19,354 research outputs found

    Tracking environmental trends in the Great Bay Estuarine System through comparisons of historical and present-day green and red algal community structure and nutrient content

    Get PDF
    Monitoring macroalgae populations is an effective means of detecting long term water quality changes in estuarine systems. To investigate the environmental status of New Hampshire’s Great Bay National Estuarine Research Reserve, this study assessed the abundance/distribution of macrophytes, particularly Gracilaria and Ulva species, relative to eutrophication patterns; compared historical (1970s-1990s) and current algal biomass/cover at several sites; and compared Ulva and Gracilaria tissue N/P content to ambient and historical levels. Ulva and Gracilaria biomass/cover have increased significantly at several sites. Cover by Ulva species, at seasonal maxima, was over 90 times the value recorded in the 1970s at Lubberland Creek, and exceeded 50% at all sites in the upper estuary. Gracilaria cover was greater than 25% at Depot Road in the upper estuary, whereas the historical measure was 1%. Sequencing of ITS2, rbcL and CO1 revealed the presence of previously undetected Ulva and Gracilaria species, including Gracilaria vermiculophylla (Ohmi) Papenfuss, an invasive species of Asian origin. Gracilaria vermiculophylla has exceeded G. tikvahiae as the dominant Gracilaria species in Great Bay. Historical voucher specimen screening suggests G. vermiculophylla was introduced as recently as 2003. Nitrogen and phosphorus levels are elevated in the estuary. We should expect continued seasonal nuisance algal blooms

    Culturing requirements and commercial quality of four different species of Ulva (Ulvales, chlorophyta)

    Get PDF
    The commercial production of Ulva spp. by aquaculture is gaining in importance due both to the qualitative and quantitative increase in the use of the harvested biomass and its new applications in inland IMTA techniques. However, very little is known about the specific culturing requirements and commercial quality of the different species of Ulva. The aim of this work is to try from this point of view four Ulva species that could be grown in southern Europe: U. australis, U. fasciata, U. ohnoi and U. rigidaPostprint (author's final draft

    Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (chlorophyta)

    Get PDF
    Ulva is a ubiquitous macroalgal genus of commercial interest. Integrated Multi-Trophic Aquaculture (IMTA) systems promise large-scale production of macroalgae due to their high productivity and environmental sustainability. Complex host-microbiome interactions play a decisive role in macroalgal development, especially in Ulva spp. due to algal growth- and morphogenesis-promoting factors released by associated bacteria. However, our current understanding of the microbial community assembly and structure in cultivated macroalgae is scant. We aimed to determine (i) to what extent IMTA settings influence the microbiome associated with U. rigida and its rearing water, (ii) to explore the dynamics of beneficial microbes to algal growth and development under IMTA settings, and (iii) to improve current knowledge of host-microbiome interactions. We examined the diversity and taxonomic composition of the prokaryotic communities associated with wild versus IMTA-grown Ulva rigida and surrounding seawater by using 16S rRNA gene amplicon sequencing. With 3141 Amplicon Sequence Variants (ASVs), the prokaryotic richness was, overall, higher in water than in association with U. rigida. Bacterial ASVs were more abundant in aquaculture water samples than water collected from the lagoon. The beta diversity analysis revealed distinct prokaryotic communities associated with Ulva collected in both aquacultures and coastal waters. Aquaculture samples (water and algae) shared 22% of ASVs, whereas natural, coastal lagoon samples only 9%. While cultivated Ulva selected 239 (8%) host-specific ASVs, wild specimens possessed more than twice host-specific ASVs (17%). Cultivated U. rigida specimens enriched the phyla Cyanobacteria, Planctomycetes, Verrucomicrobia, and Proteobacteria. Within the Gammaproteobacteria, while Glaciecola mostly dominated the microbiome in cultivated algae, the genus Granulosicoccus characterized both Ulva microbiomes. In both wild and IMTA settings, the phylum Bacteroidetes was more abundant in the bacterioplankton than in direct association with U. rigida. However, we observed that the Saprospiraceae family within this phylum was barely present in lagoon water but very abundant in aquaculture water. Aquaculture promoted the presence of known morphogenesis-inducing bacteria in water samples. Our study suggests that IMTA significantly shaped the structure and composition of the microbial community of the rearing water and cultivated U. rigida. Detailed analysis revealed the presence of previously undetected taxa associated with Ulva, possessing potentially unknown functional traits.European Union (EU)642575; German Research Foundation (DFG) CRC 1127 ChemBioSys;COST Action "Phycomorph" FA1406info:eu-repo/semantics/publishedVersio

    Use of water soluble extracts from ulva sp. by probiotics and fish bacterial pathogens

    Get PDF
    BACKGROUNDS The potential of seaweeds as dietary components is considered for a wide range of cultured fish species. In this context, Ulva is investigated as a good source of protein, minerals and vitamins. In addition, of probiotics are used to improve fish growth and modulate immune system and intestinal microbiota. To promote probiotics colonization and maintenance in the intestine, prebiotics are included in fish diets. Prebiotics are indigestible substrates used as energy sources for gastrointestinal microbiota, with a positive effect on the nutrition and health status of the host. In the present work, ability of selected probiotic and fish pathogen strains to use water soluble extracts from Ulva as nutrient source has been evaluated. MATERIALS AND METHODS Water-soluble extracts from Ulva sp. prepared by sonication of dehydrated samples were used to supplement minimum medium (M9). Probiotics and pathogens growth was evaluated based on the optical densities measured with a microplate reader. RESULTS AND CONCLUSIONS Probiotics were able to grow in minimum medium using water soluble extracts as nutrient source. On the other hand, P. damselae subsp. piscicida and V. harveyistrains were also able to grow with Ulvaextracts as nutrient source. However, incubation time to reach maximum growth was longer. Although Ulva extract may support growth of both probiotics and pathogen bacteria, faster growth of probiotics may help for the establishment of probiotic populations in the intestinal environment. In addition, beneficial effects on growth performance, gut microbiota, immunity and disease resistance of Ulva for Solea senegalensisare being studied. This work was funded by INIA, Ministerio de Economía y Competitividad and FEDER (RTA201400023 C0202).This work was funded by INIA, Ministerio de Economía y Competitividad and FEDER (RTA201400023 C0202).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Results of 2013 Macroalgal Monitoring and Recommendations for Future Monitoring in Great Bay Estuary, New Hampshire

    Get PDF
    The recently designated nitrogen impairment and reports of elevated macroalgal growth in Great Bay Estuary indicate ecological imbalance. However, reversing the Estuary’s ecological decline will require commitment of considerable resources and is complicated by the variety of sources that deliver nitrogen to the Estuary and the intermittent nature of historic macroalgal monitoring. To advance our understanding of the macroalgal and nitrogen dynamics of the Estuary, data were collected via three approaches: 1) assessing plant cover and biomass along transects; 2) assessing plant cover at randomly selected points; and 3) comparing the nitrogen isotope ratios of macroalgae collected from different habitats. The results offer insight into changes in macroalgal abundance and species composition and the relative importance of various nitrogen sources to macroalgae in Great Bay. Overall, our results corroborate the findings of increasing macroalgal blooms in previous studies and suggests plausible directions for a long-term macroalgal monitoring program

    Removal of Sea Lettuce, Ulva spp., in Estuaries to Improve the Environments for Invertebrates, Fish, Wading Birds, and Eelgrass, Zostera marina

    Get PDF
    Mats (biomasses) of macroalgae, i.e. Ulva spp., Enteromorpha spp., Graciolaria spp., and Cladophora spp., have increased markedly over the past 50 years, and they cover much larger areas than they once did in many estuaries of the world. The increases are due to large inputs of pollutants, mainly nitrates. During the warm months, the mats lie loosely on shallow sand and mud flats mostly along shorelines. Ulva lactuca overwinters as buds attached to shells and stones, and in the spring it grows as thalli (leaf fronds). Mats eventually form that are several thalli thick. Few macroinvertebrates grow on the upper surfaces of their thalli due to toxins they produce, and few can survive beneath them. The fish, crabs, and wading birds that once used the flats to feed on the macroinvertebrates are denied these feeding grounds. The mats also grow over and kill mollusks and eelgrass, Zostera marina. An experiment was undertaken which showed that two removals of U. lactuca in a summer from a shallow flat in an estuarine cove maintained the bottom almost free of it

    Fatty acid profiles of the main lipid classes of green seaweeds from fish pond aquaculture

    Get PDF
    The lipid composition of five species of green seaweeds (Chaetomorpha linum, Rhizoclonium riparium, Ulva intestinalis, Ulva lactuca, and Ulva prolifera) grown in fish pond aquaculture systems was studied. In particular, the overall fatty acid (FA) profile and the FA profile of each main lipid class found in these seaweed species were thoroughly analyzed. It was found that every seaweed had a specific FA profile, whose specificities were rendered more obvious with the study of the FA profile per lipid class. However, between U.lactuca and U.intestinalis, there were only minor differences. Nonetheless, it was possible to identify significant differences between the palmitic acid content in the phospholipid (PL) and glycolipid (GL) classes of each seaweed. A clear distinction between the FA profiles of R.riparium and C.linum, which belong to the Cladophorales order, and those of Ulva genus, Ulvales order, was also determined. Moreover, there were also differences among lipid classes, yielding large contrasts between PLs+GLs and triacylglycerols (TAGs) as well as between monoacylglycerols (MAGs) and free fatty acids (FFAs). This study also found evidence supporting the location of particular FAs in specific TAG positions. FA profiles have the potential to be used as a chemotaxonomic tool in green seaweeds, providing a simple method to check authenticity of seaweed used as food.Fundacao para a Ciencia e a Tecnologiainfo:eu-repo/semantics/publishedVersio

    Modeling approach to regime shifts of primary production in shallow coastal ecosystems

    Full text link
    Pristine coastal shallow systems are usually dominated by extensive meadows of seagrass species, which are assumed to take advantage of nutrient supply from sediment. An increasing nutrient input is thought to favour phytoplankton, epiphytic microalgae, as well as opportunistic ephemeral macroalgae that coexist with seagrasses. The primary cause of shifts and succession in the macrophyte community is the increase of nutrient load to water; however temperature plays also an important role. A competition model between rooted seagrass (Zostera marina), macroalgae (Ulva sp), and phytoplankton has been developed to analyse the succession of primary producer communities in these systems. Successions of dominance states, with different resilience characteristics, are found when modifying the input of nutrients and the seasonal temperature and light intensity forcing.Comment: 33 pages, including 10 figures. To appear in Ecological Complexit

    Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp.

    Get PDF
    Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.Fil: Teichberg, Mirta. Leibniz Center For Tropical Marine Research; AlemaniaFil: Fox, Sophia E.. Marine Biological Laboratory; Estados UnidosFil: Olsen, Ylva S.. Bangor University; Reino UnidoFil: Valiela, Ivan. Marine Biological Laboratory; Estados UnidosFil: Martinetto, Paulina Maria del Rosario. Universidad Nacional de Mar del Plata; ArgentinaFil: Iribarne, Oscar Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Muto, Elizabeti Yuriko. Universidade de Sao Paulo; BrasilFil: Petti, Monica A.V.. Universidade de Sao Paulo; BrasilFil: Corbisier, Thaïs N.. Universidade de Sao Paulo; BrasilFil: Soto-Jiménez, Martín. Universidad Nacional Autónoma de México; MéxicoFil: Páez-Osuna, Federico. Universidad Nacional Autónoma de México; MéxicoFil: Castro, Paula. University Of Coimbra; BrasilFil: Freitas, Helena. University Of Coimbra; BrasilFil: Zitelli, Andreina. Università Iuav Di Venezia; ItaliaFil: Cardinaletti, Massimo. Gruppo Veritas; ItaliaFil: Tagliapietra, Davide. Consiglio Nazionale delle Ricerche; Itali
    • …
    corecore