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Abstract. This PhD project is concerned with the evolution of Cell
Signaling Networks (CSNs) in silico. CSNs are complex biochemical net-
works responsible for the coordination of cellular activities. We are in-
vestigating the possibility to build an evolutionary simulation platform
that would allow the spontaneous emergence and evolution of Artificial
Cell Signaling Networks (ACSNs). From a practical point of view, real-
izing and evolving ACSNs may provide novel computational paradigms
for a variety of application areas. This work may also contribute to the
biological understanding of the origins and evolution of real CSNs.

1 Introduction

Biological cells may respond to their environment in multiple ways, examples are:
cellular differentiation, growth, division, death etc. To respond appropriately to
environmental conditions, cells have to integrate multiple internal and external
signals. Cell Signaling Networks (CSNs) are responsible for relaying and inte-
grating these signals within the cell [19, 16, 21]. Through evolution, CSNs have
become highly efficient at governing critical cellular activities which ensure the
adaptivity and survival of the organism.

The purpose of modeling and evolving these natural networks is manifold, a
variety of applications may be distinguished in the following areas:

1. Synthetic Biology : From a theoretical point of view it allows the exploration
of network structures and dynamics, to find emergent properties [4] or to
explain the organization and evolution of networks. From a practical point of
view, studying CSNs in silico allows one to carry out experiments that would
not be possible due to financial or technical constraints. Pharmaceutical
applications can also be identified such as in drug design [23, 14].

2. Computer Science/Engineering : As signal processing systems, CSNs can be
regarded as special purpose computers [5]. In contrast to conventional silicon-
based computers, the computation in CSNs is not realized by electronic cir-
cuits, but by chemically reacting molecules in the cell. Realizing and evolving
Artificial Cell Signaling Networks (ACSNs) may provide new computational
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paradigms for a variety of application areas (e.g. signaling processing, compu-
tation or control systems). These new computational approaches may benefit
from desirable properties found in biological processes such as robustness,
self-organization or adaptation.

This PhD project adheres to the second area of interest presented above: we
are interested in building novel computational paradigms based on Artificial Cell
Signaling Networks. Through the use of evolutionary computing techniques, we
allow ACSNs to spontaneously emerge and adapt to the environment. The cur-
rent biological understanding provided guiding points that directed the design
of our Artificial Chemistry: the Molecular Classifier Systems (MCS). Prelimi-
nary studies demonstrated that real and artificial CSNs could be considered for
computational and engineering purposes [22, 26, 6].

Our PhD project is part of the ESIGNET project 1, an European funded
project that aims to investigate the possibility to computationally evolve and
simulate ACSNs by means of Evolutionary Computation techniques. One re-
quirement of this EU project is to maintain biological plausibilities, in the sense
that the interactions between the simulated artificial molecules are to be realistic
with respect to the chemical interactions found in real CSNs.

2 Research

As an abstraction of real CSNs, ACSNs are differentiated and simplified by some
key properties. The selection of these particular characteristics is motivated by
the will to employ ACSNs for computational purposes. Four research issues are
distinguished and presented:

1. Computation: CSNs are usually treated in an aggregate manner, where the
information is carried by molecular concentration. We may also consider the
finer grained behaviors of individual molecules that are computational in na-
ture. An enzyme can be regarded as carrying out pattern matching to identify
and bind target substrates, and then executing a discrete computational op-
eration in transforming these into the product molecule(s). This approach
differs from traditional rewriting systems: operation is stochastic rather than
deterministic, secondly, operation is reflexive in the sense that molecules can
function as both rules (enzymes) and as messages (substrates/products).

2. Evolution: Due to the intricate and unpredictable nature of molecular in-
teractions occurring in CSNs, designing ACSNs by hand may result in a
challenging task. Artificial evolution may suggest that within suitable con-
ditions, effective ACSNs (meeting some given performance objectives) may
be designed through evolutionary processes [6, 18].

3. Crosstalk : This designates the phenomenon where signals from different
pathways become mixed together. In traditional engineering, crosstalk is
regarded as a defect that has the potential to cause system malfunction.

1 http://www.esignet.net
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Crosstalk occurs very naturally in CSNs due to the fact that common molecules
from different pathways may share the same physical reaction space (the
cell). However, in the case of CSNs, crosstalk also has additional potential
functionalities, which may actually be constructive [2, 25].

4. Robustness: In order to ensure the correct functioning of biochemical net-
works, it is argued that key properties of these networks are to be robust [3].
Alon et al. demonstrated from studying E. coli chemotaxis that molecular
interactions can exhibit robustness [1, 22]. A robust biochemical network is
able to reach a steady state that is equivalent to the state observed before
a perturbation occurs. Such properties are highly desirable in dynamic en-
gineered systems when subjected to internal and external uncertainty and
perturbation.

2.1 Goals

Given the above research issues of interest, we distinguished for the present the
following goals to be achieved in the course of this PhD project. Moreover, as this
PhD project is tied to the ESIGNET project, some of these goals also contribute
to different workpackages of the ESIGNET project:

1. Modeling CSNs: A good understanding of available modeling techniques of
CSNs is necessary. This will guide and assist the design of our evolutionary
simulation platform (in respect to biological plausibilities).

2. Evolving CSNs: Similarly, it is required to be acquainted with the current
state of the art regarding the evolution of CSNs in silico. This includes an
investigation on the possibility to evolve ACSNs for computational purposes.

3. Design of our Artificial Chemistry : We propose the Molecular Classifier Sys-
tem (MCS), an evolutionary simulation platform that will be employed to
investigate the emergence and evolution of ACSNs from a bottom-up ap-
proach.

4. Evolving ACSNs:
(a) We intend to evolve ACSNs with pre-specified constraints using the

MCS, these constraints would be defined as minimal as possible in or-
der to minimize the number of engineered components. Also these con-
straints would be defined so as to allow the emergence of ACSNs equiv-
alent (based on some properties) to CSNs occurring in nature. A first
experiment could be to simulate the bacterial chemotaxis phenomenom
and then to study and compare the resulting ACSN with a real chemo-
taxis signaling pathway.

(b) Further experiments would involve the investigation of other natural
signaling pathways. Then, to employ this approach to solve computa-
tional problems. A study on the computational complexity of our novel
paradigm will follow.

5. Crosstalk : To obtain a better understanding of the crosstalk phenomenon
and more specifically about the positive and negative effects of crosstalk.
We would like to see if it is possible to specify a network topology that
allows optimal control of crosstalk effects.
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6. Robustness: We will investigate the ability of ACSNs to create and sustain
specific internal conditions such as homeostasis. We would like to exhibit
such robust behavior in simulated ACSNs, and how through evolutionary
changes, robustness can be refined. Another consequent issue is to quantify
the robustness of such systems to external shocks and changes of conditions.

7. Artificial Cognitive Systems: We are also interested in examining the con-
struction of Artificial Cognitive Systems based on our ACSNs, this approach
would then adhere to the emergent system paradigm of cognition [24].

8. Insights in Theoretical Biology : Ultimately, contributions in the biological
understanding of the origins and evolutionary dynamics of real CSNs will be
proposed.

2.2 Current status

At this stage of the project, we have conducted a comprehensive literature review
on the modeling and evolving of CSNs. The design of the Molecular Classifier
System was proposed, finally some experimental studies were performed:

1. Modeling CSNs:

– We contributed to the realization of the state of the art report on Cell
Signaling Networks [13]. This report provides a thematic bibliography
involving studies from different scientific fields: Biology, Mathematics,
Computer Science and Engineering.

– In [8] we described a comprehensive survey on the different philoso-
phies (Mathematics, Statistics and Computer Science) to model bio-
chemical networks. This work was carried out in collaboration with the
bio-analysis research group (an ESIGNET partner) from the Friedrich-
Schiller-Universitat in Jena-Germany.

– A technical report Introducing Computational Modeling of Cell Signaling
Networks is in preparation and intends to thoroughly present a selection
of CSN modeling techniques.

– A journal paper Towards a unified approach for the modeling, analysis
and simulation of cell signaling networks is also in preparation, this
is again performed in collaboration with the Jena group. This paper
presents a comprehensive evaluation of modeling techniques and bridges
between the differing approaches.

2. Evolving CSNs:

We presented several posters presenting our preliminary work on the evolu-
tion and applications of ACSNs [11, 10, 20].

3. Design of our Artificial Chemistry :

– In [12] we presented our concept of ACSNs and of MCS. An extended
version of this paper is in preparation and will be included in Advances
in Biologically inspired information systems: models, methods and tools:
the best paper issue of the Bionectics’06 conference.
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– In [9] , the broadcast language is examined: this is a programing formal-
ism devised by Holland which shares some key properties with the MCS
[17]. This system was investigated to provide complementary insights for
the design of the MCS. Moreover, this work provided an evaluation of
the broadcast language to modeling biochemical networks. A derivation
of this formalism is proposed and includes the MCS main concepts.

– A technical report [7] was produced and presents our implementation
of the Holland broadcast language, this was necessary as no published
detailed specification of the language can be found in the literature.

– A presentation Towards the design of Molecular Classifier Systems was
given at the bio-analysis group in Jena. This talk presented a summary
of our work regarding the MCS and the broadcast language and how it
is possible to combine both approaches.

2.3 Future planning and study

From January 2007, we intend to carry out experimental studies using our
MCS. We will first investigate the emergence of ACSNs that would be equiv-
alent (based on some defined properties) to real signaling networks. At a later
stage (Fall 2007), this work will then focus on the use of ACSNs to solve a va-
riety of computational problems. Throughout this study, we are interested in
the evolution/growth of complexity of ACSNs when applied to different bio-
logical/computational problems. Following this, we will explore the possibility
of building Artificial Cognitive Systems based on Artificial CSNs. Ultimately,
this understanding on ACSNs will then be re-applied in Theoretical Biology,
contributions may be given on the origins and evolutionary dynamics of real
CSNs. Our PhD project started on December 2005 and is funded by the Euro-
pean Union for 3 years. Thus our current plan is to complete this PhD within 3
years. However completing a PhD in 3 years is quite challenging, an alternative
would be to perform most of the experimental/analytical work within 3 years,
the fourth year would then be dedicated to the writing up of the thesis.

3 Results

In this section we introduce the concept of Molecular Classifier Systems. Then
we present the broadcast language which was proposed by Holland in 1975 and is
similar to the MCS on many aspects. Evaluating the broadcast language provided
us with valuable insights for the design of the MCS in order to implement ACSNs.

3.1 The Molecular Classifier System

We define the Molecular Classifier System (MCS) as a class of string-rewriting
based Artificial Chemistries. This approach is inspired by Hollands Learning
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Classifier Systems (LCS). In Hollands LCS, a demarcation is distinguished be-
tween rules and messages, however as mentioned earlier operations in a bio-
chemical networks are intrinsically reflexive. The MCS addresses this issues by
removing this rules/messages demarcation found in the LCS.

The behavior of the condition/binding properties and action/enzymatic func-
tions is specified by a “chemical” language defined in the MCS. The chemical
language defines and constrains the complexity of the chemical reactions that
may be represented and simulated with the MCS. For example, a MCS model
using a limited number of computational functions may only fatefully represent
very simplistic chemical reactions.

In the MCS approach, a reaction between molecules may only occur if the
informational string of a first molecule satisfies/binds with the conditional part
of a second molecule. The second molecule may be the same as the first molecule
leading to self-binding. The condition part refers to the binding properties of a
molecule whereas action refers to the computational (“enzymatic”) function.
This pattern matching occurring implies a notion of specificity or “binding
strength”. A molecule having a high specificity would have less chance to re-
act with another one. Whereas a molecule having a low specificity is likely to
bind to another more often (≈ chemical kinetics).

When two molecules can bind and consequently react to each other, the action
part of one of the molecules is used to carry out the enzymatic operations upon
the binding molecule (substrate). This operation results in producing another
offspring (product). The symbols contained in the MCS action part are processed
in a sequential order (parsed from left to right). The outcome (product) of the
reaction depends on the nature of the symbols’ functionality.

Fig. 1. Schematic of a reaction in the MCS: When a molecule A can react with a
molecule B, the action statement of molecule A is “executed” upon the informational
string of the binding molecule B. A is viewed as an enzyme and B as a substrate, thus
A’s structure is not affected by the reaction whereas B’s structure is degraded and a
product P is generated. A’s action statement operators take as inputs the symbols of
B ’s string. An offspring molecule P is generated as a result of these operations

The definitive set of operations is still under investigation as we are trying
to understand what are the minimal operational requirements to allow a primi-
tive ACSN to spontaneously emerge. However in the remainder of this section,
we present a candidate solution based on a variant of the Holland broadcast
language.
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3.2 The Broadcast Language

The broadcast language is a programing formalism introduced by Holland in 1975
[17, 7], which can be thought of as the precursor for the LCS. A key property
shared between the MCS and the broadcast language is the removal of any
demarcation between messages and rules. A second beneficial property is the
ability of the broadcast language to provide a straightforward representation to
a variety of natural models such as Genetic Regulatory Network models.

The broadcast language basic components are called broadcast units which
can be viewed as condition/action rules. Whenever a broadcast unit conditional
statement is satisfied, the action statement is executed. This means that when-
ever a broadcast unit detects in the environment the presence of (a) specific
signal(s), including themselves, then the broadcast unit would broadcast an out-
put signal.

Some broadcast units may broadcast a signal that may constitute a new
broadcast unit. Similarly, a broadcast unit can be interpreted as a signal detected
by another broadcast unit. Broadcast units may also process a given signal, in the
sense that, a broadcast unit may output a signal that is some modification of the
detected/input signal. As a result, a broadcast unit may create new broadcast
units or detect and modify an existing broadcast unit. A set of broadcast units,
combined as a string, designates a broadcast device.

Table 1. Comparison of biological and broadcast language terminology

Biology Broadcast Language

sequence of amino acids from

{A, R, N, D, C, E, . . .}
string of symbols from Λ =

{0, 1, ∗, :, ♦, ▽, H, △, p, ′}

substrate input signal

product output signal

protein with no enzymatic function null unit

enzyme broadcast unit

protein complex broadcast device

cellular milieu list of strings from Λ

As a summary, the above table presents a comparison between the biological
and the broadcast language terminology.

3.3 Methodology

In this section we present our implementation of the broadcast language system.
This work was also motivated by the fact that, although described by Holland,
no implementation / further studies on the broadcast language was available in
the literature.
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The Broadcast Language: syntax and semantics. The broadcast language
alphabet Λ is finite and contains ten symbols, Λ∗ is the set of strings over Λ. The
symbols constitute the atomic elements of the language.

Λ = {0, 1, ∗, :, ♦, ▽, H, △, p, ′}

Let I be an arbitrary string from Λ∗, in I, a symbol is said to be quoted if
it is preceded by a symbol ′. The finite collection of broadcast devices can be
described by its state S at each timestep t. Four types of broadcast unit can be
distinguished, any broadcast units that do not follow one of the four schemes (see
below) are null units. Broadcast units may engage in the following interactions
based on discrete timesteps:

1. ∗I1 : I2 If a signal of type I1 is detected at time t then the signal I2 is
broadcast at time t + 1.

2. ∗ : I1 : I2 If there is no signal of type I1 present at time t then the signal I2

is broadcast at time t + 1.

3. ∗I1 :: I2 If a signal of type I1 is detected at time t then a persistent string
of type I2 (if any) is removed from the environment at the end of time t.

4. ∗I1 : I2 : I3 If a signal of type I1 and a signal of type I2 are both present at
time t then the signal S3 is broadcast at the same time t unless the string
I3 contains unquoted symbols {▽,H,△} or singly quoted occurrence of ∗, in
which case the string I3 is broadcast a time t + 1.

The interpretation of each symbol in Λ is now presented:

{0, 1} 0 and 1 are the basic elements to specify a signal. A string such as 010110
can be regarded as the signature of a particular signal. This signature can
be employed by a broadcast unit to detect and identify a signal.

∗ This symbol indicates that the subsequent symbols until the next unquoted
∗ (if any) are to be interpreted as a broadcast unit. If a broadcast device I

does not contain any unquoted ∗ then I is a null unit.
: This symbol is used as a punctuation mark to differentiate the arguments of a

broadcast unit. The symbol : (position and frequency) determines the type
of the broadcast unit as presented earlier.

♦ When this symbol is met in the input argument of a broadcast unit, it indi-
cates that a signal detected by the broadcast unit may present any symbol at
this position without affecting its acceptation or rejection by the broadcast
unit. Also if ♦ occurs at the rightmost position of an input argument, then
♦ acts as a multiple character wildcard.

▽ When this symbol occurs in the input and output arguments of a broadcast
unit, it designates any arbitrary initial (prefix) or terminal (suffix) strings of
symbols. This allows one to pass a string of symbols from the input signal
to the broadcast signal (≈ unit processing).

H This symbol is similar to ▽ but can also concatenate different inputs signals.
△ This symbol is employed in the same manner as ▽ and H but designates an

arbitrary single symbol whose position can be anywhere in the argument of
a given broadcast unit.



9

p When this symbol occurs at the first position of a string, it designates a
persistent string. This string would then persist over time until it is deleted,
even if the string is not an active broadcast unit. A null device occurring at
time t which is not persistent exists only for one timestep and is removed at
the end of time t.

′ This symbol is used to quote a symbol in the arguments of a broadcast unit.
When a symbol is said to be quoted, it acts as a simple literal, i.e. a ′△
would only match △.

The Broadcast Language: implementation. In our implementation of the
Holland broadcast language, we distinguish three main classes: Env represents
the environment, this object holds a list of all current existing devices. The
class BDevice designates a broadcast device, an instantiation of BDevice may
hold from 0 to n BUnit objects. The BUnit class refers to a broadcast unit, it
may contain one or two argument(s) and an output signal, all represented by
strings of characters. In this system based on discrete timesteps, the sequential
operation is as follows. At timestep t, all broadcast devices including null devices
are stored in a vector of devices S. This vector is held by an instance of Env. A
vector of character strings A is used to hold signals (strings) to be added to S

at the beginning of t. At time t = 0, S is empty and A represents the initial set
of broadcast devices. D is a vector of strings holding signals to be removed from
S at the end of timestep t. An overview of the system from its initialization to
its termination is given:

1. Initialization: an Env object is instantiated, vectors S,A and D are created
and are empty by default.

2. Environmental signals: at this step, input signals (strings of character) given
by the environment are added to set A. At time t = 0, the input signals
correspond to the initial set of signals. A detector may be built to probe the
environment and insert new signals into set A.

3. Transferring signals from set A to S: signals contained in set A are inserted
in set S. Set A is then flushed. Each signal inserted in S is processed into
broadcast devices (BDevice objects); if a signal generates an active broad-
cast device then this broadcast device is parsed into broadcast units (BUnit
objects).

4. Processing signals in S: this step is broken up into two sequential sub-
processes:

(a) we first look for broadcast units of type 4 that are able to broadcast at
the same time t. If those broadcast units can be satisfied by other signals
then they broadcast their output signals. The latter output signals are
then inserted into S. As these newly inserted signals may satisfy other
similar broadcast units, it is necessary to repeat this process until no
new signal gets inserted into S.

(b) Then each broadcast device in S is processed in a sequential order: if
a broadcast device I is active then each broadcast unit Ii contained
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in I may broadcast its output signal upon detecting adequate signals.
A broadcast unit which has already been activated at time t may not
broadcast again within that timestep, under any circumstances. Output
signals broadcast by type 1, 2 and 4 broadcast units are stored in A. If
a type 2 broadcast unit is activated then its output signal is inserted
into set D. Finally, if a broadcast device I is a null device and is not a
persistent signal, then this device signal is added to set D.

5. Delete signals from sets S and D: for each signal Id contained in set D, if
there is a signal of the form Id present in S then this signal is deleted from
S. If there are n signals in S that are of the form Id then only one of those
signals is deleted (selected at random). D is then flushed.

6. Termination condition: If this user-defined termination condition is not sat-
isfied then the system returns to step 1.

The above implementation addresses and clarifies a number of ambiguities
that had been left open by Holland.

3.4 Experiments

In this section we present a case study where we use the broadcast language to
model a signal transduction network which was previously modeled with the aid
of a Boolean network [15], see Fig. 2. With the Boolean abstraction, a molecule
is considered as a logical expression having two different possible states: on oroff,
meaning that the molecule is present in the environment or not.

PhyA PhyB SA JA EthPSI2

PR1PR5

AtCesA3

ATMPK3

ATRR2

poxATP8a

AtCslB2

ERS2

N:PCOX

PDF1.2

Homeobox
Leu-zipper

Receptor
prot. kinase

Fig. 2. Boolean representation of the signal transduction network controlling the plants
defense response against pathogens.

We use the broadcast language to mirror the Boolean network of the bio-
chemical network presented in Figure 2. To accomplish this, we proceed to a
direct mapping of each Boolean function to broadcast devices. Using this model,
one may determine the states of the output molecules according to the states of
the input molecules.
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We first represent each molecule (substrate) PhyA, PhyB, Eth, etc., with
a string (signal) such as p0000000, p0000001, p0000010, etc. We then define the
broadcast devices (enzymes) which enable the reactions to occur in this network.

(PR1PR5) = (¬PSI2 ∧ (PhyA ∨ PhyB)) ∧ SA (1)

The above equation describes the state of PR1PR5 according to the states
of PSI2, PhyA, PhyB and SA. We now present how to express this Boolean
expression using broadcast devices, see Table 2.

Table 2. Broadcast devices employed to express Eq. 1

Broadcast device

I1 ∗p000000♦ : 1000000
I2 ∗ : p0000010 : 1000001
I3 ∗1000000 : 1000001 : 1000010
I4 ∗p0000011 : 1000011
I5 ∗1000010 : 1000011 : 1000100
I6 ∗1000100 : p0000101

– In order to represent an OR gate that takes for input signals PhyA and PhyB

we generate I1, which indicates that whenever persistent signals p0000000
or p0000001 (PhyA or PhyB) are detected, the signaling molecule 1000000
is broadcast. This example also demonstrates how to represent crosstalk
phenomena in the broadcast language.

– The NOT gate is expressed through the use of a type 2 broadcast unit. To
represent NOT p0000010 (PSI2), we define I2 which stipulates that when no
persistent PSI2 molecule is present then the signaling molecule 1000001 is
broadcast at time t + 1.

– The expression ((p0000000 OR p0000001) AND (NOT p0000010)) is designated
by I3 which would broadcast 1000010 only if 1000000 and 1000001 are de-
tected.

– The detection of 1000000 indicates that either p0000000 (PhyA) or p0000001
(PhyB) is present. Secondly, detecting 1000001 implies that p0000010 (PSI2)
has not been detected.

– The broadcast device I4 is used to broadcast a signaling molecule 1000011
if p0000011 (SA) is detected. I5 is similar to I3 and represents an AND gate
taking into account the results of I3 and I4.

– This broadcast device, if satisfied, broadcasts a signaling molecule that is
employed to activate PR1PR5 (p0000101), as shown in I6.

The whole Boolean network may be built following the above described method.
This case study was implemented with our system and tested against a selection
of inputs, and the outputs reacted precisely in accordance with the boolean
functions specified by the network.
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3.5 Fusing MCS and the Broadcast Language

We demonstrated that the broadcast language can model Genetic Regulatory
Networks (GRNs). This was due to the ability of the broadcast language to
mirror Boolean networks which illustrates its wide ranging processing power.
Nevertheless, it was also highlighted that the broadcast language is limited re-
garding the representation and simulation of CSNs [9]. To address this issue, we
propose to combine the MCS concept with the broadcast language in a new sys-
tem termed “MCS.b”. The MCS.b complements the broadcast language (syntax
and semantics) and extends it by including the following refinements:

– Instead of processing all broadcast devices sequentially and deterministically
during a time step, the MCS.b processes as follows: at each time step t, we
pick n pairs of broadcast devices at random. For each pair of devices, one
of the broadcast devices is designated (at random) as the catalyst device
and the second one as the substrate device. If the conditional statement of
the catalyst device is satisfied by the signal of the substrate device, then
the action statement of the catalyst device is executed upon the substrate
device.

– n designates the number of pairs of broadcast devices that will interact
during a timestep. It is also plausible to consider n as the temperature in
real chemistry. Temperature has an important role in chemical reactions,
indeed molecules at higher temperature have a greater probability to collide
with one another.

– In the broadcast language specification given by Holland, additional rules
were required to resolve some ambiguities raised by the interpretation of
broadcast devices. To facilitate this, the MCS.b simplifies the interpretation
of broadcast units by preserving broadcast units of type 1 only.

– Similarly the notion of non-persistent devices is removed: by default all de-
vices are considered as persistent molecules.

– As type 3 broadcast units and non-persistent devices no longer exist in this
proposal, no molecule can be deleted from the population. However the dele-
tion of molecules is needed to obtain evolutionary pressure. Our suggestion
is as follows: each time two molecules react together, we pick a molecule at
random and delete it from the population.

By combining the strength of both the MCS and broadcast language, we
expect the MCS.b to be capable of modeling, simulating and evolving ACSNs in
a more fateful manner. At present, we have conducted a number of preliminary
experiments examining the spontaneous emergence of collective autocatalytic
sets among others. This was expected to be trivial as this phenomenon was al-
ready demonstrated with other relateds Artificial Chemistries (Tierra, Alchemy,
etc.). Initial results suggest that the MCS.b performs as expected, however be-
fore these results can be presented to the research community, validation against
empirical biological data is required.
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4 Achievements

During this first year of PhD, we carried out a comprehensive literature review
on the representation and simulation of CSNs. This review allowed us to obtain a
global understanding on the area of CSNs, moreover this work provided us with
guiding points for the design of the MCS. We then examined an approach similar
to the MCS: the Holland broadcast language. We demonstrated the modeling of a
simple signaling pathway using the broadcast language, but this work highlighted
the limitations of this formalism. As a result, we presented some refinements of
the broadcast language that would result in a platform combining some of the
MCS concepts and of the broadcast language. Although our resulting MCS.b
will require further evaluation to precisely represent real biochemical networks,
this system combining the MCS original concept and the broadcast language
approach allow for the implementation of an evolutionary simulation platform
to study artificial biochemical networks in silico.

5 Feedback

We would be very grateful for any suggestions and criticisms regarding our work,
we are continuously looking for novel computational techniques and concepts
that may contribute to our project. Future issues include the topic of Crosstalk
and Robustness, any comments or suggestions concerning these research topics
would be very welcomed. Since Crosstalk and Robustness imply notions from
the networking and engineering fields, insights from these disciplines would be
of great interest.

Acknowledgement: This work was funded the European Integrated Project
ESIGNET in the EU FP6 NEST Initiative (contract no. 12789).
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