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Quantum Risk-Sensitive Estimation and Robustness
Naoki Yamamoto and Luc Bouten

Abstract—This paper studies a quantum risk-sensitive estima-
tion problem and investigates robustness properties of the filter.
This is a direct extension to the quantum case of analogous clas-
sical results. All investigations are based on a discrete approxima-
tion model of the quantum system under consideration. This allows
us to study the problem in a simple mathematical setting. We close
the paper with some examples that demonstrate the robustness of
the risk-sensitive estimator.

Index Terms—Quantum filtering, quantum probability,
quantum systems, risk-sensitive estimation, robustness.

I. INTRODUCTION

F ILTERING, which in a broad sense is a method for ex-
tracting information from a noisy signal, is one of the prin-

cipal tools in modern engineering science. In particular, when
considering a partially observed dynamical system, we can con-
struct an optimal filter that computes the least square estimate
of a state variable of the dynamics. In the linear case, this re-
sults in the so-called Kalman filter [28]. This dynamical fil-
tering theory was rigorously established using the classical Kol-
mogorov probability theory and its application to the theory of
stochastic differential equations (e.g., [29]). Moreover, it is well
known as the separation theorem [44] that the solution of a gen-
eral optimal control problem for a partially observed system can
be represented in terms of a corresponding information state of
the filter. For this reason, the filtering theory is not only impor-
tant in itself, but also essential in feedback control theory.

The situation is much the same in quantum mechanics. The
Heisenberg uncertainty principle shows that any quantum
system must possess fundamental uncertainty originating from
the noncommutativity of its random variables. Therefore, we
can never have complete observation in the quantum setting,
which implies the necessity of filtering in the quantum case.
Fortunately, there exists a quantum filtering theory as a beau-
tiful parallel to the classical one. The theory was pioneered by
Belavkin in the remarkable papers [4], [5], [6], and the quantum
filtering equation or stochastic master equation is now widely
used in the physics community [1], [8], [16], [21], [31], [38],
[40], [47]. Moreover, as in the classical theory, it is possible to
show that a separation principle holds in the quantum case [10].
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The filtering for both classical and quantum cases is, as men-
tioned above, clearly an important tool in control theory. How-
ever, we have to point out that the optimal filter is in general
quite fragile to unmodeled uncertainty of the system, and con-
sequently the optimal estimation can be largely violated. This
fact requires us to develop a theory of robust estimation that al-
lows some model uncertainties and guarantees high-quality esti-
mation performance. Guaranteed-cost filtering [34], [45] is one
such robust estimation method in the classical theory. It guar-
antees that the variance of the estimation error is within a cer-
tain bound even when the linear system under consideration in-
cludes unknown parameters. Moreover, risk-sensitive filtering
[13], [15], [32], [36] is known as a very efficient robust estima-
tion method, for a wide class of classical linear and nonlinear
systems [7], [42], [48]. Recently, one of the authors has obtained
a quantum version of the guaranteed-cost filter mentioned above
[46]. In this paper, we develop a quantum risk-sensitive estima-
tion theory.

Let us first briefly introduce the classical theory of risk-sen-
sitive estimation.

A. Classical Risk-Sensitive Estimation

We are given a probability space and a signal
model of a discrete time system

where is the signal state, is the output, and , are i.i.d.
random Gaussian processes. A version of the risk-sensitive es-
timator of is defined as

(1)

where is the -algebra generated from
the observation , and are the weighting constants
called the risk-sensitive parameters. Moreover, we use the no-
tation to indicate that is a bounded -measurable
function. The risk-sensitive estimator (1) can be represented by

, where is a certain function
and is an information state defined by

for all test functions . Here, is a probability measure
defined by
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Moreover, satisfies a recursive equation of the form
. Hence, running this equation with the mea-

surement data , we can recursively calculate and
obtain the minimizer of this function, i.e., .

Note that differs from the standard optimal (or risk-neu-
tral) estimator and is thus
not optimal in the sense of the mean square error. However, the
risk-sensitive estimator certainly has a great advantage over the
risk-neutral one when we consider an uncertain system. This can
be seen as follows. If the true probability measure is un-
known, then we need to use a known nominal measure
and design a nominal filter based on . However, since

, there is no guarantee that the nominal estimator
yields a bounded estimation error. The risk-sensitive esti-

mator overcomes this issue. That is, the nominal risk-sensitive
estimator (i.e., based on ) satisfies

(2)

where is the classical relative
entropy of and . Equation (2) implies that the unknown
true estimation error is bounded if is finite.
This robustness property is derived using the following duality
relation (e.g., [17]) of two measures and :

(3)

where means that is absolutely continuous to .

B. Organization of the Paper

This paper provides a quantum version of the risk-sensitive
estimation method presented above and shows its robustness
properties against system uncertainty. The systems we consider
are taken from quantum optics and consist of a quantum system
in interaction with the quantized electromagnetic field. The
field is described by a discretized model [9] that converges to
a quantum stochastic dynamics [23] when the discretization
step is taken to zero [2], [3], [11], [20], [30]. The discretized
model has the advantage of being very tractable mathemati-
cally. The estimator is based on the risk-sensitive information
state introduced by James [14], [24] in the context of quantum
risk-sensitive control. We derive a bound on the estimation
error in the presence of uncertainty. We illustrate the robustness
of the estimator by simulations.

The paper is organized as follows. In Section II, we intro-
duce quantum probability in a finite-dimensional context and
a duality relation that will lead to the robustness property of
the estimator. Section III is devoted to describe a discrete ap-
proximation model of the field. Section IV introduces the notion
of composition of an operator and an operator valued function.
In Section V we introduce the risk-sensitive estimator and de-
rive the filter propagating the risk-sensitive information state.
Section VI introduces a class of uncertain systems and derives
a bound on the estimation error, showing robustness. In Sec-
tion VII we present the results from simulations.

Notation

The sets of real and complex numbers are denoted by and
, respectively. For a classical probability measure , de-

notes the expectation with respect to . The commutator of two
operators and is defined by . denotes
the identity operator.

II. QUANTUM PROBABILITY THEORY

A. Quantum Probability Space

In quantum mechanics, a random variable is represented by a
linear self-adjoint operator on a Hilbert space. Due to the non-
commutativity of such operators, we need to replace the con-
ventional notion of a classical probability space by
the notion of a quantum probability space defined below.

Definition 2.1 ( -algebra): Let be a finite-dimensional
complex Hilbert space. A -algebra is a set of linear op-
erators such that for any

and . is called commutative if
for any .

Recall that the adjoint of is defined as the unique operator
that satisfies , .

Definition 2.2 (State): A state on is a linear map
that is positive , and normalized

.
Let be the dimension of . Let be an or-

thonormal basis of . The trace is the state defined by
for all . It is well known that

this definition does not depend on the basis.
Definition 2.3 (Quantum Probability Space): Let be a

-algebra of operators on a finite-dimensional complex Hilbert
space and be a state on . Then, is called a (fi-
nite-dimensional) quantum probability space.

Let be a quantum probability space. A self-adjoint el-
ement of is called a quantum random variable or observable.
If is a commutative -algebra, then we call a com-
mutative quantum probability space. In this case, all quantum
random variables in commute with each other, which is the
same as in the classical case. It is therefore not surprising that a
commutative quantum probability space is equivalent to a clas-
sical one. A formal statement of this assertion is provided by the
well known spectral theorem (Theorem 2.1 below). Note that in
the finite-dimensional setting of this article the spectral theorem
follows trivially from diagonalizing the operators in (see the
proof of Theorem 2.1 below). In an infinite-dimensional setting
an analogous result, which is closely related to Gelfand’s The-
orem for commutative -algebras (see e.g., [35]), is true.

Definition 2.4 ( -isomorphism): Let be a set and let
be a -algebra on . A -isomorphism between a commuta-
tive -algebra and the set of bounded -measurable functions

on is a linear bijection such that
and for all

and .
Theorem 2.1 (Spectral Theorem): Let be a finite-di-

mensional commutative quantum probability space. Then there
exists a classical probability space and a -isomor-
phism such that , .

Proof: The theorem is proved by construction. First, let
and . Since , all
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the elements in can be diagonalized simultaneously. Hence,
we can set and define a classical random
variable by . Let be a projection
in , i.e., , then is the indicator function of a
subset of . We define as the set of subsets of where

runs through the projections in . Furthermore, we define a
probability measure on by , .
As a result, we have constructed a classical probability space

. It is easy to verify .
Note here that any observable is an element

of the commutative -subalgebra generated by itself.
Using the spectral theorem we see that we can always realize an
observable as a classical random variable on a classical
probability space , where the measure is given by
the state. If we perform a measurement of , we obtain one of
the values that can take, distributed according to . Note
that if two observables do not commute with each other, then
we cannot represent them both as classical random variables on
the same probability space. Such observables are called incom-
patible, they cannot both be measured in a single realization of
an experiment.

Example 2.1 (Quantum Two-Level System): Let and
let be the -algebra of 2 2 complex matrices. Moreover,
let be a state on . With the quantum probability space

we can model a two-level system. The state can be
written as , for some matrix that
is positive and normalized (i.e., ). Let us now con-
sider a commutative -subalgebra

. From Theorem 2.1, we can construct a clas-
sical probability space that is in one-to-one correspondence with

. The sample space is , and the set of events
is . A classical random variable is
then defined through and . Now,

has a spectral decomposition with the pro-
jection matrices and , which
yield classical indicator functions and

. Hence, the probability distribution of is given by
and .

Let and be two quantum probability
spaces, defined on the Hilbert spaces and , respectively.
We will now introduce the composite quantum probability space

. Let be the tensor (Kronecker)
product of two vectors and . Introducing an
inner product , we have
a Hilbert space . The composite quantum probability
space is then defined on as
follows. First, we define an element
through the relation .
Any element of is given as a linear combination
of such elements. Second, the state is defined by

.

B. Conditional Expectation

Let be a quantum probability space. Let and be
two commuting self-adjoint elements of . Using Theorem 2.1
we can present and as classical random variables and

on a classical probability space . This allows
us to form the classical conditional expectation .

The quantum conditional expectation can then be de-
fined as its pull-back

Now suppose that instead of the operator , we want to con-
dition on a commutative -subalgebra of . As long as
commutes with every element in , we can apply the spectral
theorem to the commutative -algebra generated by and to-
gether, and define

(4)

where stands for the classical -algebra generated by
, . This shows that given a commutative -subal-

gebra , we can define the quantum conditional expectation onto
for every self-adjoint element in the commutant of . Here the

commutant of is given by

The formal definition of the conditional expectation follows
below. It coincides with the standard definition of the con-
ditional expectation for operator algebras [41], [43] for the
situation we are interested in. Note, however, that our definition
is more restrictive since we only allow for conditional expec-
tations from the commutant of a commutative algebra onto

itself.
Definition 2.5 (Quantum Conditional Expectation): Let

be a quantum probability space, and let be a commu-
tative -subalgebra of . Then the map is
called (a version of) the quantum conditional expectation from

to if , , .
Note that for every self-adjoint element , we have

given an explicit expression for the quantum conditional expec-
tation in (4). Every element in the commutant can be written
in a unique way as with and self-adjoint.
If we define the conditional expectation of onto by linear
extension of the definition (4), then it is easy to see that it satis-
fies the formal definition given in Definition 2.5. This means we
have shown existence of the quantum conditional expectation as
defined in Definition 2.5.

Finally, we remark some basic properties that both the clas-
sical and quantum conditional expectations satisfy: (i)
is unique with probability one, (ii) , (iii)

if and (module property),
and (iv) if (tower property).
Note that it easily follows from the tower property that is
idempotent, i.e., it is a projection. Moreover, similar to the clas-
sical case, is the least mean square estimate of given

, i.e.

(5)

where we have defined .
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C. Density Matrix and Quantum Relative Entropy

In Example 2.1, we have seen that the state can be repre-
sented in terms of a matrix . In the finite-dimensional case we
can always find a unique density matrix that satisfies

The latter two conditions guarantee
and , respectively. In particular, when is a rank-one
projection matrix , , then is expressed as

(6)

In analogy to the classical relative entropy, which has been
introduced in Section I, we can define the quantum relative en-
tropy of two states in terms of their density matrices as

(7)

where represents the linear space spanned by the eigen-
vectors of [33]. If , then . A
quantum version of the duality relation (3) is given as follows.

Lemma 2.1 (Duality, See e.g., [33] Prop. 1.11): For any ob-
servable and density matrices and , the following
relation holds:

(8)

Proof: The proof is straightforward. Defining a density ma-
trix , we obtain

Then, as the quantum relative entropy is always non-
negative and takes zero only when , we observe that (8)
holds and the maximum is attained only when .

We can derive a relaxed form of (8), expressed in terms of the
corresponding states. From the Golden–Thompson inequality

(see [19], [39]) with , self-adjoint,
we have

Therefore, denoting the states corresponding to and by
and respectively, we have

(9)

This inequality will be used to show robustness properties of the
quantum risk-sensitive estimator.

III. DISCRETE FIELD AND QUANTUM FILTERING

In this paper, we restrict ourselves to a system that consists of
a two-level atom in interaction with the quantized electromag-
netic field. This is merely for reasons of convenience, the theory
can easily be extended to a large class of systems in interaction
with the field. In this Section, we first introduce a discrete model
for the electromagnetic field (see [9] and the references therein).

Second, we describe the interaction between the atomic system
and the field. Due to the interaction, the field carries off infor-
mation about the system. In this way, by measuring the field, we
can perform a noisy observation of the system. Finally, using
quantum filtering theory we form optimal estimates of the atom
observables. The quantum filtering equation recursively propa-
gates these estimates in time.

A. Discrete Field

We first describe the quantum probability space with which
we model the electromagnetic field in a discrete manner.
Imagine a 1-D field traveling towards a photo detector. We
divide the field into time slices of length . The total
measurement time is . If is large enough, the
photo detector detects either zero or one photon in each time
interval. Therefore, if is large, each slice of the field can
in good approximation be regarded as a two-level system

, see Example 2.1. The vacuum state on is given
by , where denotes the so-called
vacuum vector. The field can then be constructed as the -fold
tensor product of two-level systems representing the different
time slices, i.e., . In particular,
we assume that the system that interacts with the field is a
two-level atomic system , i.e., the total quantum proba-
bility space for system and field together is given by

Let be the density matrix corresponding to . Then,
can be written as for all

.
Next, we introduce discrete noises. To this end, we define

where is a 2 2 matrix and is the 2 2 identity matrix.
Using the above notation, let us define the following noise
matrices:

where

(10)

Furthermore, we define the following so-called fundamental
noises living in the first slices:

with the convention . We
now provide the following physical interpretation to the funda-
mental noises. First, always takes the value
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, and thus, we may regard as the time. Second, since
takes either the value 0 or the value 1 at time

, it is reasonable to interpret as the total number of pho-
tons counted by the photo detector up to time . For the vacuum
state, we have ,
which implies that the photo detector detects no photons. Fi-
nally, with regard to and , we introduce an observ-
able and a commutative -algebra
generated from ,

(11)

That is, is the smallest -algebra in that contains ,
. Note that has the following spectral de-

composition:

with the projection matrices

(12)

Thus, for the vacuum state, the classical random vari-
able takes with probability

or
with probability at each time. This

implies that is a symmetric random walk. If we
let go to infinity and to 0, but keep the product
constant, then it easily follows from Donsker’s invariance
principle (see e.g., [26]) that converges weakly to a classical
Brownian motion. Note that the relation
becomes in the limit (see e.g., [37]). In physics the
observable is known as a field quadrature, see
e.g., [12], [18].

B. System-Field Interaction

Let and be Hilbert spaces with which we describe two
separate quantum systems. The total interaction between these
two systems over the first time units can be described by a
unitary transformation that acts on the composite space

. The time evolution of an observable of the com-
posite system is given by the flow

Suppose we start with an observable that acts non-trivially
only on the first system. At time this observable is given by

which in general will act nontriv-
ially on both components in the tensor product . This
shows that information has been carried from the system that
lives on to the system on . Note that a unitary can al-
ways be represented as for some self-adjoint matrix

called the Hamiltonian.

In our model, a two-level atomic system repeatedly interacts
with the slices of the field, i.e., and . Let

be the self-adjoint operator given by

(13)

where the ’s are elements in (for , 2, 3) such that
and are self-adjoint. These system operators determine

which kind of interaction between the two-level system and the
field we are considering, i.e., they determine the physics of our
problem. See Section VII for two examples: a dispersive interac-
tion and spontaneous decay. We let be the Hamiltonian
for the interaction between the system and the th field slice, that
is

We define another unitary operator by

(14)

Since , the unitary operator
satisfies

(15)

The operator acts nonidentically only on the system and the
th slice of the field. Thus, can be expressed as

(16)

for some system operators , , which
are uniquely determined by , ( , 2, 3). Note that the
unitarity of implies certain relations between the operators

, e.g., . From now
on, we will use and instead of and to describe
the interaction. We can write the following difference equation
for the unitary :

(17)

For simplicity we have omitted the tensor product be-
tween and the noise matrices. This rule will be applied
throughout this paper. The dynamics (17) is called the quantum
stochastic difference equation. It is a discrete version of the
Hudson-Parthasarathy equation [23].

Next we describe a measurement performed on the field. Let
us again consider the field observables ,

. After the interaction, these observables are given
by

(18)
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The observation process satisfies the difference equation

(19)

Here we have used (15) and . Moreover, using
, we find that

(20)

for all . Therefore we find

This means that the algebra generated by the observations

(21)

is a commutative -algebra for all . This is called
the self-nondemolition property of the observations . Due
to this property, we can define the classical process

, . This classical process represents the
data that we obtain while running the measurement. Note that

has the following spectral decomposition

where the projection matrices and are given by (12).
Hence, from Theorem 2.1, the classical random variable

takes with probability
, which now depends on the interac-

tion, or with probability .

C. Quantum Filtering

The purpose of quantum filtering is to calculate the least
mean square estimate of the observable
for a given system observable . More specifi-
cally, we aim to find an element in the commutative

-algebra that minimizes the mean square error, i.e.,
, where

for an operator on a Hilbert space. Note that (20) leads to the
following nondemolition property

which implies that , . Due to the self-nondemoli-
tion and nondemolition properties the quantum conditional ex-
pectation exists. Moreover, in (5) we have seen that
the quantum conditional expectation is an optimal estimator.
Therefore is given by .

Since is linear, positive with respect to , and
normalized, i.e., , we can define an information
state on the two-level atomic system by

(22)

Note that the state on is stochastic, it depends on the ob-
servations up to time . We are now going to derive a difference

equation for , i.e., the quantum filter. The following non-
commutative Bayes formula [10] is useful to derive the filter:

(23)
Here, is the commutative -algebra defined in (11) and
is the unique solution to the difference equation

(24)
We note that the conditional expectation in (23) is well defined,
because is driven by and and thus com-
mutes with any element of . This means that is
an element of for all system observables . We now
introduce an unnormalized information state by

for all . Equation (23)
now reads , which is a noncommutative
analogue of the classical Kallianpur-Striebel formula [27]. It
easily follows from (17) and (24) that satisfies the fol-
lowing difference equation:

(25)

where the operators and are given by

(26)

The filter can now be obtained immediately from
. We, however, will always use the unnormalized

version of the filter given in (25).
Note that , , and are all elements in the

commutative -algebra . Due to Theorem 2.1 they can be
diagonalized simultaneously, which yields the following clas-
sical random variables: , , and

. Moreover, since is a linear and pos-
itive functional of , we can define a 2 2 positive semidefinite
matrix that satisfies . The unnormalized
density matrix is called the unnormalized information density
matrix. It is easy to derive a difference equation for :

(27)

where the operators and are given by

(28)

(29)

IV. COMPOSITION OF AN OPERATOR-VALUED

FUNCTION AND AN OBSERVABLE

In Section V we will formulate risk-sensitive estimation as
an optimal control problem for a given cost function, see (32)
and (33) below. The idea of risk-sensitive control is to absorb
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the running cost of the cost function into the dynamics, see
(36) below. This means that the new dynamics depends on past
estimates (the controls in the optimal control formulation of
risk-sensitive estimation) which are a function of the observa-
tions thus far. Therefore we need to make precise mathemati-
cally what we mean by operator coefficients (see for example
the coefficients in (37) below) that depend on a function of the
observations thus far. We address this topic in this section.

Let be a finite-dimensional -algebra and let be a com-
mutative finite-dimensional -algebra. Let be an -valued
function on , i.e., . Let be
an element in . Note that since is commutative, we have

, i.e., is normal. The spectral decomposition of
can be written as , where denotes
the spectrum of , i.e., the set of eigenvalues of . The compo-
sition of with is defined as [9]

(30)

This is a natural generalization of the composition of with a
classical random variable , given by

(31)

Here denotes the range of and is the indicator
function of the set .

Let be an element of the observation algebra , defined in
(21). This means that we can write as a function of ,

by

for some function . Moreover, we can also write
in terms of the observables

as

where we have used (20). Therefore, if we define an element
in by

then can be written as . An -valued func-
tion and an element in
give rise to the composition , which is an element in

. Denoting the spectral decomposition of as
, we obtain

where we have introduced the notation in the last
step. Note that is an element in .

V. QUANTUM RISK-SENSITIVE FILTERING

In this section we study a quantum risk-sensitive estimation
problem. Let be a fixed element of the two-level atomic
system . Then, the risk-sensitive estimator of is de-
fined as follows:

(32)
where the cost function is given by

(33)

and the matrix is given by

(34)
Note again that . Here, are weighting
parameters that represent risk-sensitivity. Using the -valued
function

we can write and
. Using these compositions, we can obtain a recursive form

of :

(35)

Remark 5.1: If all matrices in (33) and (34) commute with
each other, the quantum risk-sensitive estimator reduces to

which is identical to the definition of the (generalized) classical
risk-sensitive estimator (1). Hence, (32) is a natural noncommu-
tative extension of the classical risk-sensitive estimator to the
quantum case.
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Remark 5.2: In the limit of , coincides
with the standard quantum optimal estimator in (22).
This is easily seen as follows. The estimation error cost func-
tion (33) is expanded to first order in and as

Thus, in the limit , the minimizers of this function
are given by , , i.e., we have

For this reason, is called the risk-neutral estimator.
The remainder of this section is organized as follows. First,

we introduce a risk-sensitive information density matrix ,
which is the quantum analogue to the classical information state

discussed in Section I-A. Second, we derive a recursive
equation for . As in the standard quantum filtering case,
contains all information needed to calculate the estimator (32).
More specifically, the cost function (33) can be represented only
in terms of , see Section V-C.

A. Quantum Risk-Sensitive Information State

We start by defining the following modification of the uni-
taries given by the difference (17):

(36)

Here is given by (34). Note that depends on
, but only through . Using (15) and (35), we find the

difference equation for as follows:

Here, we have used as a short hand for . Using
(16), this can be rewritten as

Now, let us define as the solution to the difference
equation

(37)

with . Note that this equation is identical to (24)
when . Two crucial properties of are given in the
following lemma.

Lemma 5.1: For all the matrix is an
element of . Moreover, we have

(38)

for any in .
Proof: To prove the first assertion, we assume that

. Since is calculated recursively, using
, , and , all of which are included in
, we obtain . The assertion follows

by induction.
For the second claim, we note that

holds for all vectors due to the relations
and .

Therefore, when the system density matrix is of the form
, any satisfies

which directly implies (38) due to (6). Since every density ma-
trix is a convex combination of vector states, the lemma is
proved.

Definition 5.1: Since by Lemma 5.1 is an element of
the commutant of , we can define the following unnormalized
risk-sensitive information state [14]:

(39)

Moreover, we define as the unnormalized risk-sensitive in-
formation density matrix corresponding to by

(40)

Lemma 5.2: Let be an element in . Let be
an -valued function. Then we have

where is a function of ,
.
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Proof: Denote the spectral decomposition of by
. Then, it follows from the definitions

(30) and (39) that we have

In the first step we used and .
Note that and can be diagonal-
ized simultaneously by a -isomorphism . Using

(see Theorem 2.1), we get

where we have used the definitions (31) and (6). Since
, is obviously a function of . This

completes the proof.

B. Dynamics of Risk-Sensitive Information Density Matrix

The objective here is to derive a recursive equation for . Let
be an element of . A similar calculation to (19) yields the

following difference equation for :

where

Note that . Since is an element of
the commutant , we can define the quantum conditional ex-
pectation . This satisfies the difference
equation

Equation (39) can now be written as
. This means we find the difference

equation

(41)

where in the last step (19) was used.
We can now represent (41) in terms of the unnormalized risk-

sensitive information density matrix . Since , ,
and are elements in , they can be simultaneously di-
agonalized by a -isomorphism , which leads to

where and . It then follows
from Lemma 5.2 that the above equation leads to

(42)
where is a function of

. The operators and are defined as
follows:

Equation (42) is a simple recursion for a 2 2 matrix and is
thus easily implementable on a digital computer. Note that the
operators and reduce when to and

, where and are given in (28) and (29). This implies
that the solution of (42) converges to that of (27) when goes
to zero.
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C. Calculating the Risk-Sensitive Estimator

We will now represent the cost function (33) in terms of
only. To this end, we define a new state on by

for . Since is a commutative -subalgebra of
, we can apply Theorem 2.1 to . That is, there

exists a classical probability space and a -isomor-
phism such that for all

. We now have the following theorem.
Theorem 5.1: The cost function (33) can be written as

(43)

where is a function of the measurement data
, and is the risk-sensitive information density

matrix that satisfies (42).
Proof: We define as before. Since

, we find

where is defined by (36). Using (38) in Lemma 5.1 and
the tower property of the conditional expectation, we find

where we have used the definition of in (39). Note that the
above conditional expectation is well defined due to

and . Let be given by .
It now follows from Lemma 5.2 that

Consequently, the cost function can be written as

This completes the proof.
As a result of Theorem 5.1, our estimation problem is now

cast as a classical optimal control problem. The resulting
problem can be solved systematically by dynamic program-
ming. We will only provide a brief summary of this. Consider
the following optimal expected cost-to-go at time , given
that :

This leads to the following dynamic programming equation; de-
noting (42) simply as , we have

Note here that
. We can run the above algorithm efficiently

in a digital computer and obtain the optimal sequence ,
, which yields through a ver-

ification theorem (e.g., see [25]). Theorem 6.1 below will lead
to a robustness result for the risk-sensitive estimator.

Remark 5.3: Running the dynamic programming recursion
on a digital computer is very costly computationally. Therefore
we define a suboptimal risk-sensitive estimator by

That is, is to be calculated based on the assumption
that we have already performed the above minimization proce-
dure up to time and obtained the suboptimal risk-sensi-

tive estimators , . As shown
in [7] (Theorems 2.2 and 4.2), the minimizer of the trace func-
tion inside the expectation in (43), , leads to the suboptimal

risk-sensitive estimator . Hence our al-
gorithm in this case is represented simply as follows:

(44)
which is of the same structure as the classical algorithm pre-
sented in Section I-A. In Theorem 6.2 we will derive a bound for
the conditional estimation error. The suboptimal risk-sensitive
estimator minimizes this error bound. This provides a sound the-
oretical foundation for the suboptimal risk-sensitive estimator.
Since the algorithm (44) is computationally much cheaper than
the dynamic programming equation, we will consistently use
the suboptimal estimator in the example part, Section VII.
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VI. QUANTUM UNCERTAIN SYSTEMS AND ROBUSTNESS

OF THE RISK-SENSITIVE ESTIMATOR

In realistic situations, we often have to deal with a system that
includes some model uncertainty. From the classical case, we
expect that the risk-sensitive estimator has an enhanced robust-
ness property against such uncertainty. In this section, we first
describe a class of uncertain quantum systems for which the un-
certainty is quantified by the quantum relative entropy. We will
then show robustness properties of the estimator.

A. Quantum Uncertain Systems

Uncertainty can enter the system in many ways. It could for
instance be the case that the state is unknown to us. The un-
certainty then enters the system density matrix through the
relation . We
assume that the field state is known and fixed to the vacuum

. This, however, is not the only way uncertainty can enter our
model. We will also allow for uncertainty in the coefficients of
the dynamics, i.e., the difference (17). We can push this uncer-
tainty into the initial state, as described below.

Let be a classical probability space. Let be an ele-
ment of , i.e., is a random variable on .
Let be the operator on given by pointwise mul-
tiplication with , i.e.,

We denote the commutative -algebra of all such multiplication
operators with functions in by . On we can
define a state as integration with respect to the measure , i.e.,

. For simplicity we will take the operator
to be self-adjoint, that is, it is a multiplication with a real-

valued function. Next, let , be -valued
functions on , i.e., , such that the matrix in
(16) is unitary. Then, using the compositions of and ,
we can define the following difference equation:

(45)

on the extended quantum probability space

We now assume that the state is unknown to us. This
means that (45) is equivalent to the difference equation (17) such
that its coefficients include uncertain parameter . That is, the
uncertainty in the model has been pushed completely into the
state .

Now, let be the true density matrix
corresponding to the unknown state . Then, the true filter
is initialized to . However, as is unknown, we
fix a nominal density matrix , which in
general differs from , and construct the nominal filter that

starts from . The nominal estimator of is then
given by

Example 6.1: If is a discrete random variable that
takes the values , with unknown proba-
bility , then the corresponding multiplication operator is

, where the commutative -al-
gebra is the set of diagonal matrices, and the true
density matrix is . To design a
nominal filter, we choose a nominal density matrix of the form

. In general, . It is easily
seen that the quantum relative entropy between the above two
distributions is equal to the classical one:

An important example for a true density matrix is
; that is, is not a random variable but an

unknown deterministic system parameter . If we have
no information about at all, it is natural to take a uniform
distribution as the nominal
distribution.

B. Robustness Properties of the Risk-Sensitive and Suboptimal
Risk-Sensitive Estimators

The nominal estimator differs from the true one
. Hence, is no longer the optimal estimator

in the sense of the mean square error and thus can possibly take a
large estimation error. However, as shown below, if one uses the
nominal risk-sensitive estimator defined in (32), the estimation
error is guaranteed to be within a certain bound. This implies
that the risk-sensitive estimator does have a robustness property
against unknown perturbation of the system state and the system
parameters.

The quantum relative entropy (7) will be used to express the
robustness property. We here assume that the unknown true den-
sity matrix is within a certain distance from
a known nominal density matrix , that is,

The following theorem will lead to a robustness property of the
nominal risk-sensitive estimator (32).

Theorem 6.1: Let , be an element of . Then,
we have the following inequality:

(46)
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where is defined by (34), and
and .

Proof: Setting and
in (9), we have

where we have used the following additivity property:

Therefore, taking
yields the theorem.

Equation (46) is a quantum version of the classical robustness
result (2), because the left hand side of (46) can be expanded up
to second order in the estimation error as

That is, as in the classical case, the nominal risk-sensitive esti-
mator , defined by (32), does have a robustness
property, because it minimizes the upper bound of the estima-
tion error under the unknown true state .

We remark that the relative entropy in (46) can be written as

The first term is a classical relative entropy as shown in Example
6.1. Thus, if there is no uncertainty in the quantum state, the
estimation error bound is written in terms of classical quantities
only.

We now change our focus to the suboptimal risk-sensitive es-

timator defined in Remark 5.3. The following the-
orem shows that the conditional estimation error at time also
has an upper bound. This will lead to a robustness property for
the nominal suboptimal risk-sensitive estimator.

Theorem 6.2: Let , be an element of . Then,
we have the following inequality:

(47)

where and
are the conditional density matrices

corresponding to the true filter and the nominal risk-sensitive
filter, and .

Proof: Using the definition of the optimal estimator
, the left-hand side in (47) can be rewritten as

where the last equality follows directly from Lemma 5.2 with
. Then, from (9) we have the assertion.

The first term of the right-hand side in (47) is minimized when
choosing the nominal suboptimal risk-sensitive estimator

given by (44). Theorem 6.2 therefore shows a
robustness property of the suboptimal risk-sensitive estimator.

VII. EXAMPLES

In this section, we study two examples in detail. The first ex-
ample is a two-level atom that is coupled to the field via a dis-
persive interaction. This coupling can be obtained by putting
the atom in a cavity that has a resonance frequency far detuned
from the transition frequency of the two-level atom. The second
example deals with a two-level atom that decays to the ground
state due to spontaneous emission into its environment. We con-
sider the situation where the quantum state of the two-level atom
and a physical parameter are unknown to us. In particular, we
employ the nominal suboptimal risk-sensitive estimator given
by (44). We compare this estimator with both the true risk-neu-
tral and nominal risk-neutral estimators.

A. Dispersive Interaction Model

The interaction Hamiltonian (13) in case of a dispersive inter-
action with the field, is given by the following system matrices:

where and represents the interaction
strength. From (14) and (16), we see that the matrices ,

are given by

We assume that is a classical random variable that takes
the values with unknown probabilities .
As seen in Section VI-A, can be regarded as an observ-
able , where is a com-
mutative -algebra given by the set of diagonal
matrices. The corresponding unknown true density matrix is

. In particular, we now study a toy
model in which can take 20 discrete values, ,

. Moreover, we choose to be given by
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Fig. 1. For the dispersive interaction model of the atom, (a) the true and nominal parameter distributions, (b) the histogram of the averaged total estimation errors,
(c) sample paths of the nominal risk-sensitive estimator (solid line) and the true risk-neutral one (thick dotted line), and (d) sample paths of the nominal risk-neutral
estimator (solid line) and the true risk-neutral one (thick dotted line). For the figures (c) and (d), the notation ��� is omitted.

which is illustrated in Fig. 1 (a1). For instance, takes
with probability . Furthermore, we assume
that the true density matrix is given by

(48)

Again, note that is unknown to us.
Now, let us consider estimating the system observable
. To design a nominal filter, we use the following nominal

density matrix in :

(49)

is depicted in Fig. 1 (a2). The nominal risk-neutral esti-
mator and the nominal risk-sensitive one
are then calculated from (27) with and (44) with

, respectively. The risk-sensitive parameters are
chosen to be . Note that the filter equa-
tions include the composition and are driven by the true
output data . We compare those two nominal estimators
with the ideal true risk-neutral estimator , which is
calculated from (27) with . To do this, we use the
averaged total estimation errors

(50)

The histogram for these values are depicted in Fig. 1(b) for 200
sample paths with and . Overall, is
smaller than , showing the better performance of the risk-
sensitive estimator over the risk-neutral one. Fig. 1(c) and (d)
illustrate an example of sample paths of the estimators; in Fig.
1(c) the solid line shows , while in Fig. 1(d) the

solid line is . In both figures, the thick dotted line
is . In Fig. 1(c), both estimators are quite close to
each other in spite of the difference in their initial states. On
the other hand, as depicted in Fig. 1(d), the nominal risk-neutral
estimator fails in the estimation, although it finally converges to
the true value . As a summary, the risk-sensitive estimator
outperforms the nominal risk-neutral estimator in the presence
of uncertainty.

Remark 7.1: The performance of the nominal estimator de-
pends on the magnitude of uncertainty. For example, if there
is no uncertainty in the nominal distribution, the nominal risk-
neutral estimator coincides with the true optimal estimator and
clearly works better than the risk-sensitive one. However, under
the existence of some uncertainty, the risk-neutral estimator is
no longer optimal and will be inferior to the risk-sensitive one,
as seen in Fig. 1. To make a more quantitative observation, we
consider the following nominal distribution characterized by
one parameter (this means 0 1) that repre-
sents the uncertainty magnitude:
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Fig. 2. For the dispersive interaction model of the atom, (a1) the averaged total estimation errors of the nominal risk-sensitive filter (solid line) and the nominal
risk-neutral one (dotted line), (a2) examples of the nominal parameter distributions, (b) the conditional error (dotted line) and the guaranteed error bound (solid
line) in Theorem 6.2, and (c) the averaged conditional estimation errors of the nominal risk-sensitive filters with �� � � � � ����� ������ (upper dotted line) and
�� � � � � ����������� (lower solid line).

When , the nominal distribution is equal to the true one;
. Hence implies there

is no uncertainty. On the other hand when , the nominal
distribution is the one given in (49). We consider the nominal
risk-neutral estimator and the risk-sensitive one with ,

. Note that these two estimators are close to each
other due to the small risk-sensitive parameter. To evaluate their
performances, we calculate the averaged total estimation errors
(50) and compare them. In Fig. 2 (a1), the horizontal axis shows
the uncertainty magnitude , while the vertical axis shows the
average of and over 100 sample paths, which are de-
noted by and , respectively. Fig. 2 (a2) shows examples
of the nominal parameter distribution . The risk-sensitive
estimator clearly shows a better performance than the risk-neu-
tral one, except in the case of a small .

Remark 7.2: The robustness property of the risk-sensitive es-
timator is based on the fact that the estimation error is upper
bounded, as presented in Theorems 6.1 and 6.2. Fig. 2(b) illus-
trates sample paths of the conditional estimation error and its
upper bound given in Theorem 6.2:

(51)

From this, we see that the bound is much larger than the actual
estimation error. This is very similar to the classical case where
one also often finds a very conservative upper bound.

Remark 7.3: As in the classical case, there is no theoret-
ical procedure to determine the best risk-sensitive parameters

. We here only maintain that a non-zero , the
weighting parameter of the running estimation error cost,
is actually helpful in obtaining a high-quality risk-sensitive
estimator. To show this fact, we apply a nominal risk-sensitive

filter with , initialized to (49), to the same uncertain
system as discussed above. For this filter, appears
to be the best parameter. Fig. 2(c) illustrates the mean values
over 200 sample paths of the conditional estimation error in
(51). The upper dotted line and lower solid one corresponds
to the risk-sensitive estimation with
and , respectively. This shows that a
non-zero does improve the performance of the estimator.

B. Spontaneous Emission Model

In the case of spontaneous decay, the interaction Hamiltonian
(13) is given by

where is defined in (10) and represents the emission
rate. The matrices , are determined from
(14) and (16) and read

Similar to the dispersive interaction case, we here assume that
behaves as a classical discrete random variable with an unknown
probability distribution; is then replaced by an observable

. In particular, we assume
, with the true density matrix

which is illustrated in Fig. 3(a). The system true density matrix
is given by (48). For a nominal density matrix, we take
in (49) and assume that . In the above set-

ting, we consider estimating , inves-
tigate the performance of the nominal risk-sensitive filter, and
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Fig. 3. For the spontaneous emission model of the atom, (a) the true and nominal parameter distributions, (b) the histogram of the averaged total estimation errors,
(c) sample paths of the nominal risk-sensitive estimator (solid line) and the true risk-neutral one (thick dotted line), and (d) sample paths of the nominal risk-neutral
estimator (solid line) and the true risk-neutral one (thick dotted line). For the figures (c) and (d), the notation ��� is omitted.

compare it with the nominal risk-neutral one. The risk-sensi-
tive parameters are chosen as . Fig. 3(b)
shows the histogram for the averaged error and for 200
sample paths with and . Fig. 3(c) shows
the sample paths of and , while in

Fig. 3(d) and are shown. These fig-
ures clearly show that the nominal risk-sensitive estimator is su-
perior to the nominal risk-neutral estimator.

Remark 7.4: While in this paper we have considered the es-
timation problem over the finite-time horizon, let us here look
at the asymptotic behaviour as of the quantity

where and correspond to the standard risk-
neutral estimator for the true and nominal initial states, respec-
tively. If for all observables , then we say
the filter is stable. Recently, Van Handel [22] has provided the
following characterization for filter stability in continuous time.
That is, for all included in the observable space

we have . Here, and are the continuous time ana-
logues of the quantities defined in (26). Therefore, the filter is
stable if .

In our examples the observable spaces are given by

Therefore, for a dispersive interaction where we estimate
, it is guaranteed by Van Handel’s theorem that

with any initial state converges to the true estimator. On the
other hand, in the spontaneous decay case, due to ,
we cannot expect that . This could be the reason why the
increase in performance by the nominal risk-sensitive estimator
over the risk-neutral one is more pronounced in Fig. 3 than in
Fig. 1. We must note here that in simulations we do see that, with

the settings used in Fig. 3, eventually converges to
the true value 0. However, this convergence is very slow.
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