by the population statistics in Figure S11. In-
terventions to the two variable sets (D = {x1, 22}, {x1, z3}) renders all of the BNs in the
FES subset fully controlled, while interventions to all three variables are needed to fully
control all of the BN in the full ensemble.
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Figure S10: The average fraction of reachable configurations R and the average fraction
of controllable configurations C for the full ensemble of 16 BN with structure given by
the N = 3 variable Fan network motif shown in Figure S1E, as controlled by the driver
variable sets D = {x1}, {xo}, {3}, {x1, 22}, {x1, 23}, {x2, 23}. There are 4 networks in the
FES subset shown in red circles, 0 networks in the RES subset, and 12 networks in the
NC subset shown in green diamonds; the area of the object corresponds to the number of
networks. The SC analysis predicts D = {1, z2}, {x1, 23} while the MDS analysis predicts

D = {x,} is sufficient to fully control the system dynamics.
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Figure S11: Boxplots summarizing the controllability measures for the Loop network mo-
tif with self interactions. These population statistics are shown for the Full Ensemble
(purple), FES (red), and NC (green) subsets. The mean values for each measure and sub-
set are denoted by black dots, the median values for each measure and subset are shown
by the appropriately colored solid line, the box illustrates the interquartile range, and the
whiskers denote the minimum and maximum values. Subplots correspond to the same
driver variable sets as shown in Figure S10.
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$2.3.6 CoRegulated Motif

The coregulated network motif, shown in Figure SIF, is statistically overrepresented in
several composite networks of gene regulation and protein-protein interaction [24]. There
are 256 BN in the full ensemble of which 100 networks are in the FES subset, 96 networks
are in the RES subset, and 60 networks are in the NC subset. Based solely on the structural
network, both SC and MDS predict interventions on a single variable (D = {z,}) are
sufficient to fully control the network. However, this driver variable set is only capable
of fully controlling 76 of the BN in the full ensemble (34 FES and 42 RES) as seen in the
control profiles in Figure S12.

The analysis of attractor controllability for this network ensemble (shown in Figure
S13) shows that a necessary condition for full attractor control is having {z;} as a subset
of the driver variable set. However, this is not a sufficient condition for attractor controlla-
bility. To understand why, we must consider that there are 136 networks with 2 attractors,
116 networks with 4 attractors, and 4 networks with 6 attractors.

This network motif also provides an interesting example of a control variable whose
manipulation does not facilitate any additional transitions in the CSTG, thus the average
fraction of controllable configurations C = 0 even though R > 0. Here, we see this
occurring for a small subset of 4 networks when D = {z,}, {z3}.
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Figure S12: The average fraction of reachable configurations R and the average fraction
of controllable configurations C for the full ensemble of 256 BN with structure given by
the N = 3 variable CoRegulated network motif shown in Figure S1F, as controlled by
the driver variable sets D = {1}, {z2}, {z3}, {1, 22}, {z1, 23}, {x2, x3}. There are 100 net-
works in the FES subset shown in red circles, 96 networks in the RES subset shown in
blue squares, and 60 networks in the NC subset shown in green diamonds; the area of
the object corresponds to the number of networks. Both SC and MDS methods predict
D = {x,} is sufficient to fully control the system dynamics.
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Figure 513: Boxplots summarizing the controllability measures for the CoRegulated net-
work motif. These population statistics are shown for the Full Ensemble (purple), FES
(red), and NC (green) subsets. The mean values for each measure and subset are denoted
by black dots, the median values for each measure and subset are shown by the appropri-
ately colored solid line, the box illustrates the interquartile range, and the whiskers denote
the minimum and maximum values. Subplots correspond to the same driver variable sets
as shown in Figure 512.
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$2.3.7 CoRegulating Motif

The coregulating network motif, shown in Figure S1G, has also been identified in com-
posite networks of gene regulation and protein-protein interaction [24]. There are 256 BN
in the full ensemble of which 40 networks are in the FES subset, 16 networks are in the
RES subset, and 200 networks are in the NC subset. Based solely on the structural net-
work, both SC and MDS predict interventions on a single variable (D = {z,}, {z2}) are
sufficient to fully control the network. However, both of these driver variable sets are
only capable of fully controlling 32 of the BN in the full ensemble (8 FES, 8 RES, and 16
NC) as seen in the control profiles in Figure S14. The attractor control analysis, presented
in Figure S15, should only be considered in light of the fact that the majority of networks
in this ensemble have only 1 attractor (hence A = 1 by default). The remaining 12 net-
works have 3 attractors, which can fully controlled by interventions to the structurally
predicted driver variable sets.
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Figure S14: The average fraction of reachable configurations R and the average fraction of
controllable configurations C for the full ensemble of 256 BN with structure given by the
N = 3 variable CoRegulating network motif shown in Figure S1G, as controlled by the
driver variable sets D = {z1}, {x2}, {z3}, {1, 22}, {21, 23}, {22, 23}. There are 40 networks
in the FES subset shown in red circles, 16 networks in the RES subset shown in blue
squares, and 200 networks in the NC subset shown in green diamonds; the area of the
object corresponds to the number of networks. Both SC and MDS methods predict D =
{z1}, {22} is sufficient to fully control the system dynamics.
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Figure S15: Boxplots summarizing the controllability measures for the CoRegulating net-
work motif. These population statistics are shown for the Full Ensemble (purple), FES
(red), and NC (green) subsets. The mean values for each measure and subset are denoted
by black dots, the median values for each measure and subset are shown by the appropri-
ately colored solid line, the box illustrates the interquartile range, and the whiskers denote
the minimum and maximum values. Subplots correspond to the same driver variable sets
as shown in Figure 514.
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S2.3.8 BiParallel Motif

The N = 4 variable BiParallel network motif, shown in Figure S1H, is frequently found
at a high statistical frequency in neural networks, food webs, and electrical circuits [23].
The BiParallel network motif also provides an example of an internal dilation, one of
several classifications for driver variables uncovered by the SC methodology [5]. The full
ensemble consists of 256 BN with 40 in the FES subset, 16 in the RES subset, and 200
in the NC subset. Both the SC and MDS methods predict two variables are sufficient to
fully control the system dynamics, either D = {xy, 23} or D = {z,x3}. MDS also posits
D = {z;,z4} as another possible driver variable set. The control profiles in Figure 516
show that the first two driver variable set are capable of fully controlling 112 networks;
these include all of the members of the FES and RES subsets. However, the third driver
variable set proposed by MDS is not capable of fully controlling any of the BN in the full
ensemble. As shown by the population statistics in Figure 517, as long as variable z; is in
the driver variable subset, the networks can be controlled between their 2 attractors.
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Figure S16: The average fraction of reachable configurations R and the av-
erage fraction of controllable configurations C for the full ensemble of 256
BN with structure given by the N = 4 variable BiParallel network mo-

tif shown in Figure S1H as controlled by the driver variable sets D =
{1}1}, {xQ}a {x3}> {x4}7 {561, x2}7 {xlv x3}7 {1’1, 564}, {x2? .’133}, {1}2, LL’4}, {x37 5(]4}, {561, Z2, x3}/
{1, 23,24}, {xs, 23, 24}. There are 40 networks in the full effective structure (FES) subset
shown in red circles, 16 networks in the reduced effective structure (RES) subset shown
in blue squares, and 200 networks in the NC subset shown in green diamonds; the area
of the object corresponds to the number of networks. Both SC and MDS methods predict
D = {z1, 22}, {x1, 23} are equivalent and sufficient to fully control the system dynamics.
MDS also predicts D = {z;, x4} can control network dynamics.
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Figure S17: Boxplots summarizing the controllability measures for the CoRegulating net-
work motif. These population statistics are shown for the Full Ensemble (purple), FES
(red), and NC (green) subsets. The mean values for each measure and subset are denoted
by black dots, the median values for each measure and subset are shown by the appropri-
ately colored solid line, the box illustrates the interquartile range, and the whiskers denote
the minimum and maximum values. Subplots correspond to the same driver variable sets
as shown in Figure 516.
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S2.3.9 BiFan Motif

The BiFan motif is the smallest example from the family of motifs known as dense over-
lapping regions or multi-input motifs [25], commonly found in gene regulatory networks
and associated with a function similar to gate-arrays. It has already been the subject of
an investigation into the correspondence between structure and dynamics for gene reg-
ulatory networks when ordinary differential equations are used to model biochemical
interactions [29]. The structural network for the BiFan motif is shown in Figure S1I. There
are 256 BN in the full ensemble; 100 networks are in the FES subset, 96 networks are in the
RES subset, and 60 networks are in the NC subset. Both the SC and MDS methods predict
D = {x1,z,} is sufficient to fully control the system dynamics. However, as the control
profiles in Figure 518 show, this driver variable set is only capable of fully controlling 24
networks, all of which are members of the RES subset. The majority of networks with the
BiFan structure require three variables to the be manipulated to render them fully con-
trolled. Controlling these two variables is sufficient to control every network between its

4 attractors (A = 1.0).
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Figure S18: The average fraction of reachable configurations R and the
average fraction of controllable configurations C for the full ensemble of
256 BN with structure given by the N = 4 variable BiFan network mo-
tif shown in Figure S1I, as controlled by the driver variable sets D =
{1}, {wo} {ms}, {wad, {mr, o} {wr, s}, {an, wad, {22, 23}, {we, w1}, {ws, v}, {21, 22, 253,
{1, 23,24}, {72, 23, 24}. There are 100 networks in the FES subset shown in red circles,
96 networks in the RES subset shown in blue squares, and 60 networks in the NC subset
shown in green diamonds; the area of the object corresponds to the number of networks.
Both SC and MDS methods predict D = {x;,z2} is sufficient to fully control the system
dynamics.
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Figure 519: Boxplots summarizing the controllability measures for the BiFan network
motif. These population statistics are shown for the Full Ensemble (purple), FES (red), and
NC (green) subsets. The mean values for each measure and subset are denoted by black
dots, the median values for each measure and subset are shown by the appropriately
colored solid line, the box illustrates the interquartile range, and the whiskers denote the
minimum and maximum values. Subplots correspond to the same driver variable sets as

shown in Figure 518.
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$2.3.10 Dominated Loop Motif

The N = 4 variable Dominated Loop network motif, shown in Figure S1]J, is frequently
overrepresented in neural networks, food webs, and electrical circuits [23]. The full en-
semble consists of 4096 BN with 1000 in the FES subset, 1744 in the RES subset, and 1352
in the NC subset. Both the SC and MDS methods predict one variable is sufficient to full
control the network dynamics, D = {z;}. However, as the control profiles in Figure S20
show;, this driver variable is only capable of fully controlling 420 networks (96 FES and 324
RES). The population statistics in Figure S21, as long as variable x; is in the driver vari-
able subset, the networks in the NC subset can be controlled between their 2 attractors.
However, the RES subset has networks which contain 2, 3,4, 5,6, and 8 attractors, while
the FES subset has networks which contain 2, 3, 5, 6 attractors. For both of these subsets,
interventions to D = {z;} results in full attractor control only when the networks which
have 2 attractors. To render the entire ensemble of networks fully controlled between
attracts, x; and another variable must be manipulated.
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Figure S20: The average fraction of reachable configurations R and the av-
erage fraction of controllable configurations C for the full ensemble of 4096
BN with structure given by the N = 4 variable Dominated Loop network
motif shown in Figure S1J, as controlled by the driver variable sets D =
{5131}, {.TQ}, {x3}’ {:U4}, {xlv '732}? {'7:17 .773}, {xI’ 374}, {332, 3:3}7 {$2’ £U4}, {:L“3, 334}, {'7317 L2, £U3},

{1, 23,24}, {x2, 23, 24}. There are 1000 networks in the FES subset shown in red circles,
1744 networks in the RES subset shown in blue squares, and 1352 networks in the NC
subset shown in green diamonds; the area of the object corresponds to the number of
networks. Both SC and MDS methods predict D = {x,} is sufficient to fully control the
system dynamics.
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Figure 521: Boxplots summarizing the controllability measures for the Dominated Loop
network motif. These population statistics are shown for the Full Ensemble (purple),
FES (red), and NC (green) subsets. The mean values for each measure and subset are
denoted by black dots, the median values for each measure and subset are shown by
the appropriately colored solid line, the box illustrates the interquartile range, and the
whiskers denote the minimum and maximum values. Subplots correspond to the same
driver variable sets as shown in Figure S20.
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S3 Biological Networks

S3.1 Drosophila melanogaster Segment Polarity Boolean Network

During the early ontogenesis of the fruit fly, body segmentation occurs [30]. The speci-
fication of adult cell types of the body segments is controlled by a sequential hierarchy
of a few genes [31]. An ordinary differential equation model of this process, built from
kinetic details of pairwise interactions, suggested that the regulatory network of segment
polarity genes in Drosophila melanogaster is largely controlled by external inputs and is
robust to changes to its internal kinetic parameters [32]. The Albert and Othmer BN ver-
sion of this model [30] is capable of predicting the steady state patterns experimentally
observed in wild-type and mutant embryonic development with significant accuracy. We
analyze the single-cell segment polarity network (SPN) that regulates 17 gene and pro-
tein variables. This is a smaller version of the original 4-cell parasegment model, whose
state-space can be fully enumerated [33] thus allowing precise understanding of how con-
trol ensues. This single cell model is represented by the structural network reproduced
in Figure S22, where each variable’s state follows the dynamical trajectories specified by
synchronous updating of the logical transition functions shown in Table S1. There are 10
steady-state attractors of the system dynamics which constitute the wild-type and mutant
expression patterns. The SPN is classified with full effective structure (FES).

It has been previously shown that segment polarity regulation, as modeled by the
SPN, is highly controlled by the upstream value of the Sloppy Pair Protein (SLP) and
the extra-cellular signals of the Hedgehog and Wingless proteins from neighboring cells
nhh/nHH and nWG [30]. Indeed, when a single bit-flip perturbation of one or more of
these three input nodes is allowed, it is known that dynamics can be controlled from any
attractor to almost every other attractor, though not all [21]. The control portrait of this
model (main text Figure 5) demonstrates that these three biochemical species are actually
capable of fully controlling the dynamics from any attractor to any other attractor when
we assume that any number of perturbations to the driver variables (e.g. repeated bit-
flips of a variable) is possible. This means that under the same perturbation assumptions
of structural control methods, the state of all intra-cellular chemical species is completely
irrelevant for attractor control in this model. Cellular control of segment polarity regu-
lation in the SPN is fully achieved by the upstream value of SLP and the extra-cellular
nhh/nHH and nWG signals (driver set SO in main text Figure 5). The full control of dy-
namics from input variables (upstream and external proteins in the biochemical context)
is to be expected in segment polarity regulation since it is a highly orchestrated develop-
mental process where upstream signals control downstream dynamics.

Structural controllability (5C) analysis determines that the SPN is completely control-
lable from interventions applied to |D| = 4 four driver variables. A full enumeration of
all possible maximum matchings reveals that there are four driver variable sets which
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Node Logic
SLP -
wg (CIA ASLP A~ CIR) V (wg A (CIA Vv SLP) A = CIR)
WG wg
en nWG A = SLP
EN en
hh EN A = CIR
HH hh
ptc CIAAN-ENA-CIR
PTC ptc V (PTC A —~nhh/nHH)
PH PTC A nhh/nHH
SMO - PTC V nhh/nHH
ci —-EN
CI ci
CIA CI A (- PTC V nhh/nHH)
CIR CI A PTC A nhh/nHH
nWG -
nhh/nHH -

Table S1: The logical rules for the 17 node Boolean network of the single-cell model for
segment polarity in Drosophila melanogaster.

satisfy the conditions of SC:

S1 = {SLP, nWG, nhh/nHH, PH},

S§2 = {SLP, nWG, nhh/nHH, CIA}, (2)
83 = {SLP, nWG, nhh/nHH, SMO},

S4 = {SLP, nWG, nhh/nHH, CIR}.

According to the SC theory, these subsets are sufficient for fully controlling the BN from
any configuration to another, yet, as demonstrated in the main text Figure 5, none of them
is capable of fully controlling the network dynamics.

On the other hand, minimum Dominated set (MDS) analysis suggests that a minimum
of |D| = 7 driver variables control the system dynamics. The full enumeration of the
possible Dominated sets uncovers 8 equivalent sets shown in Table S2.

As discussed in the main text, none of these proposed sets are capable of fully con-
trolling the system dynamics. Indeed, the maximum R value attained by the SC driver
variables is R &~ 0.07 while the MDS driver variables attain a maximum R ~ 0.31. Inter-
estingly, the maximum possible R achieved by a four driver variable subset was R ~ 0.12
and not identified by the SC analysis. A full analysis of all 7-variable subsets was not
conducted due to computational limitations.

Focusing our attention on the attractor control for the SPN reveals a different story. In
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Figure S22: Structural graph of the SPN model. The 17 genes and proteins of the single-
cell model for segment polarity in Drosophila melanogaster. Arrows indicate that the source
variable is an input for the target variable’s transition function.

this context, only three variables SO = {SLP, n\WG, nhh/nHH} are required to control the
network from any of its attractors to any other attractor. These three variables are the root
nodes of the structural network.

S$3.2 Saccharomyces cerevisiae Cell Cycle Boolean Network

The eukaryotic cell cycle reflects the progression of the cell proliferation process, dur-
ing which a single cell grows and divides into two daughter cells. The budding yeast
Saccharomyces cerevisiae is a model eukaryotic organism which has been extensively in-
vestigated using both experimental and mathematical modeling techniques. While there
are over 800 genes known to be involved in the budding yeast cell cycle process, many
researchers have suggested that the process is sufficiently well approximated by only a
handful of key regulators. Here, we use the 12 variable simplified Boolean model derived
by Li et al. [34] and referred to as CCN. Allowing for all initial configurations of these 12
variables results in 11 steady-state attractors for the system dynamics (this differs from
the 7 originally reported in [34] because the variable CellSize is also allowed to vary).
Due to the transition function associated with the gene Swi5, this network is classified
with reduced effective structure (RES).

Based solely on the structural network of CCN, structural controllability suggests that
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Variables Rp Cp | Ap
{SLP, nWG, nhh/nHH, EN, CI, WG, HH} 0.1210 | 0.1210 | 1.0
{SLP, nWG, nhh/nHH, EN, CI, wg, HH} | 0.1434 | 0.1434 | 1.0
{SLP, nWG, nhh/nHH, EN, CI, WG, hh} 0.2156 | 0.2156 | 1.0
{SLP, nWG, nhh/nHH, EN, ci, WG, HH} | 0.2156 | 0.2156 | 1.0
{SLP, nWG, nhh/nHH, EN, ci, wg, HH} 0.2351 | 0.2351 | 1.0
{SLP, nWG, nhh/nHH, EN, CI, wg, hh} 0.3132 | 0.3131 | 1.0
{SLP, nWG, nhh/nHH, EN, ci, wg, hh} 0.2351 | 0.2351 | 1.0
{SLP, nWG, nhh/nHH, EN, ci, WG, hh} 0.3132 | 0.3131 | 1.0

Table S2: The 8 equivalent sets determined by MDS analysis and their respective Rp, C'p
and A, values.

Figure S23: Structural graph of the 12 gene Boolean network model for the Saccharomyces
cerevisiae cell cycle. Arrows indicate that the source variable is an input for the target
variable’s transition function.

the network is fully controllable from interventions applied to only one variable:
Y0 = {CellSize}. 3)

However, our analysis found that this node is insufficient to fully control the network
dynamics. MDS analysis identifies that |D| = 4 driver variables are required to control
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the system, of which there are 8 possible sets:

Y1 = {CellSize, SBF, Clb1/2, Cdc14,20},

V2 = {CellSize, CIn1/2, Clb1/2, Cdc14,20},

V3 = {CellSize, SBE, MBF, Clb1/2},

V4 = {CellSize, SBF, CIn5/6, Clb1/2}, 4)
V5 = {CellSize, SBF, Sicl, Clb1/2},

Y6 = {CellSize, SBF, Clb1/2,CIn1/2},

V7 = {CellSize, CIn1/2, CIn5/6, Clb1/2},

Y8 = {CellSize, CIn1/2, Sicl, Clb1/2}.

As discussed in the main text, none of these driver variables sets were sufficient to render
the network fully controllable. In fact, the driver sets predicted by MDS lead to values of
both Ap and R that are essentially random, demonstrating once again that predictions
with equivalent support from the point of view of the structure-only theories lead to
widely different amounts of real controllability. In other words, structure-only analysis
yields contradictory results vis a vis the controllability of the actual model dynamics.

Enumeration of all possible subsets of variables in the CCN revealed that the network
can be controlled from each of its 11 attractors to each of the other attractors using in-
terventions on a minimum of four variables, of which there are three equivalent driver
variable sets (shown from left to right in Figure 6 from the main text):

V9 = {CellSize, SBF, MBF, Cdh1},
Y10 = {CellSize, SBF, MBEF, Sic1}, (5)
V11 = {CellSize, SBF, CIn5/6, Cdh1}.

Neither SC nor MDS predict those specific driver sets, which ultimately provide the most
useful form of control in such systems. Arguably, in this case, the control prediction of
SC is more off the mark than that of MDS since the attractor dynamics of the CCN is not
even close to being controlled by a single variable.

The maximum Rp =~ 0.69 is considerably larger than what was attained for the SPN
model, but still quite far from the predicted full controllability (which would require
Rp = 1.0). When compared to the SPN, there are several striking features of this con-
trollability profile. The first is the lack of striated bands associated with distinct input
variables. Instead, the cloud of points reflects the huge variability in the effect of variable
control. Another interesting feature is the lack of points around A = 0.0. This indicates
the propensity for manipulation of any variable to drive the network to a new attracting
state. Inspection of the CAGs themselves reveals that interventions tend to transition the
network into the one large basin of attraction associated with the biological stationary
state, while it is relatively less common to see a transition out of this basin.

Even though the CCN is comprised of 12 variables and the SPN is comprised of 17
variables, only 3 variables are needed to fully control the attractor dynamics of the latter,
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but at least 4 variables are required to attain the same control of the CCN. In contrast, a
substantially smaller proportion of the total configurations are reachable by interventions
to 4 variables in the SPN as compared to the CCN. This is coherent with the intent of each
model; whereas control of attractors representing wild type and mutant cell phenotypes
is the goal of the SPN, robustness of the cell-cycle attractor is the most salient feature of
the CCN. To achieve attractor control, the SPN relies on a set of 3 (external) master con-
trollers that are sufficient to switch dynamics to and from any attractor basin, but most
configurations in these basins remain unreachable via the control of these 3 variables —
controlling additional variables is necessary to reach a large proportion of the configura-
tions, or the system needs to be initiated on them (garden-of-Eden configurations). The
robustness of the wild type attractor of the CCN, on the other hand, relies on a very large
basin of attraction which contains a large proportion of the total number of possible con-
tigurations [33]. Thus, control interventions tend to fall back on this basin sweeping a
large proportion of configurations in the ensuing dynamics. This demonstrates that at-
tractor control is not necessarily correlated with configuration control; the former can be
fully achieved without much control ability of the latter form, as is the case of the SPN
model. This is also observed in the CCN model, where we find driver sets of 4 variables
with large attractor control, but relatively small configuration control and vice versa (see
main text Figure 6A).

Most importantly for the purposes of our analysis is the fact that a structure-only anal-
ysis of controllability fails to differentiate these dynamical aspects of the models. More-
over, both structure-only analyses are completely wrong about how control actually op-
erates. To summarize, SC (MDS) predicts that 4 (7) and 1 (4) variables are needed to fully
control the SPN and the CCN, respectively. In reality, the predicted variables are very far
from being able to achieve full control. If we consider solely attractor control, the same
models in reality require 3 and 4 variables, respectively. Therefore, for the SPN model,
both structure-only models overshoot the required variables (even though they include
the 3 control variables since they are input variables in the interaction graph). For the
CCN model, SC undershoots its prediction missing 3 additional required variables for
attractor control, whereas MDS picks the correct number of variables but not the actual
4 variables capable of controlling attractor dynamics — indeed, the MDS predictions are
essentially random from the attractor control perspective, given all the possible sets of 4
driver variables (see main text Figure 6A).

S$3.3 Arabidopsis thaliana Floral Structure Boolean Network

During the development of the flower in angiosperms, cells are partitioned into four
groups which eventually become the floral organs. The fate of these cells is determined
by a network of interacting genes. Here, we use the 15 variable Boolean network under-
lying the cell-fate determination during floral organ specification in the flowering plant
Arabidopsis thaliana [35, 36]. The network structure is shown in Figure 524 and is classified
with reduced effective structure (RES) due to the transition function associated with the
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gene LFY.

There are several interesting characteristics to the control profile of this system when
controlled by all driver variable subsets of sizes 1 — 4 shown in Figure S25. Firstly, the
maximum Rp ~ 0.0544 is smaller than that seen for both the SPN and CCN. Second,
it is also interesting to note that no combination of four driver variables is capable of
controlling the network between all of its attractors, the maximum Ap ~ 0.74. Third,
while the network structure has three root variables (as was the case for the SPN), labeled
here as:

70 = {LUG,CLF,UFO} (6)

interventions to these three variables endow the system with the same controllability as
a random set of three variables for both R, and Ap.

The structural control methodologies similarity fail to identify the best subsets to con-
trol the network dynamics. Based solely on the structural network, SC suggests that the
network is fully controllable from interventions applied to a 4 variable set, either:

T1={LUG,CLF,UFO,EMF1} 7)
T2 ={LUG,CLF,UFO, SEP}

However, our analysis found that neither of these two nodes are sufficient to fully control
the network dynamics. MDS analysis identifies that at least 6 driver variables are required
to control the system, of which there is only one possible set given in Table 53, which
likewise cannot fully control the network dynamics.

The fact that the root (input) variables are insufficient to fully determine the attractor
dynamics of the system mirrors the actual biology of the cell-fate determination process
[36]. For example, the floral specification process is dependent on several earlier processes
not modeled by the BN used here. During these processes, the genes LFY and TFLI are
involved. At the same time, it is known that the gene UFO provides positional informa-
tion that biases the floral specification; here this manifests itself as a relatively large Ap
when UFO is controlled alone.

Variables ‘ Rp ‘ Ch ‘ Ap
{UFO, EMF1, LUG, CLE TFL1, SEP} | 0.1180 | 0.1179 | 0.4111

Table_ S3: The six driver variable set identified by MDS analysis and its respective Rp,Cp
and Ap values.

S4 Canalization and Boolean Network Control

We previously observed that in the set of contingent Boolean functions, there are canal-
izing functions [37, 38]. Their logic contains some redundancy in that the transition is
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Figure 524: Structural graph of the 15 gene Boolean Network model for the cell-fate de-
termination during floral organ specification in Arabidopsis thaliana. Arrows indicate that
the source variable is an input for the target variable’s transition function.

dictated only by the state of a subset of their inputs. When fully canalizing functions are
present in a BN, not all of the edges in the structural graph contribute to the collective dy-
namics; there exists a subgraph that fully captures the dynamically relevant interactions,
which we refer to as an effective structural graph [21, 39]. Moreover, most Boolean func-
tions are partially canalizing [21, 38] whereby in some input conditions a subset of inputs
is redundant, but in other conditions it is not. For instance, for the logical function AND,
when one input is in state 0, the state of the other input is redundant. Indeed, for every
class of Boolean functions of in-degree k; > 0, there are only two non-canalizing func-
tions (with full effective connectivity [21]); for example, for k; = 2 the logical function XOR
and its negation are the only two functions with full effective connectivity. This means
that most edges in the underlying structural graph of a random BN are either entirely or
partially redundant.

To gain greater insight about the role of canalization in determining the extent to
which network structure can predict the controllability of multivariate Boolean dynam-
ics. More specifically, we compared ensembles of networks with and without canalization
in two different scenarios: the structural graph constrained by the Saccharomyces cerevisiae
Cell Cycle Boolean Network (CCN) and structural graphs constrained by certain network
motifs.
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reachable attractors Ap for each singleton driver variable set. The driver variable subsets
predicted by structural controllability (SC) to fully control the network are highlighted
in red and labeled 71 and 72. The three variable subset with all three root variables is
highlighted in yellow and labeled 70.
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S4.1 Canalization in Saccharomyces cerevisiae

A sample of 50 networks was drawn from FEC and the system controllability was calcu-
lated for all driver variable sets of size |D| = 1,2,3,4. The results of this calculation are
presented in Table S4 as an average across the sample, as well as the BNs which were the
most controlled and the least controlled on average. The corresponding calculations for
the original CCN model are also shown for a comparison.

Even though all networks have the same structural graph, and all Boolean functions
are without canalization, there is variability in the minimum number of driver variables
which render the networks fully controllable. In the best case from the FEC ensemble,
only 2 variables are need to fully control network dynamics (Rp = 1.0) for which there
are 3 equivalent sets (see Figure 526). However, in the worst case from the FEC ensemble,
3 variables are needed to fully control network dynamics (Rp = 1.0) and there are 4
equivalent sets (see Figure 527).

Focusing on the specific predictions of the two structure-only methodologies consid-
ered here (SC and MDS), we see that even when there is the strongest correspondence
between the structural graph and the dynamical interactions, both methods failed to accu-
rately predict the controllability of the networks. This is illustrated by the control profiles
for all driver variable subsets of sizes 1 — 4 of the network with the best average con-
trol (Best FEC, Figure 526) and the network with the worst average control (Worst FEC,
Figure 527) Rp averaged over all driver variable sets. Indeed, no networks from the FEC
ensemble were fully controllable via interventions to only one driver variable as predicted
by the SC analysis. While the specific driver variable predicted by SC (D = {CellSize})
consistently has the highest R of all singleton driver variable sets, there are always at
least two other singleton driver variable sets which have higher Ap in every network
from our sample (D = {MBF} and D = {Cdc14/20}). On the other hand, the predic-
tions of the MDS analysis overestimated the actual number of driver variable sets needed
to fully control the networks in the FEC ensemble. Surprisingly, many networks in the
FEC ensemble were fully controllable R = 1.0 with interventions to only 2 driver vari-
ables, while all networks could be fully controlled by interventions to 3 driver variables.
Looking at the specific driver variable sets uncovered by the MDS analysis, we see that
it incorrectly identified some driver variable sets as able to fully control the dynamics,
and missed many other driver variable sets of the same size which were actually able to
fully control the network dynamics (seen by the large number of overlapping points in
Figures 526, S27). Thus, even though SC undershoots and MDS overshoots the number of
nodes necessary to attain full controllability, for the networks in the FEC ensemble, these
predictions are closer to the real number of driver variables needed.

The sample of networks from FEC is fully controllable with interventions to fewer
variables — and thus matching structure-only predictions of size of driver sets better;
possibly because the effective structure is maximal (the same as the original underlying
structure). In such a case, the structural interactions by which control can be exerted and
propagated are maximized in comparison to the possible interactions that exist in the
real CCN — which contains canalizing functions and thus possesses a smaller effective
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structural graph. Indeed, the increase in controllability for BNs without canalization is
related to both the increase of chaos in BNs with greater connectivity and the increase of
robustness to perturbations exhibited by BNs with canalization [37, 40]. When there is no
canalization, the effective connectivity of the network is larger and so we can expect more
chaotic regimes [39]; in this case, smaller perturbations spread more easily such that all
configurations are more reachable leading to an increase in the measures of controllability.
When canalization arises (as in the real CCN model), we tend to observe the buffering of
the effect of perturbations [41]; such robustness to perturbations implies a reduction in
the ability to fully control the network [37].

It should be emphasized, however, that the actual control variables predicted by the
structure-only theories are still mostly incorrect even for the FEC ensemble. This suggests
that there are other factors which determine the actual controllability of BN dynamics but
which are not captured by the structural interaction graphs. Such factors may depend
on nonlinearity in the collective integration of multi-variate dynamics, as well as the ex-
act patterns of canalized interactions. While the random sampling of the FEC ensemble
shows that the absence of canalization leads to higher controllability, it is also known
that canalizing functions can be engineered (by human-design or natural selection) such
that control pathways are more effective (and simultaneously robust) in exerting attractor
control in biological networks — e.g. the SPN model of drosophila embryological devel-
opment contains canalized pathways modules highly effective at controlling dynamics
[21].

S4.2 Canalization in Network Motifs

We look at a subset of the full ensembles constrained by network motifs examined in the
main text and Section S2. As previously discussed in the main text and Section S2.2, the
tull ensemble of Boolean Networks was partitioned into three subsets: the non-contingent
subset (NC), the reduced effective structure subset (RES), and the full effective structure
subset (FES) based on the criteria that at least one of the transition functions was NC,
RES or FES. Here, we focus on the smaller subsets of BNs such that all of the transition
functions are NC or RES; denoted Pure NC (PNC) and Pure RES (PRES). We also eliminate
all partially canalized functions from the FES subset. The resulting subset of BNs, denoted
Pure FES (PFES), contains only those networks where all transition functions have full
effective connectivity (for degree k; = 2 this is only the XOR logic and its negation). As
in the previous section (S4.1), the PFES subset contains networks with dynamics that are
most accurately captured by their structural graphs in that every interaction plays an
equal and maximal role in determining the variables’ transitions. Since there are no PRES
transition functions of degree k; = 1, we limit this exploration to the 4 network motifs
with variable degrees of k; = 0 or k; = 2: the Loop Motif with self-interactions (Figures
528 & S29), the CoRegulated Motif (Figures S30 & S31), the BiFan Motif (Figures S32 &
S33), and the Dominated Loop Motif (Figures S34 & S35).

First, we focus on the results obtained for the PFES subset. Once again, both structure
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Ensemble Driver Variable Size Mean Rp Mean Ap #Rp=1.0
FEC 1 0.119 (0.0275)  0.1851 (0.0441) 0 (0)

2 0.2266 (0.0487) 0.2979 (0.06435) 1.5667 (1.1358)
3 0.3282 (0.0620)  0.3969 (0.0744)  17.86 (9.7837)
4 0.4351 (0.0959)  0.4920 (0.0943)  80.74 (33.7448)
CCN 1 0.0088 0.0985 0
2 0.0317 0.1920 0
3 0.0875 0.2824 0
4 0.1817 0.3762 0
Best FEC 1 0.1434 0.2333 0
2 0.2798 0.3758 3
3 0.4021 0.4915 31
4 0.5090 0.5836 127
Worst FEC 1 0.0717 0.1129 0
2 0.1466 0.1975 0
3 0.2305 0.2848 4
4 0.3228 0.3746 32

Table S4: A comparison of the 50 networks sampled from the FEC with the original CCN,
most controlled sample (Best FEC), and least controlled sample (Worst FEC). The mean for
Rp and Ap are both found by averaging over all driver variable sets of a given size. The
number of driver variables which rendered the networks fully controllable # Rp = 1.0 is
also shown. All of the FEC values are averaged over 50 samples with standard deviation
given in parentheses.
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Figure 526: Control of an exemplar BN constrained by the CCN when all of the logic
transitions functions are randomly assigned from the set with full effective connectivity
for all driver variable subsets of size |D| = 1, |D| = 2, |D| = 3, and | D| = 4. This exemplar
was identified as the network from the sample with the highest mean R, for each driver
variable size. The driver variable sets predicted by structure only methods to fully control
the network are highlighted in red. There are 3 sets of |D| = 2, 31 of |D| = 3, and 127 of
|D| = 4 which render the network fully controllable (Rp = 1.0).
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Figure S27: Control of an exemplar BN constrained by the CCN when all of the logic
transitions functions are randomly assigned from the set with full effective connectivity
for all driver variable subsets of size |D| = 1, |D| = 2, |D| = 3, and | D| = 4. This exemplar
was identified as the network from the sample with the lowest mean R, for each driver
variable size. The driver variable sets predicted by structure only methods to fully control
the network are highlighted in red. There are 0 sets of |D| = 2, 4 of |D| = 3, and 32 of
|D| = 4 which render the network fully controllable (Rp = 1.0).
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only control methods failed to characterize the controllability of every BN instance. SC
correctly identified the driver variable subset for only one of these Motif ensembles (the
Loop with self-interactions), while many of the networks in the other three motifs” ensem-
bles were not fully controlled by the SC predictions. The MDS analysis similarly failed to
correctly identify the driver variable subsets which fully control the PFES networks for
three of the four motifs, and overshoots the minimum number needed for the only case
where it correctly identifies the subset: the Loop Motif with self-interactions. Therefore,
even in these small network motifs for which the network dynamics are most accurately
captured by their structural graphs, the structure only control methods fail to accurately
predict the controllability of the system dynamics.

Second, we focus on a more detailed analysis for the PRES subset constrained by these
4 network motifs. BNs in the PRES subset have many interactions present in their struc-
tural graphs which are completely ignored by the actually dynamic transition functions.
Interestingly, for every one of these motifs, there were some networks from the PRES
subset which were accurately characterized by the structure only methods. In all of the
cases where BNs from the PRES were fully controllable by a structure only method, their
canalization resulted in reduced effective structures equivalent to chain motifs of 2, 3, or
4 variables as depicted in Figure S36. Thus, it appears canalization can enhance the ac-
curacy of structure only control methodologies by reducing the effective dynamics to a
linear chain of interacting variables.
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Figure 528: The average fraction of reachable configurations R and the average fraction
of controllable configurations C for the ensemble of 140 pure BN with structure given
by the N = 3 variable Loop network motif with self interactions, shown in Figure S1D,
as controlled by the driver variable sets D = {1}, {xa}, {z3}, {z1, 22}, {z1, 23}, {22, 23}
There are 8 networks in the pure FES (PFES) subset shown in red circles, 64 networks in
the pure RES (PRES) subset shown in blue squares, and 8 networks in the pure NC (PNC)
subset shown in green diamonds; the area of the object corresponds to the number of net-
works. SC predicts any singleton set (D = {z1}, {22}, {x3}) is sufficient to fully control the
system dynamics, while MDS predicts any two variables ( D = {1, 22}, {x1, 23}, {22, 23})
are necessary.
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Figure S29: Boxplots summarizing the controllability measures for the Loop network mo-
tif with self interactions. These population statistics are shown for the full Pure Ensemble
(purple), PFES (red), PRES (blue) and PNC (green) subsets. The mean values for each
measure and subset are denoted by black dots, the median values for each measure and
subset are shown by the appropriately colored solid line, the box illustrates the interquar-
tile range, and the whiskers denote the minimum and maximum values. Subplots corre-
spond to the same driver variable sets as shown in Figure 528.
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Figure S30: The average fraction of reachable configurations R and the average fraction
of controllable configurations C for the ensemble of 140 pure BN with structure given by
the N = 3 variable CoRegulated network motif shown in Figure S1F, as controlled by the
driver variable sets D = {x1}, {z2}, {3}, {x1, 22}, {71, 23}, {22, x3}. There are 4 networks
in the pure FES (PFES) subset shown in red circles, 16 networks in the pure RES (PRES)
subset shown in blue squares, and 4 networks in the pure NC (PNC) subset shown in
green diamonds; the area of the object corresponds to the number of networks. Both SC
and MDS methods predict D = {z,} is sufficient to fully control the system dynamics.
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Figure S31: Boxplots summarizing the controllability measures for the CoRegulated net-
work motif. These population statistics are shown for the full Pure Ensemble (purple),
PFES (red), and PNC (green) subsets. The mean values for each measure and subset are
denoted by black dots, the median values for each measure and subset are shown by
the appropriately colored solid line, the box illustrates the interquartile range, and the
whiskers denote the minimum and maximum values. Subplots correspond to the same
driver variable sets as shown in Figure S30.
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Figure S32: The average fraction of reachable configurations R and the
average fraction of controllable configurations C for the ensemble of 120
pure BN with structure given by the N = 4 variable BiFan network mo-
tif shown in Figure S1I, as controlled by the driver variable sets D =
{1}, {wo} {ws} {wad, {mr, 2o} {wr, s}, {an, wad, {22, 25}, {we, w1}, {ws, v}, {21, 22, 233,
{z1, 23, x4}, {72, 23, 24}. There are 4 networks in the pure FES (PFES) subset shown in
red circles, 16 networks in the pure RES (PRES) subset shown in blue squares, and 4
networks in the pure NC (PNC) subset shown in green diamonds; the area of the object
corresponds to the number of networks. Both SC and MDS methods predict D = {z1, 2}
is sufficient to fully control the system dynamics.
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Figure S33: Boxplots summarizing the controllability measures for the BiFan network mo-
tif. These population statistics are shown for the full Pure Ensemble (purple), PFES (red),
and PNC (green) subsets. The mean values for each measure and subset are denoted by
black dots, the median values for each measure and subset are shown by the appropri-
ately colored solid line, the box illustrates the interquartile range, and the whiskers denote
the minimum and maximum values. Subplots correspond to the same driver variable sets
as shown in Figure S532.
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Figure S34: The average fraction of reachable configurations R and the av-
erage fraction of controllable configurations C for the ensemble of 1072 pure
BN with structure given by the N = 4 variable Dominated Loop network
motif shown in Figure S1J, as controlled by the driver variable sets D =
{'731}7 {.TQ}, {.163}, {1‘4}, {331, .732}, {.731, .773}, {xb x4}a {332, 3:3}7 {$2’ £U4}, {:L“3, 334}, {'7:17 L2, 1‘3},

{z1, 3,24}, {72, x5, 24}. There are 8 networks in the pure FES (PFES) subset shown in
red circles, 64 networks in the pure RES (PRES) subset shown in blue squares, and 8
networks in the pure NC (PNC) subset shown in green diamonds; the area of the object
corresponds to the number of networks. Both SC and MDS methods predict D = {z;} is
sufficient to fully control the system dynamics.
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Figure 535: Boxplots summarizing the controllability measures for the Dominated Loop
network motif. These population statistics are shown for the full Pure Ensemble (purple),
PFES (red), PRES (blue), and PNC (green) subsets. The mean values for each measure
and subset are denoted by black dots, the median values for each measure and subset are
shown by the appropriately colored solid line, the box illustrates the interquartile range,
and the whiskers denote the minimum and maximum values. Subplots correspond to the
same driver variable sets as shown in Figure S34.
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Figure S36: The a) Co-regulated, b) BiFan, and c) Dominated Loop network motifs and
the reduced effective structure for networks in the PRES which were fully controllable as
predicted by SC and MDS analysis. Light grey edges denote structural interactions which
are completely ignored by the logical transition functions.
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