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Notation

Conventions

x Scalar
x Column vector
1 Vector of ones

x/x Random variables/vectors are printed in bold face
x̂/x̂ Mean or fixed value/vector of x/x

x∗/x∗ Optimal value/vector
x � y Component-wise inequality between the vectors

x and y
x ≺ y Component-wise strict inequality between the

vectors x and y
x� y Component-wise multiplication
1 : L Indices 1, . . . , L

M Matrices are printed in bold uppercase letters
mT/MT Vector/matrix transpose

M−1 Matrix inverse
|M| Determinant of matrix M
Mij Matrix element in row i and column j

diag (x) Matrix with main diagonal entries identical to x
I Identity matrix
S Sets are printed in uppercase calligraphic letters
|S| Set cardinality

vol (·) Volume of a space or interval width
� End of example
� End of proof
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Probability Density Functions

f(·)/f(·|·) Generic (conditional) probability density function
F (·) Generic cumulative distribution function

f̃(·) True probability density function

F̃ (·) True cumulative distribution function
∼ Distribution operator, as used with x ∼ f(x),

denoting x is distributed according to f(x)
E { . } Expectation operator
δ(·) Dirac delta distribution
H(·) Heaviside function

N (x ; µ , C ) Multivariate normal density function
KS(x , µ ) Multivariate kernel function
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Zusammenfassung

Aufgrund der jüngsten Fortschritte in der Elektrotechnik, Mechatronik
und Mikrosystemtechnik werden stetig mehr informationstechnische Ge-
räte in der Umwelt des Menschen eingesetzt. Um den Menschen opti-
mal zu unterstützen, ist es unabdingbar, dass diese Systeme die Inten-
tion des Menschen auf Basis multimodaler Beobachtungen seines Ver-
haltens erkennen. Der Intentionserkennung kommt insbesondere bei hu-
manoiden Robotern eine wichtige Rolle zu, da der Mensch von einem
mensch-ähnlichen Roboter mensch-ähnliches Verhalten erwartet. Gleich-
zeitig stellt die Intentionserkennung für einen humanoiden Roboter unter
Alltagsbedingungen besonders hohe Anforderung an die Robustheit gegen-
über unvollständigen und verrauschten Beobachtungen, an den Detail-
grad der verwendeten Modelle und an die echtzeitfähige Inferenz, um eine
natürliche Interaktion zu gewährleisten. In dieser Arbeit wird untersucht,
wie diese Probleme durch eine durchgängige Unsicherheitsbeschreibung,
automatische Modellidentifikation und situationsbedingte Inferenz gelöst
werden können.

Um eine durchgängige Unsicherheitsbeschreibung und eine strukturierte
Wissensmodellierung zu gewährleisten, wird in dieser Arbeit die Inten-
tionserkennung als ein Problem der Modellierung der menschlichen Ratio-
nalität in Form von hybriden, dynamischen Bayesnetzen sowie der Infe-
renz mit diesem Modell betrachtet. Hervorzuheben ist, dass wertdiskrete
und wertkontinuierliche Größen generisch modelliert werden können. Hier-
durch werden Diskretisierungsfehler vermieden und eine einheitliche In-
ferenz unter durchgängiger Berücksichtigung der Unsicherheit erreicht. Wei-
terhin erlaubt die verwendete Modellierung eine exakte, analytische In-
ferenz auch bei nichtlinearen stochastischen Abhängigkeiten.

Ein Schwerpunkt der Arbeit liegt auf der automatischen Modellidentifika-
tion der verwendeten nichtlinearen stochastischen Abhängigkeiten. Das
Identifikationsproblem wird als Ausgleichsproblem betrachtet. Es werden
mehrere Ansätze zur Optimierung des Verhältnisses zwischen der Distanz
der vorhandenen Beobachtungen zur geschätzten nichtlinearen Funktion
im Verteilungsraum und der Unebenheit der Oberfläche der Schätzfunktion
vorgestellt. Es wird gezeigt, dass die Betrachtung der Unebenheit der
Oberflächen ausreichend ist, um eine ansonsten nur durch die explizite
Annahme eines unterlagerten, generativen Modells erreichbare Qualität
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der Modellidentifikation zu erhalten. Die erhaltenen Ergebnisse sind je-
doch signifikant effizienter repräsentierbar und erlauben eine analytische
Weiterverarbeitung, z.B. für die rekursive Zustandsschätzung.
Der zweite Schwerpunkt der Arbeit liegt auf der situationsbedingten In-
ferenz in großen dynamischen Bayesnetzen bei der eine Beschleunigung der
Inferenz durch Ausnutzung der Situationsabhängigkeit des menschlichen
Verhaltens demonstriert wird. Ausgehend von einer gegebenen Dekom-
position des Gesamtmodells in eine Menge kleinerer Teilmodelle wird die
schritthaltende Inferenz auf jeweils das Teilmodell beschränkt, welches die
aktuell vorherrschende Situation am besten abbildet. Für die Auswahl
wird das im Modell enthaltene Wissen über die zukünftige Zustandsent-
wicklung ausgenutzt. Für zwei Bewertungskriterien wird gezeigt, dass
dieser modell-prädiktive Ansatz eine signifikante Beschleunigung der In-
ferenz bei vernachlässigbarem Approximationsfehler erlaubt.
Die durch die durchgängige Unsicherheitsbeschreibung, automatische Mo-
dellidentifikation und situationsbedingte Inferenz erzielte Robustheit, Qua-
lität und Skalierbarkeit der Intentionserkennung wird in Simulationen,
durch eine videobasierte kombinierte Bewegungs-, Aktivitäts- und Inten-
tionserkennung sowie in Testszenarien in der weiträumigen Telepräsenz
analysiert. Die verwendete durchgängige Unsicherheitsbeschreibung lässt
sich ohne Einschränkungen für andere Anwendungen nutzbar machen. Die
erzielten Ergebnisse für die Schätzung stochastischer nichtlinearer Ab-
hängigkeiten in Form von bedingten Dichtefunktionen wurden auf die
Dichteschätzung übertragen und sind für die Identifikation allgemeiner
nichtlinearer stochastischer Abhängigkeiten verwendbar. Das Prinzip der
situationsbedingten Inferenz läßt sich erfolgreich auf die Inferenz in gene-
rischen dynamischen Bayesnetze übertragen, wenn für diese situative De-
komposition möglich ist.
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Abstract

Recent advances in electrical engineering, mechatronics, and microsystem
technology promote the deployment of an increasing number of computing
devices into the environment of the human. In order to support the hu-
man optimally, it is inevitable that these systems recognize the human’s
intention from multimodal observations of his behavior. The intention
recognition is especially important for humanoid robots as the human user
expects a human-like behavior from a humanoid robot. At the same time,
it is challenging for the intention recognition of a humanoid robot in ev-
eryday’s life to achieve robustness against uncertain and incomplete ob-
servations, to maintain a high degree of detail of the used models, and
to perform inference in real-time to allow for natural interactive beha-
vior. This thesis investigates how these challenges may be addressed by
a consistent uncertainty processing, automatic model identification, and
situation-specific inference.

In order to achieve a consistent uncertainty processing and allow for struc-
tured modeling of domain knowledge, the intention recognition problem
is phrased as a problem of modeling the human rationale in the form
of hybrid, dynamic Bayesian networks as well as inference with these
models. Additionally, discrete- and continuous-valued quantities may be
modeled uniformly. This approach avoids unnecessary discretization er-
rors and allows for a uniform inference with consistent uncertainty treat-
ment as well as for exact, analytic inference even with nonlinear stochastic
dependencies.

The first focus of the present thesis is the automatic model identification of
the employed nonlinear stochastic dependencies. The identification prob-
lem is considered as a trade-off problem: several approaches to balancing
the distance between the given observations and the estimated nonlinear
function as represented by their respective cumulative distribution function
and the function estimates’ surface roughness are presented. It is shown,
that the consideration of the surface’s roughness is sufficient to achieve a
comparable quality of the model identification, which has so far only been
shown by approaches making explicit assumptions about an underlying
generative model. The obtained function estimates may be represented
much more efficiently and allow for analytic processing, e.g., in recursive
state estimation.
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The second focus of this thesis is the situation-specific inference in large dy-
namic Bayesian networks for which a speed-up in inference by exploitation
of the situation dependency of the human behavior is demonstrated. Given
a decomposition of a large model into a fixed set of smaller models, the
step-wise inference is limited to the model reflecting the prevailing situa-
tion best. The model selection exploits the information contained in the
model. For two evaluation criteria, it is shown that these model-predictive
approaches allow for significant speed-ups of the inference at negligible
approximation error.
The robustness, quality, and scalability achieved by the consistent uncer-
tainty processing, automatic model identification, and situation-specific
inference is analyzed in simulations, a video-based combined motion, activ-
ity, and intention recognition setup, as well as experiments in an extended-
range telepresence scenario. The employed consistent uncertainty process-
ing may be easily generalized to other applications. The obtained results
for the estimation of stochastic nonlinear dependencies in the form of con-
ditional density functions have been successfully transferred to density
estimation and may be used for the identification of general nonlinear
stochastic dependencies. The principle underlying the situation-specific
inference may be employed to generic dynamic Bayesian networks if these
allow for a situation-specific decomposition.



If a man will begin with certainties,
he shall end in doubts;

but if he will be content to begin with doubts,
he shall end in certainties.

—Francis Bacon

1 Introduction

Recent scientific progress in microelectronics, telecommunications, and
power supply led to the widespread deployment of technical devices into
the human environment. The variety of these devices ranges from in-
telligent power steering and smart washing machines at home to control
systems installed in industrial facilities or in air conditioning systems at
work. The most apparent technical devices to humans are laptops and
smart phones as personal companions, but also transparent state of the
art infrastructure, e.g., smart gas grids, consist of many technical devices.
Thus, technical devices influence every aspect of human life. Furthermore,
from today’s perspective, it appears certain that further technical devices,
such as service robots, will find popular distribution in the near future and
an end of this development is not foreseeable.

These technical devices are deployed to support the human either in tasks
at their workplace or household in general. The distribution will be linked
to the benefits offered, i.e., how much more efficient a task may be carried
out with the assistance of the devices. In order to assist the human at
its best, the devices need to cooperate closely with the human. For this
reason, it is necessary for the devices to hypothesize about the human’s
intentions at any given time. The intention is estimated based on the ob-
served behavior of the human and a model of his rationale. Depending on
the task at hand, this model of the human’s rationale reflects the relevant
relations between the human’s belief of the state of the world, his desires,
and the derivable intentions. Based on noise-perturbed audio and visual
signals, the human’s long to short term intentions shall be automatically
inferred to provide optimal support. This problem may be understood
as an instantiation of a state estimation problem, where the hidden state
needs to be estimated from noisy measurements. Fig. 1.1 shows how the
intention recognition is incorporated in a simplified control loop of an as-
sistive system, e.g., a humanoid robot. Given the noisy sensor readings of
the human behavior and domain knowledge, e.g., in this case about the
objects present in the scene, the intention recognition derives the intention
estimate. This estimate serves as an input to the high-level planning sys-
tem of the humanoid robot. The derived plan causes a change of the state
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Robot System

Sensors

Domain
Knowledge

Intention
Recognition

High Level
Planner

Motion
Control Actuators

Human and his environment

Figure 1.1: A simplified control architecture for the humanoid robot
ARMAR [182, 45] as adapted from [160].

of the world by the application of its actuators, e.g., by moving the robot
or manipulating objects. The quality of the state estimator is fundamental
to the device’s decision process.

Because the sensor readings are prone to error and noise, the described
model of the human’s rationale needs to account for the uncertainty in-
herent in the problem. This problem may be cast as a problem of repre-
sentation, inference, and learning in a probabilistic graphical model. In
this thesis, this view will be adopted and intention recognition using hy-
brid dynamic Bayesian Networks will be considered, i.e., a probabilistic
graphical model captures the sequentiality of the rationale as well as the
unified treatment of discrete and continuous variables. This thesis presents
contributions to two topics central for the intention recognition problem:
model identification and inference in large scale models.

• Model identification considers the problem of automatically deter-
mining the probabilistic models fundamental to the probabilistic
graphical model and therefore is of extreme importance to the inten-
tion recognition application. The considered problem is restricted to
the estimation of (conditional) density functions relating continuous
random variables as used in the motion models of the example appli-
cation. The main contributions of this thesis, are approaches towards
conditional density estimation of sparse mixture conditional densities
based on information-theoretic and superficial regularization.

• The quality of the learned models is irrelevant, if inference in these
models is too slow. For realistic scenarios with hundreds of objects
and actions related to these intentions, complex probabilistic graph-
ical models arise. For these large-scale models, real-time inference as
a basis of natural interactions is challenging. The main contribution
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of this thesis is an approach to restricting the inference to the rele-
vant situational task structure. This exploitation of the situational
dependency allows for real-time inference in larger models.

Both contributions complement each other, as the identification of the
continuous conditional densities may be understood as obtaining the sub-
strate for large scale models, and only if inference in larger models is
efficient enough to allow for natural interaction, the identified models will
be used. In the following, an outline of the thesis will be given by chapter.
Disregarding the chapters on the problem definition, conclusion and fu-
ture work as well as this chapter, this list reflects the two major problems
addressed in this thesis. Each chapter concludes with a summary of the
main contributions and limitations.

Problem Definition In the problem definition, the relevant assessment
criteria and the related work for both parts of the thesis are reviewed and
discussed. The deficiencies in the state of the art will be pointed out and
how these are addressed in this thesis. The key idea as well as the major
assumptions will be given.

Non-Parametric Density and Conditional Density Estimation With re-
gard to system identification, the estimation of density and conditional
density functions from data is considered. In this chapter, the specific
difference in the estimation is discussed. The key idea common to density
and conditional density estimation as a sparse extension to kernel density
estimation is derived. This idea consists of phrasing the estimation as an
optimization problem balancing data fit with roughness of the probability
density function surface. Based on the different mathematical problem
statements, the general challenges and key ideas are extended to optimiza-
tion approaches for each problem. For the conditional density estimation,
the specific problem structure is further discussed and exploited.

Full Parameter Conditional Density Estimation The drawbacks of the
sparse kernel conditional density estimation are the restriction to compo-
nents’ means coinciding with data points as well as fixed and identical
kernel parameters for all components. In this chapter, these limitations
are removed by the introduction of a novel roughness penalty and a covari-
ance calculation relative to the local data density. The novel roughness
penalty is based on the curvature of the probability density function al-
lowing for an optimization of mean positions that regularize the mean
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function’s curvature. Additionally, an efficient implementation of these
key ideas and a comparison to the other presented approaches as well as
the state of the art are proposed.

Hyperparameter Optimization All of the presented non-parametric and
full parameter estimators perform density and/or conditional density es-
timation based on different sets of hyperparameters. In this chapter,
a generic algorithm for determining hyperparameters is presented. The
generic optimization may then be instantiated w.r.t. each estimator and its
set of hyperparameters, e.g., the kernel parameters and/or the parameter
determining the trade-off between fit and roughness or the loss-function’s
parameters. The properties of the presented cross-validation–based mini-
mization of the error on held-out sets is discussed in simulations.

Conditional Density Estimation given Samples and Prior Knowledge
Typically, not only a set of data points is given when estimating densities
and conditional densities. There might be information from prior exper-
iments, e.g., exploring other parts of the state space, or expert/domain
knowledge. The challenge is to use this information if it is not given in
form of data points, but in the form of generative or probabilistic models
with the proposed optimization scheme. Note, that even if data from a
previous measurement campaign might be given, depending on the size of
the data set it might be prohibitive to merely join the data sets, but an
abstraction is necessary. In this chapter, approaches using additional in-
formation in the form of a generative or probabilistic model and its benefits
will be given.

Intention Recognition This chapter introduces the models and inference
methods used for the intention recognition in the human-robot-cooperation
scenario as introduced in the problem definition. In detail, an introduction
to hybrid dynamic Bayesian Networks is provided and the entire design
process and inference mechanism described using an exemplary case-study.
On the basis of the model developed for this case study, more realistic
models for human-robot-cooperation in the household setting will be pre-
sented, i.e., the number of entities will be increased. Inference in the
hybrid dynamic Bayesian Networks is challenging for large scale models,
e.g., if the household setting for the human-robot-cooperation scenario is
modeled with a realistic number of objects and associated intentions. The
key idea is to use the fact that even though the household setting entails a
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Figure 1.2: The chapters of this thesis and dependencies between
different chapters.

lot of unstructured intention sequences it is possible to identify clusters of
related intentions. As these clusters are describable using time and space
constraints, the concept of situations is adopted and used for an online
model selection of smaller models for each situation. In order to discuss
the properties and limitations of the intention recognition as means of
tacit human-robot-cooperation, the proposed models are adapted for a set
of real and mixed-reality experiments. In the real scenario, the purely
video-based recognition of everyday kitchen tasks is presented. The re-
ported results are based on a large data set. The scalability of the infer-
ence for larger models is evaluated using an extended range telepresence
scenario given a 1:1 scale layout of a given kitchen, providing reproducible
experimental setups.

Conclusions and Future Work The thesis concludes with a summary
of the contributions and a list of the limitations, which remain as future
work. Given the results presented in this thesis promising approaches for
addressing these remaining challenges are given.

Structure of the Thesis This thesis may be read sequentially and selec-
tively. Fig. 1.2 shows the dependencies between the different chapters of
the thesis. As the state of the art, the notation, and mathematical problem
setup are discussed in the problem definition, it is recommended to read
this chapter first. The other chapters may be read according to Fig. 1.2.
Reading Ch. 3 about non-parametric density and conditional density esti-
mation second, the remaining parameters may be determined by hyperpa-
rameter optimization, Ch. 5, or by hyperparameter optimization and the
full-parameter optimization, described in Ch. 4. For all chapters, condi-
tional density estimation may not only be performed given samples but
also if prior knowledge is given in the form of generative or probabilistic
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models, as described in Ch. 6. This chapter may be considered as optional.
The intention recognition considered in Ch. 7 may be read independently
from the model identification chapters, even though some models used in
Ch. 7 may be identified with the methods described in the prior chapters.



Essentially, all models are wrong,
but some are useful.

—George Box

2 Problem Definition

This chapter precedes the main matter of the thesis and is meant to
prepare the ground for an in-depth treatment of the contributions. Re-
sembling the rest of this thesis, this problem definition is divided into a
part dealing with model identification and a part considering the intention
recognition. In each part, the respective scope will be given, i.e., the con-
sidered problem will be formalized and the employed assessment criteria
will be introduced. The state of the art will be discussed and the deficien-
cies addressed in this thesis described. In detail, the used assumptions,
the contributions, and their properties as well as restrictions as derived in
the following chapters will be briefly outlined.

2.1 Density and Conditional Density Estimation

The estimation of density functions and conditional density functions1 f
lies at the heart of descriptive and inferential statistics. One of the earliest
known scientific publications about density estimation [189] was concerned
with determining the probability density function describing the forehead
to body lengths of a population of crabs, dating back to the 1890s by
Karl Pearson [144]. Pearson tried to estimate a heteroscedastic mixture
density with two components describing the scalar data best. Using this
model, he was able to describe all 1000 data points by only four numbers
and used these statistics to infer the presence of two subspecies in the
given sample set. From an abstract point of view, Pearson tried to esti-
mate the inaccessible true density function f̃ , describing the phenomena,
based on the measurements. In general, density and conditional density
function estimation are methods for determining the closest estimate f
to the true density or conditional density function f̃ . The estimation of

1For the sake of brevity, the nomenclature is imprecise: the term (conditional) den-
sity estimation is ambiguous as it may be understood as denoting the estimation of a
single probability value for one set of events or it may refer to the estimation of the
(conditional) density function, i.e., the entire function for all events and sets thereof.
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density and conditional density functions relating continuous random vari-
ables is challenging, as the only information about f̃ is the observed data
D = { d1, . . . , d|D| }, where di ∈ IRN are specific measurements. Note, that
other forms of data may be available too, e.g., uncertain data in the form of
a distribution. For the further derivations, it is convenient to formalize the
data as the derivative of the empirical cumulative distribution function,
i.e., the empirical probability density function (EPDF) [174],

fD(x) =

|D|∑

i=1

wi δ(x− di) , (2.1)

with wi = 1/|D| for all 1 ≤ i ≤ |D| and x ∈ IRN. As for large |D|,
the cumulative distribution of the EPDF FD converges towards the true
function F̃ [190], fD can be considered an approximation of f̃—similar to
a kernel density estimate [179, Ch. 3.7]. Therefore, in density and condi-
tional density estimation the distance D ( fD , f ) between the estimate and
the data shall be minimized. Note, that for both, density and conditional
density function estimation, fD is a probability density function. In the
case of conditional density estimation, fD is the joint density describing
the observed combinations of input and output values.

Assessment Criteria Even though this setup might appear appropriate
at a first glance, it is doomed to fail because in hardly any application
an infinite amount or at least a sufficiently2 large number of samples are
either obtainable or may be obtained only at prohibitive costs. Therefore,
|D| has to be assumed to be small. This assumption means that only a
very small number of points in IRN conveys information as for most events
the probability is zero. The problem is ill-posed in the sense that infinitely
many functions f minimize D ( fD , f ) but potentially differ “between”
the data points. In order to arrive at meaningful results, the quality of an
estimate is assessed according to the following criteria:

Descriptive Validity The observed data D shall be described well by
the estimate f in the sense that the elements of D are very likely to
be generated from the model.

2In this context, sufficiently large shall be understood as a number of samples large
enough to allow for the calculation of an estimate with a precision beyond the numerical
precision of the given computing device.



2.1. Density and Conditional Density Estimation 9

Prescriptive Validity For unobserved data U , U ∩ D = ∅, generated
according to f̃ , the estimate f shall generalize well, i.e., the function
shall assign high probability to u ∈ U .

Besides these mandatory properties, an important property for the prac-
titioner is:

Computational Efficiency Besides the quality of f , it may be necessary
to optimize the representation of f with respect to its future use, i.e.,
space and time complexity of its processing. For some applications,
only a low testing time, e.g., a sparse function representation, is
needed, whereas others additionally require a efficient training.

The above defined criteria will be used to assess contributions of this
thesis as well as the state of the art for density and conditional density
estimation. These assessment criteria could be formalized even further,
e.g., with respect to the consistency [174, 179] or capacity/structural risk
minimization [190, 191], but this would exceed the scope of this thesis.

Difference between Density and Conditional Density Estimation Be-
fore giving the detailed problem definitions, it is imperative to discuss the
difference between density and conditional density function estimation. In
theory, conditional density function estimation is entailed in the density
function estimation problem as the following relation

f(y|x) =
f(y, x)

f(x)
, (2.2)

holds for continuous random variables x ∈ IRN,y ∈ IRM. Determining the
conditional density function f(y|x) requires the knowledge of f(y, x) only,
as f(x) can be obtained by marginalization. From a theoretical point of
view, the obtained conditional density fulfills all necessary conditions, i.e.,
non-negativity and integration of the probability mass to one for each fixed
input value. Ex. 2.1 demonstrates the main objection against subsuming
conditional density estimation by density estimation by a counterexample
based on a trigonometric functional dependency perturbed by additive
Gaussian noise.
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(d) Gaussian Process Regression (GPR).

Figure 2.1: Conditional density function estimates obtained from EM,
KDE, and GPR.

Example 2.1 A cubic function disturbed by additive noise, as shown in Fig. 2.1
(a) is given by

y = x+ 0.5 cos (π · x) +w , w ∼ N (0, 0.1) .

From this functional dependency, 100 pairs of input and output samples were
obtained by randomly sampling x uniformly in [−π/2 , π/2 ] and y according
to the distribution of the noise term w. Two common density estimators
for mixture models of Normal densities were used: Expectation Maximization
(EM) algorithm [43] and a kernel density estimator (KDE) [140, 179]. As ad-
ditive noise is assumed, EM only trains models with axis-aligned components,
i.e., covariance matrices with non-zero entries on the main diagonal only. For
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KDE, the kernel bandwidths were chosen according to “rule-of-thumb” [179].
The conditional densities for EM and KDE are obtained by a point-wise nu-
meric division of the obtained density function estimates f(y, x) and f(x)
according to (2.2). Fig. 2.1 (b) and (c) show the conditional density functions
resulting from this application of EM and KDE. The given results are robust to
different ways of regularization for EM, i.e., homoscedastic or heteroscedastic
mixtures model, automatic choice of component number by AIC, or addition
of diagonal stabilization matrices to the components’ covariance matrices. For
KDE, the results are invariant w.r.t. different bandwidth selection algorithms
discussed below in Ch. 2.1.2. In contrast, Fig. 2.1 (d) shows the result ob-
tained from Gaussian Process Regression (GPR) [152], which avoids (2.2) and
calculates f(y|x) directly. �

In Ex. 2.1, two state of the art density estimators are used for obtaining
the density functions f(x, y) and f(x). The conditional density function
estimates obtained by using these f(x, y) and f(x) as input to (2.2) are
shown in Fig. 2.1 (b) and (c). Clearly, one of the estimators overfits and

the other underfits f̃ . This effect is inherent when using (2.2) as the mod-
els are optimized to fit the data while ignoring the functional dependency.
In contrast, the result of an estimator dedicated to conditional density
function estimation is shown in Fig. 2.1 (d). This estimator exploits the
problem structure, e.g., by distinguishing between input and output di-
mensions. This experiment shows that the problems of density and condi-
tional density function estimation need to be differentiated. Additionally,
this subsumption approach yields results which are computationally inef-
ficient to use. This can be seen in the resulting expression in (2.2), as
it consists of a conditional density function representation involving the
division of two densities of potentially arbitrary type, for which in general
no analytical calculation is possible.

2.1.1 Restriction to Mixtures of Normal Densities

The state of the art in density and conditional density estimation may be
categorized according to the type of density function considered and the
type of estimator used. There is a wide variety of density types, e.g.,
Normal, Exponential, Weibull, Ξ2, Dirichlet or finite and infinite mix-
tures of component densities. We refer the interested reader to [174] for
an extensive enumeration of density types and the book series [49, 113]
for an in-depth review of the most frequently used state of the art density
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(b) Gaussian mixture approximation.

Figure 2.2: Approximation of a probabilistic model (a) by a Gaussian
mixture density with 25 components (b).

types and estimators. Each of the density representations offers a differ-
ent trade-off between approximation capability and modeling/processing
cost, e.g., when using them in Bayesian state estimation. For example,
a Normal density is not a universal approximator, i.e., a Normal density
cannot represent any density function. Yet, a normal density may be very
efficiently represented and identified, as the moments µ and C suffice to
define it. Additionally, the Normal density allows for efficient processing
as marginalization, conditioning, and the product of two Normal densities
may be calculated analytically [152]. In contrast to the Normal density,
a mixture of Normal densities, i.e., a Gaussian mixture density (GM) is
a universal approximator at least for an infinite number of components
[128]. Even though the result of a product of Normal densities could still
be described by two parameters, the representation size of a GM grows
during multiplications, cf. Appendix A.1.2.

For the remaining part of this thesis, only Normal densities and Gaus-
sian mixture densities will be used. Due to their reasonable trade-off
between representation power and quality, estimators for GM with a finite
number of components will be considered. An approximation of a condi-
tional density function by means of a finite Gaussian mixture is depicted
in Fig. 2.2.
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2.1.2 Density Estimation

In this section, the state of the art in density estimation will be summa-
rized w.r.t. GM density representations. As mentioned in the beginning of
this chapter, the density estimation problem is central to statistics and has
therefore gained a lot of attention for a long time. We refer the interested
reader to the statistics literature for a more detailed treatment and omitted
aspects, e.g., [174, 179, 189] or more recent treatments [49, 53, 129]. For a
GM, density estimation corresponds to the determination of the number of
components L ∈ IN and the parameters of each component of the mixture
density function

f(x) =

L∑

i=1

αiN (x;µ
i
,Ci) . (2.3)

The parameters for the i-th normal density are the weight αi ∈ IR+, α =
[α1 . . . αL]T, αT 1 = 1, the mean µ

i
∈ IRN, and the covariance matrix Ci ∈

IRN×N with matrix elements C
(j,k)
i .The parameters may be summarized

in vectors

α := [α1 . . . αL]
T
, (2.4)

µ :=
[
µ(1)

1
. . . µ(N)

1
. . . µ(1)

L
. . . µ(N)

L

]T
, (2.5)

Σ :=
[
σ

(1,1)
1 . . . σ

(N,N)
1 . . . σ

(1)
L . . . σ

(N,N)
L

]T
, (2.6)

and collected into one vector-valued parameter θ, i.e.,

θ =
[
αT µT ΣT

]T
. (2.7)

The restriction to finite GM reduces the set of relevant estimators [53,
129, 189]. The remaining estimators may be categorized according to the
minimized scoring function or measure: log-likelihood, mean integrated
squared error, or a distance.

Maximum Likelihood Estimator This class of estimators is the most
popular and reflects the aforementioned descriptive validity. The key idea
is to maximize the likelihood by which the estimate f produced D. This
can be formalized by the data likelihood function

L (D) = f(d1, . . . , d|D|) =

|D|∏

i=1

f(di) . (2.8)
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By a simple application of the logarithm to (2.8), the log-likelihood
is derived

L̄ (D) =

|D|∑

i=1

log f(di) . (2.9)

The (log-)likelihood assumes D to be i.i.d. Because the factors of the
likelihood decompose into a sum in L̄ and the maximizers are identical, L̄
is maximized typically. Using this score, the parameters θ are estimated
for a fixed number of components L using the Expectation Maximization
(EM) algorithm [43]. A maximum likelihood estimator (MLE) iteratively
maximizes (2.9) or a lower bound thereof. Note that there exists a wealth of
variants of this algorithm. The interested reader is referred to [49, 53, 129].
The log-likelihood captures only how well the data is described by the
model. If a component coincides with a data point, the log-likelihood
for a GM is trivially maximized by a singular covariance matrix. In or-
der to avoid this effect and improve the prescriptive validity, e.g., a sta-
bilizing matrix may be added to the covariance matrix or a penalized
log-likelihood estimator [49] may be employed. The former regularization
approach is popular but lacks an intuitive interpretation w.r.t. the densi-
ties’ shape. The latter is a theoretically well-founded approach, but suffers
from inefficient implementation and has not found widespread application.

Kernel Density Estimator The key idea of the so-called kernel density
estimator (KDE) [87, 140, 153] is to allow the data “[...] to speak for them-
selves [...]” [179, p.1]. This estimator may be understood as an extension
of data histograms obtained by replacing bins with kernels [49, 179]. The
kernels are placed on each di ∈ D, e.g., for the M-dimensional case [179]

f(x) =
1

|D|hM

|D|∑

i=1

K
(
x− di
h

)
, K(x, xi) := K

(
x− xi
h

)
(2.10)

where the kernel satisfies certain conditions, cf. Appendix A.1.5. The
most important is

ˆ
IRN

K(x, xi) dx = 1 ,

asserting that the probability mass integrates to one for each component
and any convex combinations of components subsequently. For the sake
of simplicity, the rest of this section considers only the univariate case,
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where the only free parameter in (2.10) is the smoothing parameter h.
Many methods for determining h exist. The interested reader is referred
to [87, 140, 153] for an overview. Typically, the value of this parameter is
calculated by minimizing an approximation to the mean integrated square
error (MISE) [153, 179], e.g.,

MISE(f) = E

ˆ
IR

(
f(x)− f̃(x)

)2

dx

=

ˆ
IR

E
(
f(x)− f̃(x)

)2

dx (2.11)

=

ˆ
IR


E f(x)− f̃(x)︸ ︷︷ ︸

bias




2

dx+

ˆ
IR

var (f(x)) dx .

By reordering the operators, the integral of the mean square error is ob-
tained (2.11). Further calculations result in a sum of the integrated square
bias of f and the integrated variance [179]. Both bias and variance may
be further simplified and approximated [179]3, yielding

MISE(f) ≈ 1

4
h4k2

2

ˆ
IR

f̃ ′′(x)2 dx+
1

|D|h

ˆ
IR

K(t)2 dt , (2.12)

and therefore the optimal bandwidth h ∈ IR+ minimizing (2.12) is [179,
Sec. 3.3.2]

h∗ = arg min
h
k
− 2

5
2 |D|−

1
5

[ˆ
IR

f̃ ′′(x)2 dx

]− 1
5
·
[ˆ

IR

K(t)2 dt

] 1
5
, (2.13)

where k2 is the constant variance of the density of the kernel function.
Because f̃ is not accessible, a minimizer to (2.13) cannot be found with-
out further assumptions. Several approximations have been used for this
purpose. The most popular assumption is that f̃ is normally-distributed
with a given standard deviation σ̃. Calculating the factor depending on
f̃ and instantiating for a specific kernel gives an approximate result for
h∗ [179]. For a Gaussian kernel, the following estimate of the optimal
bandwidth is obtained

h∗ ≈
(

4

3

) 1
5
σ̃ |D|−

1
5 . (2.14)

3The interested reader is referred [179], Ch. 3, for a more detailed derivation as only
a brief review is given here.



16 Chapter 2. Problem Definition

The unknown σ̃ may be estimated from data, e.g., using the standard
deviation of the empirical probability density function, a robust estimate
thereof, or calculated by a more complicated spread calculation, which
yields the most common variant of (2.14) known as Silverman’s “rule-
of-thumb” [179]. Note, that the choice of h w.r.t. an assumed density
regularizes the results and therefore improves generalization properties of
the estimate, i.e., the prescriptive validity.

Minimum Distance Estimator The KDE minimizes the MISE error be-
tween the inaccessible true density and its estimate w.r.t. an assumed
true density type and the data, in order to determine the smoothing pa-
rameter. The key idea of minimum distance estimators (MDE) [189] is the
use of the EPDF as an approximation of the true density only and the
minimization of a given distance measure w.r.t. θ

D ( fD(x) , f(x) ) . (2.15)

Note that even though D ( . , . ) in (2.15) is commonly referred to as a
distance, it only needs to satisfy the following properties [189], which are
automatically satisfied by a distance,

D ( f1(x) , f2(x) ) ≥ D ( f1(x) , f1(x) ) , ∀f1, f2 ∈ F , (2.16)

and for the considered function space F

D ( f1(x) , f2(x) ) = 0 ⇒ f1 = f2 . (2.17)

The condition (2.17) may be relaxed in the sense that the equality holds
if the two densities are identical only almost everywhere [189, Sec. 4.5.1].
The minimization of (2.15) may be performed by standard optimization
algorithms. These conditions do not assume the triangle inequality or the
symmetry of D to be fulfilled [189, p. 115]. Because the approach uses
the EPDF, minimizing (2.15) asymptotically guarantees convergence to
the true density, if the density is identifiable [189]. The minimum dis-
tance approach has been employed with many types of distances, e.g., the
l2 norm of the densities or distributions, the Kullback-Leibler divergence
(KL) or the Hellinger metric. The interested reader is referred to [189,
p. 115] for a more extensive overview. It is also interesting to see that
the MLE may be obtained from the MDE as a special case, when us-
ing the KL divergence [189], cf. Appendix A.2.2. Even though the MDE
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approach exhibits mathematical simplicity, it did not gain much inter-
est outside of the academic community. This remains unexplained, but
might be attributed to the computational difficulties inherent in the min-
imization problem. In general, the MDE attempts to solve a non-convex
nonlinear function minimization problem for arbitrary distances w.r.t. a
high-dimensional parameter space. The size of the parameter space grows
most often quadratically with the dimensionality of the data points and
for the considered mixture densities at least linearly with the number of
components, too. Additionally, the prescriptive validity is not explicitly
addressed by the MDE as the distance does not regularize the solution.

Combinations of Estimators The presented types of estimators are pro-
totypical. Some estimators aim at combining the advantages of each esti-
mator type as presented below:

• In order to advance “from kernels to mixtures” [175], i.e., to increase
the expressiveness of the density estimate, a KDE is used to construct
an initial estimate of the density. Given this initial estimate, an MLE
is employed to obtain a mixture density. The key idea is to capture
the major characteristics of the density function by means of the
KDE estimate and use the MLE as a post-processing in order to
obtain a sparse mixture density.

• Another approach is to make a KDE estimate sparse by means of a
weight optimization w.r.t. the integral squared distance (ISD). The
advantage of this approach is a sparsification of the KDE estimate
at a low computational cost. The sparsification is formulated as a
weight optimization problem which can be solved in O

(
L2
)

opera-
tions only. Again, the key idea is to capture the major characteristics
of the density function by means of the KDE estimate, but in this
approach a sparsification of the estimate is sought [63].

Comparison The presented approaches may be contrasted w.r.t. de-
scriptive and prescriptive validity as well as its efficiency. Tab. 2.1 lists
the major differences for the three prominent estimators MLE, KDE, and
MDE. Additionally, the most important heuristics/assumptions necessary
for implementing the considered estimator are described.
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Table 2.1: Brief summary of the properties
of the MLE, KDE, and MDE.

Descriptive Prescriptive Efficiency Heuristics
Validity Validity

MLE Fits Augmen- #Comp. Initial
arbitrary table selectable values
mixtures Penalty

KDE Mixtures Choice #Comp. Smoothing
{µ} = D of kernel, = |D| parameter

smoothing only
parameter

MDE Fits Augmen- Large Initial
arbitrary table optimization values
mixtures Penalty problem

Descriptive Validity The respective MLE, KDE, and MDE estimators
for GMM inflict different limits to the functions estimated, i.e., the
descriptive validity. KDE restricts the set of GM estimates to all
GM with means identical to the data points. Additionally, KDE only
involves the determination of one common kernel and its smoothing
parameters, whereas MLE and MDE determine for all parameters
for each component.

Prescriptive Validity In order to assure prescriptive validity MLE needs
to be augmented by a penalty term, yielding the penalized log-
likelihood score [49, 179], KDE implicitly regularizes the optimiza-
tion by referencing to a fixed distribution and the restriction of the
mean positions. The choice of the distance measure impacts the solu-
tion of MDE, e.g., penalize differences in the tails of the distributions
or at points of high probability. Yet, to obtain non-trivial results for
small |D| additional regularization is necessary.
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Computational Efficiency Regarding the computational efficiency,
KDE has lower training times than MLE and MDE due to the fewer
number of parameters to optimize. In contrast, the resulting den-
sity of KDE–except for additional sparsification–will entail by default
|D| components and the estimates for MLE and MDE may contain
drastically less.

Heuristics This advantage for MLE and MDE is accompanied with the
problem of selecting how many components to use, which is easily
bypassed by the KDE as all means as well as the covariance matrix
are fixed a priori. In addition, for the MLE a cautious initialization of
the components is necessary to avoid trivial results, e.g., singularities.
Start value selection is typically performed by employing heuristics
[53, 129]. The kernel parameter selection of the KDE is similarly
heuristic w.r.t. to a reference distribution.

Remaining Challenges Each of the three main approaches MLE, KDE,
and MDE as presented and discussed above suffer from several drawbacks
listed below. The following section describes how these challenges are
addressed in this thesis.

• The maximum likelihood approach is theoretically not sound, as
a point-wise evaluation of continuous densities is not well defined.
MDE on the basis of cumulative distributions allows for a com-
parison w.r.t. the entire state space. Yet, the MDE approach is
in general computationally inefficient, whereas the MLE is accept-
able from a computational point of view. Additionally, it should be
noted, that the standard cumulative distributions for univariate ran-
dom variables are not well defined w.r.t. to density comparisons for
multivariate random variables.

• The state of the art approaches lack an easy implementation of reg-
ularization mechanisms for improving the prescriptive validity of the
obtained density function estimates. For MLE, regularization may
be introduced by penalty terms. An implementation thereof is non-
trivial. MDE allows for regularization by choosing the employed dis-
tance measure. KDE regularizes the estimates by the kernel choice
and the assumptions used for determining the smoothing parameter.
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• Regarding the computational efficiency, the trade-off between sparse
representations as produced by MLE as well as MDE and efficient
density estimation by KDE, i.e., a trade-off between training and
testing time, may be improved.

Contributions of this Thesis The contributions of this thesis w.r.t.
density estimation may be summarized as an MDE approach allowing
for optimization of all mixture parameters and an MDE approach to
sparse KDE.

• A novel cumulative distribution function and the corresponding dis-
tance measure is introduced to MDE. The novel cumulative distri-
bution function resolves the ambiguity induced by extending the
univariate cumulative distribution to the multivariate case. This
distance asserts symmetry and uniqueness of the estimates.

• A regularized MDE approach using the same novel distance mea-
sure for estimating sparse kernel densities is presented. This approach
may be understood as a combination of the MDE approach with ker-
nel density estimation, which is phrased as an optimization problem
and produces sparse KDE estimates.

2.1.3 Conditional Density Estimation

In this section, the relevant state of the art in conditional density estima-
tion (CDE) will be summarized. As shown in Ex. 2.1, the problem of
estimating conditional density functions differs from density estimation.
The DE cannot be subsumed by CDE, because the functional dependency
manifesting in the different interpretation of the input and output dimen-
sions is neglected. Nevertheless, both densities and conditional densities
are estimated given only samples of a (joint) density. For two random vari-
ables x ∈ IRN and y ∈ IRM, the conditional density f(y|x) is estimated
using the empirical joint density

fD
(
y, x
)

=

|D|∑

i=1

wi δ

([
x
y

]
− di

)
, (2.18)

with wi = 1/|D| for all 1 ≤ i ≤ |D| and di = [dT
i,x dT

i,y]T ∈ IRN+M, and
the following identity

f(y, x) = f(y|x) f(x) . (2.19)
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Figure 2.3: Different objectives and models used by function regression and
conditional density estimation.

Since neither the true joint density over the input and output variables
f(y, x), nor the density about the input variable f(x) are directly acces-
sible, they may be substituted by an estimate, e.g., the respective EPDF
(2.18), as in [107, 190], or a Gaussian mixture estimate of the EPDF [105].
The discrepancy between the estimates obtained in Ex. 2.1 results from
the fact, that only the parameters of f(y|x) in (2.19) should be learned, yet
in the case of calculating the conditional density from density estimates
the joint densities’ parameters are optimized. The problem of finding a
solution satisfying (2.19) is challenging if descriptive and prescriptive va-
lidity as well as computational efficiency shall be ensured for the same
reasons as in DE. The true underlying conditional density function may
be obtained only by observing sample output realizations for each input
realization relative to its frequency. Due to different objectives, there are
several approaches towards CDE. The major distinction is whether the
problem is understood as a function regression problem, i.e., estimation
of an underlying generative model and a superimposed noise term, or the
identification of the probabilistic model only. Fig. 2.3 depicts the different
objectives of function regression and conditional density estimation, which
are discussed in the next sections.

Generative Model The most restrictive approach to CDE assumes the
existence of a functional dependency g relating input to output values
according to

y = g(x,w) , (2.20)

where g : IRN×IRW 7→ IRM is a potentially nonlinear function andw ∈ IRW

is a noise term w ∼ fw capturing the modeling deficiencies. In (2.20), the
noise may effect the deterministic dependency arbitrarily. For additive
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Figure 2.4: Top-down and perspective view of the probabilistic model f(y|x)
(translucent) derived from a generative model with mean function g (dark
gray) and additive zero-mean Normal noise.

zero-mean noise, i.e.,

y = g(x) +w , (2.21)

the corresponding probabilistic model is obtained according to

f(y|x) =

ˆ
IRN

δ(y − g(x)− w) fw(w) dw (2.22)

= fw
(
y − g(x)

)
. (2.23)

Fig. 2.4 is an illustration of an exemplary probabilistic model correspond-
ing to a univariate input/output dependency, g : IR 7→ IR, and obtained
according to (2.22). CDE in this setting corresponds to estimating g and
fw simultaneously based on D. In general, every algorithm for function
regression, e.g., linear/kernel smoothing [73] or smoothing splines [194],
might be used to estimate g. The estimated generative model might be
augmented with a noise term perturbing the function value for each input
value subsequently. Alternatively a function approximator may be used to
estimate the generative model and noise parameters jointly. For example
in Mixture Density Networks (MDN) [17, 18] a neural network is used to
determine the parameters of a GMM noise model. In contrast, a Gaussian
Process Regression (GPR) [152] calculates a distribution over mean func-
tions f(g) or colloquially, a mean function with error bars. A Gaussian pro-

cess (GP) is defined by a multivariate Normal density for D = {(y, x)}|D|i=1,
consisting of input and output tuples, e.g., in the scalar-valued case

{y}|D|i=1 ∼ N
(
µ({x}|D|i=1); KD

)
, (2.24)
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with a covariance matrix KD ∈ IR|D|×|D| composed of the pairwise simi-
larities of the data points

K =




K(x1, x1) K(x1, x2) · · · K(x1, x|D|)

K(x2, x1) K(x2, x2)
...

...
. . .

K(x|D|, x1) · · · K(x|D|, x|D|)



, (2.25)

where K a kernel function, cf. Appendix A.1.5. Note that for every finite
subset of the input values in D, the distribution of output values needs
to be a multivariate Normal density to define a GP. The probabilistic
model reflecting f(g) is calculated by conditioning and marginalizing over
all mean functions G, i.e.,

f(y|x,D) =

ˆ
G
f(y|x, g,D) f(g|D) dg .

Dropping the explicit dependency on D and following [152], one obtains

fGP(y|x) = N (y;µ(x), σ(x)) , (2.26)

which corresponds to a Normal density. Using the pairwise similarity
between a fixed input value x and the observations D, i.e.,

k =
[
K(x, x1) . . .K(x, x|D|)

]T
, the vector of all output values in D, i.e.,

y =
[
y1 . . . y|D|

]T
, and the noise variance σ2

w, the mean function µ(x) and
variance function σ(x) used in (2.26) are given by

µ(x) =

|D|∑

i=1

αiK(x, xi) , (2.27)

σ(x) = K(x, x)− kT(K + σwI)−1k ,

with αi = (K +σwI)y. The properties of the GP may be discussed for the
mean function estimate and the probabilistic model. The mean function
µ(x) of the GP is the estimate of the mean function g. As µ(x) in (2.27)
is a weighted linear combination of the output values in D it may be
considered a linear smoother, cf. [73]. The smoothness of µ(x) depends
on the kernel choice. The GPR estimate of g(x) := µ(x) is the minimizer
of [152, Sec. 6.2,7.1]

J [g] =
1

2
‖g‖2H +

1

2σ2
w

|D|∑

i=1

[yi − g(xi)]
2
. (2.28)
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The trade-off problem (2.28) comprises of a regularization and a data fit
term. The regularizer4 is the norm of the g in the reproducing kernel
hilbert space (RKHS) H induced by the GP’s kernel K. The data fit is
measured by the squared error, which is relative to a negative log-likelihood
of a Normal noise model with variance σ2

w [73]. General consistency re-
sults, e.g., w.r.t. other loss functions or asymptotically are unknown up
to now. The existing results assume well-behaved kernels which allow,
e.g., for orthogonal decomposition and are non-degenerate [152, Sec. 7.1].
The probabilistic model in (2.26) consists of Normal densities centered at
µ(x̂) for each fixed x̂ with input dependent variance. The smoothness of
the surface of the probabilistic model fGP therefore depends on the kernel
choice too. Assuming the noise variance is correctly identified the model
may only converge to the true probabilistic model relative to the limits of
the convergence of the generative model.

Regarding descriptive validity GPR only suffers from negligible side-effects
of a wrong kernel choice and kernel parameters if the noise is Normal. A
major drawback of a GP is its incapability of describing multimodal noise
densities without reformulation of the problem, i.e., the identification of
multimodal noise or a data association problem in conjunction with multi-
ple regressions. Prescriptive validity is achieved by smoothing the genera-
tive model, i.e., by minimizing (2.28). Determining the hyperparameters is
a model-selection problem, typically involving gradient based maximiza-
tion of the marginal likelihood of the output values [152], i.e., a target
function with potentially many local extrema. The computational com-
plexity is dominated by the fact, that the entire data set D is stored in
the obtained functional representation by default. Evaluating a proba-
bilistic model for a value involves the inversion of a |D| × |D| matrix,

which costs O(|D|3) operations. Yet, there is a large variety of sparsifi-
cation approaches [89, 152] for reducing the complexity by using subsets
of the data D′ ⊂ D, |D′| � |D|. Besides this aspect, the representation
of the conditional density function in the form of (2.26) is unfavorable.
Even though evaluating (2.26) for certain inputs is straight forward, if a
density is given as an input, this computation can only be performed ap-
proximately in general. This is very disadvantageous, e.g., in nonlinear
filtering or in inference in continuous Bayesian networks [42]. Note that
there exist some exceptions [152], e.g., for the squared-exponential kernel,
and assumed density solutions [42].

4The interested reader is referred to [152, 164, 190] for more detailed information
about RKHS and regularization properties.
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Probabilistic Model The less restrictive approach to CDE focuses on the
recovery of the probabilistic model only. The identification problem is re-
laxed by disregarding the existence of a generative model, cf. Fig. 2.4. The
objective is the identification of the probabilistic model only. Approaches
only determining the probabilistic model may be categorized into indirect
and direct methods.

Indirect CDE Indirect methods construct a conditional density function
estimate indirectly by using density estimates. This is the approach
used in Ex. 2.1, i.e., the relation f(y|x) = f(y, x)/f(x) is exploited.
The fundamental deficiency of this approach has been pointed out
earlier: optimization of the wrong parameters and in general, no
closed-form processing, because of the division contained in the prob-
abilistic model, e.g., for the considered density and conditional den-
sity function in the form of GM.

Direct CDE In contrast to the indirect approach, the direct approach
aims at the estimation of the conditional density function only. As
noted in [78], “[...] a small amount of work on nonparametric kernel
conditional density estimation has been done by statisticians and
econometrics researchers [...], it appears to have received little or
no attention from the machine learning community [...]”. In fact,
the most important related works are a conditional density approx-
imation [78] and an SVM-like CDE [190, 193]. The former aims at
the fast evaluation of existing kernel conditional density estimates.
The latter is a straight-forward extension of the structural risk min-
imization (SRM) principle [164, 191], i.e., estimates are determined
based on their estimation quality and their capacity as defined by the
norm in the respective function space. Graphically, this can be un-
derstood as preferring flat f over highly oscillating f or as minimizing
an entropy measure of f .

Comparison The major differences between the approaches to CDE w.r.t.
descriptive and prescriptive validity as well as their efficiency may be sum-
marized as follows. Due to the obvious deficiencies of the approach of
subsuming CDE by DE, this approach is not discussed.

Descriptive Validity The GPR and direct CDE as presented above are
both non-parametric approaches, i.e., f is represented in terms of
the D in conjunction with a model. Both approaches will therefore
represent the training data well in the limits of the employed model.
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The difference between GPR and the SVM-like CDE approaches is
that the GPR assumes one underlying mean function g and by de-
fault uses a noise term represented by a Normal density. Even though
possible, it is far more difficult to integrate multiple g present in the
data or multimodal noise than for the indirect approach. The indi-
rect approach suffers from the fact a finite mixture cannot represent
a valid conditional density function, because the probability mass
constraints cannot be met.

Prescriptive Validity Regarding the prescriptive validity the GPR in-
herits the properties of the well-understood non-parametric linear
smoothing and combines it with a smooth noise density. Given the
model assumed by the GPR is appropriate, it delivers well general-
izing estimates. The indirect CDE suffers from the restriction of the
components’ positions. This restriction causes severe degradation of
the prescriptive validity in parts of the state where little or no data
is present.

Computational Efficiency The GPR has two drawbacks regarding com-
putational efficiency. The representation of the GPR’s probabilistic
model (2.26) allows for an easy point-wise evaluation, but only for
approximate use in a Bayesian estimation framework. For example,
the GPR-based approaches to (nonlinear) filtering such as the exten-
sions of the Extended or Unscented Kalman Filter (GP-EKF/UKF)
[95, 96, 97] or the analytic moment-based GP (GP-ADF) [41, 42]
have to perform an approximation in each step of the recursive
estimation. This approximation additionally limits the representa-
tion of the posterior state estimates to be normally distributed. In
contrast, a representation of f in the form of a GM allows for closed-
form Bayesian inference [4, 50, 107] and supports multimodal poste-
rior state distributions. Given the prior density and all probabilistic
models are GM, a nonlinear filter with constant time complexity may
be derived [107].

Remaining Challenges The overall aim of this thesis is to learn dynamic
systems for the application in human-robot-cooperation. It is therefore
imperative that these models may be used for recursive state estimation
and generalize well. The remaining challenges therefore are:
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• A further sparsification of conditional density function representa-
tions in GM form. For this reason, an improvement in the capacity
of the kernel conditional density function and the existing sparse
CDE are necessary in order to allow for further sparsification.

• Like in density estimation, the indirect CDE is limited due to use
of a cumulative distribution function which is not well defined for
comparing multivariate random variables.

• In general, a combination of the favorable processing properties of
the GM representation with the prescriptive validity of the GPR
seems desirable.

Contributions of this Thesis The contributions of this thesis may be
categorized into extensions of the existing sparse CDE [190] and extensions
lifting the default non-parametric to a full parametric optimization, i.e.,
all parameters of the mixture density are optimized.

Extensions of Non-Parametric Conditional Density Estimation

• A regularization term related to the Rényi entropy is derived and its
relation to the norm in the RKHS induced by the mixture estimates
kernel is discussed. This regularization term extends the norm in the
RKHS by using inhomogeneous kernels.

• A regularized distance-based sparse CDE is derived, which avoids the
fallacies of the multivariate extensions of the cumulative distribu-
tion function by the modified Cramér-von Mises distance. Using
the above regularization term, heteroscedastic GM estimates may
be obtained.

Full Parameter Conditional Density Estimation

• The limitation of the non-parametric CDE approaches to estimate
only GM with component means identical to D is lifted by a nested
optimization scheme and the introduction of a superficial regular-
ization term. The superficial regularization is based on the inter-
pretation of the roughness of the surface f in terms of the surface
curvature. For the bivariate case, the superficial regularization is
shown to be an approximate upper bound on the curvature of the
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generative model’s mean function, a minimization of this regularizer
simultaneously regularizes the mean function.

• A desirable property of a GP is the modeling of the uncertainty
about the model by means of the covariance of the noise density fw,
cf. Fig. 2.3. This property is very useful for many applications, such
as sensor scheduling or active sensing and conveys much information
to the practitioner. In order to reflect this property with a CDE
represented as a GM, the GM’s component covariances are adapted
to the confidence in the model. This is achieved by an extension with
variable kernels [25] based on the local data density.

2.1.4 Hyperparameter Optimization

Solving the density or conditional density estimation problem not only
involves finding the parameters θ of a Gaussian mixture density (2.7), but
rather solving for

η = [ αT µT ΣT ωT

︸ ︷︷ ︸
=:ζT

]T , (2.29)

where ω denotes the parameters such as the parameter λ governing the
trade-off between training error and regularization term in the SRM [190]
or the error tolerance ε for the ε-insensitive loss function [107]. The reg-
ularized density and conditional density estimation algorithm [107, 190]
will determine only the weights α of a Gaussian mixture density. The
other parameters ζ need to be optimized in a meta optimization, using the
algorithm in Sec. 3.4 or Sec. 4.3 as a subroutine. In the following, only ζ
are denoted as hyperparameters, i.e., the parameters of θ, which are not
optimized by the algorithms in Sec. 3.4 or Sec. 4.3, and the additional pa-
rameters, e.g., λ. The optimization of the hyperparameters is important,
as e.g., a progressive Ci may result in overfitting and dense representations
of the solution and a conservative Ci may lead to underfitting and produce
sparse representations. Similar to density and conditional density estima-
tion as such, hyperparameter optimization is concerned with the prob-
lem of finding a hypothesis explaining the observations and generalizing
to unobserved values. Therefore the hyperparameter optimization prob-
lem may be understood as a classical model selection problem [130, 156]
and addressed by the same approaches: assessment of the generalization
properties of the estimate based on theoretical bounds or example results,
i.e., based on data [47, 164]. As for the considered problem no theoretical
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bounds on the generalization properties exist up to this point in time, this
approach is omitted and left to be subject of future research. Regarding
data driven approaches, these may be further categorized as being based
on heuristic, Bayesian model selection, or cross-validation.

Heuristic Model Selection Even though theoretically hardly grounded,
enough model selection problems are addressed by the practitioner using
heuristic “rules-of-thumb”. For example in kernel density estimation, Sil-
verman discusses “[s]ubjective [c]hoice[s]” [179, Sec. 3.4.1] or the so-called
rule-of-thumb [179, Sec. 3.4.2] for choosing the smoothing parameter h of
the GM. Note, that the rule-of-thumb is one of the most often used ker-
nel width selection methods and typically this rule is applied disregarding
whether the underlying assumptions hold or not. More general “educated
guess” methods may for example be found in [164, Ch. 7.8], which in-
clude advice for transferring parameter settings from already solved to
new problems, stopping criteria based on expected error rates or volume
assessments.

Bayesian Model Selection In contrast to the heuristic model selection,
Bayesian model selection [47, 123, 152] is based on the idea that models
should be compared by the posterior probability of the model given the
data D. Adapting [123, Ch. 28] to the given problem, for a fixed set of

hyperparameters ζ̂, the posterior probability may be calculated by

f(ζ̂|D) ∝ f(D|ζ̂) · f(ζ̂) , (2.30)

where f(ζ̂) is our prior information about the distribution of ζ̂ and the
likelihood is given by

f(D|ζ̂) =

ˆ
IRdim(α)

f(D|α, ζ̂) · f(α|ζ̂) dα , (2.31)

with α the set of parameters not being hyperparameters. Bayesian model
selection results in choosing the model which is most likely given the data
and our prior information about the hyperparameters. The flaw of this
approach is that (2.30) is in general neither analytically nor numerically
solvable—at least not in reasonable time [47]. Additionally, the effort for
asserting the relevant constraints may be substantial.
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Model Selection by Cross-validation The key idea of model selection
based on cross-validation [47, 130, 156] is to estimate the generalization
performance by not estimating the distribution of the underlying phe-
nomenon explicitly but by using the data as a representative of this dis-
tribution. This approach avoids the modeling problems of a Bayesian
approach, but is computationally expensive. The key idea is to obtain a
robust generalization assessment by partitioning the given data into several
disjoint training and validation sets. By repeatedly training and testing
on different partitions the assessment shall avoid overfitting and deliver a
good approximation as to how the given estimators perform with unseen
data. One obtains a “leave-one out” (LOO) estimate of the generalization
error if only one sample is left for testing in each iteration. The compu-
tational effort is maximal for this type of estimate, as |D| estimates need
to be obtained from |D|− 1 samples. Even though the LOO estimate may
be approximated by, e.g., generalized cross-validation [73, 194], the com-
putational effort is demanding. In contrast, if the number of partitions is
small, the test effort will be reduced, but the data distribution may deviate
strongly from the distribution of full data set, i.e., the assessment of the
generalization is inaccurate.

Contributions of this Thesis The hyperparameter optimization depends
on the problem given. In this thesis, hyperparameter optimization
algorithms for the non-parametric density and conditional density esti-
mation as well as the full parameter conditional density estimation will
be presented. The contributions may therefore be understood as solutions
to instantiations of the generic hyperparameter optimization for
two specific problems.

• The first hyperparameter optimization for non-parametric sparse
density and conditional density estimation is presented. Several
extensions for the CDE are discussed.

• The first hyperparameter optimization for the full parameter sparse
CDE is presented and discussed. The main contributions are analyt-
ical calculations and approximations for improved efficiency of the
hyperparameter optimization.
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2.1.5 Conditional Density Estimation given Samples and
Prior Knowledge

In the preceding sections, the CDE from samples D was discussed. Yet,
in reality no measurement sequence performed for obtaining D is free of
defects and the results of consecutive measurement sequences need to be
fused. In this case, conditional density estimation w.r.t. D and prior
knowledge, e.g., in the form of already obtained estimates, needs to be
considered. Additionally, previously conducted high resolution measure-
ment campaigns, which may have been limited to a certain part of the
state space, need to be combined with low-resolution sequences which span
a larger state space.
The challenge is to fuse information given in the form of samples with
this prior knowledge, which may be given in the form of already compiled
generative or probabilistic models. The key idea of the incorporation of
prior knowledge is to estimate the conditional density function from the
samples and the prior knowledge simultaneously. The approach to intro-
ducing prior knowledge into the CDE algorithm depends on the specific
type of prior knowledge. For the remaining part of this thesis, only prior
knowledge in the form of a generative or a probabilistic model is consid-
ered. For prior knowledge available in the form of a generative model, the
following model is assumed to be given

y = g(x) +w , (2.32)

with additive, zero-mean noise, where g : IRN 7→ IRM, and a noise term

w ∈ IRM, w ∼ fw. If the corresponding probabilistic model is given, the
prior knowledge will be represented as

f(y|x) = fw
(
y − g(x)

)
.

The investigated CDE problem will be phrased as a quadratic program
(QP) embedded in a nonlinear non-convex hyperparameter optimization
algorithm. Estimating the conditional density function from samples and
prior knowledge simultaneously requires the induction of the prior knowl-
edge into the QP. As the used QP formulations resemble generic support
vector machines (SVM), the approaches to introducing prior knowledge
into SVMs [162, Ch. 4] can be applied to conditional density estimation
too. There exists a wealth of literature about introducing prior knowledge
into SVMs. The relevant approaches are discussed below. The interested
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reader is referred to [115] for a more detailed overview about incorporat-
ing prior knowledge into SVMs for classification and regression tasks. The
approaches may be categorized according to the way information is intro-
duced into the QP formalism: adding artificial data, changing the kernel,
changing the regularization term, or changing the constraints.

Artificial Data The incorporation of prior knowledge, e.g., invariances,
by appending artificial data is discussed, e.g., in [40] and [164, Ch. 11.3].
This approach may be seeminglessly integrated into the proposed CDE
algorithms. Given prior knowledge in the form of a compiled model, i.e.,
information about f for the entire or parts of the state space, only samples
thereof may be used by this approach. This approach may be implemented
fast but is inefficient.

Mixture Kernel Another approach towards incorporating prior knowl-
edge in the form of invariances was proposed in [163], where the distance
measure as implicitly encoded in the kernel was changed to allow for invari-
ance against group transformations and to make use of local correlations.
Other approaches based on specialized kernel, exploit that a convex com-
bination of valid kernels yields a valid kernel [178]. These include, product
probability kernels [88] and multiple kernel learning [8]. Product probabil-
ity kernels model the causal dependencies producing the data. In multiple
kernel learning the original optimization problem is extended to include
the simultaneous determination of the mixture proportions of a set of ker-
nels. The resulting component of f is in itself a mixture kernel. For CDE
one would obtain a mixture density of mixture density components.

Regularization Term & Constraints In [184], the regularization term
was augmented with a term penalizing the distance between the current
estimate f and a given function f . Estimates f closer to the prior knowl-
edge encoded in f will be penalized less than other estimates. A detailed
discussion of the properties of the regularization term is given in [164].
A common problem for SVM applied to classification problems, is the
availability of prior knowledge in the form of rules from a knowledge base
[115]. The rules may be interpreted as constraining the solutions and
are therefore added to the optimization problem in the form of additional
constraints [124]. In contrast to SVMs used for classification, “rules” inter-
preted as constraints, need to have real-valued consequences for the CDE
optimization problem.



2.2. Intention Recognition 33

Contributions of this Thesis In this thesis, only prior knowledge in the
form of a given generative and probabilistic model is considered. The
contributions are two approaches for introducing the prior knowledge into
the CDE approach based on the following approximations.

• For introducing prior knowledge about the generative model, the
deviation of the mean of the estimate f from the prior knowledge
is penalized. This is achieved by sampling the mean function and
penalizing the point-wise deviation by means of the lε1-error.

• In order to incorporate a probabilistic model, the prior knowledge
is assumed to be given as a GM. The GM may encode arbitrary
conditional density functions, e.g., encoding multimodal noise. This
form of prior knowledge is introduced into the CDE by replacing the
components in f with a location-based mixture kernel. The kernel
is a mixture of the default kernel and the GM encoding the prior
knowledge. The mixture proportion is governed by the confidence in
the prior knowledge w.r.t. the location in state space.

• Both approaches towards incorporating prior knowledge will be shown
to reduce the number of components in f , at the cost of potentially
high estimation effort ex ante.

2.2 Intention Recognition

The second part of this thesis is concerned with the application of dynam-
ical systems to intention recognition as means of implicit human-robot-
cooperation. The presented approach to intention recognition is not lim-
ited to human-robot-cooperation but is applicable to the wide range of
tasks, which the permanently increasing number of technical devices em-
bedded in the human’s environment address. Any technical device assist-
ing the human in his daily life requires at least a basic understanding of
the present and future human behavior in order to support him. Exam-
ples are car traffic monitoring [147], surveillance systems [29, 133], air-
port security systems [7], assistance tools in software, e.g., in office [80] or
email software [120], computer games [2, 52], card games like poker [20],
wheelchair control [185] or human-robot-cooperation [160, 171], cf. [30] for
more applications. Applied to a humanoid robot the intention recognition
is input to the overall control loop of the humanoid robot and plays a
crucial part in enabling the humanoid robot to behave similar to a human
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[160, 172], cf. Fig. 1.1. This demands responsive behavior to the human
behavior in real-time and with a level of understanding similar to humans.
These properties are mandatory for the humanoid robot to be supportive
and may in the future lay the foundation for a further development to a
robotic social companion [23, 24, 38]. In the remainder of this section, the
problem definition as applicable to the general case, a restricted formu-
lation w.r.t. human-robot-cooperation, the resulting challenges, related
work, and the key ideas for addressing these challenge are discussed. The
section is concluded with a summary of the main contributions.

2.2.1 Generic Intention Recognition Problem

In this section the definitions necessary for the further discussion are given.
The definition of the concept of an intention is non-trivial: Literally, the
term intention stems from the latin word intentio, which translates depend-
ing on the context to mindfulness, concern, undertaking, or aim [135]. A
detailed definition and discussion of the term intention can be found in the
field of philosophy, e.g., [5]. For the purpose of this thesis the understand-
ing of an intention as an aim or an undertaking is relevant. The concept
of an intention has been embedded into a broader framework of belief-
desire-intention (BDI) [22, 34], which has become very popular for the
development of software agents in computer science [76]. For the remain-
der of this thesis the following definition is adopted from [168, German].

Definition 2.1 (Intention, [168]) An intention is a conscious striving
towards an aim.

The undertaking of recognizing an intention may therefore be defined
as follows.

Definition 2.2 (Intention Recognition) Intention recognition is the
process of recognizing the aim of conscious behavior.

One should note two aspects of Def. 2.1. First, Def. 2.1 emphasizes the
consciousness of the behavior. The challenge for developing an recognition
system is the definition of the relevant conscious behavior, e.g., from a
temporal point of view the question is whether the aim of the intentional
behavior in the next five minutes, one day, or one month is to be recognized.
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Second, Def. 2.1 does not state if only the aim or additionally the “way”
how to achieve the aim shall be recognized. The way of achieving a goal
is denoted as a plan, i.e., a sequence of actions, and the corresponding
recognition problem is defined as follows5.

Definition 2.3 (Plan) “[...] The problem of plan recognition is to take
as input a sequence of actions performed by an actor and to infer the goal
pursued by the actor and also to organize the action sequence in terms of
a plan structure. This plan structure explicitly describes the goal-subgoal
relations among its component actions. [...]” [161].

Since the execution of a plan is in each step intentional the terms intention
and plan may be used synonymously [103]. Yet, the concept of an inten-
tion may also refer to a relevant set only, rendering it the more flexible
concept [168, German]. The set of all possible intentions in one moment
is restricted by the belief about state of the world. This set is denoted as
a situation.

Definition 2.4 (Situation) A situation is a set of conditions enabling a
certain behavior.

The set of conditions may be, e.g., social, temporal, or spatial. This def-
inition is based on [26, German] and extends the definition given in [168,
German] by the emphasizing that the existence of a situation is prerequi-
site for intentions. As the conditions of situations need not be mutually
exclusive, the set of existing situations is the context of the behavior [168,
German]. Just as the prevailing situation is a prerequisite for a set of inten-
tions, the pursuit of an intention changes the situation, i.e., the intention
drives actions that change the state of the world.

Definition 2.5 (Action) An action is a manipulation of the state of
the world.

An action6 is a direct effect of an intention and therefore intentional, i.e.,
directed towards a goal. The type of action is not further specified and may

5Note that in contrast to the definition of a policy [156] a plan does not describe the
transitions between two states-of-the-world but merely one sequence of actions pursued
or to be pursued to achieve a goal.

6In this thesis the term “action” is used synonymously with motion or motion
primitive, e.g., [55, 56, 59].
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be as general as moving from one place to another. For example, if in a
household setting one leaves the kitchen towards the living room, any kind
of situation limited to being inside the kitchen, e.g., a meal preparation,
is impossible. The main distinction between an intention and an action
is that the action can be (visually) observed and atomic actions may be
defined [58], e.g., as a motion “alphabet” [55, 56, 59].

Definition 2.6 (Activity) An activity is a coarse change of the state of
the world limited to a restricted spatial area of the world.

In contrast to the fine-grained actions, which are motivated from a ge-
nerative modeling of human behavior, activities are motivated by the ob-
servation that most human behavior can be described coarsely as being
contained in certain spaces [136, 157, 199]. This is important for a discrimi-
nation of human behavior. The importance of this differentiation for the
construction of a fast multi-level recognition system will be shown in Ch. 7.

The central insight of this section is that the definition of the quantity to
estimate, i.e., the intention, is difficult for a generic problem setup and
requires a definition w.r.t. the considered application. Therefore the exact
definition of the intentions to be estimated will be given in the context of
the specific experiments in Ch. 7. For the categorization of an intention
recognition methods it is furthermore necessary to distinguish whether the
intentions of one human shall be estimated or if there is a group of people,
e.g., with a “collective” intention [176]. Similar to many persons being
present, many instances of technical devices may be present with compli-
mentary or redundant tasks, e.g., each person’s mobile phone and laptop
may have complimentary tasks but multiple surveillance camera systems
may have redundant tasks. If these technical devices were equipped with
actuators one might attribute the property of agency to these devices and
obtain an intention recognition problem in a multi-agent scenario. An-
other categorization is based on the tasks and their different requirements.
For example, the required accuracy and acceptable latency will differ for
applications of a devices in a smart home, a mobile device, a robot, or a
humanoid robot. In the following section, the considered setup in terms
of these categories will be discussed for the intention recognition problem
in human-robot-cooperation.
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2.2.2 Intention Recognition in
Human-Robot-Cooperation

The intention recognition problem discussed in this thesis is part of the
Collaborative Research Center 588 “Humanoid Robots - Learning and Co-
operating Multimodal Robots”7 [45, 182]. This project is aimed at de-
veloping a humanoid robot to support the human in its daily activities.
The example scenario investigated is a household with a standard kitchen
in which only the robot and the human are present. In this setting, the
intentions of the human shall be estimated in order to allow for close coop-
eration with the humanoid robot in the household. The estimation is based
mainly on the observations made by the robot cameras and the provided
domain knowledge, e.g., the objects present. In order to allow for coop-
eration with the human, e.g., cooperatively loading the dish washer, the
intention recognition is required to deliver robust estimates in real-time.

2.2.3 Challenges

The above described setting and defined requirements are challenging for
the following reasons:

• The vision-based observations are uncertain, e.g., due to changes
in lighting, temporary partial visibility, or even occlusion. Further-
more an uncertain self-localization and inherent unreliable calibra-
tion complicate the observation.

• In addition, the estimation problem involves dynamic dependencies,
i.e., having set the table, it is more likely to prepare and eat a meal
than to clean the kitchen.

• The complexity of the relations is enormous for realistic scenarios.
This means that all realistic combinations of edible goods with food
processing tools and their various ways of usage on all workspaces
have to be accounted for in the model. For example, apples may be
peeled, chopped, or die-pressed by different types of knives on and
in pots or plates, which may in turn lie on merely all workspaces
in the kitchen. Each object-action-place combination may have a
distinct meaning.

7The German name is “Sonderforschungsbereich 588 Humanoide Roboter - Lernende
und kooperierende multimodale Roboter” sponsored by the Deutsche Forschungsge-
meinschaft (DFG).
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2.2.4 Related Work

A lot of research has been performed in the field of intention and plan
recognition. This research differs in scope, i.e., recognition of the goal
only [19], both goal and plan [60], whereas the plan ranges from low-
level movements [20, 58] to hierarchical plans or policies [19, 29, 103]. The
problem has been approached, e.g., with formal systems [80, 91], stochastic
grammars [133], temporal templates [20], case-based reasoning [52], token-
passing [7], a combination of temporal logic with Bayesian networks (BN)
[86], Dynamic Bayesian networks (DBN) [2, 33, 103, 147], a combination
of Hidden Markov Models (HMM) [150] with grammars or n-grams [55,
58, 57], or Abstract Hidden Markov (Memory) Models [29].

Categorization The existing research may be categorized according to in-
tended or keyhole recognition. Intended recognition occurs in any form of
communication, where the addresser has the aim of conveying his intention
to the addressee. The addresser is thus cooperative and facilitates intention
recognition. In contrast, the intention recognition by surveillance systems
[29] or assistance software [80, 120] is based on the observation of the user
only, i.e., peeping through a keyhole, e.g., by using a camera or reading
mouse and keyboard of a computer. Additionally, the existing research may
be categorized as symbolic and probabilistic recognition approaches. Sym-
bolic recognition approaches employ reasoning methods such as automata
theory, first order logic, or predicate calculus to deduce the possible inten-
tion. The notion of symbolic reasoning emphasizes the absence of any kind
of uncertainty in the observation process, i.e., a symbol has been observed
with certainty. In contrast, in the probabilistic recognition approaches the
intention is inferred not only on the possibility but on the likelihood of
the intention given the observations. The approaches allow for modeling
uncertainty in the inference and observation process. Hybrid approaches
aimed towards combining symbolic and probabilistic recognition exist. As
a consequence of the human-robot-cooperation setting and requirements
only hybrid or probabilistic keyhole intention recognition approaches are
applicable. In the following, the relevant approaches will be discussed.

Hybrid Recognition The key idea underlying the relevant hybrid recog-
nition approaches is to remove the uncertainty in the observation and use
the certain observation with the symbolic reasoning. The most relevant
approaches are the pending-set approach [60, 65] and the token-passing
approach [7]. The key idea of the pending-set approach [60, 65] is to
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maintain a set of actions which are consistent with a given plan library
and the preceding observations, i.e., the actions which have completed.
The set is updated using Probabilistic Horn Abduction. This approach
allows for a fast detection of plan/goal abandonment [61] and interleav-
ing plans. The token-passing approach [7] may be understood as a Petri
network augmented with a sophisticated “feature decision tree” [7]. This
decision tree maps uncertain observation to certain causes, which are used
as input to the network. The feature decision tree compensates for not
observed features by missing value branches. Time consistency is asserted
for by memory flags and duration models.

Probabilistic Recognition The key idea underlying the probabilistic recog-
nition approaches is to convert a causal model into a DBN [39, 134] and
then infer the intention by performing standard exact or approximate in-
ference methods with the DBN. The most relevant probabilistic approaches
are grammar-based approaches [147] and policy-based approaches [29].
The grammar-based approaches [148, 147, 149] use a given grammar of
the behavior and generate parse trees from this grammar. This may be
understood as using a generative model of the behavior to produce all
possible behaviors and compile these into a DBN. As the human behav-
ior is state-dependent the most advanced approaches use a probabilistic
state dependent grammar [147, 149] for the generation. Additionally, the
policy-based approaches [29] employ a layered structure of the intention.
In the lowest-level of the DBN the transition from the past to the current
state of the world is modeled given all possible actions. The state space
of the random variable corresponds to the elements of the policy [134].
The state of the world is estimated from the observations. Higher level or
abstract policies may be modeled by appending these random variables as
parents of the lower levels to the DBN. This model is also referred to as
an Abstract Hidden Markov (Memory) Model [29].

Comparison w.r.t. Human-Robot-Cooperation The approaches pre-
sented above need to be compared with regard to the three challenges:
model complexity, uncertain observations, and dynamic dependencies. All
of the approaches presented above, are capable to process dynamic depen-
dencies directly. Regarding the processing of uncertain information only
probabilistic recognition approaches, which compile a DBN, allow for a
consistent uncertainty treatment. The hybrid approaches lack any uncer-
tainty regarding the dynamic dependencies [60] or restrict the uncertainty
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treatment to the measurement update [7]. All of the approaches suffer
from the number of considered states of the world and actions. The hy-
brid approaches need to account for all possible further execution plots,
e.g., all plans consistent with the plan library and the state of the world.
The effect on the DBN s compiled by the probabilistic approaches is even
more drastic as the state space has to map the policy into its state space.
As stated in [147, Ch. 7.11], the state space may contain a full enumeration
of all plans. This renders inference already for small problems intractable.
In summary, all approaches are incapable of handling the combinatorial
explosion inherent in the problem. The probabilistic approaches at least
allow for a consistent uncertainty modeling.

2.2.5 Key Idea

As a consequence of the above comparison an extension of the probabilistic
approaches is sought, which addresses the combinatorial explosion inherent
in the problem. The key insight of the discussion is that even though many
object-action-place combinations are possible, only a few are likely. This
is not always the case, but many applications have, e.g., spatio-temporal
constraints, which may be exploited. These spatio-temporal constraints
match the definition of a situation in Def. 2.4. The key idea is therefore to
exploit the situation dependencies in the problem to reduce the state-space
sizes and therefore to alleviate the combinatorial explosion.

2.2.6 Main Contributions

The main contributions of this thesis w.r.t. the intention recognition as
means of non-verbal communication in human-robot-cooperation may be
summarized as follows.

• A model-predictive approach is presented to exploit the situational
dependencies inherent in the intention recognition problem. This
approach is shown to allow for efficient inference in large-scale models
and is based on selecting subset models on-line.

• The approach is validated using video-based and extended-range
telepresence experiments. Especially the latter experiments are used
for showing the properties and restrictions of the approach w.r.t. the
scalability due to the reproducible and scalable problem setups.



A theory with mathematical beauty is more likely to be correct
than an ugly one that fits some experimental data.

—Paul Dirac

3 Non-Parametric Density and
Conditional Density Estimation

In this chapter, non-parametric approaches to density and conditional den-
sity estimation from samples will be presented as introduced in Ch. 2.1. The
samples are given in the form of the empirical probability density function
fD (2.1). The non-parametric approach is limited to estimating mixtures
with components collocated with the samples D only and employs iden-
tical parameters for all components. Initially, the two main challenges for
density and conditional density estimation as well as the key idea how
these may be addressed by regularized non-parametric approaches will be
discussed. Consecutively, the elements of a non-parametric approach are
presented in Sec. 3.1-3.3, i.e., distance measures, regularization terms as
well as constraints. These elements are combined to a generic algorithm in
Sec. 3.4 for the estimation of sparse density and conditional density func-
tions. This chapter is concluded with an experimental validation section
in Sec. 3.5 and the summary of contributions in Sec. 3.6.

Challenges The two main challenges for density and conditional density
estimation are prescriptive validity and computational efficiency. Regard-
ing the prescriptive validity, the generalization of the estimate to unob-
served data is still an open question for mixture density and conditional
density estimates. In order to achieve computational efficiency, the con-
sidered mixture representation needs to be sparse relative to the training
sample size as the computational complexity of any application of the
estimate will scale with its number of components.

Key Idea Both challenges are addressed by optimizing the data fit in
terms of a distance measure and the regularization of the estimates’ ca-
pacity. The application of a distance measure enforces descriptive validity
and allows for the identification of redundant components in the mixture
as will be shown in the rest of this section. The approach proposed in this
section is a Minimum Distance Estimator (MDE) in the sense of Sec. 2.1.2
with regularization. The MDE approach is employed for both density and
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conditional density estimation. The regularization term ensures prescrip-
tive validity and amplifies the sparseness of the representation as it governs
whether a given data point is considered redundant or relevant for the esti-
mate. In the rest of this section, these two elements of the approach will be
presented as well as the constraints that need to be asserted to obtain valid
density or conditional density functions. The approach is summarized in
a generic algorithm in pseudo-code.

3.1 Distance Measures

In this section, the reformulation of the conditional density estimation
problem into a density estimation problem and the employed distance
measure are discussed.

3.1.1 Reformulation of the Conditional Density
Estimation Problem

Before introducing the employed distance measure, the conditional density
estimation problem needs to be reformulated into a density estimation
problem, in the sense that the conditional density estimate is extended to a
joint density of both input and output random variables. This is necessary
as no distance measure for conditional density functions is defined and fD
is a joint density of the input and output random variables. Additionally,
this reduction allows for a unified treatment of both problems w.r.t. the
distance measure. In detail, given the estimate f(y|x) of the considered

true conditional density function f̃(y|x), a joint density function based on
the estimate may be obtained by calculating

f(y, x) = f(y|x) · f(x) . (3.1)

In an MDE approach, the joint density f(x, y) in (3.1) is compared to the
given data in the form of the EPDF fD(x, y), cf. Sec. 2.1. The EPDF is an
approximation of the left-hand side of (3.1) if the true conditional density
function would be used. In (3.1), the density f(x) corresponds to the prior
knowledge about the probability density function of x. As Vapnik states
one “[...] can use [...] better approximations of the density [...]” [190,
7.11]. The quality of this density will impact the quality of the conditional
density estimate. Besides a user given f(x), it may be determined as the
marginal distribution of the given data D directly, i.e., as a Dirac mixture
density [190], or as a Gaussian mixture density estimate of this marginal
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density [107]. The choice of f(x) influences the computational complexity
of the estimation too. It should be noted, that if f(x) and f(y|x) are
mixture densities with L and K components respectively, the number of
components in (3.1) is L · K and for a distance measure involving the

calculation of f2, e.g., the integral squared distance, a term with (L ·K)
2

components has to be formed.

3.1.2 Cumulative Distributions

The preceding section has shown that similar to the density estimation
problem an MDE approach to conditional density estimation involves the
comparison of two densities only. As introduced in Sec. 2.1.2, many dis-
tance measures are applicable for comparing densities. These may be cat-
egorized into point-wise and integral distances with the respective advan-
tages and disadvantages discussed in Sec. 2.1.2. Both point-wise and inte-
gral distance measures may be calculated w.r.t. the probability density or
the cumulative probability distribution function. Since for the considered
problem, fD is defined only at the sample points and undefined in the rest
of the state space, a comparison of the density functions is theoretically
not sound1 and neglects the rest of the state space. For this reason, it
is common to compare two densities, f̃ and f , based on their respective
cumulative probability distribution functions, F̃ and F , i.e.,

D
(
f̃ , f

)
≈ D

(
F̃ , F

)
. (3.2)

3.1.3 Localized Cumulative Distribution

In order to compare probability density functions over the entire state
space, the cumulative distribution shall be used. Even though the cumula-
tive distribution function is well defined for scalar random variables, there
is no canonical extension to the multivariate case. The challenge is the
non-uniqueness of an extension, as 2N integration orders are possible in an
N-dimensional space. The integration order influences the distances as it
yields asymmetric results and therefore biases the outcome of any estima-
tion algorithm [70, 71]. These disadvantages are overcome by the localized
cumulative distribution (LCD) [71], i.e., it is symmetric and unique. The
key idea is to measure the local probability mass only. The LCD is calcu-
lated by integrating the product with symmetric kernels for all positions

1Point-wise evaluations are not defined for a probability density function w.r.t. a
continuous space.
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and widths. For the sake of self-containedness, the definition of the LCD
from [71] is restated below.

Definition 3.1 (Localized Cumulative Distribution, [71]) For a
multivariate random vector x ∈ IRN with corresponding probability
density function f : IRN → IR+, the Localized Cumulative
Distribution (LCD) is

F(m, b) =

ˆ
IRN

f(x) · Kb(x,m) dx , (3.3)

with Ω ⊂ IRN×IRN
+, F : Ω→ [0, 1], b ∈ IRN

+, Kb(x,m) an admissible kernel,

in the sense of [71], centered at m = [m(1) · · · m(N) ]T with extent/width
b and K : Ω→ [0, 1].

A typical choice for the kernel is an axis-aligned Gaussian kernel (A.5)
with mean m and identical width b for all N dimensions [71], i.e.,

Kb(x,m) =

N∏

k=1

exp

(
−1

2

(x(k) −m(k))2

b2

)
. (3.4)

Even though other choices are possible, only (3.4) is used for the remain-
ing part of this thesis, as the multiplication of a Gaussian kernel with a
Gaussian mixture density will give rise to a Gaussian mixture density and
may be performed in closed-form for a fixed kernel width b.

Localized Cumulative Distribution of f̃ and f The LCDs of the den-
sity estimate f or its reformulation according to (3.1) and the empirical
probability density function fD in Gaussian mixture form are obtained by
multiplying both densities with the kernel

Kb(x,m) =
√

det (2πΣb)N (x;m,Σb) , (3.5)

with Σb = b · diag(1), i.e., identical kernel width b for all dimensions. For
the EPDF given by

fD(x) =

|D|∑

i=1

wi δ(x− di) , (3.6)

with wi = 1/|D| for all 1 ≤ i ≤ |D| and x ∈ IRN, the LCD is obtained by
multiplying (3.6) with (3.5) and integrating over x. The resulting LCD is
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a function of m and b, i.e., the position and the width of the multiplied
kernel, and given by

FD(m, b) =

|D|∑

i=1

wi
√

det (2πΣb)N (m; di,Σb) . (3.7)

For fixed parameters m and b, the term in (3.7) may be understood as
measuring the average overlapping probability mass located at the sample
di. Each kernel in (3.7) will attain a value of 1 if m = di and otherwise a
value in [0, 1) depending on the distance between the kernel centers relative
to the kernel width. The target density—based in case of conditional
density estimation on (3.1)—is a Gaussian mixture density (A.1.2), with
x ∈ IRN and L components

f(x) =

L∑

i=1

αiN (x;µ
i
,Σi) . (3.8)

The LCD of (3.8) is obtained by the same operations as for fD and
given by

F(m, b) =

L∑

i=1

αi
√

det (2πΣb)N (µ
i
;m,Σi + Σb) . (3.9)

3.1.4 Modified Cramér-von Mises Distance

In order to compare two distributions, a distance measure has to be
employed. Note, that even though there exists a wealth of distance mea-
sures2 a novel distance measure is required if two LCDs shall be com-
pared. For comparing the LCDs over the entire state space a distance
measure extending the l2-distance3 between the two distributions F̃ and F
may be derived

D
(
f̃ , f

)
=

ˆ
IR

(
F̃(x)− F(x)

)2

dx , (3.10)

e.g., by weighting or averaging the l2-distance [189, p. 116]. Given the
LCDs F̃ and F, the modified Cramér-von Mises distance measure (mCvMD)

2The interested reader is referred to [189] for an overview.
3In some parts of the literature this is referred to as squared integral or integral

squared distance (ISD).
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was defined in [71]

D =

ˆ
IR+

w(b)

ˆ
IRN

(
F̃(m, b)− F(m, b)

)2

dm db , (3.11)

as a modification of the standard Cramér-von Mises distance, where the
l2-distance is calculated w.r.t. all kernel positions m ∈ IRN and widths
b ∈ IR+. The function w(b) in (3.11) is introduced in order to assert for
convergence of the integral. For the remaining part of this thesis,

w(b) =

{
1

bN−1 , b ∈ [0, bmax]

0 , elsewhere
,

will be used. The interested reader is referred to [71] for more information.
The maximum kernel width bmax is set to a sufficiently large size in order
to capture even low frequency variation in the densities, e.g., a multiple of
the maximum distance between two samples in D.

3.1.5 Properties and Restrictions

In summary, the distance calculation between two density and conditional
density functions may be reduced to the calculation of the distance between
two density functions. Due to the non-uniqueness and the asymmetry of
the straight-forward extension of the scalar cumulative distribution func-
tion to the multivariate case, the LCD is employed. In consequence, the
l2-distance of the cumulative distributions is replaced by the mCvMD and
thus the shortcomings of the cumulative distribution functions are over-
come. The properties and restrictions applying when using the mCvMD
are listed below:

• The mCvMD is a modification of the l2-distance and therefore
considers the difference of the two distributions over the entire
state space and emphasizes differences relative to the local probabi-
lity mass, i.e., differences in the tails of the distributions are
less important.

• For all densities considered in this thesis, the integral in (3.11) over
m may be solved analytically using equation (A.7). In general, the
integral b may be calculated numerically only and for numerical rea-
sons the kernel width is upper bound, i.e., b ≤ bmax is assumed to
hold. Note, that the integral will converge for a fixed bmax.
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• The choice of integration points by a numerical integration algorithm
may be understood as an automatic kernel width selection, conveying
insight about the data distribution.

• As discussed above, the squared term involved in calculating the
mCvMD may be too expensive to compute due to the L ·K compo-
nents and approximations may be required.

• Even though not theoretically proven, it was observed that for
density and conditional density estimation no additional constraints
were necessary for asserting non-negativity and the amount
probability mass. This may be understood as being automatically
ensured by aligning the estimate to a positive density with correct
probability mass.

A straight-forward but computationally intractable MDE approach min-
imizing the mCvMD in Sec. 3.1.4 w.r.t. all parameters of each mixture
components is presented in Appendix A.3. In the following section, the
regularization term for the non-parametric approach is derived.

3.2 Regularization

Unregularized Minimum Distance Estimators have an important short-
coming: they are prone to overfitting [130]. As already mentioned in Sec. 2,
both, the density and conditional density estimation problem are ill-posed
as an infinite amount of solutions may represent the given data arbitrar-
ily well. Maximizing the descriptive validity of an estimate f may be
achieved by maximizing the likelihood of f given the D. Yet, maximizing
the likelihood or any distance will result in poor prescriptive validity as the
estimation disregards all parts of the state space not (densely) populated
by data. One possible approach to improving the prescriptive validity, is
the use of additional information in form of a preference bias when solv-
ing the estimation problem. This information is typically introduced into
the estimation algorithm by means of penalty terms. These terms measure
properties of the solution, which influence the generalization property. The
challenge is to determine a measure for the generalization property. Intu-
itively, a density or conditional density function capable of high oscillations
can model arbitrary noise, thus overfit the data. Whereas, a “flat” density
or conditional density function may underfit the data. The key idea is
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to find a measure related to the roughness4 of the surface of the density
and conditional density function. In the next sections, the regularization
using the norm of f in the respective reproducing kernel hilbert space, a
generalization of the regularization term based on the Rényi-entropy, and
the properties as well as the restrictions of these approaches are presented.
Note, the following derivation of the regularization terms are identical for
density and conditional density estimation.

3.2.1 Regularization using the Reproducing Kernel
Hilbert Space

The key idea of a regularization in a Hilbert space may be understood
as measuring the distance of the density or conditional density function
estimate to a constant or flat function by means of the spectrum of eigen-
functions. In the following, an inner product of two Gaussian components
in a Hilbert space is derived based on the eigen-decomposition of a Gaus-
sian density function. Using this pairwise inner product, the inner product
of two Gaussian mixture densities is derived. Finally, a roughness term as
a function of the weights of the considered Gaussian mixture is obtained.
These results are compiled and in part reproduced from [51, 164, 190, 194].
A scalar Normal density with mean xi and standard deviation σ possesses
the expansion [190]

f(x) := N (x;µ, σ) =

∞∑

n=1

λn φn(x)φn(µ) ,

with weights λn and eigenfunctions φn. In [51, p. 22 and 23], the
Fourier decomposition is employed for a scalar Gaussian component
with σ = 1 yielding

λn = A e−n
2/2 , φn(x) = e2πinx , φn(µ) = e−2πinµ ,

where the λn decrease with increasing n. The function f(x) may be
represented as

f c(x) =

∞∑

n=1

cnφn(x) . (3.12)

4The term roughness is used in this context, to avoid the confusion of (surface)
smoothness with differentiability. Gaussian mixture densities are convex combinations
of normal densities, which are infinitely often continuously differentiable.
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Two Gaussian density functions f̃ and f therefore differ in their eigenvalue
spectra only. For a Gaussian kernel, the following inner product and the
set of functions representable by (3.12) define a reproducing kernel hilbert
space (RKHS) H, i.e.,

< f̃ c̃(x), fc(x) >H=

∞∑

n=1

c̃n cn
λn

.

The self-similarity is given by

< f(x), f(x) >H=

∞∑

n=1

c2n
λn

, (3.13)

showing that the kernel choice defines the roughness of the density func-
tion in terms of the eigenvalues of the spectrum. This derivation may
be generalized to Gaussian mixture densities. In analogy to (3.12), one
obtains for a mixture of L-components [190]

f(x) =

L∑

i=1

αiN (x;µ, σ)

=

L∑

i=1

αi

∞∑

ni=1

λniφni(x)φni(µ)

=

L∑

i=1

αi

∞∑

ni=1

c
′

niφni(x) . (3.14)

Inserting (3.14) into (3.13) gives rise to the self-similarity for a GMM

< f(x), f(x) >H =<

L∑

i=1

αiN (x;xi, γ),

L∑

j=1

αj N (x;xj , γ) >H

=

L∑

i=1

αi

L∑

j=1

αj < N (x;xi, γ),N (x;xj , γ) >H

=

L∑

i=1

L∑

j=1

αi αj N (xi;xj , γ)

= αT Kα . (3.15)
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The vector-valued formulation of the self-similarity (3.15) will be used
in the remaining part of this section. The above results hold for scalar
Gaussian kernels. For the sake of brevity, any further discussion w.r.t.
generalization to more powerful kernel functions or the necessary condi-
tions for a kernel to possess such an expansion are out-of-the-scope of this
thesis. The interested reader is referred to [51, 194] for more information.
The above derivation was used for the case that all kernels are identical.
For density and conditional density estimation this is restrictive and in the
next section it will be shown, that from an entropy perspective [177] a sim-
ilar regularization term may be obtained that is meaningful for arbitrarily
aligned kernels.

3.2.2 Regularization using the Negative Rényi-Entropy

The regularization term in (3.15) is based on the idea that the roughness
of a function f is measured by the norm in the function space H induced
by the kernel. This may be understood as measuring the oscillation of the
density or conditional density function surface. Alternatively, this may be
understood measuring the deviation of the estimate from a flat or constant
function. As entropy measures [177] colloquially quantify the deviation of a
function from a constant function, they may be employed as regularization
terms. In this setting, the entropy term needs to be maximal, i.e., one
wishes to determine the least informative estimate. A common entropy
measure for continuous random variables is the Rényi-Entropy.

Definition 3.2 (Rényi Entropy) The Rényi entropy [35] is defined as

HR(x, r) =
1

1− r log

ˆ
IRN

fr(x) dx , (3.16)

with r ∈ [0,∞] \ 1.

More details of the Rényi entropy, e.g., convergence to the Shannon en-
tropy in the limit, can be found in [35]. As the parameters θ of the
“flattest” function are desired, one minimizes the negative Rényi-entropy.
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Choosing r = 2 for its similarity to the l2-distance, gives

θ∗ = arg min
θ

[−HR(x, 2)]

= arg min
θ

[
log

(ˆ
IRN

f2(x) dx

)]

= arg min
θ

ˆ
IRN

f2(x) dx , (3.17)

where the logarithm may be omitted due to its monotonicity. The mini-
mization of (3.17) not only minimizes the negative Rényi entropy, but has
similar to the RKHS a meaning in a function space. Because probabil-
ity density functions are square-integrable, the l2-space of all probability
density functions allows for the definition of the inner product, thus

< f̃(x), f(x) >l2 =

ˆ
IRN

f̃(x) · f(x) dx . (3.18)

The self-similarity in (3.18) may be computed for an arbitrary Gaussian
mixture density f by

ˆ
IRN

f(x) · f(x) dx =

ˆ
IRN

(
L∑

i=1

αiN (x;µ
i
,Σi)

)2

dx

=

L∑

i=1

K∑

j=1

αi αj

ˆ
IRN

N (x;µ
i
,Σi) N (x;µ

j
,Σj) dx

=

L∑

i=1

K∑

j=1

αi αj N (µ
i
;µ
j
,Σi + Σj)

= αT Kα . (3.19)

The terms in (3.19) may be further simplified if a homoscedastic Gaussian
mixture density is considered, e.g., a Parzen window, or all components
have identical weights [62].

Properties and Restrictions

In this section, two regularization terms were introduced. The first regu-
larizer function corresponds to the norm in the reproducing kernel hilbert
space induced by the component function of the mixture density. This
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Figure 3.1: Joint GMM density functions plotted for various weight dis-
tributions: the weights are (a) sinusiodally distributed, (b) sinusiodally dis-
tributed with lower bandwidth, (c) all identical, and (d) determined to mini-
mize (3.15). The means are 100 equidistant sample points of a sine function
and the covariance are identical.

regularizer intuitively measures the oscillation of the density or condi-
tional density function estimate. As this regularizer is derived for a mix-
ture of components of the same scale, a regularization motivated by the
entropy minimization idea was introduced, which avoids this shortcom-
ing. The term may be calculated for mixture densities with components
differing in every parameter. It is not only related to an estimate of the
second-order Rényi entropy, but may also be understood as the norm in
the space of square integrable functions. The effect of the regularization
is depicted in Fig. 3.1, where the joint probability density functions for
several weight distributions are contrasted with the weight distribution
obtained by minimizing (3.19).
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• Although both terms differ in their derivation and motivation, the
effective calculation is almost identical. Both terms were shown to
be representable as functions of the weight vector only and may be
calculated in vector-matrix form. As the component functions for
the RKHS approach are identical, this regularizer is slightly more
efficient to calculate.

• Intuitively, both regularization terms measure the distance to a flat
function. As will be shown in the experimental validation, minimiz-
ing this property prevents the lumping of probability mass. For
example, in conditional density estimation turning points of the
generative model may have a high local data density, cf. Fig. 3.1.

• For fixed covariances, the components’ locations which minimize any
of the two regularizers will be maximally distributed, i.e., spread
apart. This trivial minimization of the regularization terms will been
shown in Ex. 4.1.

3.3 Constraints

In the previous sections, the components for density and conditional den-
sity estimation have been presented, which ensure that the estimates fit
the data and generalize well. A requirement for any density and condi-
tional density estimation algorithm is to additionally assert that the results
are valid density and conditional density functions. A function is a valid
density function if the constraints

f(x) ≥ 0 ,∀x ∈ IRN ,

ˆ
IRN

f(x) dx = 1 . (3.20)

are satisfied, i.e., f returns valid probabilities and the probability mass
integrates to one. A function is a valid conditional density function if the
following constraints

f(y|x) ≥ 0 ,∀x ∈ IRN ,∀y ∈ IRM ,

ˆ
IRN

f(y|x) dy = 1 ,∀x ∈ IRN . (3.21)

are satisfied, i.e., f returns valid probabilities and the probability mass
integrates to one.
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Figure 3.2: Mass constraints for density and conditional density estimation:
for density estimation the integration of the mass over the entire state space
(red area) is asserted (a). For conditional density estimation the mass con-
straint may be asserted for “slices” (red lines) aligned with the sample points
(b) or the over the considered part (red area) of the state space (b).

Non-Negativity Constraint For both density and conditional density
functions, the first constraint asserts the non-negativity of the probabili-
ties returned by either the density or conditional density function. Because
in this work density and conditional density functions are represented by
Gaussian mixture densities (A.8) only, the non-negativity may be asserted
by restricting the weights

αi ≥ 0 , 1 ≤ i ≤ L . (3.22)

If the constraint (3.22) is satisfied, both the density and conditional den-
sity function values are sums of evaluations of normal densities, which
are weighted by positive factors. Therefore, the density and conditional
density function values have to be positive5.

Mass Constraint In contrast to the non-negativity constraint, the mass
constraints in (3.20) and (3.21) cannot be treated uniformly for density and
conditional density estimation. For density estimation the mass constraint
in (3.20) may be satisfied by trivially adding the following constraint for

5This constraint is overly strict, as the evaluation of a Gaussian mixture density may
still be positive even if some components are negative. The given constraint satisfies
the necessary condition and can be enforced easily.
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the weights α = [α1 . . . αL]
T

, αi ∈ IR+

L∑

i=1

αi = 1Tα = 1 , (3.23)

which in conjunction with (3.22) also implies αi ≤ 1 as an upper bound
on the weights. Any Gaussian mixture density adhering to these weight
constraints fulfills the mass constraint in (3.20), cf. Fig. 3.2 (a). Asserting
the mass constraint for conditional densities is more challenging as the
integral condition in (3.21) needs to be satisfied for all fixed input values
x ∈ IRN. Even if the values are restricted to an interval I = [xmin, xmax ]
and x ∈ I, an infinite number of mixture components would be necessary
to fulfill the mass constraint. If the conditional density function is extended
to a joint density, similar to Sec. 3.1.1, the necessary mass constraint is

ˆ
IRN

ˆ
IRM

f(y|x) f(x) dy dx
!
= 1 , (3.24)

and for the conditional density function in the form of a mixture of fi(.|.)
one obtains

ˆ
IRN

ˆ
IRM

(
L∑

i=1

αi fi(y|x)

)
f(x) dy dx =

ˆ
IRN

L∑

i=1

α′i f
′
i(x) dx

!
= 1 .

The density f(x) may be replaced with fD(x), giving rise to the approxi-
mate constraint [190]

|D|∑

d=1

(
L∑

i=1

α′i f
′
i(xd)

)
= αTs

!
= 1 , (3.25)

where s is obtained by rearranging the sums. The approximate constraint
(3.25) enforces that the probability mass of slices conditioned on x-posi-
tions of the samples sums to one, cf. Fig. 3.2 (b). The mass constraint in
(3.21) is met only approximately, as the probability mass is only measured
at a set of distinct x̂. Asserting (3.25) is cumbersome as it involves the
summation over point-evaluations of the conditional density function. Ad-
ditionally, (3.25) only enforces the mass constraint in total, i.e., the sum
of evaluations at D not the mass of each slice is constrained. This may be
understood as asserting that the probability mass w.r.t. the interval I of
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Table 3.1: Overview of the constraints to be asserted in density and
conditional density estimation.

Estimate Non-Negativity
Constraint

Mass Constraint

Density 0 ≺ α (≺ 1) αT1 = 1

Slices Interval

Cond.
Density

0 ≺ α (≺ 1 · I) αT s = 1 , αT 1 = I

the state space populated by the data approximately. In the following, a
simpler interval-based approximation to (3.24) is proposed, cf. Fig. 3.2 (c)

ˆ
I

ˆ
IRN

f(y|x) dy dx = vol (I) .

For a conditional density function represented as a mixture density, this
gives rise to ˆ

IRN

L∑

i=1

α′i f
′
i(x) dx = αT 1 = vol (I) , (3.26)

which resembles the mass constraint for the density estimation problem.
Note, that the mass constraint in (3.26) imposes an upper bound on the
weights, similar to the density estimation case. This constraint is simple
to assert as it only involves the calculation of the interval size vol (I).
Tab. 3.1 gives an overview of the constraints to be asserted in density and
conditional density estimation presented in this section.

3.4 Density and Conditional Density Estimation
Algorithm

Up to this section, the three components of the non-parametric density
and conditional density estimation algorithm have been introduced: a dis-
tance term, a regularization term, and the necessary constraints to obtain
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valid estimates. In this section, an algorithm will be composed from the
components presented in the previous sections, which may be used gener-
ically for both density and conditional density estimation and addresses
the problem of insufficient generalization capabilities as well as sparseness
of the mixture representation. The key idea is that the estimation process
for both problems corresponds to a weight optimization. In the rest of
this section, the composition of the optimization problem, i.e., the target
function and constraints, the pseudo-code of the algorithm as well as the
properties and restrictions of the approach are discussed.

Setting up the Optimization Problem The optimization problem con-
sists of two steps. First, a problem-specific preprocessing converts the dis-
tance and the regularization term into quadratic forms. Second, the target
function of the optimization problem is composed and the constraints are
determined. The initial step of the preprocessing concerns only the con-
ditional density estimation as the conditional density f(y|x) is extended
into a density f(x), where for the sake of brevity the notation is abused
by setting x := [ yT xT ]T. Consecutively, the LCDs of FD(x) and F(x)
of fD(x) and f(x) for both density and conditional density estimation are
determined. Using the notation introduced in Ch. 2.1.2, all parameters of
f(x) are

θ =
[
αT µT ΣT

]T
. (3.27)

In this non-parametric approach, the means µ are collocated with the
samples D, the parameters of the covariances of all GM components
are identical and obtained from hyperparameter optimization, cf. Sec. 5.
Thus, only the weights α in (3.27) are optimized. This allows for a sim-
plification of the expressions for the LCDs (3.7) and (3.9) as well as
the mCvMD (3.11)

D =

ˆ
IR+

w(b)
(
αT P1 α− 2αT P2 + P3

)
db . (3.28)

In (3.28), P1-P3 denote the closed-form solutions to the m-integrals of the
terms arising from expanding the binomial. In general, the integral over b
in (3.28) may be solved numerically only. A further simplification can be
achieved by omitting the term P3, as it is independent of the weights α,
thus it will only influence the absolute value of the distance measure but
not the extrema w.r.t. α. For the remaining part of this thesis, this term
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will be neglected6. These calculations and transformations yield

D = αT Q1 α− 2αT Q
2
, (3.29)

with

Q1(i, j) :=

ˆ
IR+

w(b) Q
(i,j)
1 (b) db ,

Q
2
(i) :=

ˆ
IR+

w(b) Q
(i)
2 (b) db ,

The expressions for elements of the matrix Q1 and the vector Q
2

may be
found in [105]. The distance term (3.29) for both densities and conditional
densities is a quadratic function of the weights α. As described in Sec. 3.2,
the regularization term will be calculated identically for density and con-
ditional density functions. Similar to the distance term, the regularization
term for both, the RKHS (3.15) and the negative Rényi-entropy-based
term (3.19) is obtained as a quadratic function of the weights α. In the sec-
ond step, the target function T(α) is calculated as a weighted combination
of the distance and regularization terms

T(α) = αTQ1 α− 2αTQ
2︸ ︷︷ ︸

Distance term

+ λ · αTKα︸ ︷︷ ︸
Regularization term

= αT (Q1 + λK)α− 2αTQ2 . (3.30)

The parameter λ ∈ IR+ in (3.30) is obtained from hyperparameter opti-
mization, cf. Ch. 5, and governs the combination of both terms, i.e., for
λ = 0 the target function corresponds to an unregularized MDE approach
optimizing only α. The larger the λ value, the more emphasis is put onto
the regularization. The third component of the optimization problem, are
the constraints necessary for asserting the validity of the densities and
conditional densities. By minor transformations, the non-negativity and
mass constraints for densities and conditional densities as a function of the
weight, may be generically given in the form of

0 � α � 1 · cp , αTw = cm , (3.31)

where the respective constants cp, cm ∈ IR and w ∈ IRN need to be
set according to Tab. 3.1. The density and conditional density estima-
tion problems formulated as a quadratic program of the weights α us-
ing the above derived generic expressions for the target function (3.30)

6If the absolute value of the distance measure needs to be calculated the expression
P3 may be derived based on [71].
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and the constraints (3.31) may be summarized in the following optimiza-
tion problem

min
α

αT (Q1 + λK)α− 2αTQ
2

(3.32)

s.t. 0 � α � 1 · cp ,
αTw = cm .

The properties of the solution depend on the matrix (Q1 + λK). The most
important property is the positive (semi-)definite7 of a matrix. Using
Corollary A.2, the positive semi-definiteness of matrix (Q1 + λK) may be
proven by showing that both Q1 and K are obtained from dyadic products.
This can be seen for Q1 and K in the derivation of (3.29) and for K can
be seen for the regularization by the norm in RKHS in (3.15) as well as for
the regularization by Rényi-entropy in (3.19). As shown in Corollary A.1,
the addition of two p.s.d. matrices yields a p.s.d. result, i.e., the proposed
optimization problem is a convex quadratic problem.

Algorithm The entire algorithm is summarized in Alg. 1. Given a set of
samples D and the hyperparameters, i.e., the estimate’s component means
and covariances {µ

i
,Σi} as well as the trade-off parameter λ, the algorithm

determines the weights α∗ minimizing the target function (3.30) w.r.t. the
constraints (3.31) for density or conditional density estimation. The struc-
ture of Alg. 1 is as follows. Initially, the starting values for the weights
are set similarly to the standard KDE, e.g., to uniform weights. Consec-
utively, the three main components of the algorithm are computed, i.e.,
the distance term, the regularization term, and the constraints. If a condi-
tional density shall be estimated, the reformulation needs to be calculated
prior to determining the distance term. The regularization term may be
calculated independent of the type of estimation problem. The constraints
are set according to Sec. 3.3. The resulting quadratic program (QP) may
then be solved by any standard solver for this type of problem. Finally,
weights smaller than a given tolerance, e.g., 1e−4, are removed from the
obtained vector of weights α+, yielding the reduced weight vector α∗. The
reduced components are negligible for the overall density or conditional
density function due to their tiny weight. The result of the algorithm is a
Gaussian mixture density with weights α∗ and the set of given means and
covariances {µ

i
,Σi}∗ associated with the non-reduced weights.

7The interested reader is referred to Def. A.2 for a definition of p.(s.)d.
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Algorithm 1 Regularized Density and Conditional Density Estimation.

1: Input: D, hyperparameters, i.e., {µ
i
,Σi} and λ

2: Assign α0 ← E.g. 1 · 1
|D| . Initial Values

3: [ Calculate f(x), f(y, x) = f(y|x) · f(x) ] . Reformulation

4: Calculate Q1,Q2
← D ( F , FD ) w.r.t. α

5: Calculate K← regularization term . Preprocessing

6: Calculate cp, cm for the constraints

7: α+ ← Compose and solve QP(α0,Q1,Q2
,K, cp, cm) . Standard

solver
8: α∗ ← Reduce(α+)

9: Output: f ∼ GMM{α∗, {µ
i
,Σi}∗}

10: function Reduce(α′) . Removing obsolete components

11: α′′ ← α′ ≥ ε . E.g. ε = 1e−4

12: end function

Properties and Restrictions The descriptive validity, prescriptive valid-
ity, and computational efficiency of the proposed regularized density and
conditional density estimation may be summarized as follows:

• A solution to the problem for density estimation exists and may
be attained as the Parzen window estimate is in the feasible set of
solutions [190]. For conditional density estimation a similar solution
may be obtained by assigning an identical weight to all components
in the estimate. As by construction (Q1 + λK) is p.s.d., cf. (A.34),
the solution of the QP will be a minimum of the target function.
For the stricter case of (Q1 + λK) being p.d. this minimum will be
unique. In the former case, there is a set of solutions with identical
values of the target function.

• The descriptive validity may be investigated w.r.t. a small or an
asymptotic amount of data. For λ = 0, the density and conditional
density estimation algorithms return estimates that fit the data best
w.r.t. the given distance and hyperparameters. For an asymptotic
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amount of data for density estimation the classical
consistency arguments of kernel density estimation may be employed.
For conditional density estimation, these same results apply w.r.t.
each fixed input value. In the proposed algorithms, the parame-
ters of all components are identical. This property restricts the set
of estimates and limits the algorithm’s capacity to model the data
especially for small data sets.

• Regarding the prescriptive validity, the probability mass is located
at the data points only. This is a strong restriction of the capa-
bility of the model and limits its generalization to parts of the state
space, which are only populated by a few data points, e.g., gaps
where a generative model was not sampled. In the absence of data
the uncertainty is maximal. By definition, the mean function
values in those parts of the state space align with the last com-
ponents’ mean values due to the exponentially decreasing influence
of the components.

• The computational effort for obtaining the solution to the QP de-
pends on the number of variables L being optimized. The com-
plexity depends on the used implementation and may have a com-
plexity as lows as polynomial in L. Due to the formulation in
matrix/vector-form and the locality inherent in the problem, the esti-
mation algorithm lends itself to parallelization. For more information
the interested reader is referred to Appendix A.4.3.

• As the optimization fulfills (A.34), the optimization problem is a con-
strained convex quadratic problem. These problems may be solved
in polynomial time w.r.t. the number of optimization variables and
constraints, cf. Appendix A.4.3.

3.5 Experimental Validation

In this section, the derived generic non-parametric estimation algorithm
shall be compared to existing approaches. This comparison needs to be
performed for density and conditional density estimation separately as
the data is generated in a different manner, i.e., a different experimental
setup is required, and the estimator needs to be compared to different
state of the art estimators.
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3.5.1 Density Estimation

In the following, the experimental setup, the evaluation criteria, relevant
implementation details regarding the employed estimators, and the results
for density estimation are presented.

Experimental Setup In contrast to conditional density estimation, the
data for density estimation does not correspond to noisy measurements
of a deterministic dependency, but are samples from an unknown density
function f̃ . In order to determine the performance for estimating mul-
timodal densities, 2D Gaussian mixture densities were automatically pro-
duced by sampling the parameters of each component uniformly at random
from the intervals

α̃i ∈ [ 0.01 , 1 ] , µ̃ ∈ [ 1 , 2 ]× [ 5 , 7 ] , C̃ = DT D (3.33)

with Dij ∈ [ 0.25 , 0.4 ]. The constrained random generation of C̃ in (3.33)
asserts that the covariance matrices are p.d. From each generated mixture
150 samples are drawn for training and testing.

Evaluation Criteria The quality of the density estimates obtained for the
Gaussian mixtures estimated from the data generated according to (3.33)
is assessed by the following criteria:

• The prescriptive validity is quantified by determining a test set of 150
samples by sampling the random Gaussian mixture and determining
the negative log-likelihood of this test set.

• The number of components is a measure of computational efficiency
as the number of components governs the computational complex-
ity of any further application of a mixture, e.g., w.r.t. a Bayesian
estimation framework.

Implementation Details The following implementations and parameter
settings were used for the different estimators:

• Expectation Maximization (EM) was employed as a parametric den-
sity estimator. As discussed in Ch. 2, the main drawbacks of EM are
the model selection problem—as the number of components has to
be specified in advance—and no direct account for the generalization
properties. For the comparison four settings EM1 - EM4 were used,
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i.e., the number of components was either fixed to the number of
components obtained from the proposed approach (EM1 & EM2) or
determined by optimizing the widely used Akaike Information Crite-
rion (AIC) in (EM3 & EM4). In order to improve the generalization
properties, a matrix 1 · ε was added to C̃ (EM2 & EM4). The min-
imal covariance was introduced yielding smoother estimates. The
implementation of EM for Gaussian mixture densities by MatlabTM

was used.

• As a nonparametric estimator the default kernel density estima-
tor (KDE) was employed. Several bandwidth selection rules were
used for the comparison, e.g., Silverman’s rule of thumb (ROT), a
plug-in estimator w.r.t. the MISE criterion (HALL), a leave-one-out
likelihood criterion (LCV), and a k-th nearest neighbor distance mea-
sure (LOC). The KDE toolbox for MatlabTM from [85] was used for
the comparison.

• The approach resembling the proposed algorithm most is the Re-
duced Set Density Estimator (RSDE) [63]. This approach performs
a sparsification ex post of the KDE estimate. Therefore, reduced
estimates of the kernel density estimates were calculated too. Given
the HALL, LCV and LOC estimates, the respective RSDE estimates
are denoted by REH, RER, and REL. The RSDE implementation is
contained in the toolbox [85], too.

• For the proposed approach the LCD distance and the Rényi-based
regularization term are used. The bmax was set to ten times the
largest data spread over all dimensions. The parameter λ balances
between the distance and the regularization term was initialized
with λ0 = 0.25 and optimized with the constraints λ ∈ [0.01 , 100].
For the hyperparameter optimization the algorithm based on k-fold
cross-validation minimizing the negative log-likelihood, as proposed
in Ch. 5 was employed. This approach is referred to as LCD.

Results The results of ten random experiments generated according to
(3.33) in terms of the proposed performance measures are given in Fig. 3.3.
The results show, that the generalization capability of the approach is
better than the results of EM and KDE except for ROT. Yet, the ROT
estimate has on average ca. 30 % more components than the proposed
approach. In general, the results for the RSDE estimator are sparser than
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Figure 3.3: Mean and standard deviation of the negative Log-Likelihood
scores and number of components achieved by different density estimation
algorithms’ results for ten Monte Carlo experiments.

LCD, but the quality is worse. This is due to the fact that the results
of RSDE given the generated densities are almost unimodal. The reason
for this is that the bandwidth selection performs badly for multimodal
densities. In contrast to KDE and RSDE, EM captures the present mul-
timodalities well but suffers from the model selection problem and the
quality of the solution varies largely.

3.5.2 Conditional Density Estimation

The procedure for evaluating the quality of the conditional density estima-
tion algorithm differs from the setup for evaluating the density estimation
algorithms in that the data is generated differently, the set of estimators
and their respective implementation differs as well as the evaluation needs
to be performed differently to account for the semantic differences.

Experimental Setup In the case of density estimation, the space of Gaus-
sian mixture densities was sampled w.r.t. certain restrictions. As condi-
tional density estimation is concerned with the estimation of a proba-
bilistic model possibly derived from a deterministic functional dependency
perturbed by a noise term, the space to sample from is the space of de-
pendencies and noise terms. In order to discuss the proposed approach,
experiments based on the following exemplary nonlinear system perturbed
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Figure 3.4: Mean and standard deviation of the negative Log-Likelihood
scores and number of components achieved by different conditional density
estimation algorithms’ results for ten Monte Carlo experiments.

by additive Normal noise are presented.

y = x+ sin(x3 ) +w , w ∼ N (0, 0.15) . (3.34)

The nonlinear mean function oscillates with varying frequencies. For ex-
ample, the system is almost linear around (0, 0) and oscillates strongly
elsewhere. For learning the conditional density function 100 samples are
obtained by sampling x uniformly at random for the interval [−3 , 3 ] and
y according to normally distributed noise term w.

Evaluation Criteria The quality of the estimates is assessed according to
the criteria below:

• The prescriptive validity is quantified only by determining a second
set of 100 samples used for testing and calculating the log-likelihood
of this test set.

• The number of components is used as a measure of computational
efficiency for the conditional density function estimates.

Implementation Details As mentioned before, the set of considered
estimators differs from the density estimation case as density estimators are
only theoretically applicable to conditional density estimation, cf. Ex. 2.1.
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The bandwidth selection rules as presented in Sec. 2.1.2 render an
application of KDE or the respective RSDE estimator inadequate. As EM
fits the Gaussian mixture component covariances locally, i.e., without
reference to an assumed overall density over the input dimensions, EM
will yield meaningful results and is therefore included in the comparison
as a representative of the subsumption approach to conditional density
function estimation.

• EM was employed for the comparison with four settings EM1 - EM4
for both, the estimation of f(y, x) and f(x). The number of compo-
nents was either fixed to the number of components obtained from
the proposed approach to conditional density estimation (EM1 &
EM2) or determined by optimizing the common Akaike Information
Criterion (AIC) [129, 53] (EM3 & EM4). In order to improve the
generalization properties, a matrix 1 ·ε was added to C̃, i.e., the min-
imal covariance was introduced yielding smoother estimates (EM2 &
EM4). The implementation of EM for Gaussian mixture densities by
MatlabTM was used for all experiments.

• As the state of the art conditional density function estimator for
additive Gaussian noise, the Gaussian Process Regression (GPR)
was used. The default parameter settings and hyperparameter opti-
mization was used for all experiments. The GPR implementation
from [152] for MatlabTM with default parameter settings was used
for the experiments.

• The proposed nonparametric approach was implemented by means
of an support-vector regression (SVR) with the l1-distance between
the estimate and the EPDF at the sample points and the RKHS reg-
ularizer, as proposed in [107]. Additionally, implementations using
the LCD in conjunction with the RKHS or Rényi regularizer were
proposed. For the hyperparameter optimization the k-fold cross-
validation-based algorithm minimizing the negative log-likelihood,
as proposed in Sec. 5 was employed.

Results The results of ten random experiments based on samples of the
system (3.34) w.r.t. the proposed performance measures are reported in
Fig. 3.4. These show that the subsumption approach as represented by
EM produces overfitting results. This can be seen especially at the turn-
ing points of the underlying sine function. GPR produces results with
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almost ground truth quality. Yet, without any further sparsification a
GPR will have a function representation, i.e., the non-parametric mean
and covariance functions, containing the entire training data set. The pro-
posed approach yields drastically better generalization results than EM
and only slightly worse results than the GPR. The implementation using
LCD and the Rényi-entropy based regularizer produces even better results
than the GPR. Yet, even though the resulting Gaussian mixture densities
are not as sparse as the results of the AIC-based EM, cf. Fig. 3.4 (b), there
is a significant reduction in the number of components, i.e., 20 % − 50 %
less components.

3.6 Main Contributions

The main contributions of this thesis w.r.t. non-parametric density and
conditional density estimation are summarized in the following list.

• The proposed weight optimization of densities and conditional den-
sities produces sparse and well-generalizing estimates w.r.t. the state
of the art. Given the hyperparameters, the arising optimization
problem may be solved efficiently by standard QP solvers.

• A novel entropy-based regularization term was derived, which is more
general than the regularization by the norm in the RKHS.

• The introduction of the LCD and the modified l2-norm, i.e., the
mCvMD, removes the fallacies of the default extensions of the stan-
dard cumulative distribution functions for density and conditional
function estimation.

• Due to its non-parametric nature, the approach is limited due to
the assumption of identical parameters for all components and the
limitation to {µ

i
}1≤i≤|D| = D.

• The arising optimization problem may be solved efficiently as it is
a constrained convex quadratic problem. The problem may there-
fore be solved in polynomial time w.r.t. the number of optimization
variables and constraints.





It is easier to perceive error than to find truth,
for the former lies on the surface and is easily seen,

while the latter lies in the depth,
where few are willing to search for it.

—Johann Wolfgang von Goethe

4 Full Parameter Identification

In the last section, density and conditional density estimation of sparse
Gaussian mixture densities or conditional densities were considered. The
proposed approach improved the respective state of the art by offering
a good compromise between sparseness and quality. This chapter is
concerned with further improvements of the conditional density
estimation algorithms.

Challenge The quality of the conditional density estimation algorithms
presented in Ch. 3 is limited due to the restriction of the estimates to
Gaussian mixture densities with means identical to the data points and
identical parameters for all components of the mixture density. The limi-
tation to fixed mean positions prohibits a good approximation of the true
conditional density by the mixture density in parts of the state space where
little or no data is located. The restriction to identical parameters for all
components allows for an efficient implementation of the algorithms, but
does not reflect variations in the local data distributions.

Key idea The aim of this chapter is to increase the model’s capacity to
allow for improved generalization. In the rest of this chapter, an approach
for lifting each restriction is presented. The key ideas are the introduction
of a curvature-based regularization term allowing for a simultaneous reg-
ularization of the mean function and the probabilistic model as well as a
local data-driven calculation of the component covariances. As the exten-
sion to variable mean positions and variable kernel covariances requires a
fundamentally different interpretation for density and conditional density
estimation this chapter is limited to conditional density estimation. In the
rest of this chapter, approaches for introducing variable means and kernel
covariances will be presented and summarized in an algorithm in Sec. 4.3.
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Figure 4.1: Effect on the second derivative for a minimal change in the
shape: both (a) and (c) are bimodal probability density functions. In (c)
three components were removed from (a).

4.1 Variable Mean Positions

The proposed conditional density estimation involves finding the parame-
ters of a Gaussian mixture density1 and the hyperparameters ω = [λ ε ]T

of the optimization problem, i.e.,

θ = [ αT , µT , ΣT , ωT ]T . (4.1)

Using Alg. 1 from Ch. 3, α may be efficiently determined. The set of mean
positions were set to {µ} = D, thus |{µ}| = |D|, and considered hyper-
parameters of Alg. 1. Extending the set of mean positions to the entire
state space, i.e., µ

i
∈ IRN, introduces two model selection problems: (a)

the number of components, because not necessarily |{µ}| = |D|, and (b)
the mean locations. One advantage of Alg. 1 is the automatic determi-
nation of the number of components by the algorithm itself. This prop-
erty may be exploited when determining variable means, because redun-
dant components will be removed when using Alg. 1 as an inner loop of a
hyperparameter optimization. In principle, it would be possible to add
an arbitrary number of variable means to the optimization problem and
let Alg. 1 determine the optimal number of components. Because the hy-
perparameter optimization is a costly nonlinear function minimization, it
is advisable to keep the number of variable means low. Additionally, the
regularization terms presented in Sec. 3.2 and used in Alg. 1 cannot be used
when optimizing mean positions as trivial minimization may be shown,
e.g., w.r.t. mean positions for fixed kernel covariances, cf., in Ex. 4.1. In

1A definition of a Gaussian mixture density is given in (A.30).
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the following, a regularizer is proposed, that avoids this fallacy and
penalizes conditional density estimates based on the curvature of the den-
sity’s surface.

Example 4.1: Trivial Minimizer of RKHS-based and Rényi-based
Regularization Terms.
Assume the following scalar Gaussian mixture density with two components
to be given

f(x) = α1N (x;µ1, σ1) + (1− α1)N (x;µ2, σ2) ,

with fixed α = [α1 (1− α1) ], αT1 = 1, αi ∈ [0, 1], fixed σ1, σ2 ∈ IR+, σ1 =
σ2, and µ2 = µ1 + ε. The Rényi-based regularization term according to
Sec. 3.2.2 is

αT Kα =α2
1N (µ1;µ1, σ̂) + α1α2N (µ1;µ1 + ε, σ̂) (4.2)

+ (1− α1)2N (µ1 + ε;µ1 + ε, σ̂)

=
(
α2

1 + (1− α1)2
) √

(2π)σ̂ + α1(1− α1)N (µ1;µ1 + ε, σ̂) , (4.3)

with fixed σ̂ ∈ IR+. From (4.3) it follows that

max ε ≡ arg min
ε

αT Kα , (4.4)

holds, thus minimizing the regularizer means maximizing the distance between
both components. The same argument holds for the regularization in terms
of the norm in RKHS. �

4.1.1 Superficial Regularization

The aim of introducing variable means for the components in the target
function of Alg. 1 is to improve the generalization in parts of the state
space where little or no data is located. If only the mean function of the
generative model shall be recovered from the data, determining function
values of the mean function at positions, where no data is located corre-
sponds to a classical regression. This problem may be solved with any
(non-)parametric regression algorithm, cf. [73]. These algorithms have a
justification in their own right, but since in conditional density estimation,
not the mean function of the generative model, but the probabilistic model
is required, they may not be employed.



72 Chapter 4. Full Parameter Identification

Key Idea The key idea is to extend the smoothness assumptions under-
lying the (non-)parametric regression algorithm for the mean function to
the surface of the conditional density. By assessing the quality merely of
the conditional density surface, there is no need for an underlying gener-
ative model and the conditional density function representation may be
arbitrary. The measure of roughness which is implicitly minimized by a
regression method, e.g., splines [77] or smoothing splines [73], is the cur-
vature. The curvature K(·) of a curve g : IR→ IR in the plane for a point
p ∈ IR is defined by

K ( g(p) ) =

∂2 g(p)
∂2 p

(
1 +

(
∂ g(p)
∂ p

)2
) 3

2

. (4.5)

As only the cumulated strength of the curvature at this point and not the
direction of the curvature is of interest, the squared or absolute value of
(4.5) is considered

K2 ( g(p) ) =

(
∂2 g(p)
∂2 p

)2

(
1 +

(
∂ g(p)
∂ p

)2
)3 ≤

(
∂2 g(p)

∂2 p

)2

, (4.6)

and bounded from above by neglecting the denominator of (4.5) in (4.6).
For the overall curve,

K2(g) =

ˆ
IR

K2 (g(p)) d p ≤
ˆ

IR

(
∂2 g(p)

∂2 p

)2

d p , (4.7)

is an upper bound of the curvature. Regression methods, e.g., smooth-
ing splines, minimize a target function consisting of a data fit term and
(4.7), cf. [73, p. 151]. As a result smooth, minimally oscillating func-
tions are obtained. The sensitivity of the second derivative as an element
of the upper bound on the curvature (4.7) to the smoothness of the surface
is visualized in Fig. 4.1. In Fig. 4.1, the difference in the second deriva-
tive of two scalar bimodal GMM is depicted before and after removing
a number of components. Regarding conditional density functions, it is
intuitive that for additive Gaussian noise, smooth, minimally oscillating
mean functions correspond to smooth, minimally oscillating conditional
density function surfaces. Lifting the curvature-based regularization from
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the mean function to the function’s surface corresponds to using a regu-
larization term measuring the curvature of this surface. In the remaining
part of this section, a regularization term for 2D surfaces will be derived
and discussed.

4.1.2 Superficial Regularizations for 2D Conditional
Density Functions

A 2D conditional density function in this section denotes a function f :
IR × IR → [0, 1] with scalar in- and output dimension. The surface of f
is a 2D surface in a 3D space. In contrast to the point-wise curvature of a
line, the curvature of a surface is not uniquely defined [31]. The canonical
curvature definitions arise from different combinations of the curvatures
of plane curves defined by the intersection of the surface with two normal
planes at a given point p = (x, y) ∈ IR2. The mean curvature averages and
the Gaussian curvature multiplies the minimal and the maximal curvature
[31]. For the sake of brevity, some abbreviations are introduced, e.g., the
considered Gaussian mixture function may be written as vector product

f(y|x) =

L∑

i=1

αiN (y;µy,i, σy,i)N (x;µx,i, σx,i) = αTf(y, x) , (4.8)

with weights α = [α1 . . . αL]T, αi ∈ IR+ and the vector of normal compo-
nents f(y, x) in (4.8)

f(y, x) = [ f1(y, x) . . . fL(y, x) ]T , (4.9)

where each component is defined by

f i(y, x) = N (y;µy,i, σy,i)N (x;µx,i, σx,i) .

For the calculation of the curvature, partial derivatives of (4.9) need to be
calculated w.r.t. a point p, i.e., a pair of input and output values

∂
∂ mf(y|x) = fm(y|x) , ∂

∂ mf(y, x) = [f1
m(y|x) . . . fLm(y, x) ]T ,

f(y|x) ≡ f(p) . (4.10)

Using these definitions, the signed Gaussian curvature for a point p is
given by

KG(p) =
fxx(p) fyy(p)− f2

xy(p)(
1 + f2

x(p) + f2
y (p)

) .
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Figure 4.2: Relationship of the curvature of the mean function and proba-
bilistic model w.r.t. different measures is exemplified by evaluating the cur-
vature measures for an oscillating system (a) progressing towards a linear
system (b). The values of the numerically calculated integral squared curva-
ture measures for varying progression parameters γ (red) are depicted in (c),
i.e., Gaussian curvature K (blue), mean curvature H (black), the superficial
regularizer’s value R (scaled, green), and curvature of the generative model κ.
Graphics taken from [109].

The pointwise squared Gaussian curvature is upper bound by neglecting
the denominator

K2
G(p) ≤

[
fxx(p) fyy(p)− f2

xy(p)
]2
,

and for the overall surface of f the upper bound of the Gaussian curvature
is given by

K2
G(f) =

ˆ
IRN

K2
G(p) dp ≤

ˆ
IRN

[
fxx(p) fyy(p)

]2
dp . (4.11)

In order to incorporate the regularizer into Alg. 1, K2
G(f) needs to be

minimized w.r.t. the weights with all other parameters fixed. The following
regularizer w.r.t. the weights is proposed.

Definition 4.1 (Scalar Superficial Regularizer, [109]) For a condi-
tional density f(y|x) with scalar in- and output x, y ∈ IR, given in the form
of (4.8) with

f(x, y) =



N (y;µy,1, σy,1) · N (x;µx,1, σx,1)

...
N (y;µy,L, σy,L) · N (x;µx,L, σx,L)


 ,
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the superficial regularizer R is defined w.r.t. the weights α as

R := c αT Rα , (4.12)

with c constant w.r.t. the weights α. The entries of the matrix R are
calculated by

Rij =

L∑

k=1

ˆ
IR2

f (i,k)
xx (p) f (i,k)

yy (p) f (k,j)
xx (p) f (k,j)

yy (p) dp ,

with

f (i,k)
m (p) =

∂

∂m
N (x;µx,i, σx,i)·N (y;µy,i, σy,i)·N (x;µx,k, σx,k)·N (y;µy,k, σy,k) .

For the purpose of this thesis, the constant c in the quadratic form (4.12)
is neglected. The most important properties of (4.12) are given in the
following theorem.

Theorem 4.1 (Properties of the scalar Superficial Regularizer,
[109]) The superficial regularizer, introduced in Def. 4.1, has the fol-
lowing properties:

1. R is an approximation of an upper bound of K2
G(f), as

defined in (4.7).

2. For a generative model perturbed by zero-mean Gaussian additive
noise, the superficial regularizer of the probabilistic model is a lin-
ear transform of an upper bound of the squared curvature of the
generative model.

The proofs for Theorem 4.1 are given in Appendix A.4.2. The key idea be-
hind the proof of the first property is a series of approximation of the
squared curvature of the entire surface of the scalar conditional density
function f . For the second property, a point-wise upper bound on the
curvature of the generative model is extended to the entire surface. In
analogy to Sec. 3.4, the definiteness properties of the superficial regular-
ization matrix R can be shown by an application of Lemma A.2. Based
on (4.12), it is shown in Appendix A.2, that R is obtained from dyadic
product and thus, R is p.s.d. When using the same distance matrix as in



76 Chapter 4. Full Parameter Identification

Sec. 3.1, the same properties of the solution w.r.t. uniqueness and attain-
ment of a solution as well as the computational efficiency of the solution
algorithm as for the conditional density estimation algorithm in Sec. 4.12
hold. The application of the regularization term will be shown in Alg. 4.3.

4.1.3 Properties and Restrictions

The properties and restrictions of the superficial regularization may be
summarized as follows:

• The insight given by Theorem 4.1 is that the regularization with the
term proposed in Def. 4.1 regularizes an approximate upper bound
of the curvature of the generative model’s mean function and the
conditional density function’s surface simultaneously. The general-
ization properties of a regularized mean function can therefore be
achieved by regularizing the surface only. This relation is visualized
in Fig. 4.2, where a system progressing from an oscillating to a linear
mean function is shown. The values of the upper bound on the cur-
vature for the probabilistic model and other numerically calculated
integral squared curvature measures are depicted.

• Theorem 4.1 needs to be put into perspective with the underlying
assumptions. These assumptions include that the noise disturbance
needs to be additive and that the approximation quality needs to
be high, which corresponds to a high number of components in the
resulting conditional density.

• Another restriction is that the superficial regularizer does not distin-
guish between in- and output dimensions, requiring additional regu-
larization of the probability mass distribution over the
input dimension.

• The regularization term in Def. 4.1 is defined for scalar in- and output
dimensions only. This definition needs to be extended to include the
higher-dimensional cases.

4.2 Variable Kernel Covariances

In this section, the limitation to identical kernel covariances as used in
Ch. 3 is removed to improve the capacity of the model and allow for a
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modeling of the model uncertainty due to a locally varying distribution of
the data used for the conditional density estimation.

4.2.1 Related Work

The idea of adapting the covariances of the kernel functions correspond-
ing to probability density functions has found wide-spread use in kernel
density estimation [25, 158, 179]. For the remaining part of this section,
the terms (locally) adaptive [158, 179] or variable kernel parameters [25]
are used synonymously as in kernel density estimation. The first approach
towards alleviating the shortcomings of using a common kernel covariance
as described in Sec. 3.4 was given in [25]. The key idea is to scale the
width of each kernel with the l2-distance hi := l2(xk,i−xi) of this kernel’s
mean xi to its k-th nearest neighboring sample xk,i

f(x) =

|D|∑

i=1

1

|D|hN
i

K(x;xi, hi) ,

similar to the k-th nearest neighbor density estimator [122]. This choice
is known to be asymptotically equivalent to scaling with the likelihood of
the data point xi [179, 187], i.e.,

hi = f(xi)
−1/N . (4.13)

As a result, the kernel width will be small in areas densly populated by
samples and will be large in low density areas. This may be understood as
modeling the model uncertainty as more change in the density function’s
shape is allowed in areas with a high density of samples. Since [25], a
lot of research has been pursued leading to a categorization of variable
kernel approaches into sample-based and balloon estimators [158, 187].
The sample-based estimators extend to the idea of [25], whereas the balloon
estimators scale the kernel covariance relative to the evaluation point and
not to the component’s mean. Variable kernel density estimation is still an
active research field, e.g., in computer vision, where incremental and online
estimation algorithms are investigated [28, 110, 131]. In the remaining part
of this section, the sample-based covariance estimator presented in [28] is
extended for the application to conditional density estimation.
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4.2.2 Key Idea

The key idea of determining the variable kernel covariances is to calculate
the kernel covariances relative to the local data density. This implies a
decomposition w.r.t. the in- and output dimensions of Σi into independent
matrices Σi,x ∈ IRN×N and Σi,y ∈ IRM×M, i.e.,

Σi =

[
Σi,y 0
0 Σi,x

]
.

The submatrices have different semantics and are calculated separately.
In principle both Σi,y and Σi,x might be estimated for each component
independently. In this thesis, the idea of the scalable kernel is adopted
[25], as this approach reduces the computational effort to the optimization
of two submatrices only and the calculation of the scale parameter, i.e.,

Σi = φi

[
ΣDy 0
0 ΣDx

]
+ I ε , (4.14)

where φi captures the local data density and the submatrices Σy and
Σx may be understood as a basis kernel capturing the average covariance
w.r.t. the input and output dimensions. The last term in (4.14) adds a
tiny value ε to Σy and Σx, in order to avoid singular covariances. There
exist many ways for estimating the basis kernels Σy and Σx. Some of
which are considered in the section about initial values in Ch. 5. Note
that Σy and Σx may be used without any further optimization too. This
approach is the default procedure used in KDE [179]. If on the other hand,
e.g., the variance in the sample covariance for any of the directions is too
high, the above estimates may serve as an initial value for an optimization,
e.g., w.r.t. cross-validated log-likelihood scores as proposed in Ch. 5. The
submatrices Σy and Σx are scaled relative to K of k-nearest neighboring
samples to the respective µ

i

φi = g
(
{ l2( [xk yk ]T , µ

i
) }k∈K

)
.

The function g : IRN+M 7→ IR may be, e.g., the average or maximal distance
to each sample in the k-neighborhood. Combining all elements gives rise
to the data-dependent adaptive kernel covariance Σi for each component
of the Gaussian mixture density. The sections about variable mean
positions and kernel covariances are summarized in an algorithm in the
following section.
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4.2.3 Properties and Restrictions

The two main properties and restrictions of the variable kernel covariances
are listed below.

• The presented approach is an extension of existing variable kernel
approaches for density estimation to conditional density estimation.
The variable kernel covariances removes the restriction to identical
parameters for all components and allows for reflecting variations in
the local data distributions.

• Without further assumptions, the number of variables of the opti-
mization problem depends on the dimensionality of the considered
spaces due to the variable kernel covariances.

4.3 Algorithm

In this section, the nested optimization scheme for optimizing all parame-
ters of a Gaussian mixture is stated based on the preceding sections. The
proposed optimization scheme is composed of an outer and inner loop: the
inner loop optimizes the weights and the outer loop optimizes the means,
covariances of the Gaussian mixture density as well as hyperparameters ω

θ = [ αT

︸︷︷︸
Inner loop

, µT , ΣT

︸ ︷︷ ︸
Outer loop

, ω︸︷︷︸
Hyperparameter

Optimization

]T . (4.15)

Outer Loop The outer loop comprises of the determination of the adap-
tive kernel covariances for each component, the solution of the inner loop,
and the update of the components’ means based on the function value
of the inner loops target function. The adaptive kernel covariances are
determined as described in Sec. 4.2 for the given components’ mean posi-
tion. Having determined each component’s mean and covariance as well as
the hyperparameters, the inner loop, i.e., the weight optimization, may be
performed. The target function value ν is minimized using a default func-
tion minimization algorithm w.r.t. µ. The adaptive kernel covariances are
determined separately and analytically, without any further optimization.
In order to determine the hyperparameters ω, e.g., cross-validation–based
methods as proposed in Sec. 5 may be used.
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Inner Loop The inner loop of the optimization scheme consists of com-
posing and solving a convex quadratic program, similar to Alg. 1 for con-
ditional density estimation. The major difference from this inner loop to
Alg. 1 is the calculation of the regularization and the distance terms. The
distance measure needs to be calculated w.r.t. a Gaussian mixture density
with non-identical covariance matrices. As a regularization term, the su-
perficial regularization term presented in Sec. 4.1.1 needs to be calculated.
Additionally, the regularization term and the distance measure term need
to be combined to form the target function of a convex quadratic program.
The constraints of the arising quadratic program are identical to Alg. 1 as
the conditions for a GMM to be estimated do not differ from Alg. 1.

Start Values The above algorithm corresponds to the solution of a non-
linear and non-convex optimization problem. It is advisable to carefully
choose the start values for the optimization.

• As described in Sec. 4.1, the number of mean positions will be au-
tomatically reduced by the QP of the inner loop of the overall opti-
mization scheme. Due to the complexity of the optimization scheme,
an iterative test is proposed whether additional components improve
the solution. Otherwise a heuristic needs to be adopted, e.g., sam-
pling from the largest adaptive covariances for {µ} = D, until a
threshold, e.g., on the determinant of the covariances, is reached.

• In order to reduce the computational effort, the variable means
may be set to {µ} = D ∪ V, so that only the additional set V needs
to be determined, by, e.g., an adaptive kernel covariance based sam-
pling scheme.

• Fundamental to the further optimization is the determination ε and
the size of neighborhood k employed for calculation of the variable
kernel covariances in each optimization step. These parameters may
be determined a priori and their calculation corresponds to a model
selection problem, which may be solved as described in Sec. 5. The
other hyperparameters may be determined as proposed for Alg. 1 and
shown in Ch. 5.

4.3.1 Efficient Implementation

The computational complexity of the proposed algorithm depends on the
number of optimization variables and constraints in the outer and inner
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loop. In order to obtain an efficient implementation, an approach to reduce
the computational burden is proposed for each loop.

• In the outer loop, for m means µ
i
∈ IRN, an (m ·N)-dimensional op-

timization problem arises. As proposed for the start values, setting
{µ} = D ∪ V lends itself to the reduction to a (|V| · N)-dimensional
optimization problem, with |V| � m, if the means of the compo-
nents located at D are not optimized. Because a 20-dimensional
optimization problem arises for ten components with means in IR2,
an iterative optimization scheme is proposed, where the means are
iteratively optimized one after the other until convergence.

• A similar scheme may be pursued for the optimization of the weights
α in the inner loop. All but a small “chunk” of variables αv is
considered constant αc, i.e., α = [αT

v αT
c ]T. The target function of

the QP (3.32) then allows for a decomposition into a smaller problem

αT Qα− 2αTq = αT

[
Qvv Qvc

Qcv Qcc

]
α− 2αT

[
q
v
q
c

]

= αT
v Qvv αv + αT

v

[
2 Qvc αc − 2q

v

]
+ c , (4.16)

with a scalar term combining all summands independent of αv. The
constraints of the QP may be reformulated analogously. The QP
in (4.16) has only length(αv) � length(α) optimization variables,
but will require the iterated solution of chunks containing all α until
convergence to obtain a solution. For this approach no optimality or
convergence have been proven up to now. This approach is equivalent
to the “chunking” method for a fast solution of the QPs arising in
large SVMs [138, 164].

4.3.2 Properties and Restrictions

In the following, the properties of the proposed conditional density esti-
mation are discussed.

• The proposed method of optimizing the variable mean positions re-
quired the introduction of a novel superficial regularizer to avoid a
trivial minimization of the regularization term. The superficial regu-
larizer was proposed for two-dimensional problems and shown to be
related to an upper bound on the curvature of the generative model
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Algorithm 2 Nested Conditional Density Estimation Algorithm.

1: Input: D, ω

2: Calculate θk=0 . Initial Values

3: repeat . Outer Loop

4: (αk, νk)← OptimizeWeights(D, µ
k
, Σk, ω)

5: µ
k+1
← Update(µ

k
, ω) . Update variable means

6: Calculate Σk+1 from D . Update variable covariances

7: until ∆(νk−1, νk) < ε

8: function OptimizeWeights(D, µ
k
, Σk, ω) . Inner Loop

9: θ ← α, µ
k
, Σk+1

10: Calculate D(D, θ) and R(θ) . E.g. (4.12)
11: Calculate constraints
12: Compose and solve QP
13: return Weights αk, value of νk

14: end function

15: Output: f ∼ GMM {αk, µk,Σk}

disturbed by additive Gaussian noise. Minimizing the superficial
regularizer may thus be understood as minimizing an approximate
upper bound on a common measure of curvature for the mean func-
tion of the generative model. Using the superficial regularizer the
deficient approximation of the approaches in Ch. 3, where data is dis-
tributed scarcely was overcome and the generalization performance
may be improved.

• The extension of the existing variable kernel approach used in den-
sity estimation to variable kernel covariances for conditional density
estimation allows for a representation of the model uncertainty. The
local data density scales the kernel covariance, so that in areas with
plenty of data more peaked conditional densities are allowed, whereas
for low density parts of the state space large, i.e., more conservative
covariance extensions reflect the model uncertainty.

• A caveat is the computational complexity of the given approach as
discussed in Sec. 4.3.1. A naive implementation of the proposed



4.4. Experimental Validation 83

Table 4.1: Average neg. log-likelihood scores
and component numbers for Exp. 4.4.1.

EM1 EM2 GPR Rényi SF SF+XV

NL 14.7577 25.4307 0.79627 0.83297 0.72647 0.56547

± σ ± 5.7847 ± 9.6808 ± 0.062536 ± 0.62414 ± 0.1773 ± 0.11966

# Comp. 67.3 67.3 N/A 66.1 67.3 66.5

overall optimization problem, i.e., a simultaneous optimization of all
means’ positions yields an optimization problem with a number of
optimization variables scaling with the number of the variable kernel
means and the dimensionality of the estimation problem. The pro-
posed efficient implementation alleviates this problem, but is greedy,
order-dependent, and not guaranteed to converge. The same state-
ment holds for the proposed “chunking” method. It should be noted
that chunking is one of the most common methods for solving the
QPs arising in SVMs.

Alg. 2 summarizes this chapter by combining the implementation of the
outer and inner loop of the nested optimization scheme into one algorithm.
This algorithm takes only the data as input and returns the estimated
conditional density in the form of a Gaussian mixture density.

4.4 Experimental Validation

The experimental validation resembles the evaluation setup in Sec. 3.5.2 for
non-parametric conditional density estimation presented in the preceding
chapter. For the evaluation, the identical system is employed, but in order
to test the generalization capabilities an artificial “gap” was created by
not sampling a part of the system. Additionally, the application of the
presented approach to nonlinear filtering is investigated for the benchmark
Kitagawa growth process [42, 93]. In the following, the experimental setup
as deviating from Sec. 3.5.2 is presented.

4.4.1 Conditional Density Estimation

In the following, the experimental setup, evaluation criteria, implementa-
tion details, and results for conditional density estimation are presented.
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Figure 4.3: Plots of the [0.025, 0.05, 0.075, 0.1, 0.35, 0.45] probability
contours (a) of the true underlying probabilistic model and (b)-(f) exem-
plary unnormalized estimates for the experiment in Sec. 4.4.1. Crosses
mark samples (black) and component variable means (red). The results are
based on [109].
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Experimental Setup For the evaluation of the conditional density estima-
tion, a probabilistic model derived from the following exemplary nonlinear
functional dependency perturbed by a noise term is sampled. This system
is identical to the system in Sec. 3.5.2

y = x+ sin(x3 ) +w , w ∼ N (0, 0.15) . (4.17)

The conditional density estimators are given 100 samples as input, which
are obtained by sampling x uniformly at random for the intervals
[−3 , −0.5 ] and [ 0.5 , 3 ] as well as the corresponding y according to the
normally-distributed noise term w. The generalization performance of the
estimators is investigated for the not sampled interval [−0.5, 0.5].

Evaluation Criteria The quality of the estimates is assessed according to
the criteria below:

• The prescriptive validity is quantified by determining a second set of
samples from [−1, 1], i.e., half of the sampling interval overlaps with
the sampling interval of the training samples and the rest is sampled
in an interval for which the estimators are not given any data. For
testing, the negative log-likelihood of this test set is calculated

• The computational efficiency of the conditional density function es-
timates is quantified by the number of components in the estimate.
This differs from Sec. 3.5.2 as for the proposed full-parameter opti-
mization some means are freely placeable and the inner loop of the
optimization will remove components irrelevant of their positioning.

Implementation Details The estimators used for this comparison are
identical to the set of estimators considered in Sec. 3.5.2, i.e., different
variants of EM (EM1-2), the standard GPR and the non-parametric ap-
proach with LCD distance measure and Rényi regularizer. Regarding the
approach proposed in this chapter, two parameter sets were considered.
In order to show the benefit in optimizing the variable means, the pro-
posed regularizer and variable covariances were used with the constraint
of fixing all components’ means to D (SF) and adding five variable means
to this set as well as optimizing these (SF+XV). Except for this differ-
ence, the employed parameters are identical, i.e., the size of the considered
neighborhood for the variable covariance was k = 10, ε = 0.02, the bmax

value for the LCD was set to ten times the largest distance between two
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Figure 4.4: System (a) and measurement function (b) of the Kitagawa
growth process [93] used in Exp. 4.4.2.

sample points, an initial σx = 0.05 as well as the trade-off parameter was
set to λ = 0.5. For determining the variable means’ initial positions a
greedy splitting procedure was adopted. The largest variable covariance
was determined and the variable mean was located half-way between the
component’s mean and the nearest neighboring sample. This step was
repeated for all variable means.

Results The results w.r.t. the prescriptive validity are given in Tab. 4.1
and show that EM produces drastically worse conditional density estimates
than all other approaches. The reason for this can be seen in Fig. 4.3
(b). EM appears to overfit the estimate at the turning points of the os-
cillating function, where clusters of data points are located. Thus, no
continuous function is recovered and the estimate deviates strongly from
the true underlying system Fig. 4.3 (a). The quality of GPR, the non-
parametric Rényi approach, and full parametric SF approach yield com-
parable results with no significant advantage for either of the estimators,
cf. Tab. 4.1. This resembles the results from Sec. 3.5.2 and shows that
the superficial regularizer allows for the same level of generalization as
the Rényi regularizer. GPR produces results of similar quality. Yet, the
variance of the results shows that the GPR produces high quality results
more consistently. The overall best results are obtained from SF+XV.
These results improve on SF and have a variance in the estimation, which
is second only to the GPR. Note, that only SF+XV and GPR are capable
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Table 4.2: Negative log-likelihood scores for the growth process [93]. The
results are averages over ten experiments.

NL0.25 ±σ NL0.5 ±σ NL0.75 ±σ

EKF 921.7 ± 168.7 2.9e+ 04 ± 1585.9 2.7e+ 05 ± 4036.5

UKF 60.8 ± 1.9 628.4 ± 31.0 2399.8 ± 63.4

GP-UKF 62.7 ± 4.9 429.3 ± 54.2 1717.1 ± 95.5

GP-ADF 59.3 ± 3.1 283.6 ± 23.4 1066.8 ± 42.8

GMF-SF 55.9 ± 3.5 246.5 ± 57.1 775.6 ± 296.8

GMF-SF+XV 53.8 ± 1.8 187.2 ± 19.4 489.5 ± 77.6

of interpolating the underlying functional dependency at intervals, where
no data is located, cf. Fig. 4.3 (b)-(d). Regarding the computational effi-
ciency, the GPR will have a function representation entailing all samples if
not further sparsification is performed. In contrast, the other approaches
produce GMM with ca. 30-40 % less components. The results presented
in this section are based on [109].

4.4.2 Nonlinear Filtering Application

As the conditional density estimation algorithm proposed in this chapter
will be used for nonlinear filtering, results for a nonlinear Gaussian filtering
benchmark application and an experiment for filtering with multimodal
posterior densities are presented.

(a) Kitagawa growth process

The benchmark problem considered is the Kitagawa growth process [93],
which has been used for comparing especially GP-based filters, e.g., in
[42, 107, 109].

Experimental Setup The process comprises the following nonlinear
system model

xk+1 = 0.5xk + 25xk
1+x2

k
+wk , (4.18)
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and the nonlinear sinusoidal measurement model

yk = 5 sin(2xk) + vk . (4.19)

Identical to [42], the stationary process noise is set to wk ∼ N (w, 0.2) and
vk ∼ N (vk, 0.01).

Evaluation Criteria For the evaluation, a second data set was generated.
Given a fixed prior normal density f(x0), the successive state distribution
f(x1) was calculated and a measurement ŷ1 sampled. This generation pro-
cess was performed for 200 prior normal distributions with equidistantly
sampled mean µ0 ∈ [−10, 10], but fixed noise σ0 = 0.5. In order to assess
the quality of the results two criteria are employed.

• The distribution of the negative log-likelihood score (NL) of the true
state for the estimated f(x1) is given in three quartiles. The NL
shows how well the true state is explained by the estimates.

• The Mahalanobis distance M(x) [125] between the true and the es-
timated state is given as a measure of the estimate’s uncertainty, i.e.,
estimates close to the true state will be considered far away, if the
uncertainty about the state is high.

In summary, lower values indicate better performance for both scores.

Implementation Details For the comparison, the Extended Kalman Fil-
ter (EKF), Unscented Kalman Filter (UKF), the GP-based UKF, i.e.,
the GP-UKF, and the GP-based analytic moment based filter (GP-ADF)
were used as state of the art nonlinear filters. The EKF, UKF, GP-UKF
and GP-ADF implementations of [42] were used with default parameter
settings. For testing, the quality of the proposed conditional density esti-
mates for nonlinear filtering, a Gaussian mixture filter was employed. In
this filter the system and measurement model are GMM. The implemen-
tation from [107] was used. Similar to Sec. 4.4.1 the system model was
trained with SF and SF+XV and the measurement model was trained
with SF only.

Results The numerical results for both benchmark nonlinear Gaussian fil-
tering experiment in Tab. 4.2 and Tab. 4.3 show that the proposed GMM
filter based on the estimated GMM yields results better than EKF, UKF,
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Table 4.3: Mahalanobis distance results for the growth process [93].

M(x) ±σ

EKF 2.1e+ 06 ± 3.0e+ 06

UKF 1025.6 ± 4499.2

GP-UKF 3623.9 ± 41986.9

GP-ADF 22.6 ± 36.6

GMF-SF 12.1 ± 13.3

GMF-SF+XV 7.2 ± 7.1

and GP-UKF. Only the GP-ADF produces comparable results. Addition-
ally, the results show that the introduction of the variable means improves
the results for the Kitagawa experiment. The reason for this improvement
is that the system model, cf. Fig. 4.4 (a) is almost a jumping system
around (0, 0). As the samples used for training are uniformly distributed
this jump is undersampled. Thus, the optimization of the means w.r.t.
the superficial regularization alleviates this problem as the variable means
“fill” the gap.

(b) Multimodal Posterior Densities

The Kitagawa growth process was used for comparing with Gaussian fil-
ters. In order to show the capability of the proposed GMM-based filter
to estimate multimodal posterior densities the following nonlinear cubic
sensor model [72, 107] is considered

xk+1 = 2xk − 0.5x3
k +wk , wk ∼ N (0, 0.175) . (4.20)

For training, 100 samples were generated according to (4.20). As only the
capability to estimate multimodal posterior densities shall be investigated
the GMM conditional density for the system model is estimated using the
SVR approach described in Sec. 3.5.2. Given the prior density

f(x0) = N (x0; 0.4, 0.8) , (4.21)

the prediction capacity of the resulting Gaussian mixture filter (SVDF)
[107] is compared to the GP-ADF for four consecutive prediction steps
without any measurements.
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Figure 4.5: Posterior densities after 1,2,3, and 4 prediction steps: true
posterior density (red, solid), the GP-ADF estimated posterior density (blue,
dash-dotted), the SVR-based estimate (SVDF) (black, dash), and a moment-
matched Gaussian approximation of the SVR-based estimate (black, dotted).
Graphics taken from [107].

Results Fig. 4.5 shows the prediction results for the cubic sensor sys-
tem (4.20). This example shows that the GMM filter captures the modes
well, whereas the GP-ADF as a prototypical nonlinear Gaussian filter
degenerates. Note that even a moment-matching approximation of the
GMM yields better results than the GP-ADF. The results presented in
this section are reproduced in part from [107, 109].
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4.5 Main Contributions

The main contributions of this chapter may be summarized as follows w.r.t.
descriptive and prescriptive validity as well as computational efficiency.

• In this section, a conditional density estimation algorithm was pro-
posed that overcomes the limitation of the estimates to Gaussian
mixture densities with means identical to the data points and identi-
cal parameters for all components of the mixture. These restrictions
reduced the capacity of approaches proposed in Ch. 3 and therefore
limited the quality of the obtainable conditional density estimates,
i.e., the descriptive validity.

• The proposed approach improved the prescriptive validity by
simultaneously smoothing the mean function of the estimate and
smoothness of the conditional density function surface by means
of the superficial regularization term. Additionally, an account for
the model uncertainty in the estimate was introduced by means of
data-dependent covariances. As was shown in the experimental val-
idation, both measures improve the generalization capability of the
obtained estimate.

• Regarding the computational efficiency, the resulting conditional den-
sities are sparser than the estimates produced by the more restric-
tive approach presented in Ch. 3, but the training algorithm is more
expensive. The conditional densities produced by the proposed ap-
proach are more efficient for the use with a nonlinear filtering online,
but take longer to train offline.

• For the potential application of the conditional density estimator,
i.e., nonlinear filtering, the proposed approach has been shown to
produce comparable or better results in nonlinear Gaussian filtering
than GP-based filters. Additionally, the proposed GMM-based filter
is capable of supporting multimodal posterior densities, which is not
possible for all assumed Gaussian filters.





That which we must learn to do,
we learn by doing.

—Aristotle

5 Hyperparameter Optimization

The density or conditional density estimation algorithms presented in
Ch. 3 and Ch. 4 solve their respective estimation problems w.r.t. a set of
predefined hyperparameters. Since the solutions and therefore the quality
of the solutions depend on the hyperparameters, the determination of the
hyperparameters is crucial to the density and conditional density estima-
tion. In this chapter methods for the optimization of the hyperparameters
w.r.t. to scalar objective functions will be derived. Most of the optimiza-
tion methods are applicable to density and conditional density estimation.
The specific differences will be considered where necessary.

Challenge Let the set of all parameters of the generic optimization
problem be given identically to the problem definition (2.29) by the
following vector

θ = [ αT µT ΣT ωT ]T . (5.1)

The hyperparameters ζ are the parameters in θ, which are not optimized
by the respective algorithm presented in Ch. 3 or Ch. 4. The exact set ζ
depends on the specific algorithm. Similar to the underlying problem, the
challenge is the determination of ζ is ill-posed and needs to be performed
w.r.t. a given measure of generalization. For example, a covariance Σ,
e.g., with a small value of det(Σ), may result in overfitting and dense rep-
resentations of the solution or may lead to underfitting for large values
and produce sparse representations, cf. Fig. 5.1. Furthermore, the opti-
mization problem to be solved is nonlinear and nonconvex and has many
local extrema in general.

Key Idea As motivated in Sec. 2.1.4, the hyperparameter optimization
problem may be understood as a classical model selection problem and ad-
dressed by approaches ranging from heuristics over Bayesian approaches to
cross-validation. In this chapter, a data-driven approach to hyperparam-
eter optimization for density and conditional density estimation based on
cross-validation (CV) [47, 130, 156] is presented. The key idea of this ap-
proach is the assessment of the generalization performance of the estimator
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Figure 5.1: Three different noise levels for an exemplary system. In (a),
the noise is too small in x-direction to approximate the underlying functional
dependency well and the noise too large in the y-direction. In (b), the noise
value is too large so that the oscillation of the function can be hardly seen. In
(c), the correct noise level was used.

w.r.t. the distribution of the underlying phenomenon as manifesting in the
data. In order to obtain a robust assessment, the assessment is performed
iteratively on hold-out data.

5.1 Overall Optimization Scheme

In this thesis, hyperparameter optimization is considered as a generic con-
strained optimization problem. The optimization comprises of four compo-
nents: the optimization variables ζ, a measure of generalization, a generic
function minimization procedure, and the constraints of the optimization
variables. The key idea is to create a measure of generalization and to per-
form a generic function minimization thereof w.r.t. the hyperparameters ζ.
In the following, the generalization measure based on a performance score
on a hold-out sets will be derived, the constraints on ζ will be introduced,
and combined with a generic function minimization scheme.

5.2 Generalization Measure

A data-driven measure of generalization performance is CV [47, 130, 156].
The most common type of CV is so-called k-fold CV. In k-fold CV, the
data D is partitioned into k equally sized subsets Fi ⊂ D. For estimat-
ing the generalization performance, training Tj and validation Vj sets are
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constructed for each fold

D =
⋃

i=1:k

Fi , Fi ∩ Fj = ∅ , Tj =
⋃

i=1:k,
i 6=j

Fi , Vj = Fj . (5.2)

In (5.2), the j-th fold is used for validation and all other folds are merged
into the training set. If a merger like (5.2) is performed for each of the
k folds, k distinct training and testing data sets are obtained, cf. Fig. 5.2
(left). The generalization performance of an estimator is assessed by con-
sidering the estimator’s performance on each fold, i.e., by training the
estimator with each training set and evaluating its performance on the
respective testing set for each of the k folds, cf. Fig. 5.2 (right). Typically
generalization performance of the estimator is calculated as the average
performance ν̄ over all k folds, other choices are possible, e.g., a least re-
gret choice, cf. [130, Ch. 5]. In order to assess the estimator’s score, which
is trained on the training set Tj , on the validation set Vj the log-likelihood
(2.9) is employed1

L̄ (Vj) =

|Vj |∑

i=1

log fTj (xi) , ∀xi ∈ Vj ,

L̄ (Vj) =

|Vj |∑

i=1

log fTj (yi|xi) , ∀ (xi, yi) ∈ Vj . (5.3)

The definition of the log-likelihood in (5.3) differs for density estimation
(left) and conditional density estimation (right). Other measures for as-
sessing the estimator’s performance are applicable too and only need to
substitute the log-likelihood score in the overall algorithm.

5.3 Function Minimization

Using the obtained approximation of the generalization performance ν̄, the
hyperparameters ζ∗ are obtained by minimizing ν̄ w.r.t. ζ using standard
function minimization algorithms [12]. Note, that the specific choice of the
generalization measure may facilitate or prohibit some function minimiza-
tion approaches, e.g., due to non-differentiability of the measure. Having
optimized the hyperparameters, the final estimate ζ∗ is obtained by using

1The interested reader is referred to Appendix A.2.2 for more information about the
log-likelihood as a distance measure.



96 Chapter 5. Hyperparameter Optimization

D

Training Validation

Split

T1 V1
Fold 1:

T2 V2
Fold 2:

Tk Vk
Fold k:

Pre-Processing Hyperparameter-Optimization

Learn Evaluate
f

Learn Evaluate
f

Learn Evaluate
f

Combine Adaptv̄ k+1k

vk

v2

v1

kζ

ζζ

Figure 5.2: Illustration of the pre-processing used for the cross-validation
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below and formalized in Alg. 3.

ζ
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and then performing density or conditional density estimation using the

entire data set. The generic CV optimization scheme2 is summarized in
the Alg. 3. Given an initial parameter estimate ζ

0
, the number of folds k,

and D, Alg. 3 returns the optimal hyperparameters ζ∗ and the Gaussian
mixture density or conditional density f∗.

5.4 Constraints and Reformulations

The algorithms for density and conditional density estimation proposed
in Ch. 3 and Ch. 4 use different sets of hyperparameters. The weights
α are estimated by the algorithms in both chapters and also the non-
negativity and mass constraints of α are imposed by these algorithms. For
the other parameters in θ the constraints are presented below. Wherever
necessary, the difference in constraints w.r.t. density or conditional density
estimation is explained.

Means µ: The means of the estimate are defined as the concatenation of
all mean vectors µ

i
of the estimated mixture density representation

in the density or conditional density, i.e.,

µT := [µT
1
. . . µT

L
]T . (5.4)

2More information, other CV variants, and respective pseudo-code can be found in
[130, Ch. 5] and [47, Ch. 9].
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In the non-parametric approaches to density and conditional den-
sity estimation presented in Ch. 3, both the number of components
L = |D| and the mean locations µ

i
= di, di ∈ D are fixed. Therefore,

the means were not variable and not subject to any constraints. The
advantage of the full parameter conditional density estimation pro-
posed in Ch. 4 was the removal of this restriction by allowing a set of
meansMv to be freely chosen, i.e., L 6= |D|, typically, L = |D|+|Mv|
and the mean locations µ

i
∈ D∪Mv,Mv ⊂ IRN+M. As discussed in

Ch. 4 the typical restrictions are due to computational limitations.
It was the purpose of the optimization of the component locations
Mv to improve the expressiveness of the estimator in parts of the
state space where little or no data is given and a non-parametric ap-
proach is inadequate. All of the above statements do not constitute
constraints. In general, an optimization of each component in Mv

w.r.t. a non-convex and nonlinear objective function, i.e., an objec-
tive function with many local extrema, would be performed over the
entire state space. As this is impractical, the mean position may be
constrained to fixed regions of the state space to incorporate prior
knowledge into the estimation process.

Covariances Σ: A valid covariance matrix needs to be symmetric and
positive definite [18]. It is non-trivial to ensure these properties in a
constrained optimization, where the optimization variables are the
vectorized elements of the different covariance matrices, i.e.,

Σ :=
[
σ

(1,1)
1 . . . σ

(N,N)
1 . . . σ

(1)
L . . . σ

(N,N)
L

]T
, (5.5)

with σ
(1,1)
i , . . . , σ

(N,N)
i the elements of the covariance matrix Σi ∈

IRN×N. In order to assure positive definiteness of the symmetric ma-
trix, the optimization variables may be substituted against the ele-
ments of the square root formulation of the covariance matrix

Ti = Σ
1/2
i , Σi = Ti ·Ti .

Using the elements of Ti ∈ IRN×N as optimization variables and
constructing Σi for the evaluation of the estimate guarantees both
constraints. Asserting for both constraints may be trivially achieved
if the covariance matrices are axis-aligned, i.e., Σi = diag(σi) with
σi ∈ IRN

+ the vector of variances along each of the N-dimensions.
By construction, Σi will be symmetric. If 0 ≺ σi is satisfied the
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Algorithm 3 Hyperparameter Optimization by Cross-Validation.

1: Input: D, ζ
0
, k

2: Initialize ζ
t
← ζ

0

3: {Ti,Vi}i=1:k ←Partition D . Create T1:k, V1:k

4: repeat . Standard function minimizer

5: for i = 1 : k do

6: θt ← Estimation(Ti, ζt) . (Conditional) Density Estimation

7: νi ← Evaluate(Vi, θt) . E.g. Log-likelihood Score

8: end for

9: ν̄ ← Average or Minimum/Maximum ({νi}i=1:k)

10: ζ
t+1
← Update

(
νt, ζt

)

11: until ε < νt − νt−1

12: ζ∗ ← ζ
t+1

13: Output: f∗ ∼ GMM {αk, µk,Σk}|ζ∗

covariance matrix will be positive definite too. Note, that there is
no difference in the optimization for covariances between density and
conditional density estimation. The interpretation of the elements of
Σi and therefore the structure of Σi deviates largely. In the case of
density estimation Σi is a dense matrix in general. For conditional
densities, the in- and output dimensions should be independent of
each other, i.e., the covariance matrix will consist of one block ma-
trix encoding the correlation w.r.t. the input and one encoding the
correlations w.r.t. output dimensions.

Trade-off Parameter λ: The parameter λ ∈ IR+ adjusts the trade-off
between the distance term Q1 and the regularization term K in
the target functions of the QPs constituting the main part of the
algorithms presented in Ch. 3 and Ch. 4, e.g., in (3.32) of Sec. 3.4

αT (Q1 + λK)α− 2αTQ
2
.
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Figure 5.3: Example for the initial values of variable means in the sense of
Ch. 4. The system (mean function [dashed gray] and samples [blue crosses]) is
identical to (4.18) and the initial positions for the variable means (red crosses)
were obtained by the described greedy reduction of the maximum trace of the
adaptive covariances.

In the above formulation, λ = 0 will remove the regularization term
from the target function. This effectively converts the regularized
nonparametric density or conditional density estimator into an un-
regularized estimator, i.e., in the case of Sec. 3.4 to a kernel density
estimator with mere weight optimization. A high value of λ will
enforce a stronger regularization relative to the distance between es-
timate and the empirical density or conditional density. The only
necessary constraint is the positivity of λ, i.e., a lower bound λ > 0.
Yet, if a maximum value for λ is known, it may be used as an upper
bound3.

For the sake of easier interpretation and numerical stability it is use-
ful to normalize the regularization term, e.g., with a kernel estimate
of the Rényi-entropy and the distance. A normalized lambda might
be calculated as λ′ = λ ·N with

N ≈ nT Q1 n

nT Kn
, n = 1 · 1

L
.

Loss Insensitivity ε: In some implementations of the algorithms pre-
sented in Ch. 3 and Ch. 4 the ε-insensitive loss function [36, 164,

3Note, that some function minimization implementations even require both a lower
and an upper bound to be provided.
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165, 190] is employed for point-wise comparisons

lε1(a, b) =

{
0 , |a− b| ≤ ε
|a− b| − ε , else

. (5.6)

This loss-function penalizes deviations between the two values a and
b if they exceed ε. This insensitivity allows for some noise in the
estimates, but still penalizes strong deviations. For example, this
robust loss function is used in [107] for the point-wise comparison
of an empirical cumulative distribution function with the cumulative
function constructed from the estimator’s result. The level of noise
ignored by the loss-function is a hyperparameter, which needs to be
optimized. It is lower bound by 0, as an absolute negative differ-
ence cannot be obtained. The upper bound differs for density and
conditional density estimation. In the case of density estimation the
upper bound is uε = 1. For conditional density estimation, the up-
per bound depends on the distribution of the components in input
and output dimensions, thus may be uε = vol(I) in the worst case.
For both density and conditional density estimation it is favorable to
introduce any available prior knowledge into the estimation process.

5.5 Initial Values

As discussed before, the hyperparameter optimization yields a non-convex
and nonlinear optimization problem with many local extrema. In order
to achieve fast convergence to a high-quality solution a good initial value
for the hyperparameters is advisable. In the following list some heuristics,
which were found to be useful are devised.

Means µ
0

The optimization of the locations of additional means arises
only in the conditional density estimation algorithm proposed in
Ch. 4. There are two initial values to be set: the number of vari-
able components and their location. The determination of both ini-
tial values should be considered simultaneous and is an optimization
problem in itself for which an approximation is proposed. The infor-
mal reasoning for optimizing components’ locations was the improved
capacity of the estimator especially in areas of the state space which
are populated by no or little data, cf. Fig. 5.3. This intuition may be
formalized by an upper bound on the maximum size uΣ of the vari-
able covariances Σi on each component, e.g., in terms of the trace
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Figure 5.4: Example for determining the initial value of the basis kernel’s
covariance in y-direction for data (crosses) sampled from an oscillating system
(blue) with normal additive noise (blue, dashed). Initially the state space
is partitioned in x-direction (dashed gray lines), a robust linear regression
estimate (red solid line) is estimated (left), and σ of the data (crosses) in each
partition normalized by the regression is calculated (right). For visualization
a normal density was plotted over the partition’s data (blue, right) and the
σ-bounds for the regression estimate are depicted (left, dashed red lines). The
overall σ is then determined by averaging all partitions’ σ.

of Σi. Determining the number of components to be optimized may
then be determined by a greedy iterative approach: In each step,
an additional component’s x-position is sampled or calculated as the
mean of a k-nearest neighbor sample set of the component of the
current estimate with the largest covariance trace. This procedure is
repeated until the covariance size falls below a user-defined thresh-
old. The latter approach is shown in Fig. 5.3 (b) and (c) for different
numbers of means. If only one functional dependency is present in
the data, the y-locations of the variable components may be obtained
by standard regression procedures [73]. Otherwise a nearest neighbor
density estimator may be employed.

Covariances Σo The initial values for the covariance differ for density
and conditional density estimation as for conditional density estima-
tion an underlying functional dependency may be assumed as well as
there is a semantic difference for the input and output dimensions.

For density estimation, the results from the kernel density estimation
literature as presented in Sec. 2.1.2 or obtainable from the classical
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Figure 5.5: Example for determining the initial value of the basis kernel’s
covariance in y-direction for data (crosses) sampled from an oscillating system
(blue) with normal additve noise (blue, dashed). Initially, a nonlinear regres-
sion estimate, i.e., a cubic smoothing spline with p = 0.9 (red solid line), is
estimated (left), and σ of the data normalized by the regression function is
calculated (right). For visualization a normal density was plotted over the
partition’s data (blue, right) and the σ-bounds for the regression estimate are
depicted (left, dashed red lines).

texts [87, 140, 153] and more recent overviews [49, 179] may be em-
ployed for determining the initial values. Note that in the literature
the kernel width is typically calculated a priori and not optimized.

For conditional density estimation, a decomposition of Σ0 into in-
dependent submatrices for the input dimensions Σ0,x ∈ IRN×N and

output dimensions Σ0,y ∈ IRM×M, i.e.,

Σ0 =

[
Σy 0
0 Σx

]
, (5.7)

needs to be considered. Different approaches for the calculation of
the Σy may be considered given information about the data present.
For example, if the data corresponds to a functional dependency
perturbed by additive Gaussian noise, i.e., not more than one de-
pendency and no multimodal noise are present, a mean function
µ : IRN 7→ IRM may be determined by standard regression methods
[73]. Using this mean function, an estimate of the noise, e.g., by
calculating the variance or the y values normalized w.r.t. the regres-
sion function may be obtained. This procedure is demonstrated in
Fig. 5.4 for an approach, which partitions the state space and per-
forms a robust regression of a linear mean function in each partition
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x→
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→

(a) Kernel-weighted contribution of
one sample in the data density

estimator (5.8) w.r.t. the x-direction.

x→

y
→

(b) K-nearest neighbors (red crosses)
for one sample (black cross), which are
used for a density estimate, cf. (5.9).

Figure 5.6: Example for determining the initial value of the basis kernel’s
covariance in y-direction for data (crosses) sampled from an oscillating system
(blue) with normal additive noise (blue, dashed). The overall σ is calculated by
an averaged covariance calculation w.r.t. each data point. The contribution of
each data point is either the local covariance as obtained by using the sample
as a sample mean and performing a kernel-weighted covariance calculation
(left, dotted and dash dotted lines indicate the kernel µ ± σ bounds) or by
calculating a k-nearest neighbor (red crosses, red outline) estimate of the data
density (right).

and in Fig. 5.5 for an approach based on estimating a cubic smooth-
ing spline mean function. Alternatively, the noise may be estimated
by local kernel averaging, which gives rise to the following estimator

ΣDy =
1

|D| − 1

|D|∑

j=1

w(xi, xj)
[
y
j
− y

i
)
] [
y
j
− y

i

]T
, (5.8)

i.e., the sample covariance with the samples weighted according to
their distance to the position of the i-th component in x-direction
by a function w : IRN × IRN 7→ [0, 1], e.g., by a kernel function
[28]. This approach and a classical kernel-weighted approach are
shown in Fig. 5.6. A similar approach has been derived in [28] for
density estimation. If multiple functional dependencies are present
in the data and the data cannot be associated certainly with one
dependency only, the above approach is inapplicable. The sample
covariance would be centralized for one of the present mean functions
only and the data produced by other dependencies will increase the
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covariance size. For this reason, an approach may be considered,
which does not assume any functional dependency, but considers the
local data density only. This density estimate is calculated based on
the k-nearest neighbors { y(i)

j
}1≤j≤k of y

i

ΣDy =
1

|D|

|D|∑

i=1




k∑

j=1

l2(y(i)
j
, y

i
)


 . (5.9)

The resulting ΣDy is then obtained by averaging the local data densi-
ties (5.9). Note, that the number of neighbors k, needs in turn to be
determined by general model selection procedures. For calculating
Σx, regression approaches are not applicable, as the marginal density
f(x) is a uniform distribution over the considered part of the state
space in the optimal case. Therefore, Σx is estimated based on the

k-nearest neighbors {x(i)
j }1≤j≤k of xi, in analogy to the calculation

of Σy in (5.9)

ΣDx =
1

|D|

|D|∑

i=1




k∑

j=1

l2(x
(i)
j , xi)


 . (5.10)

Trade-off Parameter λo The necessity of regularization as governed by
λ depends on the data distribution. As a derivation of a data-
dependent regularization is out of the scope of this thesis, the simple
rule-of-thumb that regularization should depend on the number of
data present is proposed. It is therefore proposed to employ the
following heuristic

λ0 = p · 1

|D| , (5.11)

where p is the maximum amount of regularization expected as an
initial value, e.g., p = 0.5, which is weighted by the number of data.
With |D| → ∞ the initial amount of regularization converges 0.
This formalizes that in this case the density or conditional den-
sity estimation problem is no longer ill-posed, i.e., regularization
is not necessary.

Loss Insensitivity ε0 Because ε encodes the tolerated amount of noise
in the solution, the initial value may be the initial estimate of this
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Figure 5.7: Larger view of the basis kernel’s covariance as shown in Fig. 5.4,
Fig. 5.5, and Fig. 5.6 (left) for the same data and system (a). The partitioning,
the respective linear regression estimates with their σ-bounds corresponding
to Fig. 5.4 are depicted in (b). The result using the nonlinear regression from
Fig. 5.5 is given in (c) and for the data-driven kernel-weighted approach of
Fig. 5.6 in figure (d).

tolerance level. For density and conditional density estimation ε may
be either the point-wise accepted difference in probability or cumu-
lative distribution between the estimated and the empirical func-
tion. Intuitively, the tolerance shall be given as a percentage p, e.g.,
10%, depend on the number data |D| given, and be relative to the
maximum deviation umax, e.g., a function like

ε0 = p · umax ·
1

|D| , (5.12)

and the initial value obtained from instantiating (5.12) converges to
0 for |D| → ∞.
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5.6 Properties and Restrictions

The most important properties of each of the four components of the over-
all optimization scheme—the optimization variables, the objective function
measuring the generalization, the generic function minimization procedure,
and the constraints on the optimization variables— are summarized in the
following list.

• The complexity of the hyperparameter optimization depends on the
setup, i.e., the number of optimization variables and the number of
folds considered as well as the initial values. In general, all compo-
nents’ positions may be optimized in one large optimization prob-
lem. Since determining only all positions corresponds to solving
an L · (M +N)-dimensional optimization problem, this becomes in-
tractable already for small problems [181]. Note, that a naive op-
timization of each covariance matrix requires the optimization of
O
(
[M +N ]2

)
variables. As the number of optimization variables,

specifically the number of variable means has been discussed in Ch. 4,
only the setup of the hyperparameter optimization is considered in
the remaining part of this list. If k = |D|, one obtains a “leave-one-
out” estimate of the generalization error. The computational effort
is maximal for this type of estimate, as |D| estimates need to be
obtained from |D| − 1 samples. In contrast, if k is small, e.g., k = 5,
only 5 estimates need to be obtained, but the data distribution in
the folds may deviate strongly from the distribution of the full data
set, i.e., the estimate of the generalization capability will become
inaccurate. The same reasoning holds, if |D| is small and already
omitting one sample biases the estimate.

• The objective function is the cross-validated negative log-likelihood
score. This score is not appropriate in the case of scarce data and
may require an augmentation with prior knowledge, e.g., in the form
of smoothness assumptions may be necessary.

• From a theoretical point of view, no statements about convergence
speed or even convergence may be given for the considered nonlinear
and non-convex problem. This is an inherent property of the density
and conditional density estimation problem. We refer the interested
reader to [200, 202], where this problem is discussed in depth in the
context of the EM algorithm as such and for EM applied to GMM
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estimation. Local convergence may be guaranteed at most for GMM
estimation with EM [202].

• The complexity of evaluating the density or conditional density es-
timate may be considered independent of the hyperparameter opti-
mization given that the hyperparameter optimization yields non-tri-
vial estimates. For example, if the hyperparameter optimization un-
derfits the true phenomenon too few and if it overfits too many com-
ponents will be chosen. Typically, this is not the case or may be
avoided easily.

• The constraints are necessary to obtain valid estimates, yet they
allow for an introduction of prior knowledge into the estimation al-
gorithm too. This is for example the case if it is known that the
variance in one dimension is bound due to physical reasons governing
the data generation process. This fact may be exploited by setting
tighter bounds on the allowed maximum variance for this dimension.

• The initial values allow for an easy introduction of prior knowledge
into the estimation problem too. Any prior knowledge, e.g., about
the noise due to multiple tracks present in the data may be exploited.
A poor choice of the initial values for ζ may result in long training
times, w.r.t. the employed function minimizer, and potentially poor
quality estimates.

• Each heuristic for determining the initial values shown in Fig. 5.4,
Fig. 5.5, and Fig. 5.6 depends on the specific parameters. For a larger
state space, the partitioning scheme of the linear regression approach
will deliver only good results if the partitions contain enough data as
can be seen in Fig. 5.7 (b), where some regression estimates are too
smooth or too steep. Similarly, the nonlinear regression smoothes too
strongly in Fig. 5.7 (c), e.g., around (2.5, 3), and the kernel-weighted
density estimation underfits the noise in Fig. 5.7 (d). The sensitiv-
ity to the parameter choices for these three approaches is given in
Fig. 5.8, where the number of partitions, the smoothing parameter,
and the kernel size were varied for a set of 100 MC runs. The results
show that only a good parameter choice will provide an initial value
close to the desired true value.
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Figure 5.8: Boxplots of the standard deviations estimated by the different
approaches w.r.t the respective parameters. Each boxplot summarizes the
statistics of 100 MC runs for an approach with a fixed parameter setting. For
the linear-regression approach the number of partitions, which are averaged
to obtain σ is varied. For the nonlinear regression approach, the trade-off
parameter p is varied–p = 0 corresponds to a least-squares linear model fit
and p = 1 yields the cubic spline interpolation. For the data-driven kernel-
weighted approach, the degree of locality is varied by varying the width of the
employed Gaussian kernel.
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5.7 Main Contributions

The contributions of the presented hyperparameter optimization can be
summarized w.r.t. descriptive and prescriptive validity as well as compu-
tational efficiency as follows.

• The descriptive and prescriptive quality of the given approach is the-
oretically limited due to the amount of data given and the chosen
cross-validation procedure, because the partitioning scheme may pro-
hibit the consideration of a data distribution as represented in the
full data set. Practically, the approach is limited by the amount of
computation investable in hyperparameter optimization scheme.

• The bottleneck of the algorithm presented in this section is the com-
putational complexity. Assuming the fixed computational complex-
ity of the algorithms for density and conditional density estimation,
which are used as a subroutine in Alg. 3, the computational effort
of the hyperparameter optimization is dominated by the CV and
the convergence properties of the nonlinear function minimization
algorithm. For applications, where this computational cost is not
acceptable, the proposed algorithm may serve as a benchmark for
developing faster, e.g., approximative approaches.

• The presented hyperparameter optimization approach is generic,
because—except for minor details—the algorithm may be employed
for any density and conditional density estimation. This algorithm
resembles cross-validated approaches for KDE [179], but extends
these to hyperparameters needed for the regularized estimation
scheme. The approach may therefore be understood as a blend of
these approaches and hyperparameter optimization for SVMs [165].
As to the best of our knowledge, the given description of hyperpa-
rameter optimization, which is an extended and improved version of
[107], is the first of this kind for conditional density estimation.





You don’t understand anything
until you learn it more than one way.

—Marvin Minsky

6 Conditional Density Estimation given Samples
and Prior Knowledge

In this section, the problem of conditional density estimation from sam-
ples and prior knowledge is investigated1. This problem arises because
the results of previous measurement sequences or expert/domain knowl-
edge may be available and shall be used in conjunction with the data to
solve the conditional density estimation problem. For example previously
conducted high resolution measurement sequences, which may have been
limited to a certain part of the state space, need to be combined with
samples from a low-resolution sequence, which are scattered in a larger
fraction of the state space. As will be shown in this chapter, the use of
these additional sources of information is advantageous especially for the
generalization performance.

Challenges The challenge in using both prior knowledge and data is that
the prior knowledge typically will not be given as additional samples but in
the form of already compiled generative or probabilistic models. Because
of its advantageous properties the type of the conditional density function
shall remain unchanged and the computational overhead for using the prior
knowledge shall be minimized in training and testing.

Key Ideas The key ideas for the incorporation of the prior knowledge
are to use a favorable approximation of the prior knowledge and to es-
timate the conditional density from the samples and the approximation
simultaneously. In the following, the introduction of prior knowledge
will be restricted to one specific approximation for a generative and a
probabilistic model with scalar input and output dimension each. Both
approximations may approximate the prior knowledge arbitrarily well,
whereas a higher approximation quality always is accompanied by higher
computational complexity. In the following, conditional density estima-
tion with data and prior knowledge of the generative model in the form of

1The results presented in this chapter are an extended version of the results presented
in [108].
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Figure 6.1: (a) The true mean function (solid, red) with σ bounds
(dashed,gray) and samples drawn accordingly are shown. (b) A discretization
of the mean function from equidistant sampling in x-direction is depicted (red).
(c) The σ bounds for the default kernel K0 (gray) and for each component of
the mixture kernel K1 (red) are depicted.

mean function constraints or of the probabilistic model in form a Gaussian
mixture density kernel approximating the given probabilistic model
will be demonstrated.

6.1 Mean Function Constraints

Mean function values are the key information conveyed by prior knowledge
in the form of a generative model. Let the generative model be given with
additive, zero-mean Normal noise

y = g(x) +w , (6.1)

with g : IR 7→ IR, w ∈ IR, and a Normal noise term w ∼ fw. The mean
function of (6.1) gives the location of the expected values of the density
f(y|x̂), for fixed x̂ ∈ IR.

Key Idea The key idea of incorporating (6.1) into the conditional density
estimation algorithm is the minimization of the distance D between the
expected values of the estimate f and the mean function values ŷ = g(x̂)
for all fixed x̂ ∈ IR, i.e.,

min

ˆ
IR

D

(ˆ
IR

y f(y|x) d y , g(x)

)
dx . (6.2)
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The calculation of the expectation cannot be performed analytically in
general and a minimization of (6.2) for an interval, i.e., a restricted part
of the state space, involves an infinite number of point-wise evaluations,
the following approximation to (6.2) is proposed

min

C∑

c=1

D

(ˆ
IR

y f(y|x̂c) d y , g(x̂c)

)
, (6.3)

where x̂c ∈ IR, g(x̂c) ∈ IR, and {( x̂c, g(x̂c) )}1≤c≤C ⊂ IR × IR corre-
spond to C sample points obtained from discretizing the values of g. Any
sampling algorithm may be employed for obtaining the samples, e.g.,
Monte Carlo or distance-measure based approaches. Each sample cor-
responds to a constraint on the expected values of the estimate for one
fixed input value.

Incorporation In order to introduce the prior knowledge about the mean
function into Alg. 1, a term penalizing the distance in (6.3) needs to be
added to the QP in (3.32) as a function of the weights α of the mixture
conditional density f . For each of the C fixed sample points x̂i, one may
calculate the expectation using the following simplifications

ˆ
IR

y f(y|x̂c) d y =

L∑

i=1

αi f
x
i (x̂c)

(ˆ
IR

y fyi (y) d y

)

=

L∑

i=1

αi cy f
x
i (x̂c)

= αT fx,i
y

(x̂c) , (6.4)

and instantiating D in (6.3) with the lε1-loss function yields for the c-th
sample point

∣∣∣∣
ˆ

IR

y f(y|x̂c) d y − g(x̂c)

∣∣∣∣ =
∣∣∣αT fx,i

y
(x̂c)− g(x̂c)

∣∣∣ < ε+ ξc . (6.5)

In (6.5), the slack variable ξc captures the error for the c-th sample point,
i.e., the deviation between the expected and the mean function value ex-
ceeding the tolerated deviation ε. The absolute value in (6.5) may be
resolved into one constraint measuring positive and one measuring nega-
tive deviation. For each of the C samples, (6.5) may be incorporated into
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the QP in (3.32) by adding a positive and a negative case of the left-hand
side of (6.5) as constraints and the sum of the errors to the target function,
i.e., the parts marked red and blue below

min
κ

κT Pκ− 2κTp + κT s , (6.6)

s.t. 0 � κ � lp ,
κTw = cm ,

κTH � 1ε .

In (6.6), P, p, lp, as well as w are identical to the matrices and vectors
used in (3.32) except that they are zero-padded to fit the κ+ and κ− as
the slack variables ξ are not used in the calculation of the distance and
regularization term in (3.32). Additionally, the following vectors are used

κ = [αT ξ+
1 . . . ξ+

c ξ−1 . . . ξ−c ]T , s = [ 0T 1T 1T ]T . (6.7)

As can be seen from (6.6), introducing prior knowledge about the genera-
tive model in the way presented above requires only minor changes to both
the nonparametric and the full-parameter conditional density estimation
algorithms presented in Ch. 3 and Ch. 4 respectively. This is due to the
fact that the calculation of the distance as well as regularization terms
remains independent of the slack variables and the constraints as well as
the term in the target function only require zero-padding.

6.2 Location-based Mixture Kernel

In the last section, prior knowledge about the mean function was intro-
duced into (3.32) in the form of constraints. It is more difficult if not
only the mean function but a probabilistic model is given with unknown
function g, i.e., only the left-hand side of the following model is given

f(y|x) = fw ( y − g(x) ) . (6.8)

If information about (6.8) shall be incorporated into Alg. 1. The incorpo-
ration depends on the specific representation of the probabilistic model
in (6.8). As Gaussian mixture densities are universal approximators, it is
assumed for the rest of this section that (6.8) is given as or approximated
by a Gaussian mixture density. As the prior knowledge is already a prob-
abilistic model, the challenge is to decide how the estimate f combines
prior knowledge with the samples.
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Key Idea The key idea of incorporating a probabilistic model in the form
of a Gaussian mixture density into Alg. 1 is to create a kernel, which com-
bines the default kernel K0 and a kernel K1 encoding the prior knowledge
using the sample information. The key requirements are listed below:

• The combined kernel needs to be a valid kernel, in the sense of
Appendix A.1.5 or [178].

• The combination shall be a function of the sample location in state
space, reflecting our belief in the accuracy of the prior knowledge.

These requirements are fulfilled if the resulting combined kernel is a con-
vex combination of the kernels K0 and K1, where the mixing proportions
depend on the sample location in state space. This location-based mixture
kernel is a valid kernel as a convex combination of valid kernel functions
is a valid kernel function, cf. Appendix A.1.5 or [178]. This location-based
mixture kernel may be understood as modeling the causal dependency
which kernel is valid in which part of the state space. This resembles
a product probability kernel [88]. Furthermore, this approach may be
considered a multiple kernel approach [8] without learning the mixture
weights too.

Incorporation Following this key idea, the mixture kernel including the
mixing function needs to be specified. For the definition of the mixture
kernel it is assumed that the default kernel K0 and the kernel K1 based on
the prior-knowledge represented as a Gaussian mixture model are given.
The mixture kernel K for the location [u v]

T ∈ IR2 is then given by

K
([

x
y

]
,

[
u
v

])
=

[
K0

([
x
y

]
,

[
u
v

])
K1

([
x
y

]
,

[
u
v

]) ]
· s
([

u
v

])
, (6.9)

with

s

([
u
v

])
=

[
P

(
k = 0

∣∣∣∣
[
u
v

])
P

(
k = 1

∣∣∣∣
[
u
v

]) ]T

, (6.10)

where k = 0 (k = 1) denotes the weight or mixing proportion for K0 (K1).
The mixing function s : IR2 → [0, 1] × [0, 1] may be an arbitrary function
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Figure 6.2: Means of the true system (dashed, blue) and expectations of the
conditional density estimate (red, solid) conditioned on fixed x (a) in case only
samples are given, (b) if samples and the mean constraints over [0, 3] are given,
and (c) the error in terms of the l1-distance of the conditional expectations to
the true mean function. The depicted results were obtained by a modification
of the LCD-based approach [105].

yielding valid convex combinations, i.e., satisfies the following condition
for all points in IR2

1Ts

([
u
v

])
= 1 . (6.11)

The mixture kernel (6.9) is a valid kernel, cf. Appendix A.1.5, and needs
to be used in the calculation of the distance term D, the regularization
term R, and the constraints. Since (6.9) replaces the default kernel, the
representation of f is changed too.

6.3 Experimental Validation

In the following, the experimental setup, the evaluation criteria, implemen-
tation details, and the results for conditional density estimation with prior
knowledge given as mean function constraints and a Gaussian mixture
approximation of the probabilistic model are presented.

Experimental Setup In order to demonstrate the advantage of the incor-
poration of prior knowledge into conditional density estimation the prob-
abilistic model corresponding to the following functional dependency with
additive zero-mean noise is used as a ground truth system

y = 2x− 0.5x3 +w , w ∼ N (0, 0.9) . (6.12)
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Figure 6.3: (a) True system with samples generated accordingly for x ∈
[−3, 3], (b-c) conditional density estimate (un)normalized without prior knowl-
edge, (d) prior knowledge in the form of mean function values, (e-f) conditional
density estimate (un)normalized, (g) prior knowledge in the form of a PM, and
(h-i) conditional density estimate (un)normalized. The depicted results were
obtained by modification of the LCD-based optimization problem [105].
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For the comparison, the results of conditional density estimation based on
samples of (6.12) only are compared to the estimation results when these
samples and prior knowledge in the form of additional mean constraints
or a Gaussian mixture approximation of parts of the probabilistic model
derived from (6.12) are given. For the experiments, 100 samples were gen-
erated by sampling (6.12) uniformly at random for x ∈ [−3, 3]. The mean
function constraints were 25 uniformly distributed samples with x ∈ [0, 3]
with y = g(x) = 2x−0.5x3. The Gaussian mixture approximation was ob-
tained by manually specifying the positions of the components’ means. The
components’ covariances were axis-aligned and the main-diagonal elements
were obtained by minimizing the MCvMD between the true probabilistic
model of (6.12) and the Gaussian mixture approximation.

Evaluation Criteria The use of the prior knowledge as modeled in this
chapter is meant to reduce the deviation between the expected function
values and the mean function or the conditional density function surfaces of
the true and the estimated conditional density function surfaces. For com-
paring the deviation between the conditional expectations of the estimate
and the true mean function g the l1-distance is employed and calculated
numerically for the considered interval. For comparing the true conditional
density function f̃ with the estimate f , the total variation normalized to
the considered interval in x-direction

ν = 1
2(xmax−xmin)

ˆ
X

ˆ
Y
|f̃(y′|x′)− f(y′|x′)| dy′ dx′ , (6.13)

is calculated for the intervals X := [xmin, xmax] and Y := [ymin, ymax]
numerically. The values of the total variation as defined in (6.13) are
independent of the x-range considered.

Implementation Details In order to show that the two proposed ap-
proaches of incorporating prior knowledge work for the class of condi-
tional density estimators, which are implemented as standard constrained
optimization problems, the proposed approaches are tested with two im-
plementations. Both approaches are variants of the nonparametric condi-
tional density estimators proposed in Sec. 3.4 producing Gaussian mixture
model estimates. The first implementation is based on [107]. As it is
closely related the conditional density estimator proposed in [190, Ch. 7]
it will be denoted for the rest of this section as the SVM implementa-
tion. The main characteristics are that the distance term is calculated
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Table 6.1: Average results for ten experiments: l1-error ±σ of the mean,
total variation ν ± σ, and the number of components for the normalized and
unnormalized conditional densities obtained by the SVM and LCD approach
without and with prior knowledge in the form of mean constraints (µ) and
the Gaussian mixture approximation (GM). The errors are calculated w.r.t.

the part of the state space with the prior knowledge, i.e., x ∈ [0, 3].

Estimator Normalized Results Unnormalized Results Components
l1(µ) ν l1(µ) ν

No Prior Knowledge

SVM 0.30± 0.08 0.24± 0.03 0.50± 0.21 0.26± 0.03 99.9
LCD 0.37± 0.04 0.24± 0.03 0.63± 0.14 0.27± 0.04 95.3

Mean Constraints

SVM-µ 0.23± 0.08 0.21± 0.03 0.27± 0.19 0.23± 0.03 71.2
LCD-µ 0.30± 0.09 0.22± 0.02 0.59± 0.16 0.25± 0.02 100

Prob. Model

SVM-GM 0.12± 0.02 0.11± 0.01 0.25± 0.08 0.13± 0.02 88.5
LCD-GM 0.14± 0.03 0.12± 0.01 0.36± 0.13 0.13± 0.01 57.9

based on the l1-distance between the empirical and estimated conditional
density function at the sample points [107], a regularization based on the
norm of in the RKHS of the Gaussian kernel function (3.15), and “slice”
mass constraints. The second implementation is based on [105] and uses
the MCvMD of the LCD transforms of the empirical and estimated con-
ditional density function (3.28), a regularization based on the negative
Rényi-entropy (3.19), and “interval” mass constraints (3.26). Both imple-
mentations were written in Matlab [188] and use the CVX library [67] for
the solution of the respective convex quadratic problems.

Results The results of the above described experiments are given in
Fig. 6.3 and Tab. 6.1. The true system, the unnormalized, and normal-
ized2 estimate given only the samples are depicted in Fig. 6.3 (a)-(c). An
exemplary effect of mean function constraints is shown in Fig. 6.2 (a)-(b),
where the deviation between the conditional expectations and the mean
function is reduced in the part of the state space influenced by the prior
knowledge. Fig. 6.2 (c) shows an exemplary improvement in terms of the

2The normalization corresponds to a numeric normalization of the GM approxima-
tion of a conditional density function to a valid conditional density function.
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l1-distance. The results for SVM-µ and LCD-µ in Tab. 6.1 are average
deviations for ten MC experiments and support the visual results. Besides
the improvement in the mean function deviation, the introduction of mean
function constraints also reduces the normalized total deviation between
the true and the estimated conditional density function. Regarding the
incorporation of prior knowledge in the form of a Gaussian mixture ap-
proximation of the prior knowledge Fig. 6.3 (g), Fig. 6.3 (h)-(i) depict some
exemplary results. Especially the improvement w.r.t. the unnormalized
results is drastic and can be observed in Tab. 6.1 too. In addition, the
number of components in the estimates as listed in Tab. 6.1 is reduced.
This shows, that even though the incorporation of prior knowledge into
the conditional density estimation increases the training time, the testing
time, i.e., the computational effort necessary for evaluating or further pro-
cessing the estimate is reduced. The experiments and results presented in
this chapter are reproduced from [108].

6.4 Properties and Restrictions

In this section, two approaches to introducing prior knowledge into con-
ditional density estimation have been presented. These approaches are
based on two specific approximations of the prior knowledge, which may
be generalized to other approximations of the prior knowledge.

• The introduction of prior knowledge by definition increases the pre-
scriptive validity and descriptive validity. This statement is of course
bound to the fact that the prior knowledge is correct and the com-
bination with the samples is non-trivial, i.e., the prior knowledge is
not redundant.

• For prior knowledge in the form of a generative model, the approxi-
mation of the mean function dominates the information gain achiev-
able. The approximation quality increases with the number of sample
points, i.e., the constraints.

• The location-based mixture kernel approach may be extended to
include more probabilistic models, i.e., a mixture of multiple ker-
nels. In order to allow for more models, only (6.9) and (6.10) have
to be extended to yield valid convex combinations of kernels so that
the overall kernel satisfies the conditions in Appendix A.1.5.
Additionally, as presented above the mixing proportions are fixed
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a priori, even though these may be optimized simultaneously with
the other parameters.

• The size of the representation dominates the effort for using the es-
timate. The worst-case size of the representation is not increased
for the mean function constraint approach, thus remains |D|. When
using the location-based kernel, the worst-case number of compo-
nents is increased by the number of components in the Gaussian
mixture kernel encoding the prior knowledge: Using the following
abbreviations for the mixing function

pi,j = P

(
k = j

∣∣∣∣
[
ui
vi

])
,

and the default as well as the prior knowledge kernel

Ki,0 = K
([

x
y

]
,

[
ui
vi

])
, Ki,1 =

L∑

j=1

βj Kj1
([

x
y

]
,

[
uj
vj

])
,

it is straightforward to obtain the following result by simple
rearrangements

f(y|x) =

|D|∑

i=1

αi


 pi,0Ki,0 + pi,1




L∑

j=1

βj Kj1






=

|D|∑

i=1

αi pi,0Ki,0 +

L∑

j=1

|D|∑

i=1

αi pi,1 βj

︸ ︷︷ ︸
β′j

Kj1

=

|D|∑

i=1

α′iKi,0 +

L∑

j=1

β′j Kj1 ,

=

|D|+L∑

i=1

γiK′i ,

where the kernels K′i correspond to either the default kernel at dif-
ferent locations or the kernels encoding the prior knowledge, i.e., the
Gaussian mixture kernels of K1.
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• Regarding the computational complexity of Alg. 1, the addition of
mean function constraints will increase the complexity by the number
of constraints, cf. Appendix A.4.3 or [21, Ch. 1]. The location-based
kernel will change all components in Alg. 1 involving the kernel func-
tion, i.e., the distance term D, the regularization term R, and the
constraints. The effort for evaluating each component involving these
terms will increase due to the additional number of mixture compo-
nents encoding the prior knowledge. This means training time is
drastically increased.

• The restriction to location-based mixture kernels based on a Gaus-
sian mixture representation or approximation of the prior knowledge
may be relaxed to other kernels in the sense of Appendix A.1.5. Note,
that the favorable computational properties, e.g., that the product of
two Gaussian densities is an unnormalized Gaussian density, will typ-
ically not be obtained. This is the main objection against a higher-
order Bayesian approach to the introduction of prior knowledge,
which would be theoretically optimal.

6.5 Main Contributions

In this chapter, the incorporation of prior knowledge into the conditional
density estimation algorithms presented in Ch. 3 and Ch. 4 was demon-
strated. The main contributions may be summarized as follows.

• The conditional density estimation based on samples and prior knowl-
edge was demonstrated for two specific approximations of the prior
knowledge. These approximations are generic as, e.g., the Gaus-
sian mixture densities are universal approximators. The presented
methods for incorporating prior knowledge is generically applicable
for all conditional density estimators based on standard constrained
optimization problems.

• The use of prior knowledge increases the prescriptive validity as
shown in the experiments for both approximations and for two dif-
ferent estimators each.

• Even though the approach using mean function constraints increases
training time less than the use of the proposed location-based mix-
ture kernel, both approaches increase the training time necessary for
obtaining the conditional density estimate.



It is a precarious undertaking
to say anything reliable about aims and intentions.

—Albert Einstein

7 Intention Recognition

The second part of this thesis is concerned with intention recognition as a
basis for the non-verbal communication between a human and a humanoid
robot. Intention recognition is the process of estimating the intention of
a human. The intention is not directly observable, i.e., hidden, and needs
to be estimated from noisy and error-prone measurements of the human’s
behavior, e.g., from visual observations. In this thesis, a model-based
approach is adopted, i.e., given the observations, the hidden intention is
inferred using a model of the human rationale. Even though the recognized
intention is typically only one input to a control of the humanoid robot,
taking the information non-verbally conveyed by the human into account
is decisive to enable close cooperation. This is especially important for
humanoid robots.

Challenge The main problem addressed in this chapter is the scalabil-
ity of the intention recognition under the constraints of uncertain asyn-
chronous observations and real-time inference as required for interactive
behavior by the robot. In most realistic scenarios, e.g., in a kitchen, many
objects are present and may be used in conjunction with other objects in a
large variety of workplaces for a lot of purposes. All of these object-action-
place combinations need to be considered when inferring the intention of
the human. For example in a kitchen, food may be processed by chopping,
stomping, etc. in pots, pans, or on plates, which may in turn be located on
the stove, table, or counter. Additionally, the available observations are
uncertain, e.g., depend on specific lighting conditions, and are error-prone,
i.e., sensors may fail or a person’s object manipulations may be occluded.
Furthermore, it may not be possible to obtain all measurements in each
time step, but asynchronously and/or in batches. Fast inference in such a
setting is challenging, but a conditio sine qua non. No human will tolerate
a humanoid robot in his kitchen, which needs minutes to recognize that
support in “washing the dishes” or “loading the dishwasher” is required.
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Key Idea The key idea of the approach to efficient inference in large
scale models given uncertain observations is to exploit that human behav-
ior is bound to specific preconditions. For example, in order to “wash
dishes”, a human needs to be in the kitchen and will most likely perform
this task only at certain times of the day. This definition of prerequisite
conditions to human behavior matches the definition of a situation given
in Def. 2.4. The key idea may be summarized as exploiting the situation-
specific structure of the intention recognition problem. The advantage
of conditioning the intention recognition on the prevailing situation is
that the number of object-action-place combinations to be considered may
be reduced drastically—allowing for faster inference. The remainder of
this chapter is organized into sections considering the model of the hu-
man rationale and a computational model thereof, inference exploiting the
situation-specific structure and using asynchronous measurements, learn-
ing the model parameters, and the experimental validation in a video-based
and extended-range telepresence setups.

7.1 Model of the Human Rationale

The following exposition is based on [103, 169, 171] as summarized in
[168] and shall be part of the control architecture for a humanoid robot as
presented in [159, 160, 172]. The section is structured as follows. Initially,
a causal model of the intentions is developed relating relevant objects with
actions and places in the world. This type of modeling is intuitive but
not sufficient if observations are uncertain as in the considered problem.
For this reason, a computational model in the form of a Bayesian network
is introduced, which extends the causal model by qualitative relations.
Finally, a fragment-based model generation is proposed for the human-
robot-cooperation problem with detailed, i.e., large models.

7.1.1 Causal Model

The causal model describes the causality between intentions and actions
in the form of a graph G consisting of vertices xi ∈ V, i ∈ {1, . . . |V|} and
directed edges E between vertices,

G = (V , E ) , V = {xi }i=1,...|V| , E = { (xi → xj ) } .
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Figure 7.1: Four types of hybrid conditional density functions for scalar in-
and output dimension x and y.

The vertices correspond to causes and effects, i.e., the intention, action,
objects, or places. The edges relate causes to effects. Due to this inter-
pretation (xi → xj ), i 6= j follows as neither may a cause be a cause nor
an effect be an effect of itself. An example for a causal model [168, 170] is
depicted in Fig. 7.2 (b). In this example, the cause “intention” may attain
values in a set A = {Cook ,Wash dishes , . . . }. The effect of the “action”
caused by the “intention” may also attain values from an alphabet only. In
contrast, the effect “distance” caused by the “action” is continuous-valued
and may attain values, e.g., in IR. The shape of the nodes in the graphical
models reflects this difference, i.e., rectangles for discrete-valued variables
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and ellipses for continuous-valued variables. Additionally, this example
shows the dynamic dependencies of the intention, as the intention in each
time step1 depends on the intention in the previous time step. For exam-
ple, if one did not prepare a meal one can not eat it. This model describes
the causal dependencies governing the changes of the state of the world
due to the human manipulation but does not account for any modeling or
measurement uncertainty. For example the action Bring Object X to Place
Y requires a change of location, but certainly no human will arrive at the
precisely same location when repeating this action. From a practical point
of view, observations are uncertain and ambiguous, i.e., disallowing for a
mapping to one cause only. Therefore, a computational model capable of
processing uncertain information is required.

7.1.2 Computational Model

In order to process uncertain information, the causal model is extended by
mapping the vertices V of the directed graphical model to random variables
and the edges E to conditional densities

xi 7→ xi , { (xi → xj ) , . . . , (xk → xj ) } 7→ f (xj |xi , . . . , xk ) .

In contrast to the causal model, all dependencies with the same effect need
to be converted into one conditional density function with all causes for the
effect as arguments. The obtained probabilistic directed graphical model
is a Bayesian network (BN) [142, 143]2 if only one time step is considered.
Adding the dynamic dependencies, converts the model into a Dynamic
Bayesian network (DBN) [39, 134]. As the set of random variables is mixed-
valued, Hybrid Dynamic Bayesian network (HDBN) are considered [99,
116, 134, 168]. For the remainder of the thesis, HDBN of the type proposed
in [168, 170, 173] and described below are considered.

Hybrid Dynamic Bayesian Network Many types of Hybrid BN (HBN)
exist, cf. [99, 116, 134, 183] for an overview and [119] for theoretical lim-
itations. All of these HBNs may be converted to HDBNs by appending
temporal dependencies. Yet, none of these approaches allow for continuous

1In this thesis only discrete-time systems are considered. The interested reader is
referred to [134] for more information about continuous time modeling.

2The interested reader is referred to [32, 101, 118] for concise introductions to BN
and to [18, 99] for a more detailed treatment. A more generic review of BN in the
context of undirected probabilistic graphical models may be found in [54, 111, 121, 18].
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causes to discrete effects. Most approaches are limited to conditional linear
Gaussian dependencies, which have the advantage of allowing for closed-
form inference. Arbitrary nonlinear dependencies prohibit closed-form in-
ference in general and typically require approximate inference. The rep-
resentation proposed initially in [167, 170] and reformulated in [168, 173]
is an exception. There are two key ideas underlying this type of HDBN:
a mapping of discrete-valued variables into the continuous domain and a
mixture density representation of both, the discrete- and continuous-valued
random variables and dependencies. A discrete-valued random variable
xd is mapped to a continuous-valued random variable xc as follows




Cook
Clean

...


 7→



x1

x2

...


 , ⇒ ξ =



f(x = Cook)
f(x = Clean)

...




≈ fc(xc) =

|A|∑

i=1

αi δ (xc − xi) ,

with Cook,Clean, . . . ∈ A, xi ∈ IR, i = 1, . . . , |A|, δ(.) the Dirac delta
distribution as defined in Appendix A.1.3, fc : IR 7→ IR, and αi the proba-
bility values. Using this definition fc returns non-zero values only at the
locations xi, which correspond to the events of the discrete valued random
variable, cf. Fig. 7.1 (a). The above mapping allows for a unified modeling
of discrete- and continuous-valued random variables as both density types
may be described uniformly [168, 170, 173]. A hybrid conditional density
function may be defined for the generic case of D discrete-valued and C
continuous-valued parent variables where N = D + C by

f(y|x1, . . . , xN ) =

M∑

i=1

f (i)(y)

D∏

d=1

f (i)(xd)

C∏

c=1

f (i)(xc) , (7.1)

and the scalar densities f are Dirac mixture densities in the case of discrete-
valued and Gaussian densities in the case of a continuous-valued x or y. If
only continuous-valued random variables are considered, Def. 7.1 corre-
sponds to a Gaussian mixture representation of a conditional density with
axis-aligned components. An extensive example and more explanation of
this modeling can be found in [168, Ch. 3.6]. Note that a Gaussian mix-
ture representation of a conditional density with axis-aligned components
may be estimated with the approaches to conditional density estimation
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proposed in the first part of this thesis, cf. Ch. 3 and 4. If only discrete-
valued random variables are given, the default matrix vector operations
for discrete-valued BN [142, 143] are obtainable [168]. The modeling in 7.1
allows for continuous-valued random variables being parents of discrete-
valued random variables. For scalar input and output values, the four
different value-combinations of f(y|x) are shown in Fig. 7.1.

7.1.3 Fragment-based Model Generation

In order to work with the proposed computational model, the causal struc-
ture and the respective conditional density functions need to be deter-
mined. Neither may such a model be hand-made exclusively due to its
mere size, as, e.g., several hundreds of objects exist in a typical kitchen,
nor may it be derived automatically exclusively, due to the large param-
eter space. Additionally, an automatically created model is not likely to
be readable for a human, i.e., prohibiting error correction or adaption by
the human. From a practical point of view model generation is most often
performed by using expert knowledge and automatic model identification
jointly. For example, the causal dependencies and the higher level con-
ditional density functions may be easily determined by an expert, while
the sensor models may be determined, e.g., by one of the estimation al-
gorithms presented in the first part of this thesis. Additionally, the given
problem may be simplified by reducing the number of parameters to be
determined. One approach towards reducing the number of parameters
to be estimated is the use of standardized model fragments, which share
parameter [168, 169]. By using this parameter-tying, the number of pa-
rameters to be determined is drastically reduced. A typical fragment for
the considered HRI problem might be, e.g., Take Object X, which mod-
els the process of holding an abstract object X [168]. Such a fragment
is depicted in Fig. 7.2 (a, left) and may be used as a building block of a
larger fragment Fig. 7.2 (a, right). which in turn is appended to an exist-
ing model as shown in Fig. 7.2 (b). Note that before combing the models,
each fragment needs to be instantiated, i.e., the observable variables need
to reference the variable of the world they model. For example, the ob-
servable variables distance and grasp of the fragment Take Object X, cf.
Fig. 7.2 (a), need to reference the distance to the glas and the grasp of a
glas. Appending the fragment then only requires adjusting the conditional
density from the hidden node to each action, i.e., modeling the impact of
an intention to Take Object(glas) w.r.t. all other actions.
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Figure 7.2: A HDBN may be constructed from generic fragments (a), which
relate abstract objects X with abstract places Y. An exemplary HDBN for
the intention recognition is shown in (b). It may be constructed using two
stacked chains of dynamic dependencies for the situation and intention as well
as a hidden node modeling action combinations. The actions are instantiated
fragments (blue, red, gray). For example, object X corresponds to any cup,
the place may be the dishwasher and the observable nodes, i.e., the leafs are
the minimal hand distance to any cup as well as the hand distance and velocity
of a specific cup towards the dishwasher.
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Example 7.1: Exemplary HDBN Generation from Fragments
In this example, a rudimentary HDBN for estimating the intentions Lay Table,
Load Dishwasher, and Clear Table will be created from the abstract fragments3

shown in Fig. 7.2 (a). The HDBNs Take Object X and Bring Object X to
Place Y correspond to the two abstract fragments shown in Fig. 7.2 (a).
The fragment Take Object X consists of four random variables Min. Hand
distance attaining values in IR as well as Near Object X, Grasping, and
Take Object X all using the alphabet {Yes,No }. The hybrid conditional
density function between Min. Hand distance and Near Object assigns
a high probability to Yes and low probability to No if a human is close to
the Object X or vice versa. The conditional densities between Near Object,
Grasping and Take Object X each model that the value Yes for Take Object
X is assigned a high probability if the human is near the object or grasps it
and a uniform distribution otherwise. During inference the probability for
Yes will be very high if the human is close to the object and grasps. If
only one event occurs Yes will be less likely but still will be more likely than
No. The second abstract fragment Bring Object X to Place Y consists of
two components: The first is the already described fragment Take Object X.
The second is an HDBN modeling that a specific object is moved towards
a specific location. The reasoning underlying the fragment for moving an
object towards location Y resembles Take Object X. For more details, refer
to [1, Ch. 5]. The remaining two random variables in this fragment are Bring
Object X to Place Y with alphabet {Yes,No } and Object & Place with
an alphabet consisting of the four combinations for binary-valued Close to
Place × Approaching Place. Only the leaf nodes, e.g., distances to objects or
velocities, of both fragments may be observed. In order to generate an HDBN
for inferring the three intentions the abstract fragments need to be combined
into one HDBN as shown in Fig. 7.2 (b). The basis of the HDBN in Fig. 7.2 (b)
are three random variables Situation, Intention, and Action combinations.
The alphabets are the set of situations, the set of intentions, and the number
of relevant action combinations4. As the situation is prerequisite for a specific
intention, which is causal for an Action combination consisting of actions,
the fragments from Fig. 7.2 (a) are appended to the random variable Action
combination in the HDBN in Fig. 7.2 (b). Note that each abstract fragment
needs to be instantiated, e.g., a fragment Take Object X is instantiated as

3This example is based on the fragments as initially presented in [1] and further
described in [168, Ch. 7] and [169]. The descriptions of all conditional density functions
used in these fragments may be found in [1, 168].

4For an exact model, the number of actions combinations grows by 2#Actions,
cf. [169].
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Take Object Towel by replacing the abstract object by the towel to which
the distance is modeled. In order to improve efficiency, the distance may be
calculated w.r.t. all objects satisfying the properties of a towel. Note that this
extension of the graphical model is straightforward, but the conditional density
functions relating the intentions with the combinations and the combinations
with the actions, i.e., the fragments, need to be determined. The former
should be learned from data. The latter may be an automatically generated
conditional probability table (CPT), i.e., for each specific action combination
the probability for a specific fragment is set. Details of the specific conditional
density functions may be found in [169]. �

Properties and Restrictions The fundamental properties and restrictions
of the proposed model as well as the fragment-based model generation are
summarized in the following list.

• In this section, the derivation of an HDBN model extending the
causal model to incorporate uncertainties has been discussed. An
HDBN can handle uncertainty consistently, but is limited in its mod-
eling capacity by having a fixed structure. Inference using an HDBN
is therefore less powerful than, e.g., first-order logic.

• The size of a model constructed from fragments, may be approxi-
mated in terms of the variables/nodes. Let d be the depth of the
tree corresponding to the average fragment, cf. Fig. 7.2 (a), and b
be the branching factor of the tree composed from fragments, e.g.,
Fig. 7.2 (b). Then the size of the model is approximately in O

(
bd
)
.

Note that this approximation assumes that with an increasing num-
ber of fragments, the number of nodes in the fragments increases
simultaneously.

• The computational complexity of inference with an HDBN depends
on the graph structure and the type of dependencies. Within each
time-slice, the graph structure is a polytree [143, 156]. Addition-
ally, the time, position, and distance measurements are continuous-
valued, i.e., parts of the measurement system, and all other nodes
are discrete-valued.
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7.2 Inference

In the last section, a computational model of the human rationale in the
form of a specific type of HDBN has been proposed. Intention recognition
is performed by using the given observations of the human and perform-
ing inference from effect to cause with this model. The complexity of
inference in a BN depends on the structure of the graphical model and
the state spaces [141]. Intuitively, inference is harder if more quantities
are interconnected and need to exchange information, e.g., calculating the
posterior probability densities for a BN with a chain structure is easier
than if a loop is present in the graph [18]. In general, inference in BNs
with arbitrary graphs is NP-hard [18, 32, 99]. The computational complex-
ity for purely discrete-valued BNs, with special types of graph structures,
e.g., chains or polytrees grows polynomially with |A| and linearly with
|V| [18, 32, 141]. In [119], it was shown, that there exist HBN (CLG)
with polytree structure for which inference is NP-hard. Thus, inference
in a HBN is at least as hard as for discrete-valued BN. Inference as such
may be performed for a BN based on localized calculations of posterior
densities, so-called “message passing” [32, 142, 143]. A generalization of
this inference method w.r.t. Dynamic Bayesian network [39] is discussed
in [99, 134] and a uniform framework for directed and undirected proba-
bilistic graphical models is given, e.g., in [18, 99]. For the type of HDBN
used in this thesis, a generalization of the “message passing” algorithm
[32, 142, 143] has been proposed in [167, 168, 170]. This HDBN infer-
ence algorithm calculates the posterior densities of all random variables
in the HDBN in closed form. For the remainder of this thesis, this al-
gorithm will be used. The model this algorithm is applied to will be a
polytree, where inference in the continuous-valued parts is limited to the
leaf nodes and standard filtering, cf. Fig. 7.2 (b). The number of dynamic
dependencies in this model is bounded and therefore negligible. Since the
measurement system within each time slice corresponds to a polytree with
discrete-valued variables—except for the leafs – inference in this model has
a time complexity linear in the number of variables in the model, i.e., the
number of nodes |V| in the graphical model.

Challenge The challenge to intention recognition arises from the com-
bination of the size of the computational model proposed in Sec. 7.1.2
and the complexity of the inference. Informally, this means combining
the linear complexity of the inference method, w.r.t. |V| in the graphical
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model—given a fixed |A|—with the size of the computational model. The
time complexity of inference with such a model, e.g., the model derived in
Ex. 7.1, is in

O
(
c bd

)
, (7.2)

with the expected depth of the measurement tree d, branching factor b, and
constant term c from the complexity of inference. Due to the combinatorial
explosion of the model size, the overall computational complexity (7.2) will
drastically increase too. There are basically two approaches towards ad-
dressing this problem: approximate inference and approximate modeling.
There is a large variety of approximate inference methods for BNs [134].
Due to their conceptual simplicity and easy implementation, the most
popular approximate inference methods are based on non-deterministic
sampling [6], e.g., the particle filter (PF) [46], marginalized PF [166], or
rao-blackwellized PF [134]. We refer the interested reader to [37] for an
overview. According to [134] for discrete-valued DBN and BN “[...] the [...]
disadvantage of sampling algorithms is speed: they are often significantly
slower than deterministic methods, often making them unsuitable for large
models and/or large data sets. [...]” [134, Ch. 5 and B.7.4]. Additionally to
the best of our knowledge, no approximate method of inference, especially
no PF has been developed for the considered HDBN type. Even though
deterministic sampling approaches [48, 155] or combinations of sampling
with analytical calculations [82, 94] seem promising for inference for the
considered HDBN type. Approximate modeling methods may be catego-
rized as exploiting contextual independence in BNs [134, B.6] and approxi-
mate modeling of dynamic dependencies [134, Ch. 6]. As described in [134,
B.6], the key idea of exploiting the contextual independence corresponds
to making independence implicit in the conditional density functions ex-
plicit by adding logical nodes to the BN in order to perform evaluations
more efficiently. For the considered application, this would correspond to
enlarging an even larger model. Approximate modeling of dynamic de-
pendencies corresponds basically to making the time update in inference
tractable. In summary, neither the approximate inference methods nor
the approximate modeling methods address the key challenge of the given
application, i.e., the complexity of the measurement system.

Key Idea The key idea behind efficient inference in large computational
models of the type presented in Sec. 7.1.2 is to exploit the situation-specific
structure of the problem in order to reduce the model size. The proposed
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approach may be understood as a combination of approximate modeling
with approximate inference. The approximate modeling corresponds to
the construction of a set of smaller models, e.g., constructed from less
fragments. The approximate inference corresponds to inference with a
selected smaller model and the selection of the smaller model to consider
in the next time step. Even though the approach will not change the
complexity class of the problem—unless the smaller models are of constant
size and the selection algorithms requires constant time—a drastic speed
up may be obtained, as

b > a =⇒ O
(
c bd

)
� O

(
c ad

)
,

which will be shown to correspond to significant reductions in computa-
tion time. There are two challenges associated with this approach. First,
the approximate modeling corresponds to the determination of a set of
smaller models. Even though these models are smaller, there are more of
them and the determination may not be trivial. Second, the approximate
inference corresponds to the default state estimation w.r.t. a small model,
but additionally requires the selection of a model from the set of smaller
models. In order to solve this model selection problem, an appropriate
measure for the approximation quality and speed up has to be developed
and the model selection problem has to be performed online, cf. Fig. 7.3.
In contrast to Bayesian multinets [15], the proposed approach changes the
entire network structure and the selection approach is not modeled by an
additional dynamic model. The proposed approach resembles other struc-
tured generation algorithms for BN, e.g., object-oriented BNs (OOBNs)
[100] or situation-specific BNs [114, 126], which are constructed w.r.t. a
specific query of the BN. An extension of OOBNs to dynamic queries is
described in [64], where first-order logic is employed to infer the network
structure. In contrast, the proposed approach does not infer a BN’s struc-
ture by means of rules or logic, but selects one model out of a set of smaller
models. The key advantage of the approach proposed in the following sec-
tion is the selection process being probabilistic and model-predictive. This
means, that it accounts for uncertain state information and the future de-
velopment of the state as predicted by the dynamic dependencies in the
HDBN, cf. Fig. 7.4.

7.2.1 Efficient Inference by Online Model Selection

The structure of this section is as follows. The components of the proposed
approach will be discussed: the definition of the situation-specific smaller
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k

is then used to determine Mk+1.

models, the model-predictive online model-selection, the selection criteria,
and the properties as well as restrictions of the approach.

Definition of Submodels

In the remainder of this section, an efficient inference method based on
selecting a smaller model, i.e., a submodel, is proposed. Given the exact,
large model U

U = { V , C } ,

a set of smaller submodels M̃ is compiled. The large model U is defined by
the set of all random variables V and conditional as well as prior density
functions C. Every random variable v ∈ V has its associated alphabet or
domain Xv. A submodel M∈ M̃ is defined5 by a set

M = { V ′ , C′ } ,

with V ′ ⊂ V and conditional as well as prior density functions C′ ⊂ C.
Typically, it holds for two random variables v ∈ V and v′ ∈ V ′ that Xv′ ⊂
Xv and forM,N ∈ M̃ thatM∩N 6= ∅. The former is trivially achieved by
means of zero-padding. For the investigated intention recognition problem,
the challenge is to find a set of submodels M̃, which describes the typical
situations in the household scenario best.

5Note that the definition in terms of subsets is an abuse of notation as two discrete
random variables with differing state spaces, e.g., Xv = Xv′ ∪ A, with A 6= ∅, are not
identical. The same applies for the prior and conditional density functions.
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Model-Predictive Approach

The model-predictive approach to inference in large HDBN may be under-
stood as an online solution to the model selection problem, i.e., a sequential
decision problem, cf. [10, 11] or [156, Ch. 17], taking the future develop-
ment of the state into account. In each time step k, the model M ∈ M̃
to be used for the next time step k + 1 needs to be chosen. This is done
w.r.t. an objective function J(.) measuring the quality over a lookahead
horizon defined by a maximum number of predicted future states K. In
Fig. 7.4, the tree of model sequences for K = 2 is shown for the set of sub-
models M̃ = {M,N ,O,P }. Because the model selection is performed per
time step and shall minimize the approximation error, it is proposed to
minimize the distance between state estimates using the large model and
submodel as a scalar-valued recursive cumulative objective function, cf.
Appendix A.2.2. This recursive cumulative objective function6 is defined
for a finite time horizon k ≤ K by

J(ξ
k
) = min

Mk∈M̃
{ g(ξ

k
,Mk) + J(ξ

k+1
)|ξ

k
,Mk
} , (7.3)

and the solution, i.e., the submodel to be used for inference in time step
k + 1, is the minimizer

M∗k = arg min
Mk∈M̃

{ g(ξ
k
,Mk) + J(ξ

k+1
)|ξ

k
,Mk
} . (7.4)

In (7.3) and (7.4), the function g(.) measures the quality of the selected
model stepwise, e.g., in terms of approximation error or switching fre-
quency. Note, for the sake of brevity the dependency on the sequence of
predictions with the full model ξ̃

k:k+K
and the previous submodel Mk−1

was omitted. As the future state development is considered up to time
step K only, the recursion in (7.3) ends with the following value

J(ξ
K

) = min
MK∈M̃

{ g(ξ
K
,MK) }. (7.5)

Note that this definition of a sequential decision problem differs from the
optimal control problem [10, 11] or the sensor selection problem [81]. The
reason is that the expectation of future rewards w.r.t. future observations
has been neglected. For the remainder of the section only discrete-valued

6For an overview of cumulative objective functions as used in sensor scheduling or
selection, the interested reader is referred to [10, 11] in general, [81, 198] for continuous-
valued (non)linear filter methods, and [203] for discrete-valued BN.
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random variables and state-space models are considered. In the following
two sections, applicable recursive cumulative objective functions for the
model selection problem will be presented.

Recursive Cumulative Objective Function There are basically two quan-
tities, which the selection criteria needs to measure in each step:

Deviation( ξ̃
k
, ξ

k
) , # Model changes ,

i.e., the deviation between the estimate produced by the large model ξ̃
k

and its approximation ξ
k

by using the selected submodelMk as well as the
number of model changes. In many cases, these measures are conflicting,
i.e., choosing the model, which produces the least estimation error may
mean switching the model in each and every step, e.g., flip-flopping be-
tween two models. In this thesis, two selection criteria will be investigated:
mutual information and a distance between HMMs. The number of model
changes may be modeled by a stepwise penalty.
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(a) Mutual Information Mutual information I [18, 35, 123] is an infor-
mation-theoretic criterion measuring the stochastic dependency between
two random variables. Informally, the value of I may be understood
as quantifying the mutual reduction in uncertainty by gaining informa-
tion about one random variable. Mutual information is a measure com-
monly used in the sensor scheduling or selection problem both for scalar
continuous-valued states [81, 83, 84, 198] and discrete-valued states [106,
203]. The mutual information between two continuous-valued random
variables x and y is defined by

I (x , y ) =

ˆ
X

ˆ
Y
f(x, y) ln

(
f(x) f(y)

f(x, y)

)
dy dy , (7.6)

and for two discrete-valued random variables defined by

I (x , y ) =

X∑

x=1

Y∑

y=1

f(x, y) ln

(
f(x) f(y)

f(x, y)

)
. (7.7)

From both (7.6) and (7.7), it can be seen that I is zero if x and y are
independent and I attains higher values, the stronger the dependency is.
For the given application I may quantify the strength of the stochastic
dependency between ξ̃

k
and its approximation ξ

k
. The submodel is a good

approximation if the dependency between both variables is strong. For
practical reasons this strength will be measured in the following sections
relative to the entropy H.

(b) Distance Measure for HMM As shown in Sec. 7.1.3, the coarse de-
pendencies in the HDBN are modeled by the relations between the inten-
tions over time and the action combinations. If only a coarse estimate of
the future state development is sought, it is sufficient to consider only the
preceding and current intention as well as the action combination. These
three nodes—as depicted in Fig. 7.2—constitute an HMM with discrete-
valued state and observations, cf. [150]. A recent result from the literature
about discrete-valued HMM compression [44] and decomposition [197] is
a distance between two HMMs [201].

The key idea is to measure the distance in terms of total variation of the
state estimate and all observations up to a given time step k produced,
i.e., ξ

k
and ξ̃

k
. As this distance calculation involves each and every obser-

vation combination, an approximate upper bound of the distance w.r.t. all
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observations has been proposed in [201], i.e.,

D
(
ξ
k
, ξ̃

k

)
=
∥∥∥ξ
k
− ξ̃

k

∥∥∥
V
≤
∥∥∥ξ
k−1
− ξ̃

k−1

∥∥∥
V

+ a( F,Mk )︸ ︷︷ ︸
⊥ ξ

k−1
,ξ̃
k−1

. (7.8)

This upper bound may be used as a substitute for the distance. Addi-
tionally, it avoids the determination of predicted future measurements as
all measurements are considered. The generalized measurement update
function a(.) is independent of the predicted state estimates as well as the
full model’s estimate and may be calculated in advance. This distance
measure may then be used straightforwardly in the optimization problem.

Probabilistic Branch- and Bound Algorithm The aim of the optimiza-
tion problem (7.3) is the determination of the submodel Mk to be used
in the next inference step. In order to obtain the solution, the space of
possible submodel sequences has to be searched for the minimizer of (7.3).
As the size of the search tree grows exponentially with the prediction hori-
zon K, branch-and-bound (BB) algorithms [156, Ch. 4] may be used to
reduce the computational cost. A similar approach has been proposed
for the sensor scheduling and selection problems [81, 195, 196]. The key
idea of employing a BB algorithm is that the quality of some branches or
nodes is dominated in the submodel sequence tree, cf. Fig. 7.4, and may
be pruned during the incremental creation of the search tree [81, 156]. As
the expansion of a node is based on a predicted state estimate, the pro-
posed algorithm is denoted as a probabilistic BB (PBB) and summarized
in Alg. 4. Starting with the given state estimate and the current model
as the initial node in Alg. 4, the consecutive nodes are expanded w.r.t.
the corresponding submodels, e.g., {M,N ,O,P } in Fig. 7.4. After this
expansion, the respective child’s node.J value is calculated. The parent
nodes’ J values are recursively updated, i.e., the tree is traversed in back-
ward direction. The node.J value is calculated using a stepwise switching
penalty s(.) as well as (7.7) or (7.8), w.r.t. the prediction using the full
model ξ̃

k
and submodel Mk, i.e., ξ

k|Mk

g(ξ
k
,Mk) = s(Mk ,Mk−1 ) +





2 H
(
ξ̃
k

)
− I
(
ξ̃
k
, ξ

k|Mk

)
, if (7.7) ,

D
(
ξ̃
k
, ξ

k|Mk

)
, if (7.8) .
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Algorithm 4 Probabilistic Branch-and-Bound based on [195].

1: Initialize parameters

2: while not N .exhausted do . Recurse until solution found

3: while ( N .visited ) do . Expand leaf nodes
4: Calculate N .J for each child
5: C ← Non-leaf child of N with best.J
6: Recurse with N ← C
7: end while

8: if not (N .visited) then
9: if recursion level < horizon then . Expand best search path

10: C ← Instantiate child nodes of N
11: for all Children of C of N do
12: C.J ← g(C) + Parent(C).J + Switching Penalty
13: C.exhausted ← FALSE
14: end for
15: Update N .J . Update subtree value
16: else
17: C.exhausted ← TRUE
18: Update parent J
19: end if
20: N .visited ← TRUE . Bookkeeping
21: end if
22: end while
23: Output: Return M ← child with best.J

whereas, in contrast to [106], the mutual information score (7.7) is relative
to the entropy H of the state estimate in order to obtain a minimization
problem for both functions. The node with best node.J value is expanded.
Alg. 4 terminates if there are no more nodes that may be expanded or all
other nodes are dominated by an already expanded sequence.

7.2.2 Inference at Different Frame Rates

Inference in realistic scenarios is not only governed by a realistic number of
objects and associated actions, but by realistic measurement setups. For
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example, there are potential delays induced by the network, which passes
the sensor readings, the feature computation cannot deliver measurements
in each time step, or the estimates are based on batches/windows of mea-
surements. In Fig. 7.5 (a), an exemplary model is depicted for estimating
the intention ik from action estimates mk and activity estimates ak, which
in turn are estimated from features vk and v′k. The assumption underly-
ing the model shown in Fig. 7.5 (a) is, that all measurements are delivered
in each time step. In realistic scenarios, measurements or updates arrive
asynchronously and estimates from subsystems are based on batches of
measurements, rather than a single measurement. This may be summa-
rized as attributing an independent but constant update frequency for each
subsystem and that the estimates correspond to batches of measurements.
A realistic model based on these assumptions is given in Fig. 7.5 (b). In
order to perform inference with a realistic model, one needs to adopt a
“measure or predict” scheme as shown in [56] similar to the processing of
out-of-sequence measurements [98]. For simplicity, consider mk only and
assume the measurements v̂a:0, a < k to be given. The intention esti-
mate may be obtained from the following calculations, where ik ∈ Ik and
mk ∈Mk

f(ik|v̂b:0) ≈
ˆ
Ik:a

ˆ
Mb

c ·
Prediction︷ ︸︸ ︷
f(ik:b+1|ib)

· [f(v̂b:a|mb)f(mb, ib:a+1|ia)]︸ ︷︷ ︸
Measurement Update

·f(ia|v̂a:0)︸ ︷︷ ︸
Previous Filtering

dmb dik:a , (7.9)

if an estimate f(v̂b:a|mb) for a batch of measurements v̂b:a, a < b < k
is obtained. In (7.9), the state predictions for the time steps without
measurements are calculated by

f(ik:b+1|ib) =

k∏

l=b+1

f(il|il−1) ,

f(mb, ib:a+1|ia) = f(mb|ib)
b∏

l=a+1

f(il|il−1) ,

and the normalization constant in (7.9) is given by c = 1/f(v̂b:a|v̂a:0).
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Figure 7.5: Ideal model assuming the availability of all measurements at all
times (a) and a more realistic model assuming asynchronous, but constant
measurement frequencies (b) for the video-based experiment of Sec. 7.4.1.
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7.2.3 Properties and Restrictions

The properties and restrictions of the model-predictive approach for ef-
ficient inference and the inference with asynchronous measurements are
discussed below.

• The proposed model-predictive approach is not optimal in the sense
of an optimal solution to a control problem [10, 11, 81] as the ex-
pectation of the future objective function value w.r.t. future mea-
surements has been omitted. The future measurements were either
neglected or approximated. A further discussion of the optimality of
the proposed approach remains future work.

• Regarding the inference at different frame rates, as discussed in
Sec. 7.2.2, the proposed method is only approximate, as dependen-
cies in the HDBN, e.g., the subsystems’ dynamics, are neglected.
Employing the prediction for the time steps, where no measurement
is performed corresponds to assuming quasi-stationarity.

7.3 Learning

Learning the proposed HDBN is challenging for realistic scenarios. For
example in the case of nine intentions manifesting in 60 actions, at least
531 conditional probability values need to be calculated. This number
does not include the parameters involved in learning the continuous-valued
measurement models. Learning may also involve not only fully observable,
but also partially observable data. Data may be missing at random or not
[99]. Approaches to learning HDBN may be categorized into approaches
for learning single conditional density functions and entire networks, con-
sisting of sets of conditional density functions and uncertain intermediary
estimates. The first part of this thesis was concerned with learning con-
ditional density functions relating only pairs of continuous random vari-
ables. The proposed approaches may be integrated into the approaches
for learning entire networks. The interested reader is referred to [134] for
an overview over learning entire networks. Note that learning DBNs may
be subsumed by learning BNs with parameter-tying. In general two ap-
proaches for learning BN have been investigated: learning by maximizing
the data log-likelihood by, e.g., a gradient ascent [9, 16] or by EM [75, 117].
A Bayesian approach towards learning discrete-valued BN has been pro-
posed in [74]. Learning in the closely related mixture-of-experts framework
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(a) Lay Table. (b) Prepare Cereals. (c) Prepare
Pudding.

(d) Eat with Spoon. (e) Eat with Fork. (f) Clear Table. (g) Wipe Table.

Figure 7.6: Snapshots of the seven different kitchen tasks considered in the
video-based experiment in Sec. 7.4.1.

is discussed in [17, 90]. For learning hybrid BN, the interested reader is
referred to [16, 132].

Properties and Restrictions

The properties and restrictions of learning HDBN are discussed below.

• Learning HDBN is challenging as it may involve a model selection
problem for every conditional density function in the network. For
a given network structure it may be impossible to learn certain re-
lations as discussed in the context of blind source separation [186].
In general, no statement about the learning success is possible, e.g.,
about the convergence properties of EM [202]. Except for some spe-
cial cases, e.g., fully-observable data in the limit, no descriptive or
prescriptive validity may be proven.

• The computational complexity depends on the network structure as
inference is used as a subroutine in learning. Inference has been
shown to be NP-hard for hybrid networks even with polytree struc-
ture [119], i.e., at least as complex than in purely discrete networks.



7.4. Experimental Validation 145

7.4 Experimental Validation

The experiments in this section are part of the scenario used within the
Collaborative Research Center 588 “Humanoid Robots - Learning and Co-
operating Multimodal Robots”7. In the experiments, the properties and
restrictions of inference with asynchronous measurements and the model-
predictive approach for inference in large models are investigated. Video-
based and extended range telepresence experiments are presented in this
section. The former demonstrates inference with asynchronous measure-
ments and may be understood as a proof of concept that the developed
algorithms are applicable in a real-world setting. The latter allows for a
discussion of the properties of the proposed inference methods for large
models by varying the number of objects, places, and actions given a
reproducible experimental setup.

7.4.1 Video-Based Experiments

The video-based experiments8 are concerned with the actions, activities,
and intentions of complex daily tasks in the kitchen setting as investi-
gated in CRC 588. In the remainder of this section, the specific scenario,
the specific underlying model, i.e., the considered actions, activities, and
intentions, the experimental setup, as well as the results are presented.

Scenario In the considered scenario, a person enters a room, performs a
task, e.g., laying the table, and then leaves the room again. The tasks may
be understood as the visually observable manipulations of the world. Each
of the considered tasks consists of different manipulations of objects as de-
scribed in Tab. 7.1 and shown in Fig. 7.6 for seven different kitchen tasks.
In this scenario, the considered set of intentions is the set of tasks further
distinguished by knowledge of the current time, i.e., Eat with spoon is
further discerned into Eat breakfast with spoon or Eat lunch with spoon
depending on the time of day, cf. Tab. 7.1. An activity–as defined in
Def. 2.6–is a distinct coarse movement in a part of the state space, i.e.,

7The German name is “Sonderforschungsbereich 588 Humanoide Roboter - Ler-
nende und kooperierende multimodale Roboter” [182, 45] sponsored by the Deutsche
Forschungsgemeinschaft (DFG).

8The results presented in this subsection are reproduced or extended versions of the
joint work with Dirk Gehrig, Lukas Rybok et al. cf. [56] as part of the Collabora-
tive Research Center 588 “Humanoid Robots - Learning and Cooperating Multimodal
Robots”9.
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Table 7.1: Typical kitchen tasks and the corresponding intentions, activities,
and actions as considered in the video-based experiment in Sec. 7.4.1. The

seven different kitchen tasks listed below are depicted in Fig. 7.6.

Tasks Lay Table, Prepare Cereals, Prepare Pudding,
Eat with Spoon, Eat with Fork, Clear Table,
Wipe Table.

⇓

Intentions Lay Table, Prepare Cereals, Prepare Pudding,
Spoon Breakfast, Spoon Lunch, Cut Breakfast,
Cut Lunch, Clear Table, Wipe Table.

Activities Lay Table, Prepare Meal, Eat with spoon,
Eat with fork, Clear Table, Wipe Table.

Actions 60 actions were defined, cf. [56], e.g.,
Walk left, Pour, Stir, Place Object on Table, etc.

manipulations by the human, but no objects are discernible [136, 157, 199].
This means that object and activity recognition are separated and their
recognition results may be used complementarily. This alleviates the prob-
lem that some manipulations are ambiguous, but distinguishable by object
knowledge. The set of activities is therefore a subset of the set of tasks. In
this scenario, the tasks Prepare cereals and Prepare pudding correspond
to the activity prepare meal, cf. Tab. 7.1. A fine-grained modeling of the
human behavior into more than 60 actions10—in the sense of Def. 2.5—
has been performed semi-automatically. Exemplary actions are Walk left,
Pour, Stir, or Place Object on Table. These actions serve as an alphabet
for a motion grammar [55], which describes the human behavior without
knowledge about the present object or the time of day. The interested
reader is referred to [56] for more information.

Specific Model The considered model comprises five components: the
intentions, actions, and activities, the object and time knowledge. As the
computational model is an HDBN as described in Sec. 7.1.2, all of the
five components are modeled as random variables with their respective

10In this thesis the term “action” is used synonymous with motion or motion
primitive, cf. [55, 59, 56].
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Figure 7.7: The average recognition rates in terms of misclassifications of
the ML estimate for each frame per intention is given in (a) for a model with
uncertain object and time knowledge but with and without either the activ-
ity or the action recognition. The impact of the asynchronous measurement
updates on the intention estimate for the video-based experiment of Sec. 7.4.1
is shown in (b). The results are based on [56].

relations. Such a model without object and time knowledge is given in
Fig. 7.5 (a). The causal dependencies encoded in this model are as follows.
The intention ik as the force driving the human behavior causes both
actions mk and activities ak. Neither actions mk nor activities ak are
observable, but only specific features of the movements by the human are
observable, which are caused by the actions and activities respectively,
i.e., νk and ν′k. These features are directly calculated from each video
frame, cf. [56]. Dynamic dependencies exist as the intentions, activities,
and actions depend on their respective preceding values. The features as
such are calculated for each image in the recorded video or incoming video-
stream. The models of the activities and actions, e.g. the action grammar,
are described in [56].

Learning In order to obtain a realistic model, most of the parameters in
the model shown in Fig. 7.5 (b) are learned automatically. From the five
components the dependencies between the intention and activity as well
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(c) λ = 0.75.
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(d) λ = 1.00.

Figure 7.8: Impact of the uncertainty of the object knowledge on the recog-
nition results. The confusion matrices give the classification rates in terms of
the ML estimates matching the ground truth. The object knowledge varies
from a uniform distribution (λ = 0) to 70% probability of the ground truth
(λ = 1) for the experiments in Sec. 7.4.1.
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as action, the dependencies between the actions and activities and their
respective measurements are learned automatically. The dependencies be-
tween intention, object knowledge as well as the dynamic dependency of
the intention are not learned but obtained from expert knowledge. For
learning, a training data set in the form of videos of the seven tasks was
recorded, cf. Tab. 7.1 and Fig. 7.6. This data set was split into an evalu-
ation and a training set. The dependencies described above were learned
separately, e.g., the dependency between action and features was opti-
mized to yield the best recognition rates for this subsystem. Note that for
learning the dependencies between the intention and activities or actions
the estimated activities and actions were used. Learning the dependen-
cies from features to activities and actions exceeds the scope of this thesis
and the interested reader is referred to [56]. Regarding the dependencies
between the intention and activities or actions the given estimates were
assumed to be fully-observable data and learning then corresponds to cal-
culating sample statistics [99]. The dynamic dependency of the intention
is not learned, but set to a damping system, i.e., for continued predic-
tions without measurements the intention estimate will converge towards
a uniform distribution. All dependencies were learned using eight-fold
LOO-CV, cf. Ch. 5.

Experimental Setup The experimental setup for the recordings consisted
of a fixed view-point camera on top of a tripod with the height of ca. 1.8 m.
The camera was a Point Grey Dragon-Fly used with a frame rate of 30 fps
and an image resolution of 640× 480 pixel. The setup consisted of a table
on which all manipulations were performed. The background is both plain
and textured. Exemplary images of the setup are depicted in Fig. 7.6. As
the experiments were recorded between 9 AM and 8 PM the lighting in
the data varied from artificial to day light. The data corpus consists of
recordings of all seven tasks for ten test persons. As each person performed
each task ten times, a total of 700 videos were recorded. The recordings
of the first two persons (140 videos) were used as evaluation and the other
recordings (560 videos) as training set. The data set is publicly available
from http://www.sfb588.uni-karlsruhe.de/minta/.

Results As the focus of this thesis is on the intention recognition, the
performance of the activity and action recognition system is not reported.
The interested reader is referred to [56, Ch. VII] for more information. The
presented results are either reproduced or extended versions of the results
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(a) Head-mounted
display for stereo display
of the virtual household.

(b) Bluetooh cyberglobe
with wired acoustic hand

tracking device.

(c) Mobile computer used
for visualization and

tracking the head and
hand.

Figure 7.9: Equipment for extended range telepresence experiments in
Sec. 7.4.2: a head mounted display for a stereo visualization of the virtual
household (a), a cyberglove with attached acoustic tracking system for mea-
suring the finger angles (b), i.e., grasping activity, and a mobile computer (c)
producing the visualization as well as the head and hand tracking calculations.
A test person wearing all equipment is shown in Fig. 7.10.

presented in [56]. The recognition rate R (.) of the estimator is calculated
w.r.t. the number of frames |F| of the evaluation set F , the true intention
ĩk and the maximum likelihood estimate ML ( ik ) of the intention estimate
ik for each frame k.

R(F) =
1

|F|

|F|∑

k=1

|ML(ik) � ĩ | (7.10)

with the element-wise vector multiplication �. In Fig. 7.7 (a), the intention
recognition results using either the activity or the action recognition, and
both recognition systems are given as average ML recognition rates over all
frames. The object and time knowledge was always supplied. The average
intention recognition results (7.10) improve the more information is used,
e.g., the complementarity of the activity and action recognition can be seen
especially for two intentions lay table and wipe table. In Fig. 7.7 (b), the
benefit of using a model for the coarse activities and fine-grained actions is
shown over time. Additionally, the benefit of the object knowledge may be
seen in the estimation results when using only object and time knowledge
as well as the activity recognition. Only due to the object knowledge may
Prepare Cereals and Prepare Pudding be distinguished. The impact of
the time knowledge can be seen in the recognition results for the breakfast
and lunch tasks. The impact of the object knowledge w.r.t. the level
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of uncertainty λ with which it was used is shown for four values of λ in
Fig. 7.8. The results show that the object knowledge improves the results,
but the estimation results without object knowledge would still be high for
λ = 0. The intention is estimated every second frame. The estimates of the
activity recognition start after ca. 120 frames and is updated every fourth
frame. The action recognition results are available every 30th frame. The
effect of the different update rates is shown in Fig. 7.7 (b). The impact of
the damping system used for the prediction in the sense of Sec. 7.2 can be
seen by a zig-zagging curve.

7.4.2 Extended-Range Telepresence Experiments

In order to determine the properties and restrictions of the model-predictive
approach to inference in large models experiments using extended-range
telepresence (ERT) were performed. In contrast to the video-based ex-
periments, experiments in the ERT may be very easily extended to scale
the number of objects. The experimental environment used for the experi-
ments was initially developed in a student research project [1, German] as
part of the CRC 588. An overview over the entire system is given in [168,
Ch. 7.2]. The key idea of the ERT as an experimental environment for the
intention recognition is that a test person is telepresent in a virtual 1:1
scale version of the CRC 588 household scenario. The test person wears a
head mounted display on which a view of the household scenario relative
to his pose in the virtual household is rendered, cf. Fig. 7.9 (a). The po-
sition of the test person’s head and left hand in the real-world is tracked
by an acoustic tracking system [13, 14], cf. Fig. 7.9 (b) and (c). The
relative motions in the real world are mapped into motions in the virtual
world, thus giving the test person the impression of moving in the virtual
household, cf. Fig. 7.10. The advantage of this specific extended range
telepresence system [14, 68, 154] is that the motion is compressed [137]
mapping the test person’s motions in the limited area, which is tracked,
to a much larger virtual household and a potentially infinitely large envi-
ronment. Besides the test person’s head and hand positions his grasping
activity is measured by a cyberglove device11. Using the grasping and
position information, the object manipulations, i.e., the change in pose or
stacking relations, are rendered in the virtual house. The object knowledge
is thus directly obtainable from the computer graphics model underlying

11This cyberglove was produced by the Forschungszentrum Karlsruhe (FZK) within
the CRC 588.
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Motion Compression dlroW lautriVdlroW laeR

Head & Hand
Pose Mapped

Ego-View of the
Virtual World

Figure 7.10: Setup for the ERT experiments: the user wearing a head-
mounted display, a bluetooth cyberglove and tracking devices on the hand as
well as the head (left). The tracked poses and grasp are mapped into the
virtual household, e.g., into the kitchen (right), cf. Sec. 7.4.2.

the virtual house. In summary, the ERT experimental setup allows a test
person to move naturally in a virtual model of the household scenario.
The tracked grasping activity as well as the head and hand positions serve
as input to the intention recognition. Note, that these measurements are
subject to measurement noise. The ERT setup has two advantages in com-
parison with the video-based setup: scalability and reproducibility. The
scalability refers to the virtual household size and the number of consid-
ered objects contained in the household. The size and number of objects
of the virtual household may be as easy increased as a designer may cre-
ate and add virtual objects. Additionally, the experimental setup may be
reproduced exactly, i.e., a restart of the virtual household resets the state
of all objects in the virtual household. Due to these two advantages, the
ERT setup is especially advantageous for investigating the properties and
restrictions of the proposed inference method for large models. The ex-
periments and results are extended versions of the experiments presented
in [104, 106].

Scenario In this scenario a test person performs a fixed task sequence in
the household. The high-level description of this sequence is that the test
person at first eats a meal, which consists of laying the table, cooking, and
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clearing the table. The more detailed task description12, which was read
to the test persons is given below.

Task description The person starts at the center of the virtual kitchen.
He sets the table by putting a plate and a cup onto the table inside the
kitchen. Thereafter the person performs a symbolic cooking procedure,
consisting of approaching the stove, putting a pot onto the stove, and
bringing the pot to the table. After waiting a couple of seconds in front
of the table–which corresponds to symbolic eating the prepared meal–
the person opens the dishwasher, puts an object from the table into the
dishwasher, and closes the dishwasher again. This partial clearing of the
table is meant as a decision point, where the humanoid robot may start
helping the human by finishing the started task. After having closed the
dishwasher the test person leaves the kitchen, walks down the hall-way
into the living room.

This task has been performed ten times with six different test persons.
Note that the test person were left with the choice in which order, the
objects for laying the table were carried to the table and which object was
put into the dishwasher for symbolically clearing the table.

Specific Model Two experiments in the ERT with different model sizes
were performed to test the scalability of the approach, cf. Tab. 7.2. The
full model used in Ex. 1 estimated ten intentions with a HDBN of 305
nodes. In Ex. 2, 15 intentions were estimated using 611 nodes in the full
model. The set of submodels consists of four models, i.e.,M,N ,O, and P,
with different numbers of nodes, cf. Tab. 7.2. These models are composed
of all fragments associated with a given situation. For example all frag-
ments for Lay Table and Clear Table were combined in one model. This
may be understood as removing all nodes from the full model except for
the fragments related to Lay Table and Clear Table.

Experimental Setup In this subsection details about the performed ex-
periments as well as the technical details for the ERT as motivated in the
beginning of Sec. 7.4.2 will be given. The execution of each sequence took
ca. 10-20 Min. to complete. From all recordings the first 12.5 Min. were
used. As the parameters of the models are not learned, this is directly the

12The detailed task description was read to the test person in German. The
description given is a translation.
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Table 7.2: Number of nodes in the full model
and submodels used for the ERT Ex. 1 and 2.

#Nodes Full model M N O P
Ex. 1 305 243 229 179 49
Ex. 2 611 299 229 275 497

evaluation set for recognition rates presented in the following section. The
area covered by the tracking system of the ERT was ca. 3 × 4 m. The
setup of the tracking system follows [13, 14]. As all of the information
regarding the object poses, the head and hand position of the human as
well as the grasping activity were recorded by accessing the object model
underlying the visualization a uniform update rate of 750 ms was used.
Quantitatively, the noise is roughly normal in x- and y-direction and has
variances of σ ≈ 5 cm as well as σ ≈ 10 cm in z-direction. Regarding
the model-predictive approach the parameters are set as follows if not oth-
erwise specified. The number of look-ahead steps is set to 2 and model
selection is performed in every fifth update step. Switching the model is
penalized by a 1/(number of intentions). The complexity costs for each
model in the switching approach are set to the normalized sum of number
of nodes in each model, cf. Tab. 7.2, and [100 100 200 400], to equalize
the differnt model sizes. For the selection criteria, the switching penalty
and the complexity costs are weighted against the similarity score by fac-
tors of 0.2 and 2, i.e., switching is less penalized than complexity costs in
order to show the speed-up achievable if only a small estimation error is
accepted. A tiny value was used for the mutual information criterion and
set to 1e−04.

Results For assessing the quality two criteria are used: approximation
quality and speed-up. Regarding the approximation quality, the deviation
between the posterior densities of the intention Df as estimated for time

step k using the standard approach ξ̃
k

and the model-predictive approaches
ξ
k

is measured according to

Df (ξ̃
k
, ξ
k
) =

∥∥∥ξ̃
k
− ξ

k

∥∥∥
1
,
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Figure 7.11: Average difference between the intention estimates ik using the
full and the reduced model as well as the respective standard deviation for
both experiments and both objective functions (a). The used average number
of nodes and computation time per step for both objective functions are given
in (b) and (c).

and the results are then given as average absolute deviations over all frames

D(F) =
1

|F|

|F|∑

k=1

D(ξ̃
k
, ξ
k
) . (7.11)

The speed-up is defined as the decrease in processing time without input-
/output operations per frame. The results of the experiments are given for
the two model decompositions shown in Tab. 7.2. For a good decomposi-
tion scheme, a very low approximation error can be obtained, cf. Fig. 7.11
(a), allowing for the use of smaller models, cf. Fig. 7.11 (b), and thus re-
sulting in a speed-up of up to one order of magnitude as shown in Fig. 7.11
(c). In contrast for a less favorable set of smaller models a worse ap-
proximation quality is inevitable and in some situations too many model
changes may be observed.
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7.5 Main Contributions

The main contributions of this chapter regarding the intention recognition
for human-robot-cooperation are summarized in the following list w.r.t.
descriptive and prescriptive validity as well as computational efficiency.

• In this chapter, a model-predictive approach for efficient inference
in large-scale models based on online model selection was proposed.
The presented approach reduces the descriptive and prescriptive va-
lidity as it approximates an already existing model, in order to allow
for more efficient inference in the large model.

• Even though the proposed model-predictive approach does not
change the computational complexity class, it improves the compu-
tational efficiency by a large factor and allows for real-time inference
with larger and more realistic models. Two different objective func-
tions aimed at an online model selection have been presented and
discussed for this purpose. The proposed method enables non-verbal
communications for more scenarios.

• A method for processing asynchronous measurements was proposed
in this chapter. This method is of importance for the practitioner
as in realistic scenarios, sensor information of mid-level fusion re-
sults are typically not instantaneously available to the estimator,
but arrive in batches or aggregates of batches of measurements.
The applicability of the method was demonstrated in video-based
experiments.

• The practicability of the proposed approaches towards efficient in-
ference with large models has been demonstrated using an extended
range telepresence scenario with differing numbers of object-action-
place combinations in the virtual household.





I enjoyed your seminar.
Before I was confused,

now I am still confused,
but on a higher level.

—Louis Pasteur

8 Conclusions and Future Work

In this thesis, methods for enhancing the intention recognition capabilities
of technical devices, such as humanoid robots, were developed. The prob-
lem of inferring the intention of a human by a technical device was under-
stood as a problem of modeling, inference with, and learning probabilistic
graphical models. In detail, the proposed methods may be employed but
are not restricted to Hybrid Dynamic Bayesian networks. In the following,
the main contributions of this thesis and possible future work are sum-
marized. In analogy to the structure of the thesis, these are categorized
by the main challenges, which were addressed: model identification and
intention recognition.

8.1 Model Identification

As described above, a probabilistic graphical model is used for the intention
recognition. These probabilistic models not only describe the existence of
dependencies between random variables, but also their quality in terms
of density and conditional density functions, i.e., prior densities and state
transitions. In this thesis, model identification by estimating density and
conditional density functions given the graphical model structure is con-
sidered. More specifically, the problem of determining continuous-valued
density and conditional density functions from samples is discussed. In
both cases, the estimation problem is further restricted to the estimation
of functions in the form of Gaussian mixtures densities. The contributions
presented in this thesis and possible future work are listed below.

Main Contributions

• A sparse mixture density and conditional density estimation algo-
rithm based on a weight optimization has been proposed. This method
restricts all components to be fixed to the sample points and the pa-
rameters for all component covariances to be identical. The method
may be understood as an extension of kernel density estimation by a
weight optimization. Whereas the optimization is performed w.r.t. a
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novel distance between localized cumulative distributions and a re-
gularization term, e.g., a norm in an RKHS or a Rényi Entropy-based
term. Due to the semi-definiteness of the elements of the target
function it could be shown that the arising optimization problem is
a constrained convex quadratic problem. The problem may there-
fore be solved in polynomial time w.r.t. the number of optimization
variables and constraints.

• A full parameter identification algorithm, which lifts the restrictions
of collocation of components’ means with the data and parameter-
tying of the components’ covariances was introduced. For the pur-
pose of an improved approximation and generalization quality, a su-
perficial regularization term was derived, allowing for a simultaneous
regularization of the surface of the conditional density function and
a generative model potentially underlying the surface. In order to
represent the model uncertainty in the presence of scarce or no data
in parts of the state space, a method for calculating the component
covariances w.r.t. the local data distribution was developed.

• A hyperparameter optimization algorithm determining the parame-
ters not estimated by the non-parametric or full parameter identifica-
tion algorithms, e.g., the trade-off between data fit and regularization
or the kernel parameters, was presented. The proposed algorithm
may be understood as a blend of a hyperparameter optimization
used in SVMs and the ex-ante parameter estimation in classical
kernel density estimation. The algorithm is the first approach to-
wards a cross-validation–based hyperparameter optimization algo-
rithm for the proposed non-parametric or full parameter density and
conditional density estimation.

• A method for the incorporation of prior knowledge to allow for ex-
ploiting expert knowledge not given in the form of samples or pre-
viously compiled models was proposed and shown to improve the
estimation quality. Prior knowledge given in the form of generative
and probabilistic models is approximated by means of additional
constraints and a mixture kernel respectively. These approximations
are generic and simple to introduce into the presented and all other
conditional density estimation algorithms, which may be phrased as
a constrained weight optimization problem.



8.2. Intention Recognition 161

Future Work

• Efficiency may be improved by exploiting the locality inherent in
the problem. Due to the availability of large data sets relevant for
many applications, e.g., “A Mine of its own” [192], an improvement
in training time will be necessary to address large data sets. A very
promising approach in this direction is the truncation of mixture
components of the density and conditional w.r.t. their distance based
on existing error bounds. This allows for an efficient processing of
the functions, e.g., by dual-tree schemes [78] and may additionally
offer significant speed-ups for recursive state estimation.

• The learning problem may be reduced from high-dimensional spaces
to manifolds. Many data sets and the respective full parameter iden-
tification require the solution of the density and conditional density
estimation problem in a high-dimensional space. This challenge is
inherent in the problem. If these estimation problems may be consid-
ered locally only, the estimation problem is likely to be intrinsically
of lower dimension. Therefore, one potential solution to this prob-
lem is to determine the intrinsic manifold and perform the estimation
only w.r.t. this lower-dimensional space [145].

• Models should be learned incrementally. This feature is crucial in
order to develop adaptive nonlinear state estimators. The challenge
lies not only in the unavailability of exact state values, but also in
the dynamic regularization of the estimates. One possible direction
for further work is a Bayesian adaption scheme based on the model
uncertainty as obtained from the full parameter identification.

8.2 Intention Recognition

The capability to recognize the intention as the driving force behind the
human behavior is of importance to many technical devices. One impor-
tant challenge to intention recognition in general is the efficient inference in
complicated scenes with many objects to take into account. This problem
is especially important for the intention recognition by humanoid robots.
These robots shall assist the human and therefore have to cooperate closely
with the human. If the inference in non-trivial models is too slow, no useful
reactive assistance by the humanoid robot will be possible. The contribu-
tions of this thesis towards alleviating this problem and possible future
work is summarized in the following lists.



162 Chapter 8. Conclusions and Future Work

Main Contributions

• A model-predictive approach towards efficient inference in large scale
models based on online model selection has been proposed. The
method is based on the key idea that a human’s intentions are bound
to preconditions, i.e., situations, and these situations may be ex-
ploited to restrict inference to smaller models. In order to solve the
model selection problem of finding the appropriate smaller model
in a set of small models, selection criteria based on mutual infor-
mation and a distance between HMM have been proposed. Using
the model-predictive approach with online model selection allows
for inference to be sped up by up to an order of magnitude at low
approximation errors.

• Inference with asynchronous measurements has been proposed. One
of the main challenges for the implementation of intention recognition
systems involving multimodal sensors is the fusion of measurements
or mid-level estimates at asynchronous update rates. Additionally,
mid-level estimates may summarize batches of measurements. The
proposed inference method compensates for these deficiencies and
was shown to produce recognition rates of more than 80% in a video-
based experiment.

Future Work

• Intention recognition will benefit from more domain knowledge and
active sensing. As shown in the Sec. 7.2.2, the entire non-verbal
communication may be modeled as one joint Bayesian network. This
understanding motivates that in the sense of Pearl’s message passing
algorithms measurement systems, such as the activity and action
recognition, may use domain knowledge or higher-level information
to refine their respective estimates. It seems promising that the view
of a camera system of a humanoid robot may be adjusted to allow
for the most informative measurements.

• Automated situation decomposition will facilitate inference in large
scenarios. The central prerequisite for the proposed model-predictive
approach to efficient inference based on online model selection is the
availability of a set of situation-specific smaller models. For large
scenarios, a manual construction of this situation-specific models is
not possible and thus automated model construction methods appear
to be inevitable.



In the field of ’Theory’,
chance only favors those minds

which have been prepared.

—Louis Pasteur

A Appendix

For the sake of self-containedness, in the remaining part of this chapter
basic definitions are restated as well as abbreviated calculations and omit-
ted proofs are given. Throughout the appendix, the definitions x, µ ∈ IR,
σ ∈ IR+, x, µ ∈ IRN, and C ∈ IRN×N, C p.s.d., will be used.

A.1 Density Representations

In this section, the definition of a density and relevant representations are
described. These definitions were compiled from from [127, 139, 180] and
[92, German]. A generic function

f : Ω 7−→ [0, 1] , (A.1)

mapping from a probability space Ω, e.g., IRN, to the interval [0, 1] is a
valid probability density function (PDF), if and only if,ˆ

Ω

f(x) dx = 1 .

Note, (A.1) particularly implies f(x) ≥ 0.

A.1.1 Normal Density

Due to its many advantageous properties, e.g., entropy maximization and
minimization of the Kullback-Leibler divergence [72], the normal density,
for the scalar case defined as

N (x− µ, σ) := 1√
2πσ

exp
{
− 1

2
(x−µ)2

σ2

}
, (A.2)

and for the multivariate case defined as

N (x− µ,C) := 1√
det(2πC)

exp
{
− 1

2 (x− µ)TC−1(x− µ)
}
, (A.3)

is a very common density function. The normal density is said to be
axis-aligned, if

C = diag(σ ) , (A.4)
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with σ = [σ2
1 . . . σ

2
N]T ∈ IRN, which allows a decomposition according to

N (x− µ,C) =

N∏

i=1

N (xi − µi, σi) . (A.5)

Even if (A.4) doesn’t hold, it is often used an approximation to the non-
aligned density. A heavily exploited property of the normal density, is
that the product of two normal densities yields an (unnormalized) normal
density again as

N (x− µ, σ) · N (x− ν, τ) = N (µ− ν,
√
σ2 + τ2) · N (x− µ′, σ′) , (A.6)

for the scalar case, with µ′ = µτ2+νσ2

σ2+τ2 , σ′ = τ2σ2

σ2+τ2 , and for the
multivariate case

N (x− µ,C) · N (x− ν,D) = N (µ− ν,C + D) · N (x− µ′,C′) , (A.7)

with µ′ =
(
C−1 +D−1

)−1(
D−1µ+ C−1ν

)
and C′ =

(
C−1 +D−1

)−1
.

A.1.2 Gaussian Mixture Density

A Gaussian mixture density (GM)1 is a weighted summation of normal
densities, i.e.,

f(x) =

L∑

i=1

αiN (x;µ
i
,Ci) , (A.8)

with L ∈ IN+, α = [α1 . . . αL]T ∈ IRL, and αT 1 = 1. In contrast to nor-
mal densities, GM allow for the representation of multimodal densities.
Additionally, with an infinite number of components, GM are universal
approximators [72]. Because the only condition imposed on the mixture
is αT 1 = 1, negative weights are possible. In order to facilitate the com-
putations, the stricter condition 0 ≤ αi ≤ 1 may be enforced too, as
positivity of the GM is guaranteed, if all components are positive. Intro-
ducing fi(x) := N (x−µ

i
,Ci) and f(x) = [f1(x) . . . fL(x)]T, (A.8) may be

rewritten into

f(x) =

L∑

i=1

αifi(x) = αTf(x) . (A.9)

1The terms Gaussian Mixture Model/Density (GMM) or Normal Mixture Model are
used synonymously in this thesis.
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A.1.3 Dirac Delta Distribution

The Dirac delta distribution δ may be derived as a special case of the
normal density by

δ(x, x′) = lim
σ→∞

N (x− x′, σ) .

The Dirac delta distribution has a function value of zero over the entire
state space except for the point x = x′. This property is exploited in
the definition of the empirical probability density function, where a Dirac
delta distribution is located at each data point. The Dirac delta distri-
bution fulfills the sifting property, which is, e.g., exploited for the unified
treatment of discrete- and continuous-valued random variables [167].

A.1.4 Dirac Mixture Density

In analogy to the extension of one Gaussian density to a Gaussian mixture
density, a Dirac mixture density is defined by

f(x) =

L∑

i=1

αi δ(x− xi) . (A.10)

with L ∈ IN+, α = [α1 . . . αL]T, αi ≥ 0, and αT 1 = 1. The empirical
probability density function is then given by setting D = {xi}1≤i≤|D| and

all αi = 1
|D| . The function in (A.10) satisfies all properties of a valid den-

sity function, i.e., integration to one and non-negativity. Note that evalua-
tions at singular points of a continuous density functions
are not defined.

A.1.5 Kernel Functions

The term kernel (function) is widely used in the literature and defined
differently depending on the context. For the sake of clarity, the definitions
of a kernel in the relevant literature are discussed in the following, i.e., the
kernel definitions for kernel density estimation [179], SVMs [164], and GPs
[152]. In general, they are given or have outputs in the form of

f(x) =

L∑

i=1

αiKi(x, xi) . (A.11)
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In order for (A.11) to be a valid density or conditional density function,
the kernel function K is assumed to be a valid density satisfying the
following constraintsˆ

IRN

K(x, xi) dx = 1 , K(x, xi) ≥ 0 . (A.12)

The mass and positivity constraint enforce, that a convex combination
of kernel functions yields a valid density function. These conditions may
be relaxed to allow for K to be proportional to a density function, e.g., a
positive constant normalization factor may be absorbed by the weights. In
the remaining part of this section, the validity of the mass and positivity
constraints for kernel functions used in kernel density estimation, SVMs,
and GPs are discussed.
As the form resulting from kernel density estimation (KDE) is a mixture
density of the type shown in (A.11), the kernel functions need to fulfill the
above conditions to yield valid density estimates. This condition is trivially
met for kernel functions being valid probability density functions. Typ-
ically, radially-symmetric, unimodal probability density function kernels
are used [179], e.g., the multivariate normal density or an Epanechnikov
kernel, i.e.,

K(x, 0) =

{
1
2v
−1
d (d+ 2)

(
1− xTx

)
, ifxTx < 1

0 , else
, (A.13)

with the vd volume of the d-dimensional unit sphere [179, Ch. 4.2]. Other
definitions of kernel functions, which are not valid probability density func-
tions exist [87]. When these kernels are used, e.g., renormalization is
needed, to satisfy (A.12). The difference between kernel functions in KDE
and SVM is the interpretation and the conditions that a kernel function
has to fulfill. In SVM, the kernel function measures the similarity between
two points. The kernel functions correspond to scalar products in not-
explicitly constructed feature spaces. Following [164, Ch. 2], a kernel for
x ∈ IRN is given by

φ :IRN 7→ H , K(x, x′) =< φ(x), φ(x′) >H , (A.14)

where H may be a higher-dimensional space of which only the scalar
product needs to be calculated. Since K is a scalar product, the
function satisfies

K(x, x′) ≥ 0 ,∀x ∈ IRN , K(x, x′) = 0 ⇐⇒ x = 0 , (A.15)
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i.e., the positivity constraint is fulfilled. Even though some kernels fulfill
the mass constraint (up to a normalization constant), e.g., the radial ba-
sis function kernel, in general, the SVM kernel functions will not satisfy
this condition. An example, where the mass constraint is violated is the
popular polynomial kernel for degree d

K(x, x′) =< φ(x), φ(x′) >d .

This limitation needs to be taken into account, when combining kernels
as discussed in [18, 36, 178] or [164, Ch. 13]. A kernel which can be used
with both SVM and the algorithms is presented in [190, 191],

Kγ(x, x′) = c(γ)K
(
x− x′
γ

)
, Kγ(x, x) = 1 , (A.16)

where γ is a scaling parameter, c(γ) a normalization factor, which is con-
stant w.r.t. x, and K non-negative. For an appropriate normalization
factor, (A.16) satisfies the mass and positivity constraints. GP and SVM
use kernel functions in a similar way. In GPs, the kernel are also termed
covariance functions measuring the dependency of two data points. The
kernel functions are used in the definition of both, the mean and covari-
ance function, cf. Sec. 2.1.3 and [152]. The kernel function needs to be
p.s.d. in the sense of integral operator theory [152, Ch. 4]. In order to
give valid covariance matrices, the kernel needs to be symmetric. Similar
to the kernels used in SVM, the mass constraint is not enforced, i.e., only
some kernels used in GPs are applicable for the density and conditional
density estimation.
Additionally, in this thesis kernel functions are employed in the definition
of the localized cumulative distribution, Def. 3.1. These kernel functions
are used for comparing local probability masses of multivariate random
variables. The suitable kernels for this definition are symmetric and in-
tegrable [70], e.g., a rectangle functions [71] or a (axis-aligned) Gaussian
function [70]. Again, some admissible kernels satisfy the positivity and
mass constraint, but this is in general not the case.

A.2 Norms, Distances and Scores

In this thesis, norms, distances, and scores are used in manifold ways. In
the following, the definition of a norm and distance will be
given as well as distances for comparing densities and conditional densities
will be presented.
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A.2.1 Definition of Norm and Distance

In the following, a definition of a norm is given as well as the cor-
responding derivation of a distance based on this norm as compiled form
[21] and [27, German].

Definition A.1 (Norm) Let V be a vector space for the field IK, the
function f : V 7→ IR+ is denoted as a norm if for arbitrary x, y ∈ V and
α ∈ IK the following conditions hold

(Non-Negativity) f(x) ≥ 0 , (A.17)

(Definiteness) f(x) = 0⇔ x = 0 , (A.18)

(Homogeneity) f(αx) = |α| f(x) , (A.19)

(Triangle Inequality) f(x+ y) ≤ f(x) + f(y) . (A.20)

A specific norm is typically denoted with ‖.‖Name. Given a norm as defined
above a distance between arbitrary elements of the vector space x, y ∈ V
may be defined by

D (x , y ) = ‖x− y‖ . (A.21)

A.2.2 Comparing Densities

In order to compare the results of the density and conditional density
estimation algorithm appropriate measures are required. For comparing
two densities f̃ and f of a scalar, continuous-valued random variable, the
integral squared distance (ISD) can be used

D
(
f̃ , f

)
=

√ˆ
IR

(
f̃(x)− f(x)

)2

dx . (A.22)

The normalized ISD [69] as defined below allows for more interpretation
of the distance values

D
(
f̃ , f

)
=

√√√√√√

´
IR

(
f̃(x)− f(x)

)2

dx

´
IR

(
f̃(x)

)2

dx+
´

IR
(f(x))

2
dx

, (A.23)

with D : F × F → [0, 1], i.e., a value of zero is returned for identical
functions f̃ and f in (A.23). At maximum a value of one for differing
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functions is returned. For the comparison of two conditional densities f̃
and f , the ISD may be defined analogously

D
(
f̃ , f

)
=

1

vol (X )

√ˆ
X

ˆ
IR

(
f̃(y|x)− f(y|x)

)2

dy dx , (A.24)

where X ⊂ IR is the considered domain of x. If the difference in the
“tails” of the conditional density functions shall be emphasized, the total
variation (TV) can be employed

D
(
f̃ , f

)
=

1

vol (X )

ˆ
X

ˆ ∣∣∣f̃(y|x)− f(y|x)
∣∣∣ dy dx . (A.25)

The TV may be calculated for discrete-valued random variables too,
e.g., x ∈ N

ξ = [ f(x = 1) . . . f(x = N) ]
T
, ξ̃ =

[
f̃(x = 1) . . . f̃(x = N)

]T
,

for which x attains values in the alphabet A, |A| = N, and thus

D
(
ξ , ξ̃

)
=

1

2

N∑

i=1

|ξ
i
− ξ̃

i
| . (A.26)

The values of (A.26) range from 0, if ξ = ξ̃, and 1, if the densities differ
most. It is instructive to understand the relation between the (negative)
log-likelihood and the Kullback-Leibler (KL) divergence [112] as difference
measure of probability density functions. In the following, it is shown
that maximizing the log-likelihood is equivalent to minimizing the KL
divergence. Given the true, underlying density function f̃ and its estimate
f , the KL divergence is defined as

KL
(
f̃ ‖ f

)
=

ˆ
IR

f̃(x) ln

(
f(x)

f̃(x)

)
dx , (A.27)

which may be simplified to

KL
(
f̃ ‖ f

)
=

ˆ
IR

f̃(x) ln (f(x)) dx−
(ˆ

IR

f̃(x) ln
(
f̃(x)

)
dx

)

︸ ︷︷ ︸
Entropy of f̃

. (A.28)
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As (A.28) shall be minimized w.r.t. parameters θ of f , the entropy of f̃ in
(A.28) may be neglected. If f̃ is approximated by samples fD in the form
of (2.1), θ∗ is obtained by solving

θ∗ = arg min
θ

KL (fD ‖ f) = arg max
θ

1

|D|

|D|∑

i=1

ln (f(xi)) . (A.29)

The right-hand side of (A.29) is the log-likelihood, which shows that min-
imizing the KL divergence is identical to maximizing the log-likelihood.
Note, that a different understanding of the log-likelihood w.r.t. the infor-
mation theory and entropy exists, cf. [3, 18], and KL is not symmetric
w.r.t. its arguments.

A.3 A Multivariate Parametric Minimum Distance
Estimator

The simplest density estimator derivable on the basis of the mCvMD as
discussed in Ch. 3 is an unregularized parametric minimum density es-
timator (MDE). In the following, an MDE for estimating an arbitrary
Gaussian mixture density from data as presented in [102] is described.
The MDE corresponds to a minimization of the mCvMD by means of a
standard function minimization algorithm. This implies that in each step
of the iterative function minimization, the LCDs of the empirical probabil-
ity density function fD and the target density f in Gaussian mixture form
as well as the mCvMD need to be calculated, cf. Sec. 3.1. The parameters
of (3.8), which are optimized in order to minimize the mCvMD are

α := [α1 . . . αL]
T
,

µ :=
[
µ(1)

1
. . . µ(N)

1
. . . µ(1)

L
. . . µ(N)

L

]T
,

Σ :=
[
σ

(1)
1 . . . σ

(N·N)
1 . . . σ

(1)
L . . . σ

(N·N)
L

]T
,

w.r.t. an N-dimensional random variable, L components, weights αi ∈
[0, 1], αT 1 = 1, means with µ(j)

i
∈ IR and covariance matrix entries

σ
(j)
i ∈ IR+. Collecting all parameters into one vector gives the vector

of optimization variables

θ =
[
αT , µT , ΣT

]T
. (A.30)
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The MDE estimate θ∗ may then be found by minimizing the mCvMD
w.r.t. to F and FD, the LCDs of f and fD, i.e.,

θ∗ = arg min
θ

ˆ
IR+

w(b)

ˆ
IRN

(F(m, b)− FD(m, b))
2

dm db , (A.31)

by the application of a standard nonlinear function minimization algo-
rithm. Similar to [71], the function w(.) is selected to ensure the conver-
gence of the integral over b

w(b) =

{
1

bN−1 , b ∈ [0, bmax]

0 , elsewhere
,

where bmax may be set to a multiple, e.g., 10× the maximum distance
between two samples.

Efficient Solution

For the MDE approach, the integrals about the kernel position m and
width b in (A.31) have to be calculated in each minimization step. For the
given density representations closed-form solutions to the integral over m
exist [102] yielding

θ∗ = arg min
θ

=

ˆ
IR+

w(b) det (2πΣb) (P1 − 2 P2 + P3) db . (A.32)

In (A.32), P1, P2, and P3 denote the results of integrating each summand

of the resolved binomial term (F(m, b)− FD(m, b))
2

in (A.31) over m.
The term P3 in (A.32) may be neglected for the function minimization,
as it is constant w.r.t. θ. It may be understood as describing the self-
similarity of the LCD for fD. The integral over the kernel width b in
(A.32) has to be solved by numerical integration, as no closed-form solution
to these terms for arbitrary Gaussian mixture densities is known up to
now. Additionally, any algorithm for solving (A.32) has to assert the
positivity of f(x) and validity of the covariance matrices. This may be
achieved by standard methods, such as the method of Lagrange or the
addition of penalty functions, a reformulation of the problem in terms of
squared weights

√
αi or

√
Σ, but also by an iterative resampling scheme,

as proposed in [102]. For further information refer to [102].
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Properties and Restrictions

The main properties and restrictions of this naive MDE approach may be
summarized as follows.

• Regarding the descriptive validity, this naive approach fits an arbi-
trary Gaussian mixture to the data and minimizes the distance of the
estimate to the data. Therefore, the approach produces estimates,
which represent the data well. Up to now, no proof of (asymptotic)
consistency of this approach exists.

• The approach only optimizes the data fit and lacks a robust mecha-
nism to avoid overfitting, thus asserting for prescriptive validity.

• This approach is computationally inefficient. Let M and L be the
number of components in fD and the estimate f . Further, let e be
the number of points used by the numerical integration, and s the
number of steps until converging to the minimum solution. Based
on (A.32), the computational complexity of the MDE approach is
at least in O ([L · L+ L ·M ] · e · s) evaluations of an N-dimensional
normal density.

• Note, that θ ∈ IRL(1+N+N2) implies that the function minimization
needs to be performed w.r.t. a large space. No analytic expression
for the gradient of the mCvMD is available up to this point in time,
requiring a numerical calculation of the gradient.

• The algorithm for solving this minimization problem needs to assert
the positivity of the resulting density estimate and that the integral
of the density estimate over the state space equals one. Without
proof, it has been noted in [102] that these constraints are prac-
tically asserted by the mass comparison performed by the mini-
mization of mCvMD.

A.4 Miscellanea

In this section various mathematical background material for all chapters
of this thesis has been collected. The relevant sources are given in the
respective sections.
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A.4.1 Matrix Properties & Operations

This section is based on [21, 79, 151] as well as [27, 77, both in German].
For an efficient implementation of the the matrix operations the interested
reader is referred to [66, 146].

Definition A.2 (Positive [Semi-]Definiteness of a Matrix) A given
symmetric matrix A ∈ IRN×N is positive [semi-]definite (p.[s.]d.), if for all
α ∈ IRN, α 6= 0

αT Aα
>
[≥]

0 . (A.33)

As the addition of matrices is considered, the following pro-
perties are required.

Corollary A.1 (Addition of Positive Semi-Definite Matrices) If
two matrices A,B ∈ IRN×N are positive semi-definite according to (A.33),
the following inequality holds [79]

αT (A + B)α = αT Aα+ αT Bα
(A.33)

≥ 0 , (A.34)

stating that an addition of p.s.d. matrices is still p.s.d.
The above lemma allows for determining the definiteness of a sum of ma-
trices based on the definiteness of the added matrices. Matrices resulting
from dyadic products have the following property, which is relevant for
Ch. 3 and Ch. 4.

Lemma A.1 (Symmetry of Dyadic Product Matrix) Let w ∈ IRN

be given, the matrix W ∈ IRN×N resulting from the dyadic product of w

W = wwT , (A.35)

is symmetric.
Proof. Let w = [w1 . . . wN ]T, wi ∈ IR, the elements of the matrix W =
wwT be given, then

Wij = wi · wj ,
and Lemma A.1 follows from

Wij = Wji .

�
Using Lemma A.1, the following property can be shown.
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Lemma A.2 (Positive Semi-Definiteness of Dyadic Product
Matrix) Any matrix W ∈ IRN×N resulting from a dyadic product of
a vector w ∈ IRN, i.e., W = wwT, is p.s.d.
Proof. In order for W to be p.s.d., W has to be symmetric and needs
to fulfill (A.33). Due to Lemma A.1, W is symmetric. The positivity
follows from

αT Wα = αT
(
wwT

)
α =

(
αT w

)2 ≥ 0 ,

for all α ∈ IRN and thus W is p.s.d. according to Def. A.2. �

Corollary A.2 (Positive Semi-Definiteness of the Superficial Re-
gularizer) According to [151], given a density representation with a kernel
function k(x)

f(x) =

L∑

i=1

αi ki(x) = αT k(x) , (A.36)

and Dmx a differential operator w.r.t.m, using commutativity and linear-
ity, one may obtain

ˆ
IRN

(Dmf(x) )
2

dx =

ˆ
IRN

DmαTk(x) ·DmαTk(x) dx

=

ˆ
IRN

αT
(
Dmk(x) ·Dmk(x)T

)
α dx

= αT

(ˆ
IRN

Dmk(x)Dmk(x)T dx

)
α

= αT Dα ,

with

Dij =

ˆ
IRN

(Dmki(x) )
(
Dmkj(x)T

)
dx . (A.37)

The p.s.d. property follows.
A detailed derivation of Corollary A.2 can be found in [151].

A.4.2 Proof of Theorem 4.1 - Properties of the scalar
Superficial Regularizer

Proof. In the following, the proofs are given for each property. The
derivation is adapted from [109]. For the sake of brevity, the following
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abbreviation will be used in the further calculations

k(x, y) =



N (x;µx,1, σx,1) N (y;µy,1, σy,1)

...
N (x;µx,L, σx,L) N (y;µy,L, σy,L)


 =: k ,

with (x, y) = p ∈ IR2 is used. The first property is derived by successively
approximating the definition of the squared curvature of the entire surface
of the scalar density function f .

Property 1: The square of the surface’s curvature of f is simplified by
using (A.8), the linearity of the integral, and the commutativity of the
inner product, giving rise to

K(f) =

ˆ
IR2

[
fxx(p) fyy(p)

]2
dp

=

ˆ
IR2

[
αTkxx kyyα

T
]2

dp

=

ˆ
IR2

[αT
(
kxx k

T
yy

)

︸ ︷︷ ︸
M

α ]2 dp . (A.38)

with M ∈ IRN×N. The above transformations use the separability of the
mixture density, the linearity of the integral, and the commutativity of
the inner product. Further simplification of (A.38) gives the approximate
upper bound

ˆ
IR2

[αT Mα ]2 dp =

ˆ
IR2

αT MααT Mα dp ≈ cM αT Rα ,

the desired result with cM a constant independent of α

Rij =

L∑

k=1

ˆ
IR2

k(i,k)
xx (p) k(i,k)

yy (p) · k(k,j)
xx (p) k(k,j)

yy (p) dp . (A.39)

In order to proof the second property, the regularization expression is de-
rived for one point and shown to be an upper bound on the curvature of the
generative model. The upper bound is then extended to the entire surface.
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Property 2: The integral squared curvature of y = g(x), i.e., a curve in the
xy-plane at x, may be upper bounded according to the
following inequality

ˆ
IR

[
∂

∂x∂xg(x)
]2

[
1 +

(
∂
∂xg(x)

)2]3 ≤
ˆ

IR

[
∂

∂x∂xg(x)
]2

dx . (A.40)

This upper bound of the curvature of g is related to an upper bound
of the squared curvature of the conditional density function’s surface f
according to

fxx(p) fyy(p)− f2
xy(p) = c1 · f2(y − g(x)) h(y − g(x)) ∂2

∂x∂xg(x) . (A.41)

For Gaussian additive noise, integrating (A.41) over the in- and output
dimension yields

K(g) =

ˆ
IR

ˆ
IR

(
fxx(x, y) fyy(x, y)− f2

xy(x, y)
)2

dy dx

=

ˆ
IR

c2 · ( ∂2

∂x∂xg(x) )2 dx ,

with c2 ∈ IR+ and c2 independent of g. The result then follows from
K(g) ≤ K(f). �

A.4.3 Nonlinear Optimization

A special type of nonlinear optimization is convex optimization, which
entails as an important special case convex quadratic optimization. This
section gives a brief review of the most important properties of this sort
of optimization problems based on [21, 27]. In nonlinear optimization, one
seeks to minimize an objective function2 f : IRN → IR for the optimization
variables α ∈ IRN w.r.t. a set of P inequality constraints gi : IRN → IR
and Q equality constraints hj : IRN → IR, i.e.,

minimize f(α) (A.42)

subject to gi(α) ≤ 0 , i = 1, . . . , P ,

hj(α) = 0 , j = 1, . . . , Q .

2The objective function is also denoted as the target function.
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The set of constraints defines the feasible set of solutions. Depending
on the properties of f , gi, and hj , the nonlinear problem in (A.42) may
be further qualified, potentially allowing for a more efficient solution of
the problem. If the objective function in (A.42) is quadratic and the
constraint functions are affine, the nonlinear optimization problem is called
a quadratic optimization problem [21]. The problem (A.42) may then be
written in the following form

minimize
1

2
αTCα+ cTα+ r (A.43)

subject to Aα � b ,
Dα = e ,

where C ∈ IRN×N, c ∈ IRN, r ∈ IR, A ∈ IRP×N, b ∈ IRP, D ∈ IRQ×N,
e ∈ IRQ, and � denotes the component-wise inequality. The objective
function in (A.43) is (strictly) convex, if C is p.(s.)d. Due to the con-
vexity, the optimality properties are inherited from convex optimization
problems. In detail, any local minimum is a global minimum, i.e., opti-
mum, w.r.t., the feasible region. Further information about other theo-
retical properties, such as existence and uniqueness of the solution, can
be found in [21]. Detailed implementation advice and applications, e.g.,
w.r.t. learning problems can be found in [164]. For the experiments in this
thesis, the problems were converted to the standard form and solved with
the implementation [67] or [188]. For a practitioner, the time complexity
of the algorithm solving (A.43) is an important property. From a theo-
retical perspective, it was shown, that for convex problems, i.e., C p.s.d.,
(A.43) may be solved in a time depending polynomially on the number of
optimization variables N and constraints P+Q. The complexity of a naive
implementation involves O

(
N3
)

operations [21, Ch. 1] per iteration. Note
that specialized solvers, e.g., for SVM, exist and may be computationally
more efficient than the default solvers at the cost of optimality [164].
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