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Abstract

We investigate the dynamical properties of the

transcriptional regulation of gene expression in

the yeast Saccharomyces Cerevisiae within the

framework of a synchronously and determin-

istically updated Boolean network model. By

means of a dynamically determinant subnet-

work, we explore the robustness of transcrip-

tional regulation as a function of the type of

Boolean functions used in the model that mimic

the influence of regulating agents on the tran-

scription level of a gene. We compare the re-

sults obtained for the actual yeast network with

those from two different model networks, one

with similar in-degree distribution as the yeast

and random otherwise, and another due to Bal-

can et al., where the global topology of the yeast

network is reproduced faithfully. We, surpris-

ingly, find that the first set of model networks

better reproduce the results found with the ac-

tual yeast network, even though the Balcan et

al. model networks are structurally more simi-

lar to that of yeast.

INTRODUCTION Recent advances in

biotechnology allowed the accumulation

of a vast amount of experimental data

on intra-cellular processes, however, our

knowledge on how a cell works remains

incomplete [Lockhart & Winzeler, 2000;

Barabasi & Olvai, 2004]. The key compo-

nent of the functional organization in a cell

is the regulation of gene expression. By now,

interacting gene pairs for several organisms
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have been identified with significant cover-

age [Bergmann et al., 2003]. In particular

the set of regulatory interactions identified in

Saccharomyces Cerevisiae are believed to be

close to complete [Teixeira et al., 2006].

The activation/suppression dynamics in a cell

evolves on a complex and inhomogeneous net-

work of interactions. Therefore, the frame-

work of graph theory serve as a power-

ful mathematical tool for studying the reg-

ulation of the gene expression on cellular

level [Albert & Barabási, 2002; Bollobas, 1998;

Milo et al., 2002; Colizza et al., 2006; Newman,

2001; Barabasi & Olvai, 2004]. The topology of

the graph describing the gene regulatory net-

work (GRN) is far from being random and has

been studied for several organisms, in partic-

ular the budding yeast [Guelzim & et al., 2002;

Nicholas & et al., 2004; Bergmann et al., 2003].

Deterministically and synchronously updated

Boolean networks have been used widely as

a model for regulatory dynamics [Kauffman,

1969; Aldana, 2003; Balcan & Erzan, 2007,

2006]. In this model, the expression levels

of genes are discretized to take values 0 or

1 at each time step. Although it is a major

oversimplification [Norrell et al., 2007], this

approach has proven valuable in the con-

text of gene regulation [Mendoza et al., 1999;

Espinosa-Soto et al., 2004; Albert & Othmer,

2003].

The network topology of the yeast’s GRN is

now believed to be unveiled to a large extent.

However the nature of interactions, i.e., the

rules that govern the dynamics, are not known

in comparable detail. Accordingly, a statistical

approach involving randomly assigned functions

is relevant. Several classes of such functions

have been investigated in the literature. The
1
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unbiased choice is to pick random Boolean func-

tions. On the other hand, it has been claimed

that experimental data is consistent with a sub-

set of Boolean functions where one of the output

is fixed for a particular value of one of the inputs

(canalizing functions) [Harris & et al., 2002]. It

has also been suggested that a subset of canal-

izing functions (nested canalizing functions) is

more appropriate for gene regulation dynamics

on yeast [Kauffman et al., 2003]. A more recent

study finds that two subclasses of the nested

canalizing functions are actually dominant in

the yeast [Nikolajewa et al., 2006].

The computational bottleneck in the analysis

of Boolean network dynamics is the fact of that

number of states increases exponentially with

system size. This makes an exhaustive enumer-

ation prohibitive, even if, in most cases, a frac-

tion of the nodes can be left outside the anal-

ysis due to their irrelevance to the dynamics

by virtue of either the topology or the choice of

the function set [Socolar & Kauffman, 2003]. In

this paper, we determine and use a strongly con-

nected subset of the genes that dictates the net-

work’s dynamical character and use a statistical

approach to identify its robustness.

The paper is organized as follows. In the

Method section, we present the yeast’s gene reg-

ulation network, describe the employed Boolean

dynamics, define the function classes used for

setting the rules of the dynamics, propose a dy-

namically relevant subnetwork and the model

networks used for comparison with yeast. In the

Result section, we present and analysis of the

yeast’s GRN dynamics, in particular exploring

the robustness of the network under small per-

turbations, comparing the results for different

types of functions and for the actual vs. model

network topologies. We discuss our findings in

the last section.

METHOD & MODELS Transcriptional reg-

ulation of gene expression in a cell operates

through transcription factors (TFs). These pro-

teins bind the DNA on “promoter regions” (PRs)

that act as the regulation centers of each gene.

The details of this interaction can be very com-

plex. In our study, as in past studies in the lit-

erature, we assume that effect of the TFs that

regulate a certain gene can be summarized in

a Boolean function whose inputs represent the

presence or the absence of TFs and the output

determines whether the gene is activated or in-

hibited for the given expression profile of the TF

genes.

The regulation dynamics evolves on a directed

graph, whose nodes are the genes and a directed

edge from A to B indicates that the product of

A regulates B. The corresponding network for

Saccharomyces Cerevisiae can be retrieved from

YEASTRACT database [Teixeira et al., 2006]

(www.yeastract.com). In order to be able to

compare our results with past studies, we here

consider an earlier version (2005) of the net-

work including 4252 genes (with 146 TFs) with

12541 interactions. As explained below, we

also consider two model networks, one with a

similar in-degree distribution as the yeast net-

work above and random otherwise, and another

with a topology highly similar to that of yeast,

which emerges from a null-model proposed ear-

lier [Balcan et al., 2007].

The Boolean regulation dynamics on these

networks is investigated by means of a syn-

chronous and deterministic update of the net-

work state as follows: Each node (gene) i has

a state σi(t) at a particular time t where σi(t)
is either 1 (on) or 0 (off). The network state

S(t) is the set of individual node states: S(t) =
{σ1(t), σ2(t), .., σN (t)}. σi(t + 1) is determined by

the Boolean function Bi assigned to i, which is

a function of the states of the neighbor nodes

connected to i by incoming edges. We used four

types of random function classes found in the lit-

erature as described below.

Dynamically

Subnetwork
Relevant

Figure 1: The dynamically relevant

(sub)network obtained after recursively pruning

the (round) nodes with either zero out-degree or

zero in-degree.
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1- Simple Random Function, RF: The

rule table is constructed by setting the output

for each input combination to 1 with probabilty

p and 0 otherwise, independent of the input.

2- Canalizing Random Function, CF:

A subclass of the RFs, that has at least

one canalizing input variable whose canalizing

value determines the output [Kauffman, 1993;

Kauffman et al., 2003].

Bi(σi,1, .., σi,j , .., σi,kin
) =

{

si,j σi,j = sj

Bi(σi,1, .., sj , .., σi,kin
) σi,j 6= sj

(1)

where jth in-neighbor is the canalizing node

with sj as the canalizing value and si as the

canalizing output. Again, the output is de-

termined through the parameter p. When

the canalization condition is not satisfied,

Bi(σi,1, .., sj , .., σi,kin
) in Exps. 1 is considered to

be a RF.

3- Nested Canalizing Random Func-

tion, NCF: Nested Canalizing or Hierarchi-

cally Canalizing functions are believed to bet-

ter model gene regulation in biological sys-

tems [Kauffman et al., 2003]. They form a sub-

class of CFs, where one defines a canalizing or-

der to the input nodes and the output is deter-

mined by the first node in its canalizing value:

Bi(σi,1, .., σi,j , .., σi,kin
) =







































si,1 σi,1 = s1

si,2 σi,1 6= s1 ∧ σi,2 = s2

... ...

si,j σi,1 6= s1 ∧ σi,2 6= s2 ∧ ... ∧ σi,j = sj

... ...

si,kin
σi,1 6= s1 ∧ σi,2 6= s2 ∧ ... ∧ σi,kin

= skin

si,kin
σi,1 6= s1 ∧ σi,2 6= s2 ∧ ... ∧ σi,kin

6= skin

(2)

We modify the original definition in

[Kauffman et al., 2003], for the sake of an

unbiased comparison with the other cases,

by determining the outputs {si} with the

parameter p as before.

4- Special Subclasses of Nested Canal-

izing Random Function, SNCF: Follow-

ing Nikolejewa et al., one can represent the

NCFs above in a “minimal logical expres-

sion” [Nikolajewa et al., 2006]:

σi = Bi(σi,1, σi,2, ..., σi,kin−1, σi,kin
)

= σΘ
i,1

⊙

(σΘ
i,2

⊙

(...
⊙

(σΘ
i,kin−1

⊙

σΘ
i,kin

)...))

(3)

where
⊙

represents either AND or OR logical

function, i.e.
⊙

∈ {∧,∨} and σΘ stands for a

possible negation of σ, i.e. σΘ ∈ {σ, σ}. Upon in-

vestigation of Harris et al. data [Harris & et al.,

2002]1 they found that gene regulatory rules are

mainly governed by two subclasses of NCF:

σΘ
i,1 ∧ (σΘ

i,2 ∧ (... ∧ (σΘ
i,kin−1 ∧ σΘ

i,kin
)...)) (4)

and

σΘ
i,1 ∧ (σΘ

i,2 ∧ (... ∧ (σΘ
i,kin−1 ∨ σΘ

i,kin
)...)) (5)

with 66.39% and 29.41% probability of occur-

rence, respectively. For these two functions, p is

not a free parameter and depends on the topol-

ogy.

Once the network topology and the functions

are fixed, the Boolean dynamics is character-

ized by a set of limit cycles which are the at-

tractors of the dynamics reached from differ-

ent initial conditions. Since these are the re-

gions of the state space where the dynamics con-

verges to, one expects them to be biologically

relevant. For example, they have been associ-

ated with different phenotypes of the plant Ara-

bidopsis thaliana [Mendoza et al., 1999] when

the involved genes are those that take part

in cell differentiation. We have investigated

and compared the number, cycle-length, tran-

sient length, and the basin of attraction of the

attractors in each case. These results will

be presented elsewhere [Tuğrul & Kabakçıoğlu,

expected in 2009]. Here, we deal with another

dynamical property, the robustness of the at-

tractors to perturbation. We use the following

arguments to measure the robustness as given

by Aldana [Aldana, 2003]. Consider two copies

of a network at states S(t) and S
′

(t). Their Ham-

ming Distance HD(t) is the number of nodes

that differ between the two:

HD(t) =
N

∑

i=1

| σi(t) − σ
′

i(t) | . (6)

Let x(t) ≡ 1 − HD(t)
N

, where N is the number of

1private communication
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Figure 2: Robustness of yeast’s GRN for all types of functions. For each p value, robustness was com-

puted with averaging over 1000 random initial conditions of each 10 realization. Also, the Derrida’s

Exp., s = 2p(1 − p)〈kin〉 was drawn.

the nodes in the network. One defines the ro-

bustness s of the network as

s = lim
x→1−,t→∞

dx(t + 1)

dx(t)
. (7)

The system is robust against perturbations (or-

dered) if s < 1, whereas it is highly sen-

sitive (chaotic) otherwise. It was suggested

by Kauffman [Kauffman, 1993] that the ge-

netic regulatory networks function at the edge

of chaos, where s ≃ 1. The quantity s can

be estimated analytically for the RF case un-

der an annealed approximation, both for ran-

dom [Derrida & Pomeau, 1986] and power-law

networks [Aldana, 2003]. Derrida’s result for

random networks is

s = 2p(1 − p)〈kin〉 , (8)

where p is, again, the unbiased probability that

a binary function assigned to a node returns 1.

Note that, by symmetry, s(p) = s(1−p). We mea-

sure s numerically as a function of p ∈ [0, 0.5], by

examining the deviation of the two copies which

are initially only slightly perturbed. For a net-

work with N nodes, the deviation is measured

within a time window of 2N steps.

As long as one is interested in the net-

work characteristics such as attractor statistics

or robustness, simulating the dynamics of the

whole network is extremely inefficient. The

reason is that, given the topology, some of

the nodes make no contribution to such statis-

tics [Socolar & Kauffman, 2003]. For example, a

node with zero in-degree remains at a fix state

all times. Similarly, a node with zero out-degree

simply follows the input and does not give any

feedback. Same statements apply to those nodes

which lose all incoming or outgoing edges after

a round of pruning such nodes. Therefore, we

focus on the dynamically relevant (sub)network

(DRN) which is found by recursively pruning all

the nodes with zero in-degree or zero out-degree

(see Fig. 1). This subnetwork is typically much

smaller than the original, allowing one to run

time-efficient simulations.

We find that the in-degree distribution of the

DRN for the yeast regulatory network is expo-

nential with an exponent α = 0.38, similar to the

full yeast network. In addition, we generated

two ensembles of 100 model networks for com-

parison. The first ensemble is a set of randomly
4
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Figure 3: Robustness of in-EXP model networks with RF, CF and NCF type regulatory functions. The

SNCF function results in s = 0.77 ± 0.05, whereas for the same p value yeast network has s = 0.78.

connected networks of the same size N = 82 and

the same exponent in-degree distribution as the

yeast DRN, so named in-EXP model. The second

ensemble is generated by using a recently pro-

posed null-model by Balcan et al. [Balcan et al.,

2007] which successfully reproduces many topo-

logical features of the yeast’s GRN. An inter-

esting observation is that, the second ensemble

which preserves a number of topological signa-

tures found in yeast, yielded dynamically rele-

vant subnetworks with an average size of 36±15,

i.e., significanly smaller than that of the yeast

DRN.

RESULTS On the GRN of the yeast, we cal-

culated the robustness of the network dynamics

for each function type discussed above as a func-

tion of p. We chose p ∈ {0.00, 0.01, .., 0.50}, ex-

cept for SNCF case, where the value of p is fixed

by the network topology to the value p = 0.27.

For each case, we performed statistics over 10
independent function assignments and ran the

dynamics for 2N time steps starting from 1000
different initial conditions (and their perturba-

tions, in parallel). In all cases, the lengths of

the simulations were sufficient for the system

to reach an attractor. Fig.(2) shows the aver-

age robustness found for each function type. We

find that when a random RF function is associ-

ated with each gene’s transcription, the systems

switches from an ordered phase to a chaotic

phase around p = 0.22, consistent with Derrida’s

analytical result in Eq.(8). CFs always result in

an ordered system, except when p = 0.5, where

the yeast’s GRN appears to be at the edge of

chaos. NCF and SNCFs which have been sug-

gested to better represent gene regulation dy-

namics are strictly ordered for all p values.

For comparison, we repeated the same anal-

ysis on in-EXP and Balcan et al. models. 100

different networks were created from each set

in order to reduce fluctuations due to structural

deviations from sample to sample. The average

robustness obtained for in-EXP and Balcan et

al. model are compared with the corresponding

data obtained from the yeast’s GRN in Fig.(3)

and Fig.(4), respectively. We find that the in-

EXP model networks show similar robustness

profiles as the yeast’s GRN in all cases, whereas

Balcan et al. model, although it globally appears

to capture the network structure [Balcan et al.,

2007], shows a significant deviation from the

yeast in its dynamics.
5
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Figure 4: Robustness of Balcan et al. model networks with RF, CF and NCF type regulatory func-

tions. The SNCF function results in s = 0.83 ± 0.08, whereas for the same p value yeast network has

s = 0.78.

DISCUSSION We calculated the robustness

of the yeast’s transcriptional regulatory network

within the framework of Boolean networks and

as a function of the gene activation probability

p. Under different assumptions on the func-

tion class that governs the regulation process,

we find that the network may show an order-

chaos transition with changing p, may reach the

edge of chaos at p = 0.5, or may stay robust for

all p values. Our results point to the fact that,

the activation probability by itself is not suffi-

cient to determine the robustness of the Boolean

networks; the functional category of the update

rules also matter. As future experiments more

precisely unveil activation/inhibition relations

between genes in the yeast organism, proper

choices for p and the function class shall become

apparent. The strong dependence of the robust-

ness to the function type and p may entail that

both have been optimized throughout evolution-

ary time scales to their present-time values.

Our findings may then help address the “edge

of chaos” hypothesis of Kauffman [Kauffman,

1993].

We furthermore compared our results on the

yeast network with those obtained from two

models which produce statistically similar net-

work topologies. We found to our surprise that

among the two models, Balcan et al. model

which better reproduces a set of global topologi-

cal features shows significantly larger deviation

from the yeast’s network in its robustness. This

discrepancy should stem from certain structural

features that are not captured by the global

topological signatures considered in past stud-

ies. One such difference we observe is the much

smaller average dynamical core size of Balcan

et al. model networks. This and other possible

structural sources for the observed difference in

dynamics should be further investigated.
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