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Abstract

The identification of flow pattern is key issue in multiphase flow which encountered in the

petrochemical industry. Gas-liquid two-phase flow is difficult to identify the gas-liquid flow

regimes objectively. This paper presents a feasibility of a clamp-on instrument for objective

flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial

neural network. It is on recording and processing of the ultrasonic signals reflected from the

two-phase flow. Experimental data obtained on a horizontal test rig with total pipe length of

21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug,

elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer Perceptron Neural

Networks (MLPNNs) used for developing the classification model. The classifier requires

features as input which is representative of the signals. Ultrasound signal features extracted

by applying both power spectral density (PSD) and discrete wavelet transforms (DWT)

methods to the flow signals. A classification scheme of “1-of-C coding method for

classification” was adopted to classify features extracted into one of four flow regime

categories. To improve the performance of the flow regime classifier network, a second level

neural network was incorporated by using output of a first level networks features as input

features. Addition of the two network models provided a combined neural network models

which has achieved higher accuracy than single neural network models. Classification

accuracies evaluated in the form of both the PSD and DWT features. The success rates of

the two models are: (1) using PSD features, the classifier missed three datasets out of 24

test datasets of the classification and scored 87.5% accuracy. (2) With the DWT features,

the network misclassified only one data point and it was able to classify the flow patterns up

to 95.8% accuracy. This approach has demonstrated success of a clamp-on ultrasound

sensor for flow regime classification and it would be possible in industry practice. It is

considerably more promising than other techniques as it uses of non-invasive and non-

radioactive sensor.
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1 Introduction

Multiphase flows ocurs found in many industrial processes such as petroleum production,

power generation, thermal engineering and nuclear reactors. The characteristic used to

describe single phase flow such as turbulence; velocity profile and boundary layer are not

suitable for describing nature of multiphase flows (Corneliussen et al. 2005). Multiphase

flows are cateogrised into flow regimes. These flows occur both in horizontal and vertical

orientations. The flow regimes are developed based on the flow-line geometry and

orientation, individual phase flow rates, and component transport properties (density,

viscosity and surface tension (Rajan et al. 1993). Identification of the flow regimes in

multiphase flow is essential to both efficient operation of the multiphase flow systems and

determination of phase fractions (Arvoh et al. 2012). To group flow regimes according to

their topological similarities, several mechanisms of the flow regimes classifiers or flow

regimes descriptors havee been developed over the years. Typical flow regimes in the

horizontal pipe flow are: slug, stratified, wavy, elongated bubble and annular flow patterns

and flow vertical gas-liquid flow are: the bubbly, slug, churn and annular flow (Falcone et al.

2009). The process of the objective flow regimes identification from the sensor signals of the

flow requires use of a pattern recognition technique.

The application of pressures fluctuations of the two-phase flow signals and statistical

analyses for objective characterization was pioneered by Drahos̆ & C̆ermák (1989). The

two-phase flow signals from several pressures transducers have been analyzed for features

extraction using Power Spectral Density for generating input variable for the neural network

(Kv & Roy 2012; Xie et al. 2004; Sun & Zhang 2008). Other sensor signals have been used

for flow regime classification using the statistical moment of the analysis. Such as

conductance probe,(Hernández et al. 2006), radioactive images (Sunde et al. 2005). It has

been found that the pattern recognition of flow regimes using pressure signals is fast enough

to be used for online flow regime identification (Xie et al. 2004; Kv & Roy 2012). However,

these transducers are invasive sensors. Hence there is need for a non-invasive method of

flow regimes classification for two-phase flow such as ultrasound or gamma. In addition, the

review of methods of objective flow regime classification showed that the early methods

used mechanistic models or empirical models. The flow patterns of the multiphase flow

were identified using equation governing the physics of the fluid developed from the

mechanistic models derived from the physics of the fluid. The process of identifying flow

patterns using these model have disadvantage each flow regime has to be examined

independently(Ozbayoglu & Ozbayoglu 2009)

Ultrasonic technique based on the principle of pulse-echo intensity is widely used in

gas/liquid interface detection and often, location of the interface is determined by the
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measuring the time of flight of the reflected wave (Chang & Morala 1990). Wada et al. (2006)

presented an ultrasonic method of two-phase flow pattern recognition based on the

measurement of the instantaneous echo intensity profile along the ultrasonic beam. They

comment that echo intensity of the flow measured by the integral of the difference in energy

of single phase flow and the two-phase flow over the pipe diameter. The flow patterns from

single phase flow to annular flow identified by the statistical distribution of the echo intensity.

Murai et al. (2010) developed a pulse-echo ultrasonic technique to determine instantaneous

liquid-gas interface detection.

Chakraborty et al. (2009) introduced a new ultrasonic method for measuring void fraction of

two-phase flow using an ultrasonic sensor and twin signal processing methods based on

time series analysis technique: symbolic dynamic filtering and analytical signal space

partitioning for void fraction measurements and identification of flow regimes. An algorithm

was built on the method of symbolic dynamic filtering to analyze the ultrasonic pulse echoes

reflected off the bubbles. The pulse-echo technique of flow pattern identification is not

complete a flow regime classification technique but an identification of the flow pattern (Jha

et al. (2013). However, the authors comment that more research work on the computational

and experimental work is required before the method can be deploying for industrial use.

Another issue is that the ultrasound method applied is not intrusive though but it is invasive

set up. Jha et al. (2013) extended the work of Chakraborty et al. (2009) and propose that the

concept of ultrasonic pulse echo to be implemented in a clamp-on set up together with the

symbolic dynamic filtering for industrial application.

Despite the feasibilities of using the pulse-echo ultrasound for the flow regime identification,

the flow regimes identification is based on computational models. The computational

methods for flow regimes identification employed sets of non-linear equations but often the

equations are simplified. For practical applications, the simplified equations are not often

used because it requires prior knowledge of several flow properties such as pipe diameter

and pipe thickness which degrades in the cause of time (Meribout et al. 2010). The method

of the pulse-echo ultrasound which is limited in liquid flow velocity information due to the

restriction on the maximum measurable velocity using pule wave ultrasound by the Nyquist

criterion (Evans & McDicken 2000).

Ultrasound Doppler flow sensors which uses continuous wave of ultrasound signals also

has a great potential of achieving non-invasive flow velocity measurement. The techniques

of using continuous wave ultrasound have been existed in the medical ultrasound system.

The techniques uses frequency shift representing the flow velocities to develop methods to

predict multiphase flow regimes (Übeyli & Güler 2005). In multiphase flow measurement,

Kouame et al. (2003) present an application of continuous wave Doppler Ultrasound

(CWDU) velocity measurement to two phase flow in pipes. They proposed use of the
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frequency resolution techniques to overcome the hindrance to the velocity profile

measurement by the presence of coloured noise which introduces a significant obstacle to

the classical frequency estimators. Pulse echo ultrasound techniques for two-phase flow

measurement have limited liquid velocity information due to the restriction on the maximum

measurable velocity using pule wave ultrasound by the Nyquist criterion (Evans & McDicken

2000). Also, characteristics of the reflected wave are being influenced by the shape and size

of the interface about the ultrasound wave length (Murai et al., 2010).

Artificial Neural Networks (ANNs) are often preferred over statistical methods of pattern

recognition because of its fast responses and simplification (Mi et al. 2001). Also, the ANNs

have good performance on pattern recognition due to their efficiency and available learning

algorithms (Jain et al. 2000). Also, with regards to flow regime classification, ANN has

advantages over other analytical tools such as Expert System and Clustering. The Expert

Systems require prior information on the flow regime which could be affecting its objectivity.

Similarly, the Clustering may not affect performance accurately due to its poor handling of

transitional data points(Hu et al. 2011). Usually, the process of the neural network

development is by training the network to recognise the measurement error in training data

and then the netowrk tests on another set data. If the trained network is accurate enough

then it is implemented for online measurement for prediction error correction (Liu et al.

2001). More importantly, neural network would offer a non-linear mapping between the

ultrasound input signals and the predicted flow regimes. So the use of the ANN avoids the

need for calibration of the multiphase flowmeter (Figueiredo et al. 2016).

Filletti & Seleghim (2010) developed a numerical simulation measurement of interfacial area

and volumetric fraction in two-phase flow using acoustic signal and artificial neural network

to investigate the feasibility of application of the ultrasound system for clamp on flow

measuring system. They found that the trained ANN models were able to estimate the

values of the volumetric fraction and the interfacial area. Similarly, Figueiredo et al. (2016)

employed an ultrasonic methodology based on pulse wave ultrasound transducers which is

operates on the principle of signal attenuation detection. The ultrasound signal attenuation

was analysed and incorporated with artificial neural network for flow pattern detection and

void fraction measurement. They suggest that the flow regimes identification in the 2-in pipe

was limited to bubbly flow and slug flow only. The technology presented is appropriate for

the detection of the gas volume fraction (GVF) and flow regimes determination in multiphase

flow. However, there does not appear to be any consideration of the flow regimes excpet of

the bubbly flow and slug flow. However, according to the authors’ knowledge, however,

studies on the two-phase flow regimes classification using a clamp-on continuous wave

Doppler ultrasound have not been reported in the open literature.
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The main aim of this research was to investigate the feasibility of a non-invasive method of

flow regimes classification using ultrasonic Doppler sensor and neural network. A continuous

wave ultrasound Doppler sensor employed in this study, has recently been implemented for

investigating the velocity characteristics of slug body and film in a two-phase gas-liquid slug

flow. The results showed velocity characteristics of the slug flow obtained is in good

agreement with other experimental methods (Fan et al. 2014). The present approach is by

recording and processing of ultrasonic Doppler signals on the flow and then features are

extracted using both power spectral density and wavelet transforms methods. These

features are the inputs for the ANN models which process it for the flow regime

classification. Multilayer perceptron neural network (MLPNN) with three layers, namely

inputs, varying hidden layers and four output neurons, were developed to mapping the flow

regimes. Four numerical outputs are selected to represents the flow regimes are as follows:

the elongated bubble, slug, stratified flow & stratified wavy flow (Übeyli & Güler 2005; Subasi

2005; Kandaswamy et al. 2004). Despite the ANNs have limitation that they cannot perform

accurately outside the range of the training sets, a combination of several neurons of the

ANN will able to ‘learn’ and memorised the data original variability so as to function as an

objective flow regime classifier. Therefore, ANN can still fulfil appropriately the requirement

for multiphase flow monitoring processes such as the flow regimes classification and

prediction of the individual phase flow rates in multiphase, effectively (Rosa et al. 2010).

2 Experimental Setup and Procedures

2.1 Two-Phase Flow Test Rig

A horizontal air–water test rig for two-phase flow assessments at the Cranfield University’s

flow laboratory was used to conduct these experiments. A schematic diagram of the test

facility is in Figure 2-1. The flow loop includes a closed loop PVC pipeline of 50-mm internal

diameter with total pipe length of 21-m long. an air compressor providedt the air flow and

water is pumped into the loop from a storage tank of 2 �� capacity using a 40 ��/hr. water

pump. The flow rates of air and water are controlled by regulating hand valves and

measured using a turbine gas flow meter (QFG 25B/B/EP1, Quadrina) while water flow rate

is metered with an electromagnetic (EM) flow meter (Altoflux K280/0, Altometer). The

measurement section for the two-phase flow is made up of Perspex pipes that allow

visualization of the flow regimes. The clamp-on ultrasound Doppler flow sensor was fixed on

the bottom of the pipe.
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Figure 2-1 part of air-water test rig showing the instruments used in the experiment

Figure 2-2 the ultrasonic Doppler sensor and its ancillary instruments on the flow test rig

2.2 Ultrasonic Doppler senior

The ultrasonic Doppler flowmeter used in this study is a non-invasive fluid flowmeter

complete with its sensor, modelled as DFM-2 manufactured by United Automation Ltd,

Southport, UK. This flowmeter is suitable for measuring the flow of any ultrasonic reflective

fluid. It measures the frequency shift, process the signal, computes the flow velocity and

gives out digital displays of the flow velocity in foot per seconds. A green LED shows the

strength of the ultrasonic signal reflected back from the flow. It is recommended to be
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placed on the flow pipe at least ten diameters from bends, valves, tees, so as to prevent

measurement errors from swirls, cavitation and turbulent eddies (UAL).The basic

components of the Doppler flow meter system are shown in the Figure 2-4.The device

measures the Doppler frequency shift of the ultrasonic signals reflected from the scatters or

discontinuities such as bubbles in the flowing liquid. The sensor of the flowmeter placed at

the bottom of the pipe at 6 o’clock position for the horizontal flow measurement test to avoid

attenuation of the signal from gas voids in the upper pipe section. It is important to have

good bonding between the sensor and the external pipe surface, a glycerine gel used for

good coupling which prevents trapping of air cavities between the pipe surface and sensor.

The continuous wave Doppler flow meter has two transducers: one for generating the sound

wave and one for receiving the ultrasound reflected by the scatters in the fluids such as air

bubbles or particles in the flow.

2.3 Measurement principle

The Doppler flowmeter systems used in this study has a transducer which has dual

piezoelectric ceramic elements. The transducer is excited by the electronic circuit of the

flowmeter in continuous mode, the transmitting part of the transducer sends out ultrasonic

signal and the receiving part to detect the ultrasonic Doppler sensor provides the outputs

signals. The output signal received is then filtered and amplified by the electronics of the

flowmeter. The processed output signal is the Doppler frequency shift signal and it was

captured using a data acquisition card (NI-PCI- 6040E) and LabVIEW program controlled

sampling frequency of 10 kHz for 20 seconds for each dataset. The process of development

of the flow regimes classification described in a function blocks which various process

involved in the system as shown in the Figure 2-3
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Figure 2-3 functional modules in the flow regime classification system

The relationship between the velocity of the scatters � and the Doppler shift �� is given in

equation (2-1)(Sanderson & Yeung 2002).

�� = 2��
�

�
cos� (2-1)

where: � = average flow velocity,	� = velocity of sound in the fluid,�� = Doppler shift

frequency,� = angle between ultrasound beam and flow velocity and ��= ultrasound

transmitted frequency.

Usually two transducers are required for Doppler flow meters. However, these two

transducers can be made into separate units or one compact unit as this one.

Figure 2-4 Schematic diagram of Doppler shift (Banerjee & Lahey Jr 1981)



11

2.4 Ultrasonic flow signal data acquisition and Test Matrix

Each of the test data set of the experiment created by setting the liquid flow rate to the

desired value using a hand operated valve and the flow rate is measured using the EM

flowmeter. First, the signal corresponding for this flow rate is recorded for calibration and air

flow injected into the rig from an air compressor by regulating a valve by hand. The flow of

the air supply is varied in steps. Thus generating several two phase sets in one particular

liquid flowrate. The gas flow is measured with the turbine gas flowmeter. Temperature and

pressure of the gas at the turbine meter location recorded for each flow. The superficial gas

velocities ranged from 0.05 mls to 2.75 mls.

All stated superficial gas velocities are at standard conditions (1 bar, average of 22°C). The

superficial velocity of the liquid flow was varied between 0.004 mls and 2.0 mls. The

superficial velocities values calculated as the ratio between the volumetric flow rate of the

phase and the cross-sectional area of the pipe. These flow regimes characterized by distinct

phase and velocity differences in the cross section of the pipe. Each of the two-phase flow of

the dataset’s flow regimes was visually observed, identified and recorded for comparison

with predicted flow regimes. The total test data sets of the experiment tabulated as two-

phase test matrix includes the following flow regimes: Elongated bubble flow, slug flow,

stratified flow and stratified wavy flow as shown in the Figure 2-5. The flow parameters

recorded in the experiments are: the initial liquid flowrate, liquid superficial velocities,

superficial gas velocities, ultrasonic reflected signals, temperature at the gas flowmeter,

temperature at the test section, pressures at both gas and test section. The LabVIEW

program was for controlling the data acquisition at sampling rate of 10 kHz for 20 s. The

preliminary tests show that this sampling frequency is sufficient as it more than twice the

highest frequency of the Doppler signals.

The preliminary tests show that this sampling frequency is sufficient as it more than twice the

highest frequency of the Doppler signals.

A four-category classification chose for this purpose and the four regimes considered are:

 Stratified flow: when the liquid phase flow at the bottom and the gas phase is at the

top, and interface of the two flow phases is smooth

 Stratified wavy flow: this flow occurs under condition whereby the gas velocity has

risen to generate wave on the surface of the liquid.

 Slug flow: In the slug flow the liquid slugs are separated by the large gas bubbles

moving violently downstream of the pipe.

 Elongated bubbly flow: this type of flow occurs when the flow has long gas bubble

and short liquid slug(Chang & Morala 1990; Canière et al. 2007):
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Figure 2-5 Flow regimes map of the present study (black shaded legend test data/ colour

shaded legend training data)

2.5 Spectral analyses and Feature Extraction

Spectral analyses techniques are required for the analyses of the signals of two-phase flow

to obtain the oscillation period. Two-phase flow signals can be analysed either in frequency

domain, to obtain characteristics of the different flow regimes, algorithms such as power

spectral density and wavelet transform which is time-frequency analysis used . In this work,

both power spectral density and wavelet transform techniques have been applied to two-

phase flow signal records of the two-phase signals acquired using ultrasonic Doppler sensor

(Shang et al. 2004). Frequency domain methods using the PSD have been used in

analysing two-phase flow to get oscillation periods based on the Fourier transform of the

signal (Xie et al. 2004). The wavelet transforms have the capability of analysing and

denoising the signals to produce the spectrum in time-frequency domain.

2.5.1 Power spectral density

Frequency domain methods are often used to reveal the distinctiveness in the signal of flow

regimes in two-phase flow systems. The power spectral density is a method of estimating

characteristics of a time-series signal of stochastic process in the frequency domain that is

suitable of detecting the frequency components hidden in the process (Matsumoto & Suzuki

1984)(Matsumoto & Suzuki 1984). The application of PSD to time series signal such as two-

phase flow pressure fluctuation signal has been studied by several researchers (Xie et al.

2004; Sun & Zhang 2008; Santoso et al. 2012). The PSD is used to produce characteristics
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of the two-phase flow signal in the frequency domain which has shown that signals of the

flow regime are distinctively different.

Fast Fourier transforms are use in creating the PSD spectrum which assumes that the

process signal is stationary. The PSD function��(�), of a discrete signal�(�) is the Fourier

transform of the autocorrelation sequence	��(�)of the signal as shown in the equation (Xie

et al., 2004).

��(�) = ���(�)

∝

�∝

������/��
(2-2)

The application of the PSD function to a real valued continuous data the autocorrelation

sequence can be approximated by a time-average. However, in application of the function to

measurement signal with is recorded for a finite time interval, this may present some

distortions. As a consequence, a modified form of the PSD called Welch method is often

adopted in these applications. The Welch method is by subdividing the signal sample into

small length N-points overlapping segment and then obtain the periodogram of each of the

segments. The power spectrum is estimated by the average of the periodograms (Xie et al.

2004).

The Doppler ultrasonic frequency signals were processing in the in the MATLAB software

package (MATLAB Version: 8.3.0.532) to analyse its spectral contents. Power spectral

densities method using Welch method with segment length of 256 point and Hanning

window to alleviate distortions is computing the spectra as applied by (Xie et al. 2004).

Examples of the power spectra estimates of the samples of the signals shown in the Figure

2-6 and Figure 2-7. It can be seen that the spectrum of the slug flow signal has highest

power on the spectrum. The slug flow ultrasound signal contains higher Doppler frequency

shifts as well other the translational than the slug film velocity and the single phase flow.

However, the spectrum of the signal of the single phase flow has produced a higher signal

power than both stratified flow and bubbly flow signal but much less than that of slug flow

signal. The rich ultrasonic shift frequency could be obtained from the signal phase flow

because the flow pipe was full. Also, in the slug flow, there were intermittent full pipe and in

the liquid slugs flow with higher velocity than corresponding single phase flow. The spectrum

of the bubble flow regime is slightly similar pattern to that of slug flow.
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Figure 2-6 Single phase flow and stratified flow of an ultrasonic signal

Figure 2-7 Bubbly flow and slug flow of an ultrasonic signal

The principle of extraction of the features from the PSD is based on Parseval’s theorem

which states that the PSD is the measure of the total energy of the signal if the spectrum is

integrated over its entire frequency band. The sampling frequency and length of the signal
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play important role in the statistical properties. In the present study, the sampling frequency

is chosen to be 10 kHz so as to exceed the Nyquist criterion for the signal of the experiment.

It can be seen in the Figure 2-7 The PSD spectrum produced from the signal recorded with

ultrasonic Doppler sensor effective has frequency band from 0 -600Hz. It is obvious that

each of the PSD feature extracted are distinct and therefore, PSD feature is a good choice to

be used to identify the flow regimes of the gas-liquid flow. As a result, the PSD magnitudes

were normalised and their amplitudes corresponding to each data records in the frequency

range. Each frequency bands of the two signals divided into five bands. PSD of Ultrasonic

signal are partitioned into 120Hz ranges as shown in Table 2-1

Table 2-1 Frequency Band

Ultrasonic signal PSD frequency band

Band name Frequency range (Hz) Average power

B1 0 -120 ����

B2 120 -240 ����

B3 240- 360 ����

B4 360 -480 ����

B5 480 - 600 ����

representative of each flow signals createed using a mean value the frequency bands of the

PSD spectrum are computed as����,����, ����,����,and ���� (Matsumoto & Suzuki 1984). Other

properties estimated from the spectrum are the weighted mean of the frequency over the

entire band and the variance the mean frequency (Sun & Zhang 2008). In total, the five

power magnitudes, weighted mean frequency, and variance as used as the features to

represent the signal of the flow. The mean spectral power equation (2-3) and

� ̅ =
∑ ����(��)�

∑ ��(��)�

(2-3)

Variance of the spectral power equation (2-4)

��
� =

∑ (�� − � ̅)���(��)�

∑ ��(��)�

(2-4)
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The use of these seven discrete parameters (����,����,����,����,����,� ̅ &	��
� ) to represents the

signal were first suggested Drahos̆ & C̆ermák (1989) and the method has been

implemented by many researchers such as Shaban & Tavoularis (2014) and Xie et al.

(2004).

2.5.2 Discrete wavelet transform (DWT)

The idea of signal decomposition using the DWT is not new. However, its usefulness lies in

the ability to manipulate the wavelet coefficients to identify characteristics of the signal

distinct from the original time signal (Subasi 2005). In this work, decomposition of the

ultrasound Doppler signal and the conductance signal from the two-phase flow were carried

out using the DWT. The procedure for extraction signal features using DWT to represent

requires selection of the wavelet type and level, multiresolution decomposition and selection

effective coefficients of the discrete wavelets of the decomposition to represent the

signal(Shang et al. 2004).

Discrete wavelet transform of a signal for feature extraction is on the principle of

multiresolution signal decomposition in which a signal is filtered using a half band high-pass

filter and low-pass filters(Subasi 2005). There are number of different wavelets and their

levels to choose for the decomposition of the signals. It is important to select the suitable

wavelet type and level to structure the wavelet filter for the decomposition. Wavelet type

selsection is by either visually inspecting the data for continuity or testing the various types

of wavelets with signal and the most efficient one is selected. If it is discontinuous type then

Harr or sharp or else a smooth wavelet such as Daubechies wavelets is recommend.

Daubechies wavelets level2 was used to compute the wavelet coefficients of the signal in

this study (Kandaswamy et al. 2004).

The decomposition of the signals produces approximations and details levels with different

frequency bands by using a successive low-pass and high-pass filtering. These details level

will not lose their information in the time domain (Bendjama et al. 2015). However, useful

information can be obtained from the subbands of the dominant frequencies, so statistical

measurements of the subbands are representatives of these details levels. The signals of

the flow were decomposed continually until all the dominant frequency ranges viewed. The

signals do not have any useful frequency below 40Hz and that is why the decomposition

ended at level 7 which is the level at frequency subbands greater than 40 Hz. Therefore, the

Doppler signal was decomposed into details coefficients of �� − �� where 1-7 refers to the

detail wavelet coefficient levels: first to seventh and the last approximation is	��. The ranges

of the frequencies subbands are given in the decomposition The Daubechies wavelet of the

order 2(db2) was used to compute the wavelet coefficients of the signal. The computation of

the DWT of the coefficient was done in MATLAB software package(Misiti et al. 1997) .
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Table 2-2 Ranges of frequency bands in the different wavelet decomposition levels

Ranges of frequency bands in wavelet decomposition

Decomposed signal Number of samples Frequency range

(Hz)

�� 100000 2500 - 5000

�� 50000 1250 - 2500

�� 25000 625 - 1250

�� 12500 312.5 - 625

�� 6250 156.25 - 312.5

�� 3125 78.125 - 156.25

�� 1562.5 39.0625 - 78.125

�� 781.25 19.53125 - 39.0625

For each of the datasets, details wavelet coefficients at the first level, second level and up to

the seventh level were computed. Importantly, to reduce the size of feature extracted from

coefficients, statistical measurements were applied to the values of	��,��,��,

��,��,�� and	�� as implemented in the work of Übeyli & Güler, (2005).

Table 2-3 the extracted features of four exemplary ultrasonic records from the four flow

regimes

Dataset Extracted
features

Wavelet coefficients subbands (ultrasonic signals)

Stratified

Bubble

Stratified
Wavy

Slug

D1 D2 D3 D4 D5 D6 D7

Maximum 0.0069 0.0146 0.0328 0.0842 0.2348 0.6549 1.782

Mean 5.7E-06 3.4E-
05

8.9E-05 2.5E-
04

6.6E-
04

0.0019 0.0054

Minimum -0.0104 -
0.0146

-0.0259 -0.0684 -0.1908 -0.5353 -1.4834

Standard
deviation

0.0017 0.002 0.003 0.0063 0.0173 0.0485 0.1365

Maximum 1.8351 2.7112 4.0595 6.4941 7.3507 7.5821 4.5808

Mean 1.2E-04 -0.001 -1.9E-04 -0.0064 -0.0045 -0.0024 4.8E-04

Minimum -1.8178 -
2.9443

-4.2209 -6.2225 -7.8911 -8.6795 -5.8672

Standard
deviation

0.1738 0.3981 0.8375 1.4791 1.4709 1.3086 0.9101

Maximum 0.0069 0.0146 0.0363 0.0891 0.2443 0.6854 1.9266
Mean

2.6E-06
4.8E-
07 1.5E-06

1.5E-
06

-3.8E-
05 -3.6E-05

-8.8E-
06

Minimum
-0.0069

-
0.0171 -0.0432 -0.1172 -0.3384 -0.9363 -2.4544

Standard
deviation

0.0017 0.002 0.0031 0.0064 0.0178 0.05 0.1403

Maximum 2.2339 3.3618 4.7681 6.8243 8.841 9.4888 5.9295
Mean

0.0011 0.0021 0.0028 -0.016 -0.0193
2.11E-
04 0.0036

Minimum
-2.1424

-
3.3179 -4.889 -6.8878 -8.6584 -9.5898 -6.7651

Standard
deviation

0.4739 0.9882 1.9812 3.2405 3.4286 2.3328 1.7116
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1. Maximum of the wavelet coefficients in each subband.

2. Mean of the wavelet coefficients in each subband.

3. Minimum of the wavelet coefficients in each subband.

4. Standard deviation of the wavelet coefficients in each subband.

Features 1-3 represent the frequency distribution of the signal and the feature four the

amount of changes in frequency distribution. These are the statistical features used to

represent the two-phase flow and as inputs into the neural network for the flow monitoring

(Übeyli and Güler, 2005). The wavelet detail coefficients of the signals are distinctly different.

Figure 2-8 Show the details wavelet coefficients corresponding to the �� frequency of the

two-phase flow.

Figure 2-8 the detail wavelet coefficients corresponding to the D1 frequency band of the

ultrasonic signals from (a) stratified flow (b) Bubble flow (c) Stratified wavy flow and (d) Slug

flow regime

3 Multilayer perceptron neural network model (MLPNN)

Multilayer perceptron neural network is a nonparametric technique for conducting various

processing techniques for solving function approximation, pattern recognition, classification

and estimations problems and its operation governed by a set of weights and biases (Übeyli

and Güler, 2005). The general structure of the MLPNN with two successive layers is show in

the Figure 3-1. The structure of the MLPNN model can be represented by the equation (3-1).
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The hidden layer is the unit in between the input layer and output layer. Its adjustments are

not accessible from outside of the network(Luntta & Halttunen 1999).

�� = � ��w��x��
(3-1)

Where, f is the activation function which transforms the weighted sums of all the input

signals on the neurons. The activation function (f) can be taking many forms such as:

threshold functions, or a sigmoidal, hyperbolic tangent or radial basis function. The sigmoidal

function is one chosen for this study.

�(�) =
1

1 + ���
(3-2)

Figure 3-1 Multilayer perceptron neural network (Luntta & Halttunen 1999)

The performance of an MLPNN can be improved by adjusting the weights of the network to

reduce E the difference between the desired output and the actual values of the neurons as

fast as possible.

� =
1

2
�(��� − ��)�

�

(3-3)

Where, ��� is the desired value of the output neuron j and is the actual output value whose

values can be adjusted and then chosen using the set of targeted outputs.

The flow regimes classification with the ANN is implemented using pattern recognition

algorithms. The pattern recognition comprises three steps: 1) data acquisition and pre-

processing, 2) data representation or feature extraction, and 3) decision making or pattern

classifying. One important aspects of the pattern recognition is the learning from the training

data set(Basheer & Hajmeer 2000). In this study, the training process consists of

determination of the MLPNN model parameters which are used to validate their quality and

ability to classify once the training has completed (Subasi, 2005). Alternatively, training
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refers to the process of adjusting and selecting the appropriate weights and biases(Bishop &

James 1993).

3.1 Combined neural network models (CMLPNN)

A combined neural network is a method of improving the performance of the network’s

predictive accuracy. In designing neural network models, the training data may fail to learn to

predict the output accurately, so the network is unable to generalise the concept precisely.

The learning system of the network utilises the transformed data to predict the output greater

accuracy. Stack generalisation is a method of combining low level network models into high

level neural network to achieve greater predictive accuracy introduced by Wolpert (1992). By

transforming the data into a suitable form that can enhance the training process The

generalisation minimizes error rate of the combined network by ‘teaching’ a second level

network whose inputs are prediction of the first level network but the second trained with the

same target output as the first network..

Multilayer perceptron neural network were used to form multiple networks and then

combined to form a stack generalisation. Figure 3-2 shows the structure of the combined

network. The features extracted from the sensors signals used as the input to the first level

network of the combined neural network. After that the outputs of the first level were fed into

second level network as the inputs. The outputs of the second levels are result of the

predicted flow regimes. Both the first level and second level neural networks trained with

targeted outputs (Übeyli and Güler, 2005).

Figure 3-2 A second-level neural network is used for combine the predictions of the first-

level neural networks(Übeyli & Güler 2005)

Output 1 Output 3Output 2 Output j

Multilayer perceptron neural network (MLPNN)

Output 1 Output 3Output 2 Output j

Hidden Layer 1
Neurons
H =1,2...k

Hidden Layer 1 Neurons
H =1,2...k

Output Layer
Neurons
O 1,2...j

2nd level

1st level
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Multilayer perceptron neural network were used to form multiple networks and then

combined to form a stack generalisation approach to the flow regimes classification. Figure

3-3 shows the structure of the combined network used predict targeted flow regimes. Both

the first level and second level neural networks trained with targeted superficial flow

velocities as the outputs.

Figure 3-3 A Structure of the flow pattern prediction combined neural network topology

(Übeyli and Güler, 2005).

3.2 Flow Regime Classification network

Several application of the MLPNN pattern recognition reported in the literature. It is based

on the training the neural network to recognise the correct classification for each member of

the training datasets. Training the network will be subsequently followed by testing the

network to classify the input variable into their correct classes. If the learning process has

taught the network the patterns relevant to the test data, then it is expected that the network

would classify correctly (Xie et al., 2004).

Flow regime identification using ANN pattern recognition can be implemented by either using

a supervised neural network(SNN) or unsupervised neural network(UNN) aslo known as

self-organising network network. The SNN uses Feed-forward networks such as multilayer

perceptron and Radiial-Basis Function networks for pattren recognition in which back

propagation error of the training algorithm together information of predefined classes to
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classify the input variables into the specific classes and it does not need. Whereas

Kohonen-Network or self-organizing map (SOM) used for data feature mapping and it does

not need information of the classes. It uses network clustering method to group the input

variable into several classes that contain similar characteritic(Mi et al. 2001). The Kohen

Self-Organizing Neural Network has implemented for flowregime classification using

measuremnt data pionts of disticntc flow regimes (Cai et al. 1994).

To select the input to the network for the pattern classification, it is essential first to pre-

process, balance and normalise the data. The features extracted from the ultrasonic Doppler

signal of the flow using both the wavelet method and the power spectral density methods are

pre-processed before presenting them as input variables to the network. As part of the pre-

processing the input dataset, data partitioning and balancing are applied to the feature.

There several ratios for partitioning the datasets into training, testing and validation. At this

moment, there is no mathematical rule for determining the exact sizes of the training, testing

and validation datasets. The often used ratios are 60%, 30% and 10% or 65%,25% and 15%

for training, testing and validation respectively (Basheer & Hajmeer 2000).

Another aspect of the preparing the input data is the balancing datasets which is distributing

the training nearly evenly amongst the various classes to annul the effect of network from

being biased to overrepresented classes. Input data preparation, first balancing and then

normalisation process to prevent chaos in the network as a result of either the larger

numbers overriding smaller ones or premature saturation of hidden nodes. Normalisation

usually confines the data into uniform range 0 to 1. A good rule of the thumb is to scale the

input variables (��) and the output range (��,��) in interval of the output values which

corresponding to the function in equation (3-3) (Basheer & Hajmeer 2000).

�� = �� + (�� − ��)�
�� − ��

���

��
��� − ��

���
�

(3-4)

Statistical analysis of the features plays important role in selecting the input variables for

successful neural network application. Güler & Übeyli (2006) computed the statistical

features (mean, maximum, minimum and standard deviation) to represent the time-

frequency features extracted from the Doppler signals using the wavelet transform.

The output of the neural network is the indicator of the flow regimes or classes of the

classification which is represented with a continuous or binary discrete number. Each of the

input variables to the neural network is assigned to the class to which it belongs. Usually,

these classes are represented with numerical values. There are two most common

representations of the classes: continuous (0.3, 0.5, 0.7, etc.) or discrete (0 and 1 or 0.1 and

0.9). Xie et al. (2004) have implemented the continuous number to represent the output of

the neural network to indicate flow regimes. They used continuous numbers (0.3, 0.5, 0.7
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and 0.9) to represent the flow regimes: bubbly flow, plug flow, churn-intermittent and slug

flow respectively. This techniques was supported by their earlier work(Xie et al. 2003). The

continuous designation number to represent the output of neural network flow classification

methods of has been applied by other researchers as well (Sun & Zhang 2008).

However, due to importance of the discrete output for extracting rules from trained neural

network, Basheer & Hajmeer (2000) have suggested that the continuous variable to be

replaced by discrete or binary numbers for representing output of neural network classifier.

There are methods and algorithms for discretizing the output variables. The discrete or

binary number is often to modified from the (0 and 1) to (0.1 and 0.9) so as to prevent

saturation(Basheer & Hajmeer (2000). Also by allocating the targets of 0.1 and 0.9 instead

of the common practice of 0 and 1 prevents the outputs of the network from directly

interpretable posterior (Kandaswamy et al., 2004).

Most frequently used training model in classification problems in the back propagation (BP)

which is adopted for this investigation and in other works (Fan & Yan 2014; Blaney & Yeung

2008;Arubi 2011). The MLPNN has properties such as the abilities to learn and transform

fewer training set requirements and fast processing. The manner in which the weights can

be adjusted governed by different training algorithms (Übeyli and Güler, 2005). The training

tool has functions for the performance, the magnitude of the gradient of performance and the

number of validation checks. The magnitude of the gradient and the number of validation

checks are used to terminate the training. The gradient will become very small as the

training reaches a minimum of the performance. If the magnitude of the gradient is less than

1e-5, the training will stop(Beale et al. 2013).

Cross validation in neural network pattern recognition are required to determine the optimum

number of hidden units and the model that will perform best on the problem at hand (Bishop

& James 1993; Kandaswamy et al. 2004). A best network model for the flow regime

classification obtained after testing several training algorithms. The performance test of the

input datasets is determined by the computation of the total classification accuracy and

number of training epochs. Total classification accuracy is number of correctly classified flow

regimes/number of total datasets (Übeyli and Güler, 2005).

3.3 Flow regimes classifier neural network training and testing

Eighty six datasets measurements on the horizontal two-phase flow used for this

experiment. Sixty-two datasets used for training the networks and twenty four are used for

the testing the network. Two sets of combined neural network models developed in MATLAB

software package (MATLAB Version: 8.3.0.532 (R2014a) with neural network toolbox) for

classifying the flow regimes of air-water two-phase flow using features from ultrasonic

signals of the flow. The inputs to the network are features extracted from the signals of the
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flow using both power spectral density and discrete wavelet transforms. The outputs of the

combined neural network are (discrete binary) indicators of the four flow regimes: elongated

bubble flow, slug flow, stratified flow and stratified wavy flow.

In this training process, classification scheme of “1-of-C coding method for classification”

was adopted to classify the inputs and each of members of the datasets belongs to one

output of the four flow regime categories. The four predetermined output values are as

designated in the following equations: (3-5), (3-6), (3-7) and (3-8). The values are the targets

presented to the network as outputs (Subasi, 2005).

[0.9 0.1 0.1 0.1 ] = Elongated bubble flow (3-5)

[0.1 0.9 0.1 0.1 ] = Slug flow (3-6)

[0.1 0.1 0.9 0.1 ] = Stratified flow (3-7)

[0.1 0.1 0.1 0.9 ] = Stratified wavy flow (3-8)

Table 3-1 Percentage of flow regimes in the experimental, training and testing data sets

Flow Regime Exp. Runs % Training Runs % Testing Runs %

Elongated bubble flow 20 23.3 14 22.6 6 25

Slug flow 30 34.9 24 38.7 6 25

Stratified flow 20 23.3 14 22.6 6 25

Stratified wavy flow 16 18.6 10 16.1 6 25

Total 86 100 62 100 24 100

The following back propagation algorithm training algorithms used in the network and their

performance for the flow regime identification examined. The multilayer perceptron has three

activation functions for regulating its output: pureline, logsig and tansig). In this study, the

sigmoidal function was used throughout due to its properties such as ranges the output

between 0 and 1, nonlinear paving the way for complex mappings of the input to the output

and it is continuous and differentiable (Güler & Übeyli 2006). Important aspects of the neural

network development are architecture and the training process. Several training algorithms

and neural network architectures have been test with different number of the hidden layer

neurons of the network evaluated during the training process.

 Levenberg-Marquardt (LM)

 Scaled Conjugate Gradient(SCG)

 One Step Secant (OSS)

 Resilient Back-propagation(RP)
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 Quasi-Newton (BFGS)

 Bayesian Regulation (BR)

Before, the fusing of the neural network models, single levels neural models were tried out for

designing the flow regime classifier but the results of the were not good enough. Subsequently,

the single levels were integrated into the combined neural network. The neural networks with

single layers were found to be superior to the two hidden layers in this experiment. The most

efficient configuration for the network with PSD features was 12 neuron hidden layers while that

of the DWT features was the 28 neuron in the hidden layers.

Combined neural network design: The combined network algorithm to determine flow

regimes involves five sets of neural networks models: N1, N2, N3, N4 and N5. The models

N1, N2, N3 and N4 are first level MLPNN formed with the input (features)-outputs

relationships. The N5 model is the second level network of the combined network and it uses

the outputs of the first level network as the inputs while using the same output as the first

level network. Each member of the first level network produces four outputs corresponding

to the flow regimes and these outputs are concatenated to form a vector for the input of the

second level of the combined network. Hence, the combined neural network for the flow

velocities training for the four different set of features extracted.

4 Results and discussion

In this study, horizontal gas-liquid two-phase four flow regimes were classified from

ultrasonic Doppler signals processed using artificial neural network. The inputs to the neural

network are features obtained from frequency bands of both power spectral density and

discrete wavelet transforms. After the features extracted from the signals, they are

normalised. Flow regimes classification models based on feed-forward multilayer perceptron

neural network implemented in the MATLAB software package with neural network toolbox.

In order improve the performance of the ANN classifier the networks were integrated into

two-tier network called combined neural network (Übeyli & Güler 2005). The total number of

85 datasets divided into training and testing sets and 62 data samples used for the training

the network and 24 datasets were used for the testing the network.

4.1 Feature extractions

the features from the Doppler ultrasound signals of the flow extracted using two methods of

features extractions were applied in this study. (1) Discrete wavelet transform was for

generating the frequency bands by decomposing the Doppler signal and then applying each

of these statistical measures: of mean, maximum, minimum and standard deviation to the

results of the wavelet transform. (2) Frequency domain spectral analysis of the ultrasonic

Doppler signal has been implemented using power spectral density based on the Fourier

transform technique. The PSD spectrums is further averaged to be input or representative
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of the flow in the neural network, it is necessary to extract statistical moments from the

spectra (Xie et al., 2004). Seven frequency bands or levels obtained from the details

wavelet coefficients. So, for each of the dataset, we obtained twenty-eight features from the

seven details wavelet coefficient levels and the statistical measure applied to the wavelet

levels.

4.2 Flow regime identification

The testing of the flow regimes classifier were done using 24 datasets comprises six

samples of the four flow regimes. After the flow regime classification neural network has

learn the input–output relationship , then the two classifiers, one for each feature vectors, are

tested with the datasets that the network has not seen before. The classification errors in the

testing of new datasets are evaluated and shown in the form of confusion matrices in Figure

4-1 and Figure 4-2 for the PSD and DWT features respectively. The diagonal cells show the

number of datasets that were correctly classified, and the off-diagonal cells show the

misclassified datasets. The blue cell in the bottom right shows the total percent of correctly

classified cases (in green) and the total percent of misclassified cases (in red). The result

shows that the PSD trained network has missed three dataset in the classification, while the

DWT trained network has misclassified only data point.

Figure 4-1 a confusion plot of the PSD features used in the combined neural network for

flow regimes classification showing the classification errors that occurred
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Figure 4-2 a confusion plot of the DWT features used in the combined neural network for

flow regimes classification showing the classification errors that occurred

The flow regimes classification performance was evaluated in the form of confusion

matrices. A misclassification is said to be occurred when the classifier fail to align a flow

regime into the supposedly right group or class. From the Figure 4-1 and Figure 4-2, the

summary of the classification accuracies of the each flow regimes and each method of

classifier based on the features used in the development of the systems are presented in the

Table 4-1.
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Table 4-1 classification accuracies for each of the flow regime and the total accuracy of each

classifier

Classifiers Flow regimes classification
accuracies (%)

values

Neural network with PSD features Elongated bubble flow 100
Slug flow 85.7
Stratified flow 83.3
Stratified wavy flow 83.3
Total classification accuracy 87.5

Neural network with DWT features Elongated bubble flow 100
Slug flow 87.5
Stratified flow 100
Stratified wavy flow 100
Total classification accuracy 95.8

4.2.1 Comparison of Visually Observed and Classified Flow Regimes

Figure 4-3 Typical flow regimes of the gas-liquid two-phase in a horizontal pipe recorded by

a high speed camera
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Table 4-2 shows predicted the flow regimes with a classifier using the PSD features which is

quite good with only three misclassifications out the 24 data records. The three misclassified

flow regimes are cases no. 7 which identified from slug flow to elongated bubble flow, and

no. 17 which is also identified from slug flow to elongated bubble flow. The last misclassified

is number 23 which is from stratified-wavy flow to stratified flow. These misclassified flow

patterns are denoted as F for false prediction whereas the successfully classified flow

regimes denoted as T for true. Also, misclassified flow regimes are very similar to their

actual targeted flow regimes. It has been found that only the nearby flow regimes were

confused in the neural network as in the results of other work (Sun and Zhang, 2008).

Table 4-2 Classification performance of 7-16-4 MLPNN Levenberg-Marquardt trained with

PSD features

No. Superficial

gas velocity

m/s

Superficial

water velocity

m/s

Observed flow regime Classified flow

regimes with

MLPNN

1. 0.5 0.4 Elongated bubble flow T

2. 0.7 0.4 Elongated bubble flow T

3. 0.9 0.4 Elongated bubble flow T

4. 1.0 0.4 Elongated bubble flow T

5. 1.3 0.4 Elongated bubble flow T

6. 1.5 0.4 Elongated bubble flow T

7. 0.5 0.7 Elongated bubble flow F

8. 0.7 1.0 Slug flow T

9. 0.9 0.7 Slug flow T

10. 1.1 0.5 Slug flow T

11. 1.3 0.7 Slug flow T

12. 1.5 1.0 Slug flow T

13. 0.5 0.1 Stratified flow T

14. 0.5 0.1 Stratified flow T

15. 0.5 0.1 Stratified flow T

16. 0.7 0.1 Stratified flow T

17. 0.7 0.1 Stratified flow F

18. 0.7 0.1 Stratified flow T

19. 0.1 0.9 Stratified wavy flow T

20. 0.1 0.9 Stratified wavy flow T
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21. 0.1 1.1 Stratified wavy flow T

22. 0.1 1.1 Stratified wavy flow T

23. 0.1 1.1 Stratified wavy flow F

24. 0.1 1.3 Stratified wavy flow T

Similarly, in the Table 4-3, the DWT features from the test dataset is applied to the trained

neural network. This classifier was able to match all flow regimes except only one in the

case number no. 18 where it was misclassified from stratified flow to slug flow. Importantly,

its overall performance is that it can classify the flow pattern up to 96%. As a result, the

combined neural network built using the MLPNN and DWT features has higher quality of

classification than the one trained with PSD features. These results are similar to flow

pattern classifications works found in previous studies (Hernandez et al., 2006; Sun and

Zhang, 2008).

Table 4-3 Classification performance of the 28-10-4 Levenberg-Marquardt selected for DWT

features

No. Superficial

gas velocity

m/s

Superficial

water

velocity m/s

Observed flow regimes Classified flow

regimes with

MLPNN

1. 0.5 0.4 Elongated bubble flow T

2. 0.7 0.4 Elongated bubble flow T

3. 0.9 0.4 Elongated bubble flow T

4. 1.0 0.4 Elongated bubble flow T

5. 1.3 0.4 Elongated bubble flow T

6. 1.5 0.4 Elongated bubble flow T

7. 0.5 0.7 Slug flow T

8. 0.7 1.0 Slug flow T

9. 0.9 0.7 Slug flow T

10. 1.1 0.5 Slug flow T

11. 1.3 0.7 Slug flow T

12. 1.5 1.0 Slug flow T

13. 0.5 0.1 Stratified flow T

14. 0.5 0.1 Stratified flow T

15. 0.5 0.1 Stratified flow T

16. 0.7 0.1 Stratified flow T

17. 0.7 0.1 Stratified flow T

18. 0.7 0.1 Stratified flow F
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19. 0.1 0.9 Stratified wavy flow T

20. 0.1 0.9 Stratified wavy flow T

21. 0.1 1.1 Stratified wavy flow T

22. 0.1 1.1 Stratified wavy flow T

23. 0.1 1.1 Stratified wavy flow T

24. 0.1 1.3 Stratified wavy flow T

4.2.2 Comparison of the Performance of PSD and DWT Features

Performances of the six MLPNN structures trained using six different training algorithms for

the flow regimes classification compared. The comparison illustrated in the Figure 4-4. the

training algorithm with a single hidden layer gives the best performing network.

Figure 4-4 performance of various MLPNN structures and the training algorithms for both (a)

Using features trained with PSD extraction (b) Using DWT extracted features.

5 Conclusion

In this paper development of a clamp-on continuous wave Doppler ultrasound sensor and

artificial neural network (ANN) for gas-liquid two-phase flow regimes classification was

performed. The ultrasound signals are processed using the methods of power spectral

density and discrete wavelet transforms for extraction of input features to the ANN models.
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Multilayer perceptron neural network developed into a combined neural network of two-

levels as the classifier and the two methods of feature extractions produced for the network.

Comparisons of the performances of the two classifier models assessed. Four two-phase

flow regimes such as slug flow, stratified flow, elongated bubble flow and stratified wavy

have been classified using the method developed.

The results show that ultrasound signal features of the two phase flow obtained using the

discrete wavelet transform performs better accurate classification than compared to the

features extracted with power spectral density methods. The combined neural network

models developed for the classification using the PSD features and for the DWT features

have accuracies of 87% and 95.6% respectively. In conclusion, the present study has

demonstrated that discrete wavelet transforms feature extraction and the MLPNN classifier

has met the industrial requirement of flow regime classification(Sun et al. 2013).

In contrast to the invasive instruments used in other works, this approach is very important

for industrial application given that the sensor used is non-invasive, non-radioactive and it is

ultrasound technology. Based on the analysis of the experimental results, the proposed

method is able provide objective classification of four flow regimes in the horizontal pipe.

Other ultrasonic methods reported in the literature employed pulse echo ultrasound plus

neural network or subjective methods of flow regimes indemnification (Jha et al. 2013;

Figueiredo et al. 2016). The key strengths of the neural network based methods are fast

classification and flexible procedure for finding good nonlinear solutions.

The continuous wave Doppler sensor is suitable for monitoring flow processes that are

ultrasonically reflection fluids such as crude oil, petrocarbons, oil-gas and oil-water mixtures.

Importantly, the sensor can fits well on existing pipework and it is suitable for both plastic

and metallic pipes. However, on horizontal pipe, it is important to mount the sensor at the

bottom of the pipe to avoid gas voids in the upper section of the pipe. Poor coupling of the

sensor with the pipe, gas voids or bends would temper with strength of the signal received.

The results of the present study demonstrated that the proposed approach of wavelet

transforms and MLPNN classifier has met the industrial requirement of flow regime

classification(Sun et al. 2013).

Further studies are needed in the application of this clamp-on objective flow regime

classification system to investigate oil-water two-phase flow. Especially for deployment of

this technology to address requirement of clamp-on ultrasound flow monitoring meter for oil

well testing. Also, more studies are recommended on the feasibility of information of the

ultrasound Doppler sensor and void fraction measurement such as gamma densitometer

which would make the system a complete multiphase flow meter.
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