6,394 research outputs found

    Quantum risk-sensitive estimation and robustness

    Get PDF
    This paper studies a quantum risk-sensitive estimation problem and investigates robustness properties of the filter. This is a direct extension to the quantum case of analogous classical results. All investigations are based on a discrete approximation model of the quantum system under consideration. This allows us to study the problem in a simple mathematical setting. We close the paper with some examples that demonstrate the robustness of the risk-sensitive estimator.Comment: 24 page

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    The Pseudo-Pascal Triangle of Maximum Deng Entropy

    Get PDF
    PPascal triangle (known as Yang Hui Triangle in Chinese) is an important model in mathematics while the entropy has been heavily studied in physics or as uncertainty measure in information science. How to construct the the connection between Pascal triangle and uncertainty measure is an interesting topic. One of the most used entropy, Tasllis entropy, has been modelled with Pascal triangle. But the relationship of the other entropy functions with Pascal triangle is still an open issue. Dempster-Shafer evidence theory takes the advantage to deal with uncertainty than probability theory since the probability distribution is generalized as basic probability assignment, which is more efficient to model and handle uncertain information. Given a basic probability assignment, its corresponding uncertainty measure can be determined by Deng entropy, which is the generalization of Shannon entropy. In this paper, a Pseudo-Pascal triangle based the maximum Deng entropy is constructed. Similar to the Pascal triangle modelling of Tasllis entropy, this work provides the a possible way of Deng entropy in physics and information theory

    Learning Dynamic Systems for Intention Recognition in Human-Robot-Cooperation

    Get PDF
    This thesis is concerned with intention recognition for a humanoid robot and investigates how the challenges of uncertain and incomplete observations, a high degree of detail of the used models, and real-time inference may be addressed by modeling the human rationale as hybrid, dynamic Bayesian networks and performing inference with these models. The key focus lies on the automatic identification of the employed nonlinear stochastic dependencies and the situation-specific inference

    Sequential Detection with Mutual Information Stopping Cost

    Full text link
    This paper formulates and solves a sequential detection problem that involves the mutual information (stochastic observability) of a Gaussian process observed in noise with missing measurements. The main result is that the optimal decision is characterized by a monotone policy on the partially ordered set of positive definite covariance matrices. This monotone structure implies that numerically efficient algorithms can be designed to estimate and implement monotone parametrized decision policies.The sequential detection problem is motivated by applications in radar scheduling where the aim is to maintain the mutual information of all targets within a specified bound. We illustrate the problem formulation and performance of monotone parametrized policies via numerical examples in fly-by and persistent-surveillance applications involving a GMTI (Ground Moving Target Indicator) radar

    Distinguishing cause from effect using observational data: methods and benchmarks

    Get PDF
    The discovery of causal relationships from purely observational data is a fundamental problem in science. The most elementary form of such a causal discovery problem is to decide whether X causes Y or, alternatively, Y causes X, given joint observations of two variables X, Y. An example is to decide whether altitude causes temperature, or vice versa, given only joint measurements of both variables. Even under the simplifying assumptions of no confounding, no feedback loops, and no selection bias, such bivariate causal discovery problems are challenging. Nevertheless, several approaches for addressing those problems have been proposed in recent years. We review two families of such methods: Additive Noise Methods (ANM) and Information Geometric Causal Inference (IGCI). We present the benchmark CauseEffectPairs that consists of data for 100 different cause-effect pairs selected from 37 datasets from various domains (e.g., meteorology, biology, medicine, engineering, economy, etc.) and motivate our decisions regarding the "ground truth" causal directions of all pairs. We evaluate the performance of several bivariate causal discovery methods on these real-world benchmark data and in addition on artificially simulated data. Our empirical results on real-world data indicate that certain methods are indeed able to distinguish cause from effect using only purely observational data, although more benchmark data would be needed to obtain statistically significant conclusions. One of the best performing methods overall is the additive-noise method originally proposed by Hoyer et al. (2009), which obtains an accuracy of 63+-10 % and an AUC of 0.74+-0.05 on the real-world benchmark. As the main theoretical contribution of this work we prove the consistency of that method.Comment: 101 pages, second revision submitted to Journal of Machine Learning Researc
    corecore