18 research outputs found

    Linear-Combined-Code-Based Unambiguous Code Discriminator Design for Multipath Mitigation in GNSS Receivers

    Get PDF
    Unambiguous tracking and multipath mitigation for Binary Offset Carrier (BOC) signals are two important requirements of modern Global Navigation Satellite Systems (GNSS) receivers. A GNSS discriminator design method based on optimization technique is proposed in this paper to meet these requirements. Firstly, the discriminator structure based on a linear-combined code is given. Then the requirements of ideal discriminator function are converted into the mathematical constraints and the objective function to form a non-linear optimization problem. Finally, the problem is solved and the local code is generated according to the results. The theoretical analysis and simulation results indicate that the proposed method can completely remove the false lock points for BOC signals and provide superior multipath mitigation performance compared with traditional discriminator and high revolution correlator (HRC) technique. Moreover, the proposed discriminator is easy to implement for not increasing the number of correlators

    Unambiguous Acquisition and Tracking Technique for General BOC Signals

    Get PDF
    This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits

    Unambiguous Processing Techniques of Binary Offset Carrier Modulated Signals

    Get PDF

    Efficient Delay Tracking Methods with Sidelobes Cancellation for BOC-Modulated Signals

    Get PDF
    In positioning applications, where the line of sight (LOS) is needed with high accuracy, the accurate delay estimation is an important task. The new satellite-based positioning systems, such as Galileo and modernized GPS, will use a new modulation type, that is, the binary offset carrier (BOC) modulation. This type of modulation creates multiple peaks (ambiguities) in the envelope of the correlation function, and thus triggers new challenges in the delay-frequency acquisition and tracking stages. Moreover, the properties of BOC-modulated signals are yet not well studied in the context of fading multipath channels. In this paper, sidelobe cancellation techniques are applied with various tracking structures in order to remove or diminish the side peaks, while keeping a sharp and narrow main lobe, thus allowing a better tracking. Five sidelobe cancellation methods (SCM) are proposed and studied: SCM with interference cancellation (IC), SCM with narrow correlator, SCM with high-resolution correlator (HRC), SCM with differential correlation (DC), and SCM with threshold. Compared to other delay tracking methods, the proposed SCM approaches have the advantage that they can be applied to any sine or cosine BOC-modulated signal. We analyze the performances of various tracking techniques in the presence of fading multipath channels and we compare them with other methods existing in the literature. The SCM approaches bring improvement also in scenarios with closely-spaced paths, which are the most problematic from the accurate positioning point of view.</p

    Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Get PDF
    Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS) or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS) signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML) delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s), phase(s), and delay(s) of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK-) and Sine Binary Offset Carrier- (SinBOC-) modulated signals is also analyzed in closed loop model with the new Composite BOC (CBOC) modulation chosen for Galileo E1 signal. The simulation results show that the RSSML achieves the best multipath mitigation performance in a uniformly distributed two-to-four paths Rayleigh fading channel model for all three modulated signals

    Analyzing Code Tracking Algorithms for Galileo Open Service Signal

    Get PDF
    The ever-increasing public interest on location and positioning services has originated a demand for higher performance Global Navigation Satellite Systems (GNSSs). Galileo Open Service (OS) signal, part of the European contribution to future GNSS, was designed to respond to the above demand. In all GNSSs, the estimation with high accuracy of the Line-Of-Sight (LOS) delay is a prerequisite. The Delay Lock Loops (DLLs) and their enhanced variants (i.e., feed-back code tracking loops) are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the Binary Offset Carrier (BOC) modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this thesis analyzes feed-back as well as feed-forward code tracking algorithms and proposes a novel algorithm, namely Peak Tracking (PT), which is a combination of both feed-back and feed-forward structures and utilizes the advantages inherent in these structures. In this thesis, the code tracking algorithms are studied and analyzed for Sine BOC (SinBOC) modulated Galileo OS signal for various multipath profiles in Rayleigh fading channel model. The performance of the analyzed algorithms are measured in terms of various well-known criteria such as Root-Mean-Square-Error (RMSE), Mean-Time-to-Lose Lock (MTLL), delay error variance and Multipath Error Envelopes (MEEs). The simulation results show that the proposed PT algorithm outperforms all other analyzed algorithms in various multipath profiles in good Carrier-to-Noise-Ratios (CNRs). The simulation results are compared with the theoretical Cramer-Rao Bound (CRB) and the comparison shows that the delay error variance for PT algorithm approaches the theoretical limit with the increase in CNR. Therefore, the proposed algorithm can be considered as an excellent candidate for implementation in future Galileo receivers, especially when tracking accuracy is a concern. /Kir1
    corecore