1,002 research outputs found

    Ultrasonic signal detection and recognition using dynamic wavelet fingerprints

    Get PDF
    A novel ultrasonic signal detection and characterization technique is presented in this dissertation. The basic tool is a simplified time-frequency (scale) projection which is called a dynamic wavelet fingerprint. Take advantage of the matched filter and adaptive time-frequency analysis properties of the wavelet transform, the dynamic wavelet fingerprint is a coupled approach of detection and recognition. Different from traditional value-based approaches, the dynamic wavelet fingerprint based technique is pattern or knowledge based. It is intuitive and self-explanatory, which enables the direct observation of the variation of non-stationary ultrasonic signals, even in complex environments. Due to this transparent property, efficient detection and characterization algorithms can be customized to address specific problems. Furthermore, artificial intelligence can be integrated and expert systems can be developed based on it.;Several practical ultrasonic applications were used to evaluate the feasibility and performance of this technique. The first application was ultrasonic materials sorting. Dynamic wavelet fingerprints of echoes from the surface of different plates were generated and then used to successfully identify corresponding plates.;The second application was ultrasonic periodontal probing. The dynamic wavelet fingerprint technique was used to expose the hidden trend of the complex waveforms. Taking the manual probing data as gold standard , a 40% agreement ratio was achieved with a tolerance limit of 1mm. However, statistically, lack of agreement was found in terms of the limits of agreement of Bland and Altman.;The third application was multi-mode Lamb wave tomography. The dynamic wavelet fingerprint technique was used to extract arrival times of transmitted Lamb wave modes. The overall quality of the estimated arrival times was acceptable in terms of their regular distributions and discernable variation patterns that correspond to specific defects. The tomographic images generated from estimated arrival times were also fine enough to indicate different defects in aluminum plates.;The last application was ultrasonic thin multi-layers inspection. High precision and robustness of a dynamic wavelet fingerprint based algorithm was demonstrated by processing simulated ultrasonic signals. When applied to practical data obtained from a plastic encapsulated IC package, multiple interfaces in the package were successfully detected

    Defect recognition in concrete ultrasonic detection based on wavelet packet transform and stochastic configuration networks

    Get PDF
    YesAiming to detect concrete defects, we propose a new identification method based on stochastic configuration networks. The presented model has been trained by time-domain and frequency-domain features which are extracted from filtering and decomposing ultrasonic detection signals. This method was applied to ultrasonic detection data collected from 5 mm, 7 mm, and 9 mm penetrating holes in C30 class concrete. In particular, wavelet packet transform (WPT) was then used to decompose the detected signals, thus the information in different frequency bands can be obtained. Based on the data from the fundamental frequency nodes of the detection signals, we calculated the means, standard deviations, kurtosis coefficients, skewness coefficients and energy ratios to characterize the detection signals. We also analyzed their typical statistical features to assess the complexity of identifying these signals. Finally, we used the stochastic configuration networks (SCNs) algorithm to embed four-fold cross-validation for constructing the recognition model. Based upon the experimental results, the performance of the presented model has been validated and compared with the genetic algorithm based BP neural network model, where the comparison shows that the SCNs algorithm has superior generalization abilities, better fitting abilities, and higher recognition accuracy for recognizing defect signals. In addition, the test and analysis results show that the proposed method is feasible and effective in detecting concrete hole defects.This work was supported in part by the Zhejiang Provincial Natural Science Foundation (ZJNSF) project under Grant (No. LY18F030012), the National Natural Science Foundation of China projects (NSFC) under Grant (No. 61403356, 61573311)

    Intelligent Industrial Cleaning: A Multi-Sensor Approach Utilising Machine Learning-Based Regression

    Get PDF
    Effectively cleaning equipment is essential for the safe production of food but requires a significant amount of time and resources such as water, energy, and chemicals. To optimize the cleaning of food production equipment, there is the need for innovative technologies to monitor the removal of fouling from equipment surfaces. In this work, optical and ultrasonic sensors are used to monitor the fouling removal of food materials with different physicochemical properties from a benchtop rig. Tailored signal and image processing procedures are developed to monitor the cleaning process, and a neural network regression model is developed to predict the amount of fouling remaining on the surface. The results show that the three dissimilar food fouling materials investigated were removed from the test section via different cleaning mechanisms, and the neural network models were able to predict the area and volume of fouling present during cleaning with accuracies as high as 98% and 97%, respectively. This work demonstrates that sensors and machine learning methods can be effectively combined to monitor cleaning processes

    Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    Get PDF
    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of '1-of-C coding method for classification' was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor

    Surface profile prediction and analysis applied to turning process

    Get PDF
    An approach for the prediction of surface profile in turning process using Radial Basis Function (RBF) neural networks is presented. The input parameters of the RBF networks are cutting speed, depth of cut and feed rate. The output parameters are Fast Fourier Transform (FFT) vector of surface profile for the prediction of surface profile. The RBF networks are trained with adaptive optimal training parameters related to cutting parameters and predict surface profile using the corresponding optimal network topology for each new cutting condition. A very good performance of surface profile prediction, in terms of agreement with experimental data, was achieved with high accuracy, low cost and high speed. It is found that the RBF networks have the advantage over Back Propagation (BP) neural networks. Furthermore, a new group of training and testing data were also used to analyse the influence of tool wear and chip formation on prediction accuracy using RBF neural networks

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Gender Estimation from Fingerprints Using DWT and Entropy

    Get PDF
    Gender estimation from fingerprints have wide range of applications, especially in the field of forensics where identifying the gender of a criminal can reduce the list of suspects significantly. Although there have been quite a few research papers in the field of gender estimation from fingerprints most of those experiments used a lot of features but were only able to achieve poor classification results. That being the motivation behind the study we successfully proposed two different approaches for gender estimation from fingerprints and achieved high classification accuracy.;In this study we have developed two different approaches for gender estimation from fingerprints. The dataset used consists of 498 fingerprints of which 260 are male and 238 are female fingerprints. The first approach is based on wavelet analysis and uses features obtained from a six level discrete wavelet transform (DWT). Classification is performed using a decision stump classifier implemented in weka and was able to achieve a classification accuracy of 95.38% using the DWT approach. The second approach uses wavelet packet analysis and extracted the Shannon entropy and log-energy entropy from the coefficients of wavelet packet transform and provided a classification accuracy of 96.59% on the same dataset using decision stump classifier implemented in weka

    A review of ultrasonic sensing and machine learning methods to monitor industrial processes

    Get PDF
    Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements owing to their strong performance. These techniques also offer advantages over calibration procedures of more complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the correlation of sensor data to important process information. However, their implementation requires expertise to extract and select appropriate features from the sensor measurements as model inputs, select the type of machine learning algorithm to use, and find a suitable set of model hyperparameters. The aim of this article is to facilitate implementation of machine learning techniques in combination with ultrasonic measurements for in-line and on-line monitoring of industrial processes and other similar applications. The article first reviews the use of ultrasonic sensors for monitoring processes, before reviewing the combination of ultrasonic measurements and machine learning. We include literature from other sectors such as structural health monitoring. This review covers feature extraction, feature selection, algorithm choice, hyperparameter selection, data augmentation, domain adaptation, semi-supervised learning and machine learning interpretability. Finally, recommendations for applying machine learning to the reviewed processes are made
    • …
    corecore