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ABSTRACT Aiming to detect concrete defects, we propose a new identification method based on stochastic
configuration networks. The presented model has been trained by time-domain and frequency-domain
features which are extracted from filtering and decomposing ultrasonic detection signals. This method
was applied to ultrasonic detection data collected from 5 mm, 7 mm, and 9 mm penetrating holes in
C30 class concrete. In particular, wavelet packet transform (WPT) was then used to decompose the detected
signals, thus the information in different frequency bands can be obtained. Based on the data from the
fundamental frequency nodes of the detection signals, we calculated the means, standard deviations, kurtosis
coefficients, skewness coefficients, and energy ratios to characterize the detection signals. We also analyzed
their typical statistical features to assess the complexity of identifying these signals. Finally, we used the
stochastic configuration networks (SCNs) algorithm to embed four-fold cross-validation for constructing
the recognition model. Based upon the experimental results, the performance of the presented model has
been validated and compared with the genetic algorithm based on BP neural network model, where the
comparison shows that the SCNs algorithm has superior generalization abilities, better fitting abilities, and
higher recognition accuracy for recognizing defect signals. In addition, the test and analysis results show
that the proposed method is feasible and effective in detecting concrete hole defects.

INDEX TERMS Concrete defects, ultrasonic detection, wavelet packet transform, stochastic configuration
networks, pattern recognition.

I. INTRODUCTION
Concrete is essential material in modern architecture. Indeed,
it is widely used in the construction of many facilities, includ-
ing buildings, bridges, and dams. After a certain period of use
or degradations caused by natural disasters, the structure of
concrete will deteriorate, thereby resulting in common prob-
lems such as internal voids and cracks.While there are several
common non-destructive testing methods for these issues,
such as ultrasound, ground-penetrating radar, and impact-
echo [1], However, the ultrasonic method is not susceptible
to environmental interference and is also considered a mature
technology for inspecting issues such as weld quality [2].
After the ultrasonic propagates in the concrete, the waveform
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of the signal is diverse and the components in the signal are
complex subjected to high-frequency noise. This will make
it difficult for us to extract effective information from the
signal, and it is also difficult to classify the detected signal.
The existing manual recognition methods are low efficient
and the traditional intelligent recognition methods have low
accuracy. Therefore, it is a difficult and important task to
extract the effective features of the complex signal so that we
can identify the type of concrete ultrasonic detection signal
faster with high accuracy.

Although some scholars have successfully modeled ultra-
sonic probes and obtained analog detection signals [3],
there is currently no mechanism model for ultrasonic prop-
agation in concrete. Due to the complexities of concrete
components and structures, it is difficult to establish a precise
model. At present, it is not feasible to analyze the actual
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concrete ultrasonic detection signal through the mechanism
model. Nevertheless, a common method of data processing
involves the extraction of effective information from detec-
tion data. In the study of hyperspectral images, themethods of
extracting discriminative feature information based on local
geometric structure Fisher analysis (LGSFA) [4] and local
neighborhood structure preserving embedding (LNSPE) [5]
effectively reduce the data dimension and improve the clas-
sification performance of the model. Mostavi et al. used
wavelet transform and machine learning to analyze and
identify ultrasonic signals [6], thus establishing an effective
method, and machine learning identifies the processed ultra-
sonic signals and achieves high recognition accuracy. Tradi-
tional machine learning algorithms such as neural network
and support vector machine have been used in concrete ultra-
sonic detection signal recognition cases [7]–[9]. However,
these algorithms are not of sufficient accuracy for identifying
complex concrete defect signals. Signal processing before
identifying the signal is helpful to improve the recognition
ability of the model. Fourier transform is often used in signal
processing, but it has insufficient processing power for com-
plex non-stationary signals [10]. Empirical mode decomposi-
tion will result in mode mixing when processing signals [11].
Some other studies have applied Kalman filtering or parti-
cle filtering in the context of ultrasonic signal processing.
However, these signal processing methods are mostly used
in target tracking, fault diagnosis, inertial navigation systems
and other fields.

Deep learning is now a widely used intelligent recognition
method that is associated with high accuracy and stability.
There have been many such applications in the field of ultra-
sonic testing [12], [13]. However, this method requires large
amounts of training data and contains many hidden layers.
In this regard, large-scale datasets result in time-consuming
training processes in the context of deep learning. It lacks
of interpretability for different practical application mod-
els. Wang et al. proposed stochastic configuration networks
with supervision mechanisms in 2017 [14], [15]. Such a
network does not need to determine the optimal network
structure parameters through an optimization algorithm and
still has great generalization capabilities with samples con-
taining noise and outliers. Wang et al. used handwritten digit
recognition as an example to test SCNs, with results showing
higher recognition accuracy and faster calculation speeds in
addition to suitability for use in large-scale data-processing
applications. Moreover, Qu et al. used stochastic configura-
tion networks to diagnose the causes of fiber damage using
optical fiber vibration signals [16]. It has been shown that the
advantages of SCNs for pattern recognition.

To address the problem of low automation and low
accuracy in the recognition of concrete ultrasonic detection
signals, this study developed and assessed an ultrasonic
processing and recognition method. The method is
based on wavelet packet transform and the stochastic
configuration networks. In particular, this method is used to
conduct signal decomposition for the purpose of identifying

typical concrete defects. At first, we used wavelet packet
transform to decompose 360 ultrasonic signals obtained from
a sample block of C30 class concrete. The coefficients of
fundamental frequency node were selected to reconstruct
the signal, while the mean value, standard deviation, kurto-
sis coefficient, skewness coefficient, and energy ratio were
extracted to form a multi-dimensional joint feature vector.
Then the vector was used as an input for training and testing
the stochastic configuration networks model. A comparison
was given with the BP neural network where the parameters
have been optimized via genetic algorithm. The comparison
results have been considered as a performance analysis for
recognizing concrete defects. Experimental results showed
that the method described in this article can effectively iden-
tify defective concrete ultrasonic detection signals. Compared
with the traditional method BP neural network, the presented
method has faster recognition speed and higher accuracy.
In other words, using this method can greatly improve the
detection efficiency and accuracy of concrete internal defects.
As a result, it reflects the significance of practical engineering
applications.

The remainder of this article is organized as follows.
In section II, we describe all algorithmic steps and
data-feature selections used in this study. In section III,
we introduce the experimental environment and algorith-
mic parameter configurations. In section IV, we analyze the
extracted features and discuss the defect recognition tests.
Finally, section V presents our conclusions.

II. BASIC STEPS AND ALGORITHM FLOWCHART FOR THE
PROPOSED ALGORITHM
In order to identify the concrete ultrasonic detection signal
accurately, the presented algorithm consists of three parts.
Firstly, we use wavelet packet transform to remove noises in
the signals and retain useful information as much as possible.
Then, effective features are extracted from the processed
signals. Finally, the SCNs model is used to classify detection
signals according to features. The main steps of the algorithm
are described in the following subsections.

A. WAVELET PACKET TRANSFORM
The wavelet packet theory is based on the concept of orthog-
onal wavelet transform. Compared with wavelet transform,
wavelet packet transform is a more refined method of signal
analysis [17], [18]. Particularly, it decomposes the detection
signal into two parts as low-frequency and high-frequency.
The high-frequency part is then further decomposed, which
is not performed in wavelet transform. Thus, this procedure
overcomes issues of low time-frequency resolutions. There-
fore, wavelet packet transform is more suitable than wavelet
transformation for signal processing with higher practical
potentials. We used wavelet packet transform to decompose
the detection signal and selected the low-frequency node for
reconstruction, which can filter out the high-frequency noise
in the original signal and reduce the redundant information in
the signal.
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FIGURE 1. Three-layer wavelet packet decomposition diagram.

1) SIGNAL DECOMPOSITION OF WAVELET PACKET
TRANSFORM
In Fig.1, S is the original signal, which is decomposed
into A and D via wavelet packet decomposition. A is
the low-frequency component resulting from the signal
decomposition process, while D is the high-frequency com-
ponent. According to the same method, the high-frequency
and low-frequency components are continuously decom-
posed, then the original signal is ultimately decomposed
into eight different frequency bands (i.e. after three-layer
decompositions).

Wavelet packet decomposition projects the signal to the
wavelet packet base to obtain the wavelet packet coefficient
sequence. The cost function is then used to select the opti-
mal wavelet packet basis. The smaller the value of the cost
function, the better the implemented wavelet packet basis and
the greater the effect on signal decomposition [19]. Currently,
the most common cost function is Shannon entropy.

2) WAVELET BASIS FUNCTION SELECTION
To conduct wavelet packet decomposition on an ultrasonic
detection signal, an appropriate wavelet basis function must
be selected. In this regard, the Daubechies (dbN) wavelet
function has better tight support, approximate symmetry,
and smoothness [20], which can sufficiently represent the
non-stationary state change process of ultrasonic defect sig-
nals in the time-frequency distribution. This study selected
the db15 wavelet (named in MATLAB R© ) as the basis func-
tion of wavelet packet transform based on the characteristics
of the actual detection signal data.

3) THE BASIC STEPS OF SIGNAL WAVELET PACKET
TRANSFORM
The following content is a summary of the main steps
involved in the decomposition and reconstruction algorithms,
as provided in MATLAB R© software:

1) Selecting the appropriate wavelet basis function and
decompose the given signal to obtain the wavelet packet
coefficient;

2) Selecting the optimal wavelet packet basis according to
the cost function;

3) Repeating steps 1 and 2 to obtain a three-layer wavelet
packet decomposition tree, as shown in Fig. 1;

4) Extracting the coefficient of the first node AAA of the
third layer from the result of step 3;

5) According to the extracted wavelet packet coefficients,
a reconstructed signal is obtained using a wavelet packet
reconstruction algorithm.

B. ULTRASONIC SIGNAL FEATURES SELECTION
Data feature extraction is an important premise of machine
learning. Feature extraction is to extract representative infor-
mation in the signal. Through the feature information, the dif-
ference of various types of signals can be distinguished.
Effective data features can facilitate the recognition model in
accurately identifying defect signals. When ultrasonic waves
propagate in defective concrete, their waveforms’ dimensions
in time-domain and frequency domain will be changed. For
instance, Guo et al. extracted the shape factor, crest factor,
impulse factor, and clearance factor of the signal as features
for identifying aluminum plate crack defects [21], while
Wang et al. extracted the average peak spacing, amplitude
coefficient, dominant frequency, and attenuation coefficient
for defect identification [22]. Note that these latter features
are more suitable in the context of weld inspection.

Based on typical features [23], this study used the mean
values, standard deviations, kurtosis coefficients, skewness
coefficients, and energy ratios of each node after conducting
wavelet packet transformation to characterize differences in
the detection signal data. The calculation formula has been
presented as follows:

Mean value is an indicator that reflects the trend of
waveform signal data.

z̄ =
1
N

N∑
i=1

zi (1)

where zi and N denote the amplitude of the reconstructed
signal and the number of sample points, respectively.

The standard deviation is the arithmetic square root of the
variance and reflects the degree of dispersion of a waveform.

σ =

√√√√ 1
N

N∑
i=1

(zi−z̄)2 (2)

The kurtosis coefficient is used to characterize the peak
height of the probability density distribution curve at the
average.

ku =

∑N
i=1 (zi − z̄)

4

Nσ 4 (3)

The skewness coefficient is a statistical parameter that
indicates the degree of data asymmetry.

sk =

∑N
i=1 (zi − z̄)

3

Nσ 3 (4)

The energy ratio represents the proportion of the signal in
each frequency domain segment.

P =

∑N
i=1 |zi|

2∑2j−1
k=0

∑N
i=1 |zi|

2
(5)

where j stands for the number of wavelet packet decomposi-
tion layers.

In this study, the features extracted by wavelet packet
transform were linearly normalized, while the original data
were mapped between [0,1]. The normalized features were
used as input variables for the neural network.
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FIGURE 2. Stochastic configuration networks (SCNs) structure diagram.

C. STOCHASTIC CONFIGURATION NETWORKS
SCNs is a standard 3-layer forward feedback network struc-
ture consisting of an input layer, a hidden layer and an output
layer. The standard model for SCNs is shown in Fig. 2,
where x is the network input vector, y is the network output
vector, ω and b are the weight and bias vectors of the input
layer to the hidden layer, respectively, β is the weighting
vector of the hidden layer to the output layer, gi is the output
of the i-th hidden node, and L is the number of hidden
nodes. As mentioned earlier, we used the SC-III algorithm
for SCNs [14], [15], [24].

In particular, the design flow has been recalled in this
session [14]:

1) Given a target function f : Rm → Rn, suppose that we
have already built a single layer feed-forward network
with L-1 hidden nodes:

fL−1(x) =
L−1∑
i=1

βi · gi(ωTi x + bi) (6)

where x = [x1, . . . , xm], ωi = [ωi1, . . . , ωim]T , βi =
[βi1, . . . , βin]T , f0 = 0, while L = 2, 3, . . ..
Denoting residuals eL−1 = f − fL−1 =

[eL−1,1, . . . , eL−1,n]T . If fL(X ) = fL−1(X ) + βL · gL
(ωTL · X + bL) fails to satisfy the given error crite-
rion, then a new hidden node must be added into the
existing hidden layer. In particular, a set of parameters
fL(X ) = fL−1(X )+ βL · gL(ωTL · X + bL) is added such
that the approximation function is updated as follows:

FL(x) = fL−1(x)+ βL · gL
(
ωTL x + bL

)
(7)

2) To add a new hidden node, the input weight vector ωL
and bias bL are randomly generated which satisfy the
following inequality:

n∑
q=1

〈
eL−1,q, g∗L

〉2
≥
∥∥g∗L∥∥2 δL (8)

where g∗L = gL(ωTL x+bL), δL = (1−r−µL) ‖eL−1‖2,
while 0 < r < 1, lim

L
→ ∞µL = 0 and µL = 1−r

L+1 .

Note that ‖·‖ denotes the L2 norm, and 〈·〉 stands for the
inner product. In practice, the choice of r can be done
as a real number as close to 1 as possible to meet the
inequality condition (8).

If min
{
ξL,1, ξL,2, . . . , ξL,n

}
≥ 0, then we save ωL and

bL as new weights and thresholds of the added hidden
node, where

ξL,q =

(
eTL−1,q (x) · hL (x)

)2
hTL (x) · hL (x)

− (1− r − µL) eTL−1,q (x) · eL−1,q (x) (9)

where hL(x) =
[
gL(ωTL x1 + bL), . . . , gL(ω

T
L xN + bL)

]T .
3) Calculating the output weight:

βL,q =

〈
eL−1,q, gL

〉
‖gL‖2

, q = 1, 2, . . . , n (10)

4) Updating the output weight βL and using the standard
least squares method to compute the output weights:

[β∗1 , . . . , β
∗
L] = argmin

β

∥∥∥∥∥f −
L∑
i=1

βi · gi(ωTi x + bi)

∥∥∥∥∥
2

F

= argmin
β

∥∥∥HTβ − E
∥∥∥2
F

= H†E (11)

where β∗i = [β∗i,1, . . . , β
∗
i,n]

T , H = [H1, . . . ,HL]T ,
while Hi = [gi,1, . . . , gi,m]T , ‖·‖F denotes the Frobe-
nius norm, E is the m × n dimensional sample
result matrix, and H† stands for the Moore-Penrose
generalized inverse.

5) Calculating the error in step L. If it is less than the
pre-specified error criterion, the SCNs model training
is completed; otherwise, continue to add hidden layer
nodes according to step 2 until the error criterion is
met or the set maximum number of hidden layer nodes
is reached. When a new hidden node is generated, the
parameters of other nodes have been determined which
remain unchanged.

D. ALGORITHM FLOWCHART
To summarize the presented method, the flowchart is given
as follow:

III. EXPERIMENTAL ENVIRONMENT AND TESTING
The detection data used in this study were obtained from
the ultrasonic testing system via the transmission detection
method. Basically, this system uses a P28F ultrasonic probe
with a central frequency of 50 kHz; the ± 80V square wave
pulse signal generated then excites the ultrasonic probe at the
transmitting end.

The square wave pulse is given with short rise time and fall
time. It can quickly excite the piezoelectric wafer [25]. The
square wave pulse has good properties in terms of controlla-
bility and tuning [26]. The duty cycle of the square wave pulse
is 0.25%. We set the signal sampling frequency to 1 MHz
at the receiving end. The sample block used with the testing
systemwasmade fromC30 class concrete, as shown in Fig. 4.
The block was constructed using a customized architectural
structure of mixed ordinary Portland cement type I, water,
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FIGURE 3. Algorithm flowchart.

FIGURE 4. Concrete test block.

sand, and gravel at ratios of 461, 175, 512, and 1252 kg/m3,
respectively. The finished block measured 30 cm in length,
20 cm in width, and 20 cm in height.

The experimental data used in the testing system were
sampling signals obtained at the defect-free position of the
test block and different penetrating hole defect positions at
5 mm, 7 mm, and 9 mm. The distances between holes were
85 mm. The distance between the hole and the transmitting
end of the sensor is 120mm, and the distance between the hole
and the receiving end of the sensor is 80mm. Each detection
signal contained five cycles, with 20,000 sampling points.
The detection position of the concrete is shown in Fig. 5 in
which white dots show defect test points and blue dots show
defect-free detection positions.

A total of 360 samples of detection data were obtained
via the experiment using the testing system which is shown

FIGURE 5. Detection location diagram.

FIGURE 6. Experimental setup test bench.

by Fig. 6. In particular, 180 samples of defect-free detection
data and 180 samples of defective detection data have been
obtained where the defective data contained 60 samples each
for three types of hole defects.

All algorithms described in this paper were run on a
computer with 64-bit Windows operation system in which
CPU specification is 2.08 GHz, Inter Core i5-8400 with
6 cores and the memory specification is 32GB 2400MHz
DDR4, and using the MATLAB R© software (R2014a), with
the main parameters have been setup and described in the
following subsections.

A. STOCHASTIC CONFIGURATION NETWORKS
PARAMETERS SETTINGS
These settings include a maximum of 50 hidden layer nodes
with training error of 0.01. The activation function used the
Log-sigmoid transfer function (logsig) function. The max-
imum number of random configurations was 100, while
the random weight range was {0.5,1,5,10,30,50,100}, the
inequality constraint coefficient was {0.9,0.99,0.999,0.9999,
0.99999,0.999999}, and the cumulative step size of the
number of hidden layer nodes was 1 [14], [15]. x =
[z̄, σ, ku, sk,P].

B. K-FOLD CROSS-VALIDATION METHOD PARAMETERS
SETTINGS
These were set to as K = 4, N = 360. The 360 data samples
were randomly divided into four parts, while three of those
selected to create a training dataset for the SCNs, and the
rest part used as the test dataset. This was performed a total
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of four times. We calculated average accuracy based on the
accuracy of each test.

C. MATURITY OF THE GENETIC ALGORITHM AND BP
NEURAL NETWORK IN OPTIMISATION AND FITTING
PERFORMANCE RESEARCH
Compared the calculation results of SCNs with those of
genetic algorithm (GA) optimized BP neural network, par-
ticularly, we compared and analyzed some advantages and
disadvantages of two algorithms in the context of the concrete
defect identification in this study. Inclusively, we obtained
the optimal number of hidden layer nodes, optimal initial
weights and biases. The number of nodes in the hidden layer
of the BP neural network involved binary coding, while the
corresponding weights and biases involved real coding [27].

D. GENETIC ALGORITHM PARAMETERS SETTINGS
Maximum genetic generation was 100, such that, the genetic
algorithm stops after iterating 100 generations, the population
size was 30, the length of the binary code was 5, the cross
probability was 0.7, and the mutation probability was 0.05.

E. BP NEURAL NETWORK ALGORITHM PARAMETERS
SETTINGS
There were five input nodes and two output nodes. Further-
more, there were 13 hidden layer nodes after GA optimiza-
tion based on the test data. The training stop condition was
reached at a training error of 0.01 or 1,000 training times,
with a learning rate of 0.05. In the same way, the 4-fold
cross-validation was used for the training and testing proce-
dures. In this study, the hyperbolic tangent sigmoid transfer
function (tansig) was used for the hidden layer function, while
the logsig was used for the output layer.

IV. RUNNING AND ANALYSING THE PROPOSED
ALGORITHM
Four typical waveform samples were randomly selected from
the original detection signals obtained in the experiment.
Fig. 7 shows the last cycle of each signal. It has been shown
that the signals are different during the propagation in specific
concrete test block.

In particular, the changes of the waveforms shown
in Fig. 7 are reflected in both amplitude and spectrum.
Therefore, differences between signals can be distinguished
in statistics sense based on the signal data in both the fre-
quency and time domains.

Wavelet packet transform was used to decompose the four
types of detection waveforms into three layers. Then we
obtained eight different frequency band components, which
have been illustrated by Figs. 8-11.

As shown in the above figures, the detection signal is
decomposed via three-layer wavelet packet, its main fre-
quency band is located at the first node. In other words,
the first node of the third layer contains most of the valid
information. In contrast, there is more noise arranged in
high-frequency components, and less useful information in
amplitude and frequency for analyzing detection signals.

FIGURE 7. Four types of detection waveforms.

FIGURE 8. Decomposition of signals with no defect.

FIGURE 9. Decomposition of signals at 5 mm hole.

Then, the above four types of detection signals are recon-
structed according to the wavelet packet coefficients of the
first node of the third layer. Therefore, we could analyze
extracted feature values and the composition from the recon-
structed waveforms. As shown in Fig. 12, the frequency
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FIGURE 10. Decomposition of signals at 7 mm hole.

FIGURE 11. Decomposition of signals at 9 mm hole.

of amplitude for the reconstructed waveform is counted to
obtain a frequency histogram. The ordinates represent the
numbers of discrete points within the signal amplitude ranges.

In addition, the abscissas indicate signal amplitudes, while
the ordinates indicate the count values of the discrete points
of the signals in the same amplitude ranges. The red curves
in Fig. 12 indicate approximate normal distribution curves
for the signals. The figure also shows that the non-defective
and defective ultrasonic detection signals all approximately
obey normal distributions (a mean value of 0). Regarding
the standard deviation of the normal distribution, the signal
at the5 mm hole was significantly different from the other
three types of detection signals. The standard deviations of
the non-defective signal and the signal at 7 mm hole were the
closest, with the data distributions of the two signals being
the most similar. The amplitude ranges of the three types of
hole detection signals gradually decreased. It is clearly visible

FIGURE 12. Frequency histograms of reconstructed signals amplitude.

FIGURE 13. Mean values.

in graphic results that the four different detection signals had
similarities and differences.

Following the wavelet packet decomposition and recon-
struction of the 360 detection signal samples, 5 features were
extracted from each reconstructed signal, including mean
value, standard deviation, kurtosis coefficient, skewness coef-
ficient, and energy ratio (see Figs. 13-17). As shown by the
figures, the abscissas are the numbering of detection samples,
while the ordinates are the feature values.

Figs. 13-17 show that different types of detection signals
have aliasing in the same feature. Either the non-defective or
defective detection signals have no laws that can be separated
linearly on the 5 extracted features. It can be noted that the
distributions of detection data in different features are of a
certain regularity (e.g. the feature values of 5 mm and 9 mm
hole-detection data). Since the same detection location was
repeatedly tested during the detection process, the detection
data will have evident similarities. In addition, the partial
data distribution is concentrated (e.g. the kurtosis coefficient
of some 9 mm defect detection data, as shown in Fig. 15).
However, other data features reflect the reduced aggregation.

In addition, for deeply analyzing the distribution
characteristics of extracted features, the box-plot is used for
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FIGURE 14. Standard deviation values.

FIGURE 15. Kurtosis coefficients.

FIGURE 16. Skewness coefficient values.

graphical display. As shown in Figs. 18-22, the upper edges of
the blue rectangles indicate upper quartile Q3, here, the value
is the 75% position of the data in ascending order. The lower
edge is referred to as lower quartile Q1 (25% position of
the data), the difference between Q3 and Q1 is called the
interquartile range IQR. Further, ∗ indicates mean value,
while red horizontal lines indicate medians. The upper and
lower black short horizontal lines represent the upper and
lower edges, respectively, where the value of the upper edge

FIGURE 17. Energy ratio values.

FIGURE 18. Mean values boxplot.

FIGURE 19. Standard deviation values boxplot.

is Q3+1.5IQR, and the value of the lower edge is Q1-1.5IQR
(+ is an abnormal value).

In the above boxplots, three types of hole defect signals
show relatively similar distributions in terms of the feature
values. Meanwhile, there is a certain difference between the
distribution of the feature data without defects. The four types
of detection data overlap in the extracted feature distribution
intervals. As shown in Figs. 18 and 19, the fundamental
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FIGURE 20. Kurtosis coefficient values boxplot.

FIGURE 21. Skewness coefficient values boxplot.

FIGURE 22. Energy ratio values boxplot.

wave data of the non-defective structure are more concen-
trated in the mean values and standard deviations. However,
the distributions in the other three features are more scattered,
as shown in Figs. 20-22. For defective fundamental wave
data, the distributions of the skewness coefficients and energy
ratios are concentrated, while the distributions of the remain-
ing three features are comparatively scattered. In this regard,
the differences of distributions for the kurtosis coefficients
are more evident. On the other hand, outliers may exist in

TABLE 1. Training dataset recognition results for the two models.

TABLE 2. Test dataset recognition results for the two models.

gross error data. If these outliers are not eliminated, it will be
an important factor that affects model identification accuracy.
Based on the results shown in the above figures, any features
extracted from the detection data are not linearly separable.
At the same time, the feature vectors formed by those features
can be used to classify and identify the signal data of concrete
defect structures.

The 4-fold cross-validationmethodwas usedwhen training
and testing the SCNs. The feature dataset was randomly
divided into four parts where three of them were selected
in turn as training datasets, while one was used as the test
dataset. A comparison was given using the BP neural net-
work which was optimized by GA (i.e., using the same
training and test datasets). The testing results have been
shown in Tables 1 and 2 as well as in Fig. 23. Basically,
the tables show the detailed recognition results via 4-fold
cross-validation of 270 training data and 90 test data. The
90 test data are extracted equally out of the non-defective and
defective signals.

As shown in the tables above, both models had recog-
nition accuracy rates greater than 90% which implies the
effective identification of defect signals produced by holes
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FIGURE 23. SCNs training process error curves.

in concrete. It is feasible to choose 5 types of statistics
as features. Particularly, the recognition accuracies of the
SCNs algorithm shown in Table 1 for the training dataset
were higher than GA-BP algorithm in general. From the
recognition results shown in Table 2, accuracies and average
recognitions of SCNs were also higher than those of the
GA- optimized BP neural network in all four recognition
tests. This proves that SCNs model has better generalization
and fitting abilities than GA-BP based on the experimental
data.

In addition, the average training time of SCNswas 0.7471s,
while the average test time was 0.0058s. On the other hand,
the average optimization time of the GA-BP neural network
was 658.98s, while the average training time was 0.1427s,
and the average test time was 0.0060s. This shows that
the GA-BP takes less time to train than the SCNs (i.e. a
faster training speed), but the GA process takes more time
to optimize the BP neural network. Both SCNs and BP were
three-layer network structures. SCNs had more hidden layer
nodes than BP, and SCNs needed more training time. After
training, the time difference between the two models in test-
ing was very small.

Fig. 23 shows the mean square error curves in both the
training dataset and test dataset during the iterative cal-
culation process of SCNs, while Fig. 24 shows the mean
square error curves in the same datasets during the iterative
calculation process of the GA-BP.

As shown by the error convergence curves of the iterative
calculation in Figs. 23-24, the computational time costs of
the two algorithms were equivalent, although the abscissas
were different. The calculation convergence speeds of the
two algorithms were similar only if ignoring the GA-BP
optimization time. Each iteration, SCNs added a hidden layer
node, an epoch was performed. GA-BP and SCNs began to
converge approximately at the 15th epoch. The two algo-
rithms required the same epochs for convergence, but SCNs
took more time to perform each epoch than GABP. SCNs
changed the model structure by accumulating the number of
hidden nodes and evaluated the output weight of the newly
added hidden nodes which slowed down the calculation speed

FIGURE 24. GA-BP training process error curves.

of SCNs. Therefore, SCNs had a slightly slower convergence
speed than GA-BP while its recognition accuracy was higher.
Overall, the proposed SCNs model would lead to better
performance for recognition of these concrete defect signals
with respect to the computational scale of three-layer neural
network.

Concrete is a complex, multiphase, non-uniform medium.
For that reason, using ultrasonic methods for concrete detec-
tion problems will be complex and diverse due to the complex
and uncertain acoustic phenomena, etc. which is the main
factor affecting the accuracy of model identification. Based
on the experiment, changes of the hardware system outputs
resulted in different ultrasonic signal detection data. More-
over, the data contained features with uncertain differences
which affected recognition accuracy. In the process of estab-
lishing the SCNs recognition model, irrational parameter
settings in the network structure may also lead to overfitting,
which causes substantial decreases in SCNs recognition accu-
racy during testing.

V. CONCLUSION AND FUTURE WORKS
This study developed and assessed a method for accurately
and reliably realizing the use of ultrasonic detection signals
for the purpose of identifying defects in concrete. In particu-
lar, the method uses wavelet packet transform to extract the
main frequency node of the detection signal which leads to
five types of statistics as feature vectors (i.e. mean values,
standard deviations, kurtosis coefficients, skewness coeffi-
cients, and energy ratios). Then we use the stochastic con-
figuration networks embedded with cross-validation method
to identify such defects. We applied the method to experi-
mental data obtained from a C30 class concrete block with
penetrating holes. By analyzing the features of the recon-
structed signals in different detection positions and assess-
ing statistical relationships between the five aforemen-tioned
features, we notice the complexity of the detection sig-
nal recognition. Then, we compared the calculation results
and algorithmic performances between the presented method
and the existing GA-BP algorithm. It has been shown that
the SCNs resulted in higher generalization abilities, better
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fitting capabilities, and higher recognition accuracy than
the GA-BP.

In summary, the experimental results showed the effective-
ness of the presented method for identifying concrete hole
defects. Based on the excellent performance of the presented
algorithm in terms of hole defect signal recognition, future
studies should be conducted to identify its ability to detect
other defect types, such as cracks and foreign matter inclu-
sions, which are also common defect types in concrete detec-
tion. Moreover, the algorithm will also be further improved
from the view of non-Gaussian distribution [28] and entropy-
based estimation [29], [30] in order to release the Gaussian
assumption in Fig. 12.
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