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ABSTRACT

A novel ultrasonic signal detection and characterization technique is presented in 
this dissertation. The basic tool is a simplified time-frequency (scale) projection which is 
called a dynamic wavelet fingerprint. Taking advantage of the matched filter and 
adaptive time-frequency analysis properties of the wavelet transform, the dynamic 
wavelet fingerprint technique is a coupled approach of detection and recognition. 
Different from traditional value-based approaches, the dynamic wavelet fingerprint based 
technique is pattern or knowledge based. It is intuitive and self-explanatory, which 
enables the direct observation of the variation of non-stationary ultrasonic signals, even 
in complex environments. Due to this transparent property, efficient detection and 
characterization algorithms can be customized to address specific problems. Furthermore, 
artificial intelligence or expert systems can be built on it.

Several practical ultrasonic applications were used to evaluate the feasibility and 
performance of this new idea. The echoes from the surface of five different plates were 
characterized by the dynamic wavelet fingerprint. After learning, 100% correct 
identification ratio was achieved.

The second application was ultrasonic periodontal probing. The dynamic wavelet 
fingerprint technique was used to expose the hidden trend of the complex waveforms. 
Based on the experiment results of a simplified phantom, the regular variation of the 
inclination of the dynamic wavelet fingerprints was related to reflection regions of 
interest. The depth of the periodontal pocket was then estimated by finding the third 
significant peak in the inclination curves. Taking the manual probing data as "gold 
standard", a 40 % agreement ratio was achieved with a tolerance limit of ± 1mm. 
However, statistically, lack of agreement was found in terms of the “limits of agreement” 
of Bland and Altman.

The third application was multi-mode Lamb wave tomography. The dynamic 
wavelet fingerprint technique was used to detect and characterize each suspect through- 
transmitted mode. The area of the dynamic wavelet fingerprint was then used as the 
feature to identify false modes caused by noise and other interference. The overall quality 
of the estimated arrival times was acceptable in terms of smooth distributions and 
variation pattern corresponding to specific defects. The tomographic images generated 
with the estimated arrival times were also fine enough to indicate different defects in 
aluminum plates.

The last application was ultrasonic thin multi-layers inspection. The dynamic 
wavelet fingerprint was generated at each sample point to achieve maximum time 
resolution. Based on observation of the simulated signals, a distinctive dynamic wavelet 
fingerprint was found to differentiate actual echoes from noise. High precision and 
robustness was demonstrated by processing simulated ultrasonic signals. When applied to 
practical data obtained from a plastic encapsulated 1C package, multiple interfaces in the 
package were successfully detected.

XIV
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CHAPTER I 

INTRODUCTION

Since its establishment in 1924, the Identification Division of the FBI has 

accumulated more than 30 million sets of fingerprints from criminal arrests [1], with 

40,000 sets of fingerprints arriving daily that are divided into three groups: 5,000 new 

prints to be archived; 15,000 repeat prints (recidivists) to be compared with archived 

records and 20,000 security clearances to check and return to other agencies. To make 

identification and classification decisions, trained experts are called upon to study the 

“minutiae” in the fingerprints, such as the ridge endings and bifurcations formed since a 

person is bom.

Figure 1.1 Typical fingerprints. Left to right, top to bottom: plain arch, loop, pocket loop 
and double loop (whorl).
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These fingerprints used to be on cards in Washington and the document cabinets 

occupied a whole floor in the FBI building. To save the resources used for archiving and 

to improve transferring and processing efficiency, these fingerprints are now being 

digitized and compressed. Initially, the JPEG standard was considered to be the most 

promising candidate. However, at high compression ratios of 15:1 and 20:1, ridges that 

are separated in the true fingerprints were found to merge, which is unacceptable for 

identification purposes. It turned out that the wavelet/scalar quantization (WSQ) 

algorithm was superior [I]. The ten megabytes of data per card can be compressed by 

15:1 without the information loss of the JPEG. Convinced by the quality of the 

compressed image, the FBI has now built the wavelet-based fingerprint archive system.

There are several interesting points in this story. The first point, fingerprints. The 

public takes it for granted today that identity can be positively established through 

fingerprints, but the accurate and widespread use of fingerprinting has only been around 

for about a century [2-4]. In I90I, the Henry System -  which is the basis of all modem 

ten-finger identification systems -  was devised by Sir Edward Richard Henry, then 

Inspector-General of Police in Bengal, India, and later Commissioner of London’s 

Metropolitan Police. In 1902, the first fingerprinting system in the United States was 

installed by Dr. Henry P. DeForest for the New York Civil Service. In 1924, an Act of 

Congress established the Identification Division of the FBI. In 1946, the ICO* million 

fingerprint card was received by the FBI. In 1967, the FBI initiated research and 

development on computerized scanning equipment for fingerprinting. In 1989, the 

Identification Division Automated System (IDAS) was implemented. Starting in January 

2004, most foreign passengers who enter the United States are required to be
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fingerprinted by the Homeland Security Department. When the Identification Division 

was established, few envisioned the high degree of efficiency and success of the 

fingerprint technique. The power of a fingerprint for identification comes from its 

uniqueness and consistency throughout a person’s lifetime. Although a fingerprint is just 

a two-dimensional pattern, it contains such distinctive and concentrated information so 

that even twins can be differentiated successfully.

The second point, wavelets. With the name of “mathematical microscope”[5], 

wavelet analysis is a powerful tool to analyze local or transient variations. The origin of 

wavelet analysis can also be traced back to the beginning of the twentieth century. The 

Littlewood-Paley technique and Calderon-Zygmund theory in harmonic analysis and

digital filter bank theory in signal processing can be considered as forerunners to wavelet 

analysis. In its present form, wavelet theory attracted attention in the 1980s through the 

work of several researchers from various disciplines -  Stromberg, Morlet, Grossmann, 

Meyer, Battle, Lemarie, Coifman, Daubechies, Mallat, Chui -  to name a few. Different 

types of wavelets have been used as tools to solve problems in signal analysis, image 

analysis, medical diagnostics, boundary value problems, geophysical signal processing, 

statistical analysis, pattern recognition, and many others.

The third point, processing of huge volumes of data. With the advances in science 

and the development of electronic and computer technology, huge volumes of fingerprint 

data are acquired and archived daily in digital format. To make effective use of this 

information, it is always necessary to develop efficient algorithms. Potential solutions 

may be inspired by biological systems, e.g., the human brain. Everyday, the brain
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receives lots of information from sensors -  eyes, ears, nose, skin and tongue -  and it 

processes all of this information in real-time. It is thus reasonable to develop a system 

with artificial intelligence to process huge volumes of data.

Similar stories can be found (or written) for ultrasound applications. Both in 

medical diagnosis and non-destructive evaluation, the ultimate goal of ultrasonic 

inspection is to identify abnormalities -  the “suspected criminals” -  from numerous data. 

Generally there are two modes to perform ultrasonic testing. The first is the pulse-echo 

mode illustrated in Figure 1.2 (a). In this mode, a single transducer launches an ultrasonic 

pulse (transient signal) into the sample. Whenever the ultrasound pulse encounters a 

discontinuity or interface, part of the ultrasound energy is reflected back and picked up 

by the same transducer. The rest of the energy goes through the interface and continues to 

propagate in the medium. The second approach is through-transmission mode, which is 

illustrated in Figure 1.2 (b). In this mode, a second transducer is used to receive the 

transmitted ultrasound signal. A typical pulse echo/through transmission transducer setup 

is shown in Figure 1.3.

In both modes, the characteristics of the received waveforms provide information 

on the nature of the medium. Generally we would like to know when or where an event of 

suspect nature occurs, which leads to a detection problem. In addition, we would also like 

to know what event has occurred, which leads to a characterization or recognition 

problem.

The simplest detection method is gating (see Figure 1.4) where the peak 

amplitude of a segment of signal isolated by a pre-defined gate is compared with a
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H H
(a) (b)

Figure 1.2 Ultrasonic inspection modes, (a) Pulse-Echo mode. Each interface or 
discontinuity results in a corresponding echo in the received waveform, (b) Through- 
Transmission mode. The received waveform is the transmitted ultrasonic pulse.

Transducer

5 ,  ' . -’jisyjB
Receiver

Figure 1.3 Pulse echo/through transmission setup (Courtesy of Sonix, Inc.)
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Figure 1.4 Gating of ultrasonic signal. The red and green data gates are placed at different 
locations to detect reflections of interest. (Courtesy of Sonix, Inc.)

predefined threshold. If the peak amplitude is larger than that threshold, the signal is 

considered to be significant enough to indicate a suspected discontinuity (defect). 

Although simple and fast, due to the often arbitrary preset threshold and width setting of 

the gate, this technique is quite sensitive to noise and may not work for the most complex 

waveforms.

A more robust detection technique is the cross-correlation, which is defined [4] as 

Ĉ {̂T) = \im(XIT)f^x{t)y{t + T)dt 

where x{t) and y{t) are arbitrary waveforms. In discrete form, we have [7]

^  k=\
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The cross-correlation coefficient reaches its maximum at particular values of i  where the 

signal y{t) most similar to the known template signal is detected. The theory underlying 

the cross-correlation method is based on the assumption that the ultrasonic signals are 

stationary. But the non-stationary nature of these signals is often obvious and results 

from variations of the medium, nonlinear modulation, etc.[8] As will be discussed in 

detail in the next chapter, time-frequency analysis techniques are a more suitable tool to 

detect non-stationary transient signals.

Even when we can easily detect the transient signals, it is often of great interest to 

then characterize and distinguish between them. For example, in nondestructive 

evaluation of materials, we need to know if a reflection signal comes from a good 

bonding interface or from a delamination, or we need to know the size, shape and 

orientation of a discontinuity. In medical diagnostic ultrasound applications, it is the 

“Holy Grail” of reliable and automatic differentiation of normal and cancerous tissue [9].

A widely used characterization technique is spectral analysis. The traditional 

Fourier-based methods are ideally suited to analyze narrow band signals and generate 

features (spectral amplitudes) for detection and discrimination [10]. Again, for broad­

band transient signals it is necessary to apply more advanced time-frequency analysis 

techniques.

In summary, due to the complex physics of ultrasound propagation, the 

waveforms obtained are generally too complex to be analyzed by un-trained eyes.

Instead, expert knowledge needs to be integrated into signal processing algorithms that 

are smart enough to deal with complex situations. Moreover, it is beyond a person’s
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capability to deal with huge amount of waveforms collected daily. Thus, automatic 

processing systems are required.

This dissertation presents a pattem-based approach to huild artificial intelligence 

into automatic signal processing algorithms. The idea is to use “fingerprints” to 

characterize and distinguish different ultrasonic transients. The tool to form these 

“fingerprints” is the wavelet transform. Unlike the FBI case where the wavelet transform 

is used to analyze and compress fingerprints, here the wavelet transform is used to 

generate a “dynamic wavelet fingerprint” which is then used to characterize and 

recognize ultrasonic signals.

This dissertation is organized as follows:

In Chapter II, the basic theory, algorithm and applications of wavelets are 

presented. In Chapter III, the dynamic wavelet fingerprint (DWFP) technique is 

introduced. A materials sorting application is used to demonstrate a working scenario 

where artificial intelligence based on the dynamic wavelet fingerprint is embedded into 

software. Chapter IV describes the development of a DWFP based algorithm to highlight 

the variation in ultrasonic periodontal probing signals and enable automatic measurement 

of periodontal pocket depth. Chapter V presents an application of the DWFP technique to 

extracting arrival times of multiple Lamb wave modes so that improved tomography 

images can be reconstructed. Chapter VI discusses the potential of the DWFP technique 

to automatically detect closely spaced transient signals, which is a critical problem for 

ultrasonic multi-layer structure inspection. The dissertation concludes with a summary of 

the work completed and recommendations for future work in Chapter VII.
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CHAPTER II 

FUNDAMENTALS OF WAVELETS

2.1 Time-frequency analysis

In many ultrasonic applications the signals of interest are non-stationary, i.e., the 

spectrum of the signal changes with time. On the other hand, the ultrasonic signal is 

usually a broadband pulse modulated at the center frequency of the transducer with 

limited time duration and frequency bandwidth. It has been proven that the time- 

frequency representation is a useful tool for simultaneous characterization of signals in 

time and frequency, in particular for detecting and charactering dispersive effects and 

flaw echoes in highly scattering materials. Since the transient signal is decomposed both 

in the time domain and frequency domain, the added complexity of describing the 

originally one-dimensional time signal as a two-dimensional representation results in a 

redundancy which can be advantageously utilized to improve interpretation of the 

experimental data [11]. This is similar to musical notation, for example, which tells the 

player which notes (= frequency information) to play at any given moment [5].

Given a signal f { t ) , the standard Fourier transform.

f{(o) = - ^ r  f{t)e-̂ “'dt (2 .1)
V2;r
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becomes inadequate when one is interested in the local frequency content of a signal. In 

other words, the Fourier spectrum does not provide any time-domain information about 

the signal. To demonstrate this point, consider the signal

f { t )  = sin 27TV.̂ t + sin iTTV t̂ + ct{S{t -  q ) + <5’(t -  )] (2 .2)

which consists of two sinusoids of = IQQHz and Vj -  400//z and two delta functions 

occurring at = 200 ms and 205 m s , with a  = 6. The signal and its power 

spectrum are shown in Figure 2.1(a) and (b) respectively. It can be seen that Fourier
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Figure 2.1 (a) Two sinusoids corrupted by two perturbations, and (b) the power spectrum.
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transform successfully detected the two sinusoids components in terms of the sharp peaks 

near -  200 Hz and V2 = 400 H z . As for the two abrupt pulses, however, there is no 

way to point out their locations [12], The problem is due to the global property of Fourier 

transform, i.e., any abrupt change in time in a signal f { t )  is spread out over the whole

frequency axis in its Fourier transform/(fy) [13]. In other words, in transforming to the 

frequency domain, time information is lost.

To overcome this drawback, a local analysis is needed to introduce time 

dependency into the Fourier analysis. This can be achieved by first windowing the signal 

f i t )  so as to cut out only a well-localized slice of f i t ) , and then taking its Fourier 

transform [5]. This is the short-time Fourier transform (STFT). Formally, it is defined as

G .f ib ,^ )  = [ _ J i t ) J ^ ) d t  (2.3)

where

t^^it)  = (!>it-h)e^^f (2.4)

and (pi,^if) is the complex conjugate of ■ The window function (pit) is allowed to 

be complex and satisfies the condition 

^(0) = j ” <pit)dt ^  0.

In other words, ^io)) behaves as a low-pass filter.

There are two important parameters for a windowing function: its center and 

width; the latter is usually twice the radius. For a general window function (pit) , its center

t*is defined as
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* _ 1 p
~  II ,112 J_<„ dt (2.5)

and the root-mean-square (RMS) radius A. is defined as

1/2

(2 .6)

The function (pit) described above with finite is called a time window. Similarly, a 

frequency window p{co) with center (O* and the RMS radius A^ can be defined as

dco (2.7)

A, = I ” (ry-ry*)^|^(ty)| dco
1/2

(2 .8)

As indicated by (2.3), the STFT maps the one-dimensional signal into a two 

dimensional function in the time-frequency plane (b, ̂ ) . For a given window function

(/>{t), the time and frequency resolution is controlled by the RMS radius A  ̂ and A^ 

respectively, i.e., two pulses can be differentiated only if they are more than 2 A  ̂ apart 

and two sinusoids will be discriminated only if they are more than 2 A^ apart.

Unfortunately, it is impossible to achieve arbitrarily small resolution in time and 

frequency simultaneously, because the product A  ̂A^ is bounded by the uncertainty

principle given by
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A , A - > |  (2.9)

where the equality holds only when (!){t) is of the Gaussian type.

More important is that once a window function has been chosen for the STFT, 

then the time-frequency resolution is fixed over the entire time-frequency plane (since the 

same window is applied at all frequencies). This is shown in Figure 2.2(a). This means 

that we need to decide on a suitable time window in advance and to trade time resolution 

for frequency resolution, or vice versa [13]. As shown in Figure 2.3(a), when a large 

window is used, the two sinusoids (Figure 2.1) are identified successfully. However, it is 

impossible to locate the two delta functions. In Figure 2.3(b) a small window is used, the 

two delta functions are resolved successfully with reduced resolution of the two 

sinusoids. It is obvious that such “rigid” solutions may lack efficiency. Instead, more 

flexible or adaptive solutions are more reasonable.

To overcome the resolution limitation of the STFT, one can imagine letting the 

resolution and A - vary in the time-frequency plane in order to obtain a multi­

resolution analysis. In other words, we must have a window function whose increases

while resolving the low frequency contents, and decreases while resolving the high 

frequency contents of a signal. This objective leads one to the development of wavelets 

analysis.
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(a) (b)

O'
0> O'o

Time Time

Figure 2.2 Time-frequency resolution of the Short-Time Fourier Transform (STFT) and 
the Wavelet Transform (WT). (a) For the STFT and (b) For the WT. Note the uniform 
cells (single resolution) for STFT become variable (multi-resolution) for WT, where wide 
time intervals are used for low frequency and short time intervals are used for high 
frequency.

2.2 The Continuous Wavelet Transform

For a square integrable function f{t)& L^(9l), i.e., < °o, its continuous

wavelet transform is defined as

W^f(a,T)= (2.10)

where is the wavelet corresponding to continuous scale a and translation r  of

the mother wavelet y/{t), i.e..

.  ̂ 1 
VaA^) = ~ r y ^yja

a >0. (2 .11)
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Figure 2.3 Spectrogram of signal shown in Figure 2.1 with different window width, (a) 
window width = 256. (b) window width = 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

The normalization factor a is included so that ^a,r \ ~ |r | |

In order to reconstruct the original function from its continuous wavelet 

transform, the mother wavelet has to satisfy the admissibility condition:

= (2.12) 
\ a ) \

This restricts the class of functions that can be wavelets. In particular, it implies that all 

wavelets must have

1^(0)= ^  y/(t)dt=--0. (2.13)

We conclude that all wavelets must oscillate, giving them the nature of small waves and 

hence the name wavelets.

On the time axis, the definition for the center t* and the radius remain the 

same as those for STFT. On the frequency axis, if only positive frequencies are 

considered, the center O)* and the radius of the wavelet window y/{t) can be 

calculated as:

£  (o\y/{coii\ dco 

dco
-̂----- (2.14)

J J {co-co*f'\yc{coi\ dco
1/2

^ \ij/{co f dco

Accordingly, the wavelet has a time-frequency window given by:

(2.15)
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\at* + T -  ah. , at* + T + ah \< -(Q)* -h^) , - (Q )*  + h ^ )  
a a

(2.16)

The uncertainty principle still holds for the wavelet transform in that the time frequency

2
widow product = 2ah^ x — h ^ =  ^ h ^ h ^  = const. However, instead of fixing at the same

resolution, the shape of the resolution cell changes adaptively, i.e., for higher frequency, 

the time window is small (small scale), while for lower frequency, the time window 

becomes large (large scale). Such flexible and adaptive advantages are demonstrated in 

Figure 2.4 by analyzing the signal described in (2.2). It can be seen that good resolution 

in both the time and frequency axes are aehieved simultaneously in only one 

eomputation. The two sharp bursts were detected at small scales (high frequency); and 

the two sinusoids components were resolved at corresponding scales, i.e., 200 Hz at 

a ~ 1.2 and 400 Hz at a ~ 2.4.

In general, we ean connect scale to frequency by using the following relationship 

[14,15]:

h - F
F = ^ - ^  (2.17)

where F  ̂ is the pseudo-frequency in Hz corresponding to the scale a,  is the center

frequency of a wavelet in Hz and A is the sampling rate. Accordingly, at 1000 Hz 

sampling rate, for the sixth derivative of Gaussian wavelet used in Figure 2.4, we have 

Fi 2 = 416.6 Hz and F24 = 208.3 Hz.
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Absolute Values of Ca,b Coefficients for a  = 0.2 0.4 0.6 0.8 1 ...

100 150
time (or space) b

Figure 2.4 Continuous wavelet transform of the signal described by (2.2). The two sharp 
bursts were detected at small scales, and the two sinusoids components were resolved at 
corresponding scales.
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2.3 The Discrete Wavelet Transform

The continuous wavelet transform is a natural tool for time-frequency signal 

analysis. However, since it is a redundant representation of the original one-dimensional 

signal, a direct evaluation of the integral in (2 .1 0 ) can be a heavy computational load in 

problem solving. Also, there are practical situations such as data reduction and filtering 

that require a non-redundant wavelet transform. This is achieved by parameter 

discretization, i.e., instead of computing the wavelet transform for all continuous scale a 

and translation t  values, only a finite number of discrete values are used to perform the 

calculation. For example, we may choose a - a Q , b  = nb̂ UQ , where m,n are integers, 

and Uq >l,bo > 0 . Accordingly, the wavelets at those discrete nodes are:

¥„.,nit) = a r ' ^ ¥
^t -  nb^a^  ̂

a"‘Uq y
^ a T ’^ a r t - n b , )  (2.18)

The feasibility condition for such discrete transforms was evaluated with the 

theory of frames [5]. Basically, in order to completely characterize a function f{ t )  by the

discrete wavelet coefficients < ( 0  > (the inner product of the signal and the

wavelet), the wavelets y/^ ̂  it) should constitute a frame, i.e., there should exist

0  <  A <  B  < o o  so that

A||/(0|r < E|< f ( t ) , ¥ . J t )  >\ < B\\fit)\\ . (2.19)

The constants A, B are frames bounds and only depend on ( t ) .
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Obviously, the choice of the wavelet ii/{t) and the corresponding parameters are 

not arbitrary. It is necessary to balance redundancy, i.e., sampling density, and 

restrictions on (0 . If the redundancy is large (sampling is dense) then only mild

restrictions are put on the wavelets. If the redundancy is small (sampling is sparse) then 

the wavelets are very constrained.

In fact, the distinction between various types of wavelet transforms depends on 

the way in which the scale and translation parameters are discretized [16]. At the most 

redundant end is the continuous wavelet transform; at the other extreme, a decomposition 

into wavelet bases only requires the values of the transform at the octave scales a = 2"' 

and the dyadic translation r  = nl™ [17]. In this case, the number of coefficients needed 

for perfect reconstruction is the same as the number of data samples, which is known as 

critical sampling and minimizes redundant information [12]. Such a discretization 

procedure (shown in Figure 2.5) leads to the so-called Discrete Wavelet Transform.

s c a l e ,  m =  l o g ^ «

7 8
t r a n s l a t i o n  r  =  «  2 "

Figure 2.5 The dyadic sampling grid in the time scale plane.
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2.4 Multi-Resolution Analysis And The Fast Algorithm

Discrete wavelet transforms can be implemented using extremely efficient 

algorithms, which are associated with Multi-Resolution Analysis (MRA) of the finite 

energy function space l}  (91).

Multi-Resolution Analysis plays a crucial role in the theory of the wavelet 

transform. It forms the most important building block for the construction of wavelets 

and the development of algorithms. The basic idea is to obtain a sequence of fine-to- 

coarse signal approximations by successive projection on subspaces, which are generated 

from the translation of a scaling function 0 (t) at the corresponding resolution [16].

To achieve a multi-resolution analysis of a function, we must have a finite-energy 

function <p{t) e L^(9I), called a scaling function, that generates a nested space sequence 

{ I, namely [12]

{0} <------c  A_j c  Aq c  Aj c ------ > . (2.20)

For each scale level .?, since the space Â  is a subspace of A^ ĵ, there is some space left

in A ,̂.j, called IT,, which when combined with gives us A^^j. This space {W^.} is 

called the wavelet subspace and is complementary to A, in A,^,, meaning that

A ,nlT ,={0} (2.21)

4 ® W ', = 4 „ -  (2 -2 2 )
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Subspaces { }  are generated by y/{t) e l l { ^ ) , called the wavelet, in the same way that

{ } is generated by ^{t). In other words, any function (t) g can be represented as

x,(t) = Y , a , J ( 2 ^ t - k ) ,  (2.23)
k

and any function (t) g can be represented as

y,it) = Y .w ,^ ^ W ir t - k )  (2.24)
k

for some discrete coefficients { } and { }.

The scaling function (pit) and wavelet function y/it) must satisfy following 

conditions [16]:

(i) Unconditional Riesz basis condition

0 <  a <  ^ |^ (ty  + 2;zfe)̂  < oo (2.25)
k s Z

(ii) Partition of the unity

Y ^ ( P i t - k ) ^ l  (2.26)
teZ

or, the equivalent statement in the Fourier domain

^(0) = 1 and p{27±) = Q, k& Z ,k i^Q  (2.27)

(iii) Two scale relations

m  = (2-28)
teZ

y/it) = Y h ( k ) p ( 2 t - k )  (2.29)
k € Z
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The two sequence g(k) and h(k) correspond to a low-pass filter and a high-pass 

(or band-pass) filter respectively. They show how the digital filters wholly determine the 

scaling function and wavelet function t^(t)[17].

On the algorithm aspects, it has been shown the fast discrete wavelet transform 

illustrated in Figure 2.5 can be implemented with the two filters g(k) and h(k) using the 

subband coding scheme [13]. The procedure is shown in Figure 2.6. Basically, the 

continuous inner products can be evaluated numerically via simple discrete convolutions 

[16]. These filters cannot be arbitrary. Actually, the choice of these filters is directly 

related to the construction of different wavelets: Orthonormal, Semiorthogonal or 

Biorthogonal wavelets. For more detailed information about how to construct different 

wavelets, please refer to a number of excellent references [1,5,12,18].

2.5 Wavelet Applications

Although the wavelet concept was introduced within the background of time- 

frequency analysis, it actually has several different explanations that lead to different 

applications.

2.5.1 Detection and Estimation

One way to introduce the wavelet transform is to define wavelets as basis 

functions. In fact, the continuous wavelet transform can be considered as the inner
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(a)
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Figure 2.6 Discrete wavelet transform using subband coding scheme, (a) Subband 
coding scheme. The original signal x(n) pass through two complementary filters h{k) 
and g(k) followed by down-sampling and emerges as two sequences cA and cD. To 
reconstruct the original signal, the two sequences cA and cD go through up-sampling and 
filtering followed by summation, (b) Filter bank tree of the discrete wavelet transform. 
The DWT coefficients are produced with filtering followed by down-sampling.
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product of a function with corresponding wavelets. Since the inner product is often used 

as a similarity measurement, the continuous wavelet transform appears in several 

detection/estimation problems.

The estimation procedure consists in first emitting a known signal h(t). In the 

presence of a target, this signal will be reflected back to the source (received signal x(t) ) 

with a certain delay t  , due to the target’s location, and a certain distortion (Doppler 

effect), due to the target’s velocity. For wide-band signals, the Doppler frequency shift 

varies in the signal’s spectrum, causing a stretching or a compression in the signal. The 

estimator thus becomes the “wide-band cross ambiguity function”[13,17,19,20]. The 

characteristics of the target will be determined by maximizing the ambiguity function. 

Since the “maximum likelihood” estimator now takes the form of a continuous wavelet 

transform, the basis function which best fits the signal is used to estimate the parameters.

Another view of the wavelet transform is to treat it as a bank of matched filters 

when the mother wavelet is chosen to be similar to the pulse to be detected. When the 

input signal is detected by one of the matched filters (wavelet), there is a correlation 

peak; its coordinates indicate the dilation factor and the time-delay of the signal [2 1 ].

2.5.2 De-noising

A commonly encountered difficulty in ultrasonic signal processing is the low 

signal to noise ratio. Due to its fast algorithm in the form of a filter bank, which is
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illustrated in Figure 2.6, the discrete wavelet transform has been widely applied to 

suppressing noise and enhancing the signal to noise ratio [22,23].

The general de-noising procedure involves three steps:

1. Decompose: Choose a wavelet and a level N. Compute the wavelet 

coefficients cD and cA of the signal at level N.

2. Thresholding (Modification): for each level from 1 to N, select a threshold 

and apply thresholding to coefficients cD.

3. Reconstruct: reconstruct filtered signal using the original coefficients cA of 

level N  and the modified coefficients cD of levels from 1 to N.

2.5.3 Signal Characterization

Due to the time-frequency localization capability of the wavelet transform, the 

scalogram (defined as squared modulus of the continuous wavelet transform [13]) is an 

alternative to the spectrogram (defined as the square modulus of the STFT) for functions 

such as feature extraction, parameter estimation and pattern recognition of non-stationary 

signals [17, 24].
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CHAPTER III

THE DYNAMIC WAVELET FINGERPRINT TECHNIQUE

3.1 Introduction

Automatic signal classification systems are used extensively for signal 

interpretation in non-destructive evaluation (NDE) applications. Their popularity stems 

from the fact that they are capable of rapid analysis of large amounts of data. In addition, 

they offer more accurate and consistent data interpretation as well as allowing storage of 

expert knowledge [25].

Most automatic signal classification systems are built upon a two-stage 

framework: preprocessing plus classification, for example. At the preprocessing stage, 

the critical point is to process the original signal in a way that some features can be 

generated and used to distinguish different signals. At the classification stage, an artificial 

neural network is often chosen to be the classifier to differentiate one class of signals 

from another.

Since the wavelet transform has excellent time-frequency localization properties, 

it is widely used as a preprocessing tool to extract features from transient signals. The 

most popular method involves the discrete or continuous wavelet transform of the signal 

of interest, with or without windowing, and then the application of a procedure such as
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pruning [26,27], soft- or hard-thresholding [23,28] or dynamic programming [29] to 

determine the best subset of features.

Lunin and Barat [30,31] have presented an application of the magnetic field 

leakage technique for crack angle and depth estimation. In the preprocessing stage, six 

equivalent sections are extracted from the continuous wavelet transformation of the 

simulated magnetic field leakage signal and then five shape parameters of each section 

are used to construct feature vectors as inputs to a neural network. The limitation of their 

method is that it deals with simulated, isolated signals that have well defined boundaries. 

It is not suitable for a dynamic application where the transient signal is randomly 

distributed and the location and boundary of a transient signal needs to be identified on 

the spot.

In this chapter, an automatic ultrasound signal identification technique based on a 

dynamic wavelet fingerprint (DWFP) is proposed and developed. Dynamic wavelet 

fingerprints are constructed in three steps:

(1 ) first, we use a pulse detection technique to locate the center of the transient 

signals of interest;

(2 ) second, then a window with predefined width is used to isolate a transient 

signal from its neighborhood;

(3) finally, a similar method to that of Lunin and Barat is used to generate a two- 

dimensional black and white wavelet image.
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Feature vectors are constructed in terms of the moment invariants of the DWFP. 

These feature vectors are then used as inputs to an artificial neural network classifier.

We first introduce the dynamic wavelet fingerprint and describe its construction 

and the corresponding feature extraction method. We then use simulated ultrasound 

signals to explore the behavior and significance of the dynamic wavelet fingerprint. To 

evaluate the practical benefit and the feasibility of this technique, we next describe an 

ultrasonic classification system that sorts different materials via the echoes from their 

surface. A brief conclusion is given at the end.

3.2 The Dynamic Wavelet Fingerprint

Because fingerprints are useful for identifying people [4], it is natural to propose a 

signal “fingerprint” for classifying signals. The basic question is how to define and obtain 

such a fingerprint. For ultrasound applications, we are mostly concerned with the local or 

transient properties of the signals. Specifically, we need to locate the center of the 

transient signal first and then we need a properly defined window to isolate the transient 

signal from its neighborhood. Finally, we need to use an efficient method to extract 

significant information to distinguish one transient signal from another. With excellent 

time-frequency localization properties, the wavelet transform is a suitable tool for these 

requirements.

The first step is equivalent to pulse detection, which determines the presence of a 

transient signal and indicates its time location. From the matched filter point of view.
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there is a correlation peak on the time-scale plane at the location of the transient signal, 

which indicates a concentration of energy [1 1 ].

In order to suppress noise in the signal, we applied a pruning procedure [11] 

based on the discrete stationary wavelet transform [32]:

Wp{a,b)-Q for a = 1,2 (3.1)

where (a,b) are the discrete stationary wavelet coefficients at scale a and time b.

By eliminating wavelet coefficients at low scale level, which corresponds to 

higher frequency components, the noise contribution to the signal is reduced. Then we 

calculated the scale-average wavelet power (SAP) proposed by Georgiou and Cohen [33] 

to obtain the centers of the transient signals:

W \ n )  = j f ^ \ W ( S j , n ) \ \  (3.2)

where lT(s^.,n) are the continuous wavelet coefficients at scale Sj and position n.

In the presence of a coherent component (resolvable scatters), there is a 

concentration of power in the time locations of the coherent components. Specifically, we 

take the locations of the SAP peaks as the centers of the pulses:

= peak(W^(n)).  (3.3)

Next, a suitable segment window is required to isolate the transient signal. This 

window should be small enough to be local to the center n^, and large enough to
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incorporate enough information of the transient signal. A natural choice is to use the 

duration of the initial input pulse as the width of this window. To this end, we use two 

times of the full width at half maximum power (FWHM in the equations) of the input 

transient signal

w = 2-FWHM (3.4)

Thus the window for a specific pulse is [n̂  -  FWHM, + FWHM],

Figure 3.1(a) illustrates an ultrasound signal and the results of center location and 

window selection. A circle indicates the location of the eenter, which is obtained from 

Equation (3.3). The two squares indicate the end points of the window aecording to 

Equation (3.4). Figure 3.1(b) shows a three-dimensional view of the eontinuous wavelet 

coeffieients of the ultrasound pulse in Figure 3.1(a), whieh was obtained when the Haar 

wavelet was used with a range of scale from 1 to 64 and a time window of 8 8  sample 

points wide.

To form a wavelet fingerprint, we first normalize the wavelet coefficients into the 

range of [0, 1] and then apply the sliee projection operation, whieh is shown in Figure 

3.1(c), to project four equal-distance slices of the three dimensional eontinuous wavelet 

eoeffieients onto the time-scale plane, whieh results in a two-dimensional binary ( 0  and 

1) image. Figure 3.1(d) shows the dynamie wavelet fingerprint obtained this way for the 

pulse in Figure 3.1(a).
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3-D v iew  of the cotlnuous wavelet coefficients
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Figure 3.1 Wavelet fingerprints generation, (a) Ultrasound pulse; (b) 3-D view of the 
wavelet coefficients and its contour; (c) slice projection; (d) the dynamic wavelet 
fingerprint (b).
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Once we have obtained the two-dimensional signature of the transient signal, we 

can convert the one-dimensional signal classification problem to a two-dimensional 

pattem recognition problem in order to make use of more advanced tools at our disposal.

In this chapter, we use the moment invariants [34] of the dynamic wavelet 

fingerprint to reduce the dimension of the two-dimensional pattem. Moment invariants 

are uniquely determined by an image and, conversely, determine the image. These 

properties of moment invariants facilitate pattem recognition in the machine vision 

applications [35].

The seven moment invariants developed by Hu [34] are presented as follows:

^ 1“  ^ 2 0  ^0 2

<^2=(^20-^02)"+4/7n

<̂ 3= (^30 - 3 ^12)" + ( 3^21 - ^ 03)"

( ! > A =  ( 3̂ 0 +^12)"+( 7 2 1 +%3 )"
< ^5=  (^3 0  - 3 ^ 12X 730 + ^ 1 2  ) [ ( ^ 3 0  + ^ 12) '  - 3 ( ? ? 2 1  + ^ 03) ' ]

+ (3721 - ^ 3 X^2 1  +7o3)[3(73o + 7 1 2 ) ' -(721 +7o3)"] 

 ̂6=  (720 -  7o2 )[(730 +  7i2 )" “  (7 z i +  7o3 )" 1 

+ 4 7 1 1 (7 3 0 + 7 1 2 X7 2 1 + 7 0 3 )

^ 7-  (3/721 - 73o )(730 + 7 i 2>[(730 + 7 i 2)  ̂ -(3721  + 7 o s )^]

+ (3 7 i 2 -  730 )(721 + 7 o 3 )[3(730 + 7 i 2 )" -  (721 + 7 o 3 )" ]

(3.5)

where 7 ^  ̂, p , q ^  {0 ,1,2 ...} ,is the normalized central moment, which is defined by

fjp,, =

where y = ^  ^ ^ -t- 1 and is the central moments defined by
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= \ \ { x - ^ Y i y - y y  f(x,y)dxdy  

where the point (3c, y) is the centroid of a two-dimensional image f { x ,  y ) .

Table 3.1 lists the calculated moment invariants of the dynamic wavelet 

fingerprint in Figure 3.Id.

TABLE 3.1

MOMENT INVARIANTS OF A DYNAMIC WAVELET FINGERPRINT

1̂ ^  2 ^3 ^4 ^5 ^6 ^ 7

4.23x10"' 2.61x10"^ 5.21x10"' 3.48x10“" 2.46x10"' 5.38x10“' 7.37x10"'

3.3 Simulated Signals Analysis

In this section, we use simulated ultrasound signals to explore the behavior and 

significance of the proposed dynamic wavelet fingerprint and its corresponding moment 

invariants.

Figure 3.2 shows five different pulses and their dynamic wavelet fingerprints. 

These pulses have almost the same durations but different center frequencies: 1.0, 2.25, 

3.5, 4.75 and 6.0 MHz. The wavelets used to form the DWFP images are Daubechies, 

Morlet and mexican hat wavelets [5].
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(a) (b) (c) (d) (e)

%

pulses db1 db10 morl mexh

Figure 3.2 —  Five pulses with different central frequencies and their dynamic wavelet 
fingerprints: (a) the pulses; (b) the Daubechies wavelet of order 1; (c) the Daubechies 
wavelet of order 10; (d) the Morlet wavelet; (e) the mexican hat wavelet.
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(a) (b) (c) (d) (e)

p6

pulses db1 dblO morl mexh

Figure 3.3 —  Three pulses of 2.25 MHz center frequency with different durations and 
their dynamic wavelet fingerprints: (a) the pulses; (b) the Daubechies wavelet of order 1;
(c) the Daubechies wavelet of order 10; (d) the Morlet wavelet; (e) the mexican hat 
wavelet.
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Figure 3.3 shows another group of three pulses. They have the same 2.25 MHz 

center frequency but different durations. Again, the wavelets used to form the dynamic 

wavelet fingerprints images are Daubechies, Morlet and mexican hat wavelets.

The corresponding moment invariants of these dynamic wavelet fingerprints are 

listed in Table 3.2.

By comparing these images and numbers, some conclusions can be drawn as 

follows:

•  As a two-dimensional pattern, the dynamic wavelet fingerprint is superior to the 

popular one-dimensional feature extraction method in that it is intuitive and self- 

explanatory. It directly highlights the differences between different signals.

•  The dynamic wavelet fingerprint is sensitive to variations between signals. 

Pulses with the same duration but with different central frequencies have distinctly 

different fingerprints. On the other hand, with the same center frequency, pulses with 

different durations exhibit different fingerprints.

•  The dynamic wavelet fingerprint is influenced by the wavelets used. For the 

same group of signals, some wavelets generate more differentiable patterns that lead to 

better classification performance than the others.

•  Moment invariants change with corresponding dynamic wavelet fingerprints. 

As quantitative measures, they can be calculated as feature vectors for an automatic 

signal classifier.
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TABLE 3.2

MOMENT INVARIANTS OF DYNAMIC WAVELET FINGERPRINT OF
DIFFERENT PULSES

wavelet pulse ^3 ^6 ^7

PI 0,422229 0,028208 0,00146! 0,000193 -i !03E-07; -3.02E-05 -i,73E-08
P2 0.421988 0,029786 o!ooo893; 0,000365 1,40E-07! 3.25E-05 -2.29E-07

dbl P3 ... 0;42188! 0,019683 0,00297 o!ooi] io8̂ 6,06E-08; 1.46E-05 6.26E-09
P4 0,406239■ 0 019354: 2,42E-05^ 0,00(3158! -7,55 E-09 ! 2,02E-05i 2!15E-08
P5 0,408049 0.019062] 0,000105! 0,00025 -3,85&09! 3,32E-05; -5,04E-08

PI 0;469194: 0!069544i 0,000233! 7,62E-05 -2.94E-09! -1,71 E-05 8.84E-09
db10 P2 0,4466^ 0,044185;; o!ooi75s ! 0,00015! L29E-08; 2,77E-06! -5!44E-08

P3 0,519828; 0,122571 o!o13188! 0!0d4d85! 2,94E-05! ’o!001301! 4,08E-06
P4 0,747891 0,40358; 0,00938! 0,002275 ! 9,32E-06' 0,001091 3.00E-07

.....P5 0,9319 0B08212 0,006312; 0,003124 ]1A1B05! 0,00233 -3.90E-06

P1 a 500627: 0,102185 0,002998; 0,000386; 2.43E-07 7,68E-05 1.50E-07

morl P2 0,458359 0,056972 0,001165 0,000137: -2.70E-09 -7,91 E-06 4,89E-08
P3 0,450774 0,078576; 0,005224 0,000901 1.92E-06 0,000253 -2,02E-09
P4 0,775476i 0,458108; 0,019924 0,011048! 0,000164 0,007458 5,08E-06
P5 L l ^ ^ j 0773773! 0,039737 0,051209; ]-o!doi26! 0,001684; -0,00145

PI 0,431961: 0,017742! 0,000285! 2.54E-05; 1.95E-09 -5,91 E-07 -9,71 E-10
P2 0,321164^ 0,025264' 0!003185i 0,002201 4,38E-06 0,000349 1,18E-06mexh P3 d'83287^: 0,567604 0,046867 'o!(337406! 0,001566 0,028134! 0,000195
P4 1,668968' 1,003885! o!904339! 0,412313 0,062484 -0,20839 -0,25257
P5 2,18924; 0,493067 2,814274 2,185501 5,187905 -1,50885 -5,94448

P6 0,413645 0,017284 0,00064 0,000132 3!66E-d8! 7,66E-06 1,66E-08db1 P7 0,42316; 0,026091 5,21 E-05 0,000348 2,46E-08! 5,38E-05 -7,37E-08
P8 0,424458 ] 0,01834] !6,35E-05; I M b o I -2J0E-09! 4,73E-06 1.99E-09

P6 0,448 0L35953! 0 000273; 5!2(3E-05! 4! 98 E-09 ! 5,37E-06! -9.57E-10
db10 P7 0,449372; 0,046767 s 0,000564 3:42E-06! -1.19E-10 -6,86E-07 7,07E-11

P8 0,445948; 0,04509 0,000145 3.19E-05; 2,17E-09 4,82E-06! 6,66E-10

P6 0^4717 ;̂ a(3£;6089l OTOOIOOO: 9,74 E-05! 2,06E-08 6,18 E-06' 2,18E-08
morl P7 0,47738; 0'(]6aS92'| L39E-06' 210E-06 -352E-12 1,35 E-07; 4,71E-13

P8 0,44933: d]055813! o!o00314 318E-05 1.57E-09 -6,27 E-06 2.32E-09

P6 : 0,323953 0,006766 0!000462i 0,000573 -2,55E-07! -4,47 E-05! -1,08E-07
mexh P7 ; (1555676 ! 0,164009 0,01067; 0,002027 0! 000818 4,98 E-07

P8. !^0?726366I 0,370176 0,005418 0,001927 6.22E-06! 0,001126! -842E-07
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Accordingly, it is possible to develop an automatie signal classification system to 

implement signal classification/ identification based on the dynamic wavelet fingerprint.

3.4 Application For Materials Sorting

As a demonstration, a dynamic wavelet fingerprint based automatic ultrasound 

signal identification system for materials sorting is presented below. The samples are five 

thin 305 by 305 mm (12 by 12 in.) plates of different materials as shown in Table 3.3.

TABLE 3.3

MATERIALS PROPERTIES OF SAMPLES [36]

Materials P (kg/m )̂ Vl (m/s) Vt (m/s) z=  /?VL(10®kg/m^s)

Copper 8.9x10^ 4660 2260 41.8

Steel 7.8x10^ 5660 3120 45.5

Aluminum 2.71x10^ 6350 3100 17.2

Glass 2.51x10^ 5770 3430 14.5

Acrylic 1.18x10^ 2730 1430 3.2

The system setup is illustrated in Figure 3.4. It includes a 2.25 MHz transducer 

(V306 2.25/0.5, Panametrics Inc.), a C403 motion controller (Metrotek), a UTEX 320 

pulser/receiver and an analog-to-digital converter (CompuScope 12100, Gage Applied 

Sciences, Inc.). The signal is digitized at a sample rate of 100 MS/s at 12 bits. The signals
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are collected in a standard pulse-echo configuration in an immersion tank. The transducer 

was held perpendicular to the surface of the samples to obtain front face reflection 

echoes.

f
Pulser/Receiver

)

A/D conv0rtion

V J

f >

DWFP construction

J
Feature extraction

Motion controller

Transducer 

W ater bath 

Sample

ANN identification

Figure 3.4 System setup for materials sorting.

The dynamic wavelet fingerprint is constructed as described above: locate the 

center of the reflected pulse, extract the pulse into a predefined window and make slice 

projection of the wavelet coefficients on to the time-scale plane. In this research, the 

initial input pulse is unknown. Instead, the size of the segment window is obtained by 

using a simulated pulse whose shape is approximate to the reflection echo from an 

aluminum plate surface.
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For the feature vectors, however, instead of using one real wavelet to process the 

signal, three wavelets, including the Daubechies, mexican hat and Gaussian derivative 

wavelets, are used to generate dynamic wavelet fingerprints for each pulse, as illustrated 

in Figure 3.5. The feature vector is generated by the combination of the three first 

moment invariants (<zij) of these dynamic wavelet fingerprints.

(a) (b) (c) (d)

copper

steel

acryl ic n

glass

aluminum :

I

echoes db mexh gaus

Figure 3.5 —  Echoes from different material surface and their dynamic wavelet 
fingerprints, (a) echoes; (b) Daubechies wavelet of order 1; (e) mexican hat wavelet; (d) 
the sixth derivative of Gaussian wavelet.
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To solve this classification problem, a two-layer feed forward neural network was 

used (Figure 3.6). The network is a two-layer log-sigmoid/log-sigmoid network. The first 

layer has 12 neurons and the output layer has 5 neurons. After being trained, the output of 

the network for every input waveform is then processed by a competitive transfer 

function. As a result, only the neuron corresponding to a specific material has an output 

value of 1, others have values of 0.

IW i.i
ai

-------P

l-P b2

= y

Figure 3.6 Artificial neural network used to sort materials.

For each of the five materials, 120 samples were acquired when moving the 

transducer randomly (at the same distance from the plate). These samples were then used 

as training and test sets respectively. There are 60 samples in each set. Figure 3.7 

illustrates the neural network training process. After 361 epochs of training, the network 

learned to classify the training samples. The ratio of correct identification is 100% for 

both the training and testing set.
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Figure 3.7 Artificial neural network training: performance as a function of training 
epochs (goal = lx lO ”'‘ ).
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3.5 Conclusion

This chapter describes the development of the dynamic wavelet fingerprint 

technique. Put simply, this technique is a combination procedure for detection and 

characterization of transient signals. For detection, it makes use of the matched filter 

bank property of the wavelet transform to “sift out” candidate transient signals; for 

characterization, it takes the form of sliced projections of the three dimensional wavelet 

coefficient distribution, which is actually the time-scale (frequency) representation of the 

transient signal.

By analyzing simulated ultrasonic signals, it was found that the dynamic wavelet 

fingerprint is sensitive to variations between signals. However, for the same group of 

signals, some wavelets generate more easily differentiable patterns and lead to better 

classification performance than other wavelets.

Moment invariants were used in this chapter to extract features from the dynamic 

wavelet fingerprint. Although a systematic approach, the calculation of these moment 

invariants is time consuming. As will be seen in the following chapters, more efficient 

feature extraction methods can be developed for different applications.

As a demonstration, an ultrasonic material sorting system was developed based on 

the dynamic wavelet fingerprint technique. With an artificial neural network as the 

“brain”, the knowledge about the reflection signals from different materials was learned 

in terms of their distinctive dynamic wavelet fingerprints. After training, a perfect 

classification performance was achieved.
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It is worth noting that the core idea behind the dynamic wavelet fingerprint 

technique is to transform a one-dimensional signal detection and characterization 

problem into a two-dimensional pattern recognition problem. Since the dynamic wavelet 

fingerprint is intuitive and self-explanatory, we can use it directly to “watch” the 

difference between signals rather than depending totally on some “black-box” operations 

to extract significant information. In addition, the dynamic wavelet fingerprint technique 

enables the use of more advanced tools, some of which are now being widely deployed 

for security applications, for example, fingerprint and face recognition. Finally, human 

knowledge can be more easily built up and artificial intelligence may be more easily 

integrated into an automatic system.
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CHAPTER IV 

ULTRASONIC PERIODONTAL PROBING

4.1 Introduction

Most adults have a mild form of periodontal disease, while over 20 percent of 

older Americans have severe periodontal disease [37-39]. Periodontal disease involves 

the loss of tooth connective tissue (attachment) with subsequent destruction of tooth- 

supporting bone, leading to loss of teeth. In addition to being a major cause of tooth loss, 

periodontal disease has recently been associated with several systemic diseases. Animal 

and population-based studies have demonstrated an association between periodontal 

disease and diabetes, cardiovascular disease, stroke, and adverse pregnancy outcomes 

[40-42]. Despite the widespread problem of periodontal disease today, currently available 

diagnostic tests are limited in their effectiveness. None are a completely reliable 

indicator of periodontal disease activity and the best available diagnostic aid, manually 

probing pocket depths, is only a retrospective analysis of attachment already lost [43-49]. 

In traditional manual probing, which is now routinely done in the general dentistry office 

[50], a metal probe is inserted between the soft tissue of the gingival margin (gum line) 

and the tooth (Figure 4.1). Using fixed markings on the probe, the depth of probe 

penetration is typically measured relative to the gingival margin.

Numerous studies have questioned the ability of the periodontal probe to 

accurately measure the anatomic pocket depth [51-54]. The degree of probe tip
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Figure 4.1 Traditional manual periodontal probing, (a) Gingivitis, (b) Severe 
Periodontitis.
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penetration may be influenced by factors such as thickness of the probe, pressure applied, 

tooth contour, tooth position, presence of calculus, degree of periodontal inflammation, 

and the actual level of connective tissue fibers [55-60]. As a result, probing 

measurements may overestimate attachment loss by as much as 2 mm in untreated sites, 

while underestimating attachment loss by an even greater margin following treatment 

[61,62]. The development of automated, controlled-force probes has reduced some of the 

operator-related error and subjectivity inherent in manual probing techniques [63-66]. 

However, standardized probing forces do not address anatomic and inflammatory factors 

[67,68].

The first tests of ultrasonic imaging of the periodontal space attempted to image 

the crest of the aveolar bone by aiming the ultrasound transducer perpendicular to the 

long axis of the tooth [52,69,70]. While these efforts proved the feasibility of ultrasonic 

imaging in dentistry, this version of the technique could not detect periodontal attachment 

loss, and failed to gain clinical acceptance. Recently, researchers have begun exploring 

new uses of ultrasound in dentistry [71-74] and studies have been conducted using 

ultrasound to image the periodontal pocket space by aiming the transducer apically into 

the pocket from the gingival margin [75-81]. The major technical barrier to this approach 

is providing an efficient coupling medium for the ultrasonic wave into the thin (0.25 - 0.5 

mm) periodontal pocket. The probe described by Hinders and Companion uses a slight 

flow of water to couple the ultrasound wave into the pocket space. A hollow tip placed 

over the transducer narrows the ultrasonic beam, so that the beam is approximately the 

same width as the opening into the sulcus at the gingival margin.
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The ultrasonic probe works by projecting a narrow, high-frequency (10-15 MHz) 

ultrasonic pulse into the gingival sulcus/periodontal pocket, and then detecting echoes of 

the returning wave. The time series return signal (A-scan) can then be converted into a 

depth measurement by multiplying the time of arrival of the return signal by the speed of 

sound in water (1500 m/s) and dividing by two (since the signal travels into the pocket 

and back). Ultrasonic probing is entirely painless, is as fast as manual probing, and has 

the potential to yield much more diagnostic information by providing the dentist and 

patient with a graphical representation of changes in pocket depth. However, due to the 

inherent complexity in the way ultrasonic waves interact with the inner structure of 

periodontal anatomy, it is unrealistic to train a dental hygienist to read out each pocket 

depth by watching and interpreting the echo waveform. Automated interpretation of these 

echoes is what enables a practical clinical system.

As an initial effort to automate interpretation of the echoes, a time domain 

procedure was developed to simplify the waveforms and infer the depth of the 

periodontal pocket [79-81]. This procedure used a slope-detection algorithm to pick 

peaks in the A-Scan signal, followed by smoothing and averaging operations to eliminate 

small random variations. The pocket depth was then inferred by dividing the simplified 

waveform into three regions and assuming the second transition from weaker peaks to 

noise as the estimation of the bottom of the periodontal pocket. Unfortunately, in many 

cases it was difficult or even impossible to define three such distinctive regions based on 

the echo amplitude. Even if the second transition point can be called out in some way, the 

depth of the periodontal pocket can only be inferred from it approximately. To overcome
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these limitations, information other than echo amplitude should be used to develop 

sensitive and reliable models to estimate the bottom of the periodontal pocket.

The wavelet transform (WT) can be constructed as a bank of matched filters if the 

mother wavelet is chosen to be an efficient representation of the input signal itself, so it 

has been widely used to solve detection/estimation problems [21,82-85]. As a multi­

resolution analysis approach, the WT is also an effective method to extract significant 

information from dynamic signals, which is often the key in automated signal 

classification applications [26,28,29,33,86]. To take advantage of this potential of the 

WT, a dynamic wavelet fingerprint technique [87] was adapted to develop a signal 

processing algorithm for the ultrasonic periodontal probe. In this approach, potential 

scattering centers are first detected by picking peaks in the scale averaged power (SAP) 

curve. A two-dimensional black and white pattern, called a DWFP, is then generated at 

each peak location to characterize the local transient signal. A two-dimensional FFT 

procedure is then applied to generate an inclination index for each DWFP pattern. The 

bottom of the periodontal pocket is then estimated from the third broad peak of the 

inclination index curve.

This chapter is organized as follows. In Section 4.2, the experimental device and 

procedure are described. The algorithm used in this work is discussed in Section 4.3. The 

results are presented in Section 4.4. A discussion and conclusion is given in Section 4.5.
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4.2 Clinical Instrument and Signals

As shown in Figure 4.2, an ultrasonic periodontal probe was operated using a 

portable computer system. The probe handpiece included a 10 MHz piezo-composite 

transducer with a 2 mm-diameter active area. The transducer was housed within a contra- 

angled handpiece at the base of a hollow conical tip. The tip was designed to narrow the 

ultrasonic beam profile to 0.5 mm and to provide an area for water to sustain the 

ultrasonic wave and carry it into the periodontal pocket.

Figure 4.3 illustrates how the ultrasonic probe is used to explore the periodontal 

pocket. A stream of water is used as couplant to launch ultrasound energy into the 

periodontal pocket. The ultrasound wave interacts with the periodontal tissue and echoes 

carry relevant information back to the transducer. During operation, the ultrasonic probe 

is held in a pose similar to manual probing but with its tip touching the gingival margin. 

The ultrasonic probe is momentarily held in place at each of the standard probing 

locations to acquire a series of ultrasonic A-scan signals that are digitized and saved in 

the computer for later analysis. Water flow and data acquisition is automated via foot 

pedal control.

At Valley Periodontics, Appleton, Wl, 14 patients were examined both by hand 

and by the ultrasonic instrument on two visits scheduled three months apart. For each 

patient, full mouth probing was carried out, first by hand and then by the ultrasonic 

instrument. For each of up to 32 teeth for each patient, a periodontist performed probing 

at 6 sites (facial distal, facial middle, facial mesial, lingual distal, lingual middle and 

lingual mesial), providing up to 192 corresponding ultrasonic and manual probing
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Figure 4.2 The ultrasonic periodontal probing system, (a) overview of the system; (b) the 
ultrasonic probe handpiece.
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Figure 4.3 Schematic of ultrasonic periodontal probing.
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measurements per patient.

A typical A-scan signal obtained is shown in Figure 4.4(a). The horizontal axis 

represents the time from 0 to 20.48 ju sec at lOOMHz sampling rate. The vertical axis 

represents normalized voltage on an arbitrary scale digitized at 12 bits. The strong 

reflection region before point 2.5 ju sec arises from the echoes internal to the probe tip. 

After point 2.5 jU sec, it is the signal from the periodontal anatomy.

(a)

0.5

-0.5

(b)

0.4

0.3

0.2

(C)
3

2

1

0
0 2 4 6 8 10 12 14 16 18 20

|4.sec

Figure 4.4 Illustration of signal processing for ultrasonic periodontal probing, (a) Original 
A-scan signal, (b) SAP peaks marked by the small circles, (c) The inclination index 
curve. The third significant peak (at about 8 // sec) corresponds to the estimated location 
of the bottom of the periodontal pocket.
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4.3 Algorithm Development

A flowchart of the proposed algorithm is shown in Figure 4.5, which involves 

three main steps: echo detection/characterization, echo classification, and echo 

identification.

Output

Echo Classfication

Original Signal

Echo Identification

Echo Detection/ Characterization

Figure 4.5 Flowchart of the algorithm used to process ultrasound signal to detect the 
bottom of the periodontal pocket.

Since the bottom of the periodontal pocket can be considered as a significant 

discontinuity of the periodontal tissue, there should be an echo at corresponding location. 

The dynamic wavelet fingerprint (DWFP) technique introduced in chapter III and
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presented in [87] is adapted here for echo detection and echo recognition. It generates a 

simplified and intuitive two-dimensional pattern in time-scale domain for each detected 

echo so that significant features can be extracted directly by watching the patterns or by 

using advanced pattern recognition techniques. These features then can be used to 

identify the specific echo of interest.

The proposed algorithm is described in detail as follows: first, the scale-averaged 

wavelet power (SAP) proposed by Georgiou and Cohen [33] was calculated, i.e..

(4.1)
J j=\

where W{Sj,n)  is the continuous wavelet coefficients at scale Sj and position n , i.e..

W(Sj,n) = - ^ [  (4.2)

where x{t) is the signal to be analyzed; is the mother wavelet; and * denotes 

conjugate.

The result obtained by (4.1) was then smoothed by a median filter to generate an 

SAP curve. According to Georgiou and Cohen, the significant SAP peaks correspond to 

coherent scattering centers that can be differentiated from the diffuse background. Here 

the SAP peaks were picked out wherever the sign of the first derivative of the SAP curve 

changed from positive to negative as shown in Figure 4.4(b). Assuming that the bottom 

of the periodontal pocket belongs to such coherent and resolvable scattering centers, and 

that it can be detected as one of the SAP peaks, the question now is how to differentiate it 

from other scatterers.
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To suppress noise and high frequency interference that may cause distortion of the 

DWFP pattern generated later, a pruning procedure [11] based on the stationary discrete 

wavelet transform [32] was applied to the original A-scan signal, i.e.,

W^{a,b) = Q f o r a  = \...5 (4.3)

where i,a,b) is the stationary discrete wavelet coefficients at scale a and time b.

Next, a continuous wavelet transform was performed on the pruned A-scan signal 

using the Morlet wavelet [5,15]:

(̂ r(x) = Ce"^''^cos(5x) (4.4)

where the constant C is used for normalization. Different choices for the mother wavelet 

will, of eourse, give different DWFPs [87] with some better highlighting features of 

interest in the signals under study than others. For the ultrasonic periodontal probing data 

the Morlet wavelet seemed to give DWFP sequences dominated by “loop” features with 

varying inclination, which could then be quantified in an automatic way.

For each peak in the SAP curve, the wavelet coefficients in its neighborhood are

normalized into the range of [-1, +1] and then projected onto the time-scale plane to

generate a two dimensional black and white pattem [87]. A typical DWFP sequence 

obtained is shown in Figure 4.6. In each frame of the sequence, time is the horizontal axis 

and wavelet scale is the vertical axis. This gives an abstract two-dimensional 

representation which allows “pattems” in the data to be recognized even when none are 

evident in the one-dimensional waveforms.
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Figure 4.6 Typical DWFP sequence of an A-scan signal (time sequence: from left to 
right, from top to bottom).
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By observing the DWFP sequences carefully, it was noted that these DWFP 

pattems change their inclination regularly, i.e., from left inclined to vertical and to right 

inclined, and repeating. A two-dimensional FFT based approach was designed to 

quantitatively characterize such variations.

(a) (b) (c) (d)

Figure 4.7 Two-dimensional FFT images of three typical DWFP pattems. (a) Right 
inclined DWFP and its two-dimensional FFT image (b) Vertical DWFP and its two- 
dimensional FFT image (c) Left inclined DWFP and its two-dimensional FFT image (d) 
Two regions (shaded quadrants and un-shaded quadrants) used to calculate the inclination 
index of the two-dimensional FFT image.
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Figure 4.7 shows three typical DWFP patterns from such a sequence along with 

their corresponding two-dimensional FFT images. For the right inclined DWFP, it can be 

seen that its image is left diagonally dominated, i.e., there are more bright pixels at the 

top-left and bottom-right comers than at the top-right and bottom-left comers. On the 

contrary, for the left inclined DWFP, its image is right diagonally dominated. For the 

vertical DWFP, its two-dimensional FFT image is almost symmetric.

Based on these observations, each two-dimensional FFT image was divided into 

two pairs of quadrants as shown in Figure 4.7(d). An inelination index, Ix, was defined as 

the ratio of the number of white pixels in the shaded quadrants to that in the un-shaded 

quadrants. The DWFP sequence was then mapped into an Ix eurve as shown in Figure 

4.4(c). The regular variation of the DWFP is thus displayed as identifiable peaks and 

valleys.

To better explore the relationship between this intuitive pattem variation and the 

complex physics behind it, the same system was used to probe a simplified phantom built 

of a block of stainless steel with holes of different depths (Figure 4.8). This sort of 

phantom is typically used to calibrate new automatic periodontal probes, and although it 

doesn’t represent all of the complicated periodontal pocket anatomy it does provide us 

with an ultrasonically well-characterized system with which we can be certain that our 

algorithms are isolating tme ultrasonic echoes from noise/artifacts inherent in the probing 

measurement.
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1mm

probe

steel block

hole

Figure 4.8 Phantom probing using the ultrasonic probe.

Figure 4.9 illustrates an A-scan signal from this phantom and its corresponding 

processing results. In the Ix curve, similar peaks and valleys can be seen as in Figure 

4.4(c). It is clear that the first significant peak corresponds to the reflection from the 

probe tip at about 2.5 // sec, and the third significant peak is close to the reflection from 

the bottom of the hole. As for the second significant peak in between, it is assumed be 

caused by the interference of the water flow and the reflections of the wall of the hole.
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Figure 4.9 Phantom probing signal and corresponding processing results, (a) Original A- 
scan signal, (b) SAP peaks (c) the inclination index curve. The third broad peak 
corresponds to the reflection from the bottom of the bole.
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Accordingly, a qualitative explanation was proposed to describe the regular peaks and 

valleys in the Ix curve of the ultrasonic periodontal probing signal: the first significant 

peak arises from the probe tip, the second significant peak may be caused by the tooth 

surface, and the third significant peak may correspond to the bottom of the periodontal 

pocket. After the location of the bottom of the periodontal pocket is estimated as above, 

the pocket depth is calculated as the product of the time delay from the probe tip and the 

speed of ultrasound in water (1.5mm/ // sec), then divided by two.

4.4 Results

A MatLab® (The MathWorks, Inc) program was developed to process full mouth 

ultrasonic probing data of 14 patients acquired during two clinical sessions. It works in 

off-line mode and runs automatically until all of the digitized A-scan signals are 

processed.

Because of the lack of any ideal standard to compare with, we take the manual 

probing result as the “gold standard” and compare it with ultrasonic probing, keeping in 

mind that an accuracy of ± 1 mm for manual probing is perhaps being generous. 

Ultrasonic probing readings were compared with manual probing readings at each 

probing site. If we allow for the “error bar” of ±0.5 mm, ± I mm and ±1.5 mm 

respectively, the agreement ratio (number of ultrasonic probing measurements within the 

“error bar” divided by number of total ultrasonic probing results) is about 20%, 40% and 

60% correspondingly as shown in Figure 4.10.
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Figure 4.10 Ratio of agreement of ultrasonic probing vs. manual probing, (a) May 18, 
2001 (b) August 17, 2001. Note that results for patient #1 in (a) and patient #14 in (b) are 
unavailable due to personal absence in corresponding clinical visit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

Statistically, the agreement between ultrasonic probing and manual probing was 

evaluated by the Bland-Altman method [88].

8

6

4

Mean +2SD
2

3
0 Mean

Mean - 2SD

•4

•6

•8
5 6 7 80 2 3 4

Average probing depth by ultrasonic and manual method (mm)

Figure 4.11. Difference against mean for periodontal probing depth of Patient #2, May 
18.

As an example, a plot of the difference between the methods and their mean was 

drawn for patient #2, May 18, in Figure 4.11. It seems that the difference does not 

increase with the mean. The regular gaps are due to integer measurements of manual

probing. Assuming that the difference is normally distributed, the mean difference d  and
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the standard deviation SD of the difference was calculated as d = -0.1128 and SD 

=1.2611. The “limits of agreement” can be obtained as:

J  -  25D = -0.1128 -  (2 X1.2611) = -2.635 mm

+ 25D = -0.1128 + (2 X1.2611) = 2.409 mm 

According to Bland and Altman, about 95% of differences will lie between these limits.

In other words, the ultrasonic probing depth may be 2.6 mm below or 2.4 mm above the

manual probing depth. The precision of the estimation of d , d + 2SD and d -  2SD can 

be evaluated by using 95% confidence interval of a r-distribution with n-1 degree of 

freedom, where n is the sample size. For the patient chosen above, these confidence 

intervals were obtained as [-0.3818 0.1563], [1.9433 2.8754] and [-3.1010 -2.1689], 

respectively. Similar calculations were performed on other data sets (see Appendix B) 

and the results were presented in Tables 4.1 and 4.2.

Taking the non-zero mean into consideration, the “limits of agreement” are 

generally in the range of ± 3mm. This may indicate a lack of agreement between 

ultrasonic probing and manual probing, which could be caused by several factors. The 

specific anatomical features measured by the two methods may be different; the probing 

point and angle may not be exactly same. More likely, it may arise from the model used 

in the algorithm. As mentioned above, the regular variation of the inclination of the 

DWFP patterns is motivated by an experiment on a steel block phantom, which is not 

entirely representative of the problem at hand, even though it does eliminate the sizeable 

error in the manual probing “gold standard.” To better understand the regular variation of
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the DWFP patterns, a more accurate model should be developed guided by systematic 

clinical experiments carried out in the future.

4.5 Conclusions

An ultrasonic periodontal probing instrument is being developed. It uses a hollow 

water-filled tip to couple the ultrasound energy into and back out of the periodontal 

pocket, thus probing the periodontal anatomy by a non-invasive, painless and automatic 

technique. Key to automation of the probing is an ultrasonic signal processing algorithm 

for the periodontal probing instrument, which uses the dynamic wavelet fingerprint 

technique to detect and characterize the transient signals that arise from each suspected 

scatterer and estimate the location of the echoes corresponding to the bottom of the 

periodontal pocket.

In its original form, the ultrasonic waveform of periodontal probing is too 

complex to be understood even by experts. The reflections from the bottom of the 

periodontal pocket, which is the target of interest, are not evident and are mixed with 

other interference echoes due to other periodontal structures. The dynamic wavelet 

fingerprint technique visualizes the variation of the waveform and highlights the hidden 

features in the original one-dimensional waveform.

For this specific application, it is found that the regular change of inclination of 

the dynamic wavelet fingerprints can be used to distinguish different regions along the 

path of the probing ultrasound. Accordingly, instead of using moment invariants as in
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Chapter III, a two-dimensional FFT procedure is designed to extract and quantify that 

inclination feature. Finally, the location of the bottom of the periodontal pocket is 

estimated by the third significant peak in the inclination index curve.

Clinical data from 14 patients have been processed with the proposed algorithm. 

Site by site comparison shows about 40% agreement ratio between ultrasonic and manual 

probing at the tolerance of ±1.0 mm. Statistically, however, lack of agreement between 

ultrasonic and manual probing was found in terms of the “limits of agreement” proposed 

by Bland and Altman. It may arise from the model used in the algorithm and further 

research is necessary to develop more accurate phantom and understand the physics 

behind the intuitive variation of the DWFP patterns.
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TABLE 4.1

BLAND-ALTMAN EVALUATION OF ULTRASONIC PROBING RESULTS
(MAY 18)

a. Mean Difference d  and Its 95% Confidence Intervals (May IS)

P a tien t # 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d
Low Limit 
High Limit

N/A -0.1128 
N/A -0.3818 
N/A 0.1563

0.4532
0.1741
0.7323

0.1722
-0.1305
0.4750

0,8217
0.5303
1.1130

0.0176 -0.7202 
-0.3553 -1.0045 
0.3905 -0.4360

0.2462
-0.0501
0.5425

0.1853 -0.7140 -0.3904 
-0.0714 -0.9960 -0.7110 
0.4421 -0.4320 -0.0697

-0.0353 -0.6021 -1.2224 
-0.3243 -0.8485 -1.4429 
0.2538 -0.3557 -1.0019

b. lAmits o f  agreement d  ± 2SD and their 95% Corfidence Intervals (May IS)

P a tien t # 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d - r l S D  
Low Limit 
High Limit

N/A
N/A
N/A

2.4094
1.9433
2.8754

3.0481
2.5647
3.5315

3.7399 3.8056 2.7541 
3.2156 3.3009 2.1082 
4.2643 4.3103 3.3999

2.6465
2.1542
3.1388

3.7914
3.2782
4.3047

3.2574
2.8127
3.7021

2.3447
18562
2.8331

3.3886
2.8332
3.9440

3.0618
2.5612
3.5625

2.3459
1.9191
2.7727

1.6769 
1.2950 
2.0588

1 - 2 S D  
Low Limit 
High Limit

N/A
N/A
N/A

-2.6349
-3.1010
-2.1689

-2.1417
-2.6251
-1.6583

-3.3955 .2.1623 -2.7188 
-3.9199 -2.6669 -3.3647 
-2.8712 -1.6576 -2.0729

-4.0869
-4.5792
-3.5946

-3.2991
-3.8123
-2.7858

-2.8867
-3.3315
-2.4420

-3.7726
-4.2611
-3.2842

-4.1693
-4.7247
-3.6139

-3.1324
-3.6331
-2.6317

-3.5502
-3.9769
-3.1234

-4.1217
-45036
-3.7398

N /A - p a tie n t n o t  a v a ilab le
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TABLE 4.2

BLAND-ALTMAN EVALUATION OF ULTRASONIC PROBING RESULTS
(AUGUST 17)

a. Mean Difference d  and  /te  95% Confidence Intervals ( A u ^ t  17)

P a tie n t # 1 2 3 4 5 6 7  3 9 10 11 12 13 14

d
LowUiuit 
High Limit

-0.03S3
-0.370S
0.2941

0.4431
0.2035
0.6826

2.1375 
1.9106 
2.3644

0.0154 -0.7111 
-0.5105 -1.0207 
0.5414 -0.4015

0.4561
0.2277
0.6844

0.1884 0.9767 0.5739 1.2619 -0.0827 0.1696 1.3116 
-0.0732 0.7546 0.3573 1.0374 -0.3309 -0.0641 1.0875 
0.4500 1.1989 0.7905 1.4863 0.1654 0.4034 1.5356

NIA
N/A
N/A

b. lAmits o f  a g ’eement d ± 2 S D  and their 95%> Confidence Intervals (August 17)

P a tie n t # 1 2 3 4 5 6 7  8 9 10 11 12 13 14

d*2SD 
Low Limit 
High Limit

3.4348
2.8589
4.0106

2.9452
2.5303
3.3601

4.7704
4.3774
5.1634

4.0246 2.5230 
3.1137 1.9868 
4.9356 3.0592

3.5555
3.1600
3.9510

3.5133 4.2047 3.2903 4.4792 3.0848 3.0615 4.4338 
3.060 2 3.8200 2.9152 4.090 4  2.6551 2.6567 4.0457 
3.9664 4.5895 3.6655 4.8679 3.5146 3.4664 4.8219

N/A
N /A
N/A

1- 2SD  
Low Limit 
High Limit

-3,5115
-4.0873
-2.9356

-2.0591
-2.4739
-1.6442

-0.4953
-0.8884
-0.1023

-3.9938 -3.9452 
-4.9048 -4.4814 
-3.0828 -3.4089

-2.6434
-3.0389
-2.2479

-3.1365 -2.2513 -2.1425 -1.9554 -3.2503 -2.7223 -1.8107 
-3.5895 -2.6360 -2.5176 -2.3441 -3.6801 -3.1271 -2.1988 
-2.6834 -1.8665 -1.7674 -1.5667 -2.8206 -2.3174 -1.4226

N/A
N/A
N/A

N /A -  p a tie n t n o t a v a ila b le
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CHAPTER V 

MULTI-MODE LAMB WAVE TOMOGRAPHY

5.1 Introduction

Lamb waves are ultrasonic guided waves that follow the curvature of the structure 

and allow large sections of thin-wall structures, such as airframe skins, storage tanks and 

pressure vessels to be quickly inspected for structural defects such as disbonds, corrosion 

and delaminations. However, due to the complex physics of Lamb wave propagation, it is 

very difficult to interpret the waveforms directly, and is generally considered to be too 

complicated to be useable by technicians in the field.

If Lamb wave measurements are made for a number of relative transducer 

positions (projections), then an image of a large region can be reconstructed 

tomographically to give an easily interpretable quantitative map of the parameter of 

interest, e.g., thickness loss due to corrosion [89]. In this case we have an inverse 

problem of having to reconstruct a medium from waves propagating through it: a 

tomographic problem [90].

Numerous Lamb wave tomography studies have been conducted to explore 

different measurement geometries, to increase reconstruction speed and to improve the 

resolution and quality of the generated image [91-95]. The most critical part of these 

works is to develop robust and reliable algorithms that process the Lamb waveforms
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automatically to extract the information of interest. Unlike the bulk wave case where 

gating and peak-detection techniques are usually adequate to obtain the time of flight, 

with guided waves more sophisticated signal processing is required to extract the arrival 

times of various Lamb wave modes [89].

One important characteristic of a Lamb wave is that it can have multiple modes 

propagating simultaneously in the plate. However, most research on Lamb wave 

tomography has so far used only a single mode. Since different modes have different 

wave structures, for a specific defect presented in the plate, such as surface corrosion, one 

mode may be more sensitive than other modes. Therefore, it is of practical interest to 

exploit several Lamb wave modes and generate corresponding tomographic images.

In this chapter, a dynamic wavelet fingerprint based approach to estimate the 

arrival times of the first three Lamb wave modes and generate corresponding 

tomographic images is described. In Section 5.2, the fundamental theory of Lamb waves 

is introduced. The algorithm used to estimate the arrival times of the first three modes is 

presented in Section 5.3. The performance of the algorithm is evaluated in Section 5.4 by 

comparing the estimated values with theoretical values and by direct observation of the 

final tomography images. A discussion and conclusion is given in Section 5.5.

5.2 Lamb Wave Fundamentals

Theoretical analysis of Lamb wave propagation has been widely studied by 

Viktorov, Achenbach, Graff, Brekhovskikh, Grinchenko, Rose, Auld and others [95]. The
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fundamental conclusions of Lamb wave theory can be obtained by analyzing a classical 

example: propagation of Lamb waves in an elastic plate with traction free boundaries. 

The geometry of the free plate problem is illustrated in Figure 5.1. The wave propagates 

parallel to the y-axis and its behavior is governed by the following equations:

Equations of motion ( i, j  - 1,2,3); (5.1)

Strain displacement equations; (5.2)

Constitutive equations (isotropic materials). (5.3)

written in index notation.

Eliminating stress and strain from these equations, we have Navier’s equation:

^ ■  jj +(A + + fJfi -  pii-̂  . (5.4)

X

Figure 5.1 Lamb waves traveling in the Y direction in a traction free isotropic plate of 
thickness 2d.
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The exact solution of this problem with traction-free boundary conditions has 

been obtained by several different approaches. The most popular methods of solution are 

the displacement potentials and the partial wave techniques (see Achenbach [96] and 

Auld [97], respectively). All of these methods lead to the same results summarized below 

[95]:

1. Lamb waves are a combination of coupled horizontal and vertical motions in 

the yz plane.

2. There exist symmetric and antisymmetric families of Lamb waves depending 

on the displacement symmetry with respect to the plate centerline z = 0.

3. Each family has a corresponding dispersion equation (Rayleigh-Lamb 

frequency equations):

im{qh) _ Ak pq
tan(/?/i) ~ {q^

tm\(qh) _ { q ^ - k ^ y
tan{ph) Ak^ pq

where k is the wavenumber and

for symmetric modes.

for antisymmetric modes.

(5.5)

(5.6)

2 f  \
CO 1 2 CO

- k  , q  =
y

- k ‘

4. By solving these transcendental dispersion equations (5.5) and (5.6), dispersion 

curves relating the phase velocity to the frequency 0) can be obtained. For an

aluminum plate, the dispersion curves are presented in Figure 5.2.
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Phase velocity dispersion curves in Aluminum
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Figure 5.2 Phase velocity dispersion curves in Aluminum plates for the first three 
symmetric and antisymmetric modes. Phase velocity is plotted versus the product of 
frequency/(MHz) and plate thickness 2d (mm) [95].
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In general, at a given frequency, there are several modes propagating in the plate, 

each with a different phase velocity. Symmetric modes S^,n = 0,1,2,... and

antisymmetric modes A^,n = 0,1,2,... are enumerated according to the order of their cut­

off frequencies. All modes except the 5q and \  have such frequencies defined as:

c 1
cô  = n7r— \ 0)^^- 7r{n + ~ ) —— for symmetric modes (5.7)

d 2 Cjd

1 c
Q)^= 7r(n + —)— ; cô  = n7T—— for antisymmetric modes (5.8)

2 d Cjd

where n is a positive integer.

Below the cut-off frequency, each mode represents an exponentially decaying 

wave, which means they are evanescent. On the other hand, the higher the frequency, the 

more modes will be beyond their cut-off frequency and propagate through the plate.

5. If the frequency spectrum of the disturbance is nonzero within only a narrow 

range, the wave packet, once blurred to a certain extent, will later preserve its shape and 

move as a whole with a group velocity.

In our study. Lamb waves are generated with a tone burst composed of several 

harmonic cycles at the carrier frequency. The envelope of the initial disturbance is 

roughly rectangular but after traveling some distance in the plate it generally splits into 

several envelopes corresponding to different modes that exist in the plate at a given 

frequency and propagate with group velocities corresponding to their modes.

Accordingly, group velocities of various modes were measured and used for 

reconstruction.
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Theoretically, the group velocity c can be obtained as

dco
dk

dc
dco

-1

(5.9)

and the dispersion curve for group velocity is shown in Figure 5.3.

As can be seen in Figure 5.3, the higher the excitation (carrier) frequency, the 

more modes will develop and propagate through the plate. On the other hand, at a 

specific frequency, the group velocities of some modes change more rapidly than that of 

other modes. In other words, at any specific frequency, different Lamb wave modes have 

different sensitivity to variations of the thickness.

Croup velocity dispersion curves in Alnniinnni plate
6

5

4

3

2

S y  i i u i L « r t r i c  
A. riC is^ mmje

1 o 2 4 e
2fd (MHz-nnn)

we

Figure 5.3 Group velocity dispersion curves in Aluminum plates for the first two 
symmetric and antisymmetric modes. Group velocity is plotted versus the product of 
frequency/(MHz) and plate thickness 2d (mm) [95].
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5.3 Double Crosshole Tomography

There are many ways to carry out Lamb wave tomography imaging. One 

appropriate choice is to use double crosshole scanning geometry with the algebraic 

reconstruction technique [95].

Figure 5.4 Double crosshole scanning system.

The configuration of the double crosshole scanner used in this research is shown 

in Figure 5.4. A pair of transducers are attached to linear slider screws and moved back 

and forth along two parallel sides. At any single position (from 0 to N-1) the transmitting 

transducer generates Lamb waves to propagate in the plate, and the receiving transducer 

sweeps all N  available positions (from 0 to A-1) to record the transmitted Lamb waves.
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After measurements, the first cross-hole projection is complete. Similarly, the second 

cross-hole projection is obtained by moving a pair of transducers along the other two 

parallel sides and collect corresponding waveforms.

As illustrated in Figure 5.5, two coordinates i, j  are used to indicate a “ray” 

which represents the path the Lamb wave travels from the transmitter to the receiver in 

the plate. The square area covered by the “rays” can be divided into square cells (pixels) 

by making the cell size equal to the transducer step size a . Each cell in the resulting 

matrix has unique coordinates m ,n<  [0, N ) . Each ray [/, j] crosses a certain number of 

pixels on its way from the transmitter to the receiver.

We assume all the rays to be straight lines and the velocity of the wave to be 

constant for each pixel and denote it as v[m,n] where m,n are that pixel’s coordinates 

starting from the bottom left comer. The time the wave spends crossing the pixel will 

then be t[i, j; m, n\ = S[i, j; m, n\ / v[m, ri\ , where S[i, j;m,n\  is the length of a segment 

that pixel m, n cuts from the ray [/, j ] . The arrival time for a given ray [/, j] can be 

estimated by summing all partial times t[i, y; m,n] over the pixels involved:

T[i,j]= X  t[i,j;m,n]= ^  (5.10)
m , n e r a y [ i j ]  m , n e m y [ i j ]

This is a system of linear equations with unknown slownesses l/v[m ,n]. We can 

calculate the segment length S[i,j;m,n] theoretically and measure T[i,j] 

experimentally. Solving the matrix equation will yield the velocity pattem of a given
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1

(m,n)

1, m

i - transmitters; j - receivers; m, ii - pixel coordinates

Figure 5.5 Explanation of the ART algorithm for the double crosshole geometry, a - 
distance between transducers; pixels (m, n) are indexed as shown; ray enumeration order 
(i,j) is different from different projections [95].
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Lamb wave mode throughout the square region. Since the operation frequency is known, 

it can be transformed into a thickness map via the dispersion curves.

To solve the equations without direct inversion of a large matrix, the less 

computationally intensive iterative Algebraic Reconstruction Technique [98] is 

commonly used. When applied to double crosshole Lamb wave tomography it leads to 

the following sequence of operations [95]:

1. Determine the segment lengths <̂ [/, j',m,n] , then estimate pixel velocities (an 

initial guess) and calculate estimated values for the arrival time of each ray:

2 :  (5.11)
m,nG ray[i, j] ^

2. For each ray calculate velocity updates in the cells containing that ray:

A _̂_____ , n y i z L M  (5.12)

where L[i, 7 ] is the length of ray [i, j] and T[i, j] is the experimentally measured

arrival time for ray [/, j ] .

3. Add the update to the current slowness l/v[m,n] values for that ray thus 

completing the first iteration:

 ̂ = A-— + m,neray[i, j]  (5.13)
v^[m.n] v[m.n] v°[m.n]

4. The values v^[m.n] can be used as an input for the second iteration. Steps 

(5.11)-(5.13) are repeated until the required accuracy is reached.
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To suppress the “salt and pepper” noise frequently encountered in the ART 

images, instead of updating the pixel velocity immediately after each ray is used, one can 

first calculate the updates for all the rays and only then update all the pixel velocities 

simultaneously. The modified method is called Simultaneous Iterative Reconstruction 

Technique (SIRT) [98], which is applied here to reconstruct all following tomographic 

images.

5.4 Estimation of Arrival Times of Multi Lamb Modes

Accurate measurement of the arrival times of Lamb wave modes is a critical step 

in the tomographic imaging process since it strongly affects all subsequent steps. Several 

signal processing techniques have been developed in either time-domain or time- 

frequency domain in [95], including:

• Pattem matching technique

The basic idea is that given some signal-like pattem one can match it point by 

point against parts of the signal until a specified accuracy is reached. With static pattem, 

thoughtful design of the templates is critical. However, in tomographic experiments 

where thousands of rays are traveling through an unknown media, it is impossible to 

know a priori the shape of the next signal. With adaptive pattems, part of the previously 

processed signal can be used as a pattem to match against the current signal. However, 

the stability of this algorithm strongly depends on the accuracy of previous steps and the 

first arrival time for each measurement set has to be extracted manually. With neural
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networks [99], despite their ability to partially eliminate the systematic uncertainty in the 

arrival times, in general, the approach investigated was unable to successfully recognize 

the signal (the mode) and its arrival time.

• Time-frequency analysis

A specially designed positive joint time-frequeney distribution can be used to 

estimate the arrival time of the mode:

F(r,£y)H ‘5(^y)rU(r)|" (5.14)

where | s(t) is the intensity per unit time at time t and | S(co) is the intensity per unit 

frequency ct) . This approach is computationally efficient and capable of working in the 

autonomous mode for temporal localization of the first arrivals and produces results 

yielding satisfactory image quality after reconstruction. However, these results suffer 

from significant systematic errors related to the uncertainty principle.

• Time-domain search

The time domain group delay is measured as the arrival time of a chosen point on 

the leading edge of the Sq mode. Although not strictly in accordance with the physical

definition of group velocity, this approach demonstrated the highest accuracy and 

superiority to all methods implemented in [95].

• Generalized travel time method

A general traveltime estimation method for dispersive media developed by Ernst 

and Herman is defined as follows [90]:
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dco
(5.15)

with i such that < t: < t where t -  and t denote the start and end of a timem in  I niaX rnin nidA

window surrounding the arrival of the direct guided wave. Here a  is a real positive 

damping eonstant to avoid zeros in the eomplex frequeney plane, d is a windowed and 

tapered version of the input time data d, and 3  stands for the imaginary part of a 

complex number.

A more numerieally robust method can be derived by differentiating equation 

(5.15) and using the differentiation property of the Fourier transform (denoted by F ):

id,co) = t ^ + ^  (5.16)

where 91 denotes the real part of a complex number. Using an adapted version of (5.16), 

high overall quality of the travel time of the mode was obtained, even though there is 

rather large mean square error compared with theoretical ones.

Unfortunately, all of the above methods only deal with a single mode: the fastest 

symmetric mode . When multiple modes need to be considered, it becomes more 

complex and difficult to extract the travel time of each mode due to following factors:

• Unlike the fastest symmetric mode which usually has significantly large

amplitude to be easily identified, other Lamb wave modes are generally of 

moderate or even weak amplitude.
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• Lamb waves are inherently dispersive, i.e., different frequency components 

propagate at different speeds in a wave-packet, which causes wave-packets to 

spread out in space and time when they propagate through a structure [100]. Due 

to the continuously evolved shape (increased duration and reduced amplitude) and 

signal overlapping of wave-packets, many of the techniques mentioned above, 

such as time domain searching, static pattern matching, global time-frequency 

analysis, are either invalid or lack sufficient accuracy.

• In the presence of discontinuities such as corrosion and damage, mode 

conversion may occur at the discontinuity [86]. This may generate coherent 

interferences (false peaks) in the waveform. In that case, the generalized travel 

time method may produce misleading results.

• Scanner vibration and imperfect coupling may introduce random noise in the 

waveform.

Accordingly, to accurately estimate the arrival time of each Lamb mode, it is necessary to 

develop a robust detection technique to overcome the difficulty caused by the non- 

stationary property of the Lamb waveform. At the same time, it is also necessary to apply 

an efficient characterization method to differentiate different Lamb modes as well as 

coherent interferences.
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Figure 5.6 Demonstration of the arrival sequence of three Lamb wave modes, (a) Two 
arbitrary rays, (b) The arrival sequence of the three modes remains unchanged, although 
there may be interferences indicated by the black arrow in between.

Despite the complex mechanism of Lamb wave propagation, it was found that the 

arrival sequence of the first several modes generally remains unchanged, i.e., the fastest 

mode always arrives in the first place in different “rays”, the second fastest mode always 

arrives in the second place in different “rays”, and so on. As a result, different modes can 

be distinguished naturally by their arrival sequence. However, due to mode conversion 

and edge reflections, there may be interference that arrives in between, see Figure 5.6. 

The problem is then simplified as to detect the arrival times of the first several suspect 

modes (including possible interference) followed by identifying the interference and 

differentiating it from the real modes.
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To this end, a dynamic wavelet fingerprint based algorithm is adapted to solve 

this detection and identification problem, which is summarized in Table 5.1 and 

illustrated in Figure 5.7.

TABLE 5.1

MULTI-MODES TRAVELTIME MEASUREMENT 

BASED ON THE DWFP TECHNIQUE

1. Perform continuous wavelet transform of the original signal

2. Calculate the scale-averaged wavelet power (SAP)

3. Extract the envelope of the SAP

4. Find peaks in the envelope of SAP

5. Generate dynamic wavelet fingerprints at each peak location

6. Extract the feature of each dynamic wavelet fingerprint

7. Differentiate real modes from interference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

2000

-2000
1000 1200 1400 1600 1800 2000200 400 600 800

(a)

xIO
10

5

0
400 600 800 1000 1200 1400 1600 1800 2000200

(b)

X 10
5

0

■5
1000 1200 1400 1600 1800 2000200 400 600 800

1018

till

(C)

640 864 984

(d)

Figure 5.7 Illustration of the DWFP based algorithm to measure the arrival times of the 
multiple Lamb wave modes, (a) Original waveform, (b) Scale-averaged wavelet power 
(SAP), (c) Envelope of the SAP. Detected peaks are indicated by small circles, (d) DWFP 
patterns at the first five peak locations. The number on top of each pattern is the area of 
the white region in the pattern. Note the second pattern has significant smaller white area.
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Since Lamb wave packets can be treated as Gaussian envelop carried by the excited 

frequency, the Morlet wavelet is used to perform the continuous wavelet transform:

where x(t) is the signal to be analyzed; Sj is the scale level; n is the time; is the 

mother wavelet; and * denotes conjugate.

Next, the scale-averaged wavelet power (SAP) was calculated:

1 64

7=1>2,...,64 (5.18)
64

According to Rose [101], group velocity is the velocity of energy transportation. 

For each Lamb wave mode, its energy is contained in the corresponding wave packet and 

travels at a corresponding group velocity. Based on the definition of group velocity, it 

would search for the delay of a center of gravity of the wave packet envelope. In this 

study, however, the peak of the envelope of the SAP curve is used as an alternative to 

track the movement of the wave packet.

To extract the envelope of the SAP curve, a pruning procedure [11] based on the 

stationary discrete wavelet transform [32] was applied to remove high frequency 

contents, i.e.,

Ws(a,b) = 0 fo r a  = l...5 (5.19)

where (a,b) is the stationary discrete wavelet coefficients at scale a and time b. Then

the suspect Lamb modes were detected as the peaks of the envelop, see Figure 5.7(c).
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To identify real Lamb modes from all the candidate modes, the dynamic wavelet 

fingerprint was generated at each peak location by using the complex Gaussian wavelet 

of order two. At first, it was expected that each real mode would have a distinct dynamic 

wavelet fingerprint in order to be identified uniquely. It turned out that such a goal was 

impractical due to the significant variation of the dynamic wavelet fingerprint from one 

ray to another. This was because the sample under test generally had irregular defects 

inside so that ultrasound could undergo quite different modulation from ray to ray. 

Therefore, instead of identifying each mode by watching its dynamic wavelet fingerprint, 

it was decided to use the dynamic wavelet fingerprint to differentiate interference from 

real modes and the remaining true modes are naturally sorted by their arrival order.

As illustrated in Figure 5.7(d), it was found that the patterns corresponding to real 

Lamb wave modes have significantly larger white areas than those corresponding to the 

interference. Accordingly, the amount of white area of the dynamic wavelet fingerprint 

was chosen as its feature and used to distinguish interference from real Lamb modes.

In this study, only the first three modes were considered. An empirically 

determined threshold of 500 was used to classify each suspect mode into either a real 

mode or interference.

5.5 Experimental Results

To evaluate the performance of the proposed algorithm, waveforms collected 

from four aluminum plates were processed to estimate the arrival times of the first three
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modes. Corresponding double crosshole Lamb wave tomographic images were generated 

and are illustrated later. The four plates used in this study are listed below [102];

• Plate #1: Flat bottom hole 2.2-inch diameter, 50% thickness loss.

• Plate #5: 2-inch dished-out circle flat on the bottom with max 60% thickness
loss.

• Plate #6: Rectangular thinned region l ”x2” with rounded comers. 10% 
thickness loss.

• Plate #15: Plate with no flaws.

For each plate, total of 20000 waveforms resulting from all possible transmitter- 

receiver positions were recorded. The carrier frequency used was 0.99 MHz. The 

transducer step size was 2 mm. The shortest distance between transmitter and receiver 

lines was 200 mm.

For the defect-free plate #15, the experimentally estimated arrival times of the 

first three modes are shown in Figure 5.8. For comparison, the theoretical arrival times of 

the first three modes are shown in Figure 5.9. Visual inspection reveals that the estimated 

arrival times of the first mode (Al) are distributed rather smoothly and agree very well 

with theoretical values. The estimated arrival times of the second mode (AO) and the third 

mode (SO) are more noisy, however, the overall agreement with theoretical values is still 

acceptable.
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Figure 5.8 Experimentally estimated arrival times of the first three modes in a defect-free 
aluminum plate, (a) Al mode, (b) AO mode, (c) SO mode.
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Figure 5.9 Theoretical arrival times of the first three modes in a defect-free aluminum 
plate, (a) A l mode, v = 3500 ml s . (b) AO mode, v = 3100 ml s . (c) SO mode.
V = 2000 m i s .
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Quantitatively, we computed mean square errors between 10000-point sequences 

of experimental and theoretical arrival times:

n U

where and T. is the experimental and theoretical arrival time of “ray” i . It gives an 

MS-error of 0.43, 4.23 and 6.29 for the Al, AO and SO mode respectively.

For plate #1, which has a 2.2 -inch flat bottom hole in the center, the 

experimental arrival times of the first three modes were shown in Figure 5.10. For the Al 

mode, the distribution of the arrival times is smooth and regular. For modes AO and SO, 

although the regular change of the time of flight is still quite obvious, the distribution is 

more noisy.

At 0.99 MHz, the flat bottom hole should cause A l and AO to speed up and SO to 

slow down. For the Al mode, visual inspection reveals the presence of a thinning defect 

in the middle of the scanned area. This shows up as a relative speeding up in the central 

part of the lower boundary of the arrival times of A l mode. However, these patterns are 

not obvious in Figure 5.10 (b) and (c) for modes AO and SO. One explanation is the 

diffraction effect at the discontinuity, which may extend the travel path of ultrasound. On 

the other hand, the simple threshold method used to differentiate real modes from 

interference may not be robust enough to handle distorted waveforms due to the 

discontinuity.

For plate #5, which has a 2-inch dished-out flat bottom circle with max 60% 

thickness loss, the experimental arrival times of the first three modes were shown in
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Figure 5.10 Experimentally estimated arrival times of the first three modes in an 
aluminum plate with a 2.2 -inch flat bottom hole in the center, (a) A l mode, (b) AO 
mode, (c) SO mode.
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Figure 5.11 Experimentally estimated arrival times of the first three modes in an 
aluminum plate with a 2-inch dished out flat bottom circle with max 60% thickness loss, 
(a) A l mode, (b) AO mode, (c) SO mode.
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Figure 5.12 Experimentally estimated arrival times of the first three modes in an 
aluminum plate with a l ”x2” rectangular thinned region with rounded comers, (a) Al 
mode, (b) AO mode, (c) SO mode.
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Figure 5.11. The overall distribution of the arrival times of Al mode is smooth and 

regular. However, the sharp peaks of the arrival times now become “fork-like”, which 

may be due to the more irregular shape of the dished-out circle. The slow down pattern in 

the central part of the upper boundary of the arrival times of A l mode may be due to the 

diffraction effect of the dished-out circle. For modes AO and SO, the distribution is more 

noisy and the speed change pattern is not clear for the same reason mentioned above.

For plate #6, which has a l ”x2” rectangular thinned region with rounded comers, 

the experimental arrival times of the first three modes were shown in Figure 5.12. Again, 

the overall distribution of the arrival times of the A l mode is smooth and regular while 

those for modes AO and SO are more noisy. The speed change pattern is not obvious for 

all three modes in this case. This may be in part due to the mild extent of discontinuity 

(10% thickness loss).

Since the ultimate goal of this project is to generate accurate quantitative 

tomography which precisely maps out any defects in plate structures, it is reasonable to 

reconstmct tomographic images from these experimental arrivals times and use them to 

evaluate the performance of the proposed algorithm. Figures 5.13 -  5.16 are the 

reconstructed images for plates 15,1,5 and 6 respectively.

For plate # 15, which is defect free, the reconstmcted tomographic images of the 

three modes are generally uniform, especially for mode A l. For plate #1, the flat bottom
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Figure 5.13 Plate #15 -  SIRT reconstruction of defect free aluminum plate. Image size: 
200 X 200 mm. (a) A l mode, (b) AO mode, (c) SO mode, (d) Cartoon of the plate.
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Figure 5.14 Plate #1 - SIRT reconstruction of a flat bottom hole 2.2-inch diameter, 50% 
thickness loss. Image size: 200 x 200 mm. (a) A l mode, (b) AO mode, (c) SO mode, (d) 
Cartoon of the plate.
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(d)

Figure 5.15 Plate #5 - SIRT reconstruction a 2-inch dished out flat bottom circle with 
max 60% thickness loss. Image size: 200 x 200 mm. (a) A l mode, (b) AO mode, (c) SO 
mode, (d) Cartoon of the plate.
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Figure 5.16 Plate #6- SIRT reconstruction a rectangular thinned region l ”x2” with 
rounded comers. Image size: 200 x 200 mm. (a) A l mode, (b) AO mode, (c) SO mode, (d) 
Cartoon of the plate.
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hole can be seen resolved in the reconstructed tomographic images of the three modes.

For plate #5, the irregular bright spots in the center of the reconstructed tomographic 

images indicates the dished-out circle defect. For plate #6, the two long edges of the 

rectangular thinning can be seen clearly from the tomographic image of mode A l, while 

the overall rectangular shape of the defect can be seen more clearly from the tomographic 

images of modes AO and SO. In conclusion, the spatial resolution of all reconstructed 

images is good enough to ensure visual detection of all the defects studied.

5.6 Conclusions

This chapter presents the applieation of the dynamic wavelet fingerprint technique 

to estimating arrival times of multiple Lamb wave modes. Although the meehanism 

behind Lamb wave propagation is quite complex, which makes the waveform difficult to 

interpret, the application of the dynamic wavelet fingerprint technique leads to automatic 

detection of multiple Lamb wave modes in a systematic way. The characterization step 

then helps to remove interference and improve the detection robustness.

Instead of using moment invariants as features, by directly watching the dynamic 

wavelet fingerprints, only a simple feature -  the amount of white area in the fingerprint -  

was extracted to differentiate interference from real modes. In general, smooth 

distribution of arrival times was obtained for the first mode (Al), which validates the 

merit of this simple feature. However, for the second and third mode, the distribution of 

their arrival times is more noisy. Physically it may be due to the diffraction effects at the 

defect and the geometry of the plate. On the other hand, it may indicate that the simple
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feature used is not robust enough to handle complex situations. Instead, a set of features 

or a dictionary of characteristic dynamic wavelet fingerprints should be exploited to 

recognize different modes and interference.

Acceptable tomographic images were reconstructed from the estimated arrival 

times of the three Lamb wave modes. The spatial resolution of all reconstructed images is 

good enough to ensure visual detection of all the defects studied. It demonstrates the 

feasibility of the dynamic wavelet fingerprint based algorithm to estimate arrival times of 

multiple Lamb wave modes. To optimize the performance of the suggested algorithm, it 

is necessary to choose carefully the experimental parameters, such as frequency, duration 

of the wave packet, etc., so that multiple modes are more separated in time or more 

differentiable in terms of their dynamic wavelet fingerprints.
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CHAPTER VI

ULTRASONIC INSPECTION OF THIN MULTILAYERS

6.1 Introduction

Multilayer structures play important roles in many engineering applications such 

as aerospace, automotive and microelectronics. The quality and reliability of these 

structures are strongly dependent on the integrity of the interfaces between different 

layers. Because ultrasonic waves are reflected or scattered by discontinuities in acoustic 

impedance, they are very sensitive to defects such as cracks and delaminations at the 

interfaces of multilayers. Therefore ultrasonic-based techniques are widely used to 

inspect these multilayer structures [103-106].

TITTOW

Figure 6.1 Typical stacked chip scale packages. Multiple dies are stacked in one package.
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However, with the rapid development of materials scienee and packaging 

technology, the thickness of these layers has been reduced significantly. In 

microelectronic devices, for example, it begins to see packages with four to six dies 

stacked together with each die only 100-200 jn m thick. Such extremely thin multilayer 

structures are becoming a serious challenge to current ultrasonic inspection techniques. 

On one hand, it is necessary to use much higher frequency to achieve high resolution 

(both longitudinal and lateral); on the other hand, there is a limit to the highest frequency 

that can be used for a particular application. This limit is due to several factors such as 

[107]:

•  narrowness of the spike generated by the ultrasonic pulser,

•  bandwidth of the ultrasonic receiver,

•  frequency response of the transducer, 

and more importantly,

•  material propagation properties, such as strong attenuation for higher 

frequencies that can limit the frequency content of the ultrasonic signal.

Even after overcoming these limitations, the ultrasonic waveforms reflected from 

these thin multilayer structures can be very complicated due to overlapping echoes. 

Furthermore, other difficulties arise in the case of similar acoustic impedances involving 

a weak amplitude of reflected echoes and hence low signal to noise ratio (SNR). In order 

to detect and locate potential defects at each interface, specific treatment of the ultrasonic 

waveform with advanced signal processing algorithms is required.
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Classical methods implemented in current ultrasonic inspection systems include 

peak detection and thresholding techniques, which use one or several electronic “gates” 

to extract sufficiently strong transients as suspect defects. Although simple and fast, this 

is not stable in noisy situations and cannot deal with partially overlapped signals. On the 

other hand, time or frequency domain methods based on stationary rules (cross­

correlation, logarithmic power spectrum, cepstrum analysis, ...) have been developed but 

they can fail in the representation of ultrasonic signals containing successive echoes close 

in time added to a lower SNR [108]. Because of the non-stationary property of these 

signals, time-frequency analysis has turned out to be more successful than the previous 

technique. However, due to the constant resolution of traditional time-frequency 

representations (Short time Fourier transform, Wigner-Ville, Gabor), a number of 

ambiguous echo detections may occur in the case of partially overlapped echoes. Better 

performance can be achieved by using a wavelet transform. Due to their flexible time- 

frequency resolution, wavelet transforms perform better than other time-frequency 

representations in analyzing ultrasonic signals in the presence both of low SNR and 

partially overlapped echoes [109,110].

A digital signal processing method, based on the continuous wavelet transform, is 

proposed in [109,110] for automatically detecting and measuring the time-of-flight 

between ultrasonic echoes. It makes use of the properties of the continuous wavelet 

transform modulus maxima to discriminate the signal from noise. The continuous wavelet 

transform modulus shows local maxima in correspondence with signal discontinuities 

introduced either by real echoes or random noise. All local maxima points obtained for 

different frequencies can be connected to form a chain. The chain due to an actual echo
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presents a trend with frequency different from that of the chain due to random noise. It is 

thus possible to retain those chains related to actual echoes and remove most of the noise 

chains. Some noise chains survive this reduction (because their trend is similar to that of 

chains related to actual echoes), so a preliminary calibration phase is required to choose a 

suitable threshold level to remove them. Unfortunately, this threshold level depends on 

the specific application and adopted hardware, also, the preliminary calibration phase 

may be time consuming and need experienced operators.

Another promising ultrasonic signal processing method for multilayer structures 

is model based estimation [107,111-114] where the ultrasonic signals are modeled as a 

superposition of a series of Gaussian shaped echo wavelets with unknown parameters. 

Based on prior knowledge of the spectral characteristics of the ultrasonic transducer, the 

Maximum A Posteriori (MAP) estimation technique can be used to estimate these 

unknown parameters for a single echo. Coupled with the space-alternating generalized 

expectation-maximization algorithm (SAGE) [115], the multi-echo estimation problem 

can be transformed into a series of one-echo estimation problems and thus achieve 

computational flexibility and efficiency. However, prior knowledge of the spectral 

characteristics of the specific ultrasonic transducer makes this approach case dependent. 

More importantly, for most practical nondestructive evaluation applications, it is 

impossible to know in advance the number of layers in the sample due to the varying 

defects one is inspeeting for.

In this chapter, a pattern-based auto-detection technique is presented. The basic 

idea is to generate simplified and intuitive two-dimensional time-scale patterns (the 

dynamic wavelet fingerprint, or DWFP) to characterize local signals. It is expected that a
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true echo will have a distinctive time-scale pattern that can be differentiated from that of 

noise and interference. Because of its two-dimensional nature, a pattern is intuitive to be 

recognized and less sensitive to noise. Furthermore, as a knowledge-based approach, the 

algorithm can be customized for specific application and its performance can be 

improved by learning.

This chapter is organized as follows. As a proof of concept study, in Section 6.2, 

simulated ultrasonic signals are used to explore the existence and property of the 

distinctive time-scale patterns of real echoes. An automated transient detection algorithm 

is then developed in Section 6.3 with the knowledge from such patterns. In Section 6.4, 

the feasibility and performance of the algorithm is evaluated by automatically processing 

simulated ultrasonic signals under various conditions. A practical application of the 

proposed technique is demonstrated to generate a B-Scan interface map of a plastic IC 

package. A discussion and conclusion is given in Section 6.5.

6.2 Simulated Ultrasonic Signals

The ultrasonic signal model used in this chapter is:

x { t ) ^ ^ A ^ s { t - T ^ )  + n{t) (6 .1)
i=i

where s{t) is a transient echo modeled by [116]

 ̂ t Y b " )s(t) = - — sin(2;r /oO^ “ (6.2)
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The center frequency /g is set as 15 MHz and the sampling frequency is set as 1 GHz.

The parameter a  is set to make the shape of the simulated signal similar to that of a real 

ultrasonic signal. Other parameters include A; the amplitude of each echo, n{t) the zero- 

mean uniform noise and the time delay between each pair of echoes. The duration of 

each echo is set as 128 ns (128 sample points).

6.3 The Distinctive Time-Scale Pattern

Time-Frequency Representations (TFRs) have been recognized as an effective 

approach to analyze ultrasonic echoes in critical conditions (low SNR, partial echo 

overlap). The success of these methods is largely due to the fact that coherent echoes 

have different time-frequency representations from those of random noise, which can be 

exploited to reject noise and other interference.

Many detection methods make use of the coefficients of the TFRs directly, e.g., 

finding the local maximum of the coefficients. Unfortunately, the two-dimensional 

property of the TFR is then largely ignored. To fully exploit the two-dimensional 

potential of TFRs, a pattern-based approach seems more suitable. The dynamic wavelet 

fingerprint (DWFP) technique developed in Chapter III can be used to generate 

simplified and intuitive two-dimensional time-scale patterns to characterize transient 

signals. It is expected that true echoes should have distinctive DWFPs that can be 

differentiated from that of random noise.
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For ultrasonic inspection of thin multilayers, the received ultrasonic waveform is 

generally composed of narrowly spaced or partially overlapped echoes. To achieve high- 

resolution and avoid missing detected echoes, the DWFP is generated at every sample 

point instead of at the scale-averaged wavelet power (SAP) peaks as carried out in the 

previous chapters. For other details about how to generate a DWFP, please refer to 

Chapter III.

To identify the distinctive DWFPs corresponding to real echoes, simulated two- 

echo signals using (6.1) and (6.2) were first analyzed to explore the existence and 

properties of such distinctive patterns under different conditions as below:

A1=A2= 1 V;

Tj = 0 n s , ^ 2  e {50, 80,100,120,160} ns ;

SNR: 00,24, 18,12, 6 ,0  dB.

Here the SNR is defined as 201ogi(,(A;/A„), where A,, and A„ represent the peak

amplitudes of each real echo and uniform noise respectively.

One simulated ultrasonic waveform is shown in Figure 6.2. The corresponding 

DWFP sequence shown in Figure 6.3 was produced by generating a DWFP at each 

sample point. Here, the Mexican hat wavelet:

. S '

was used with a window of 11 ns to generate the DWFP. It can be seen that the DWFP 

of the true echo has a well-developed circle inside. Similar observations obtained for 

other cases are shown in Table 6.1.
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Figure 6.2 Two echoes corrupted by uniform noise. The first echo is at 177 n s , the 
second echo is at 297 n s , r = \2Q n s , SNR = 0 dB.

Based on the analysis of these patterns, a brief summary is given below:

•  In high SNR cases, the DWFPs are smooth and clean; in low SNR cases, 

the DWFPs become noisy. However, the basic patterns remain stable and 

recognizable. In other words, the distinctive pattern is not sensitive to noise.

•  For widely spaced echoes, the DWFPs have a well developed circle 

inside; for narrowly spaced or partially overlapped echoes (e.g., when the spacing 

is less than 80 n s ), the DWFPs have a distorted circle inside.

Thus for the simulated ultrasonic signals, the distinctive pattern corresponding to a true 

echo was found as a DWFP with a well-developed circle inside.
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Figure 6.3 The DWFP sequence of the signal in Figure 6.2. The number on the top of 
each DWFP is the time where the DWFP is generated. Note the two patterns at 177 ns 
and 297 n s , each has a well developed circle inside. The wavelet used: Mexican hat. 
Scale range: 8:32.
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TABLE 6.1

DWFPS CORRESPONDING TO THE TWO SIMULATED ECHOES
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6.4 Echo Detection Algorithm

Now that a distinctive DWFP pattern has been found, an automatic echo detection 

algorithm can be developed based on it. A flowchart of the algorithm is shown in Figure 

6.4.

Continuous wavelet transform

Echo detection

Feature extraction

DWFP generation

Figure 6.4 Flowchart of the DWFP-based echo detection algorithm.

The algorithm consists of the following steps:

1. Perform continuous wavelet transform on the original waveform. The selection 

of wavelet is important in that it will affect the recognition and characterization of the 

distinctive pattern. In this chapter, the Mexhat wavelet is used because of the easy-to- 

recognize patterns being generated.

2. Generate a DWFP at each sample point. The key parameter to be decided upon 

is the size of the window, which varies from case to case depending on the specific 

application. Generally, it should be just large enough to incorporate significant features in
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generated patterns. In this chapter, an 11 ns window is used so that a center circular 

region in the distinctive DWFP can be incorporated.

3. Extract features from each DWFP. In this chapter, the existence of the well- 

developed circle is the main characteristic of the distinctive DWFP. The eccentricity, 

defined as the ratio of the distance between the foci of the ellipse, which has the same 

second-moments as the center white region, and its major axis length, is calculated and 

used as the feature. For an ideal circle, its eccentricity is 0, for a straight line, its 

eccentricity is 1. A circularity curve is generated by calculating (1- eccentricity ) at each 

sample point.

4. Detect transient echoes from the circularity curve. The significant peaks in the 

circularity curve which dominate in their neighborhood are picked out as true echoes. By 

“dominant”, we mean that the value of the peak is the largest in its neighborhood. In this 

dissertation, the neighborhood is taken as ± 60 . Hence the resolution limit between 

two echoes is 60 n s .

6.5 Performance Evaluation

The feasibility and performance of this algorithm was evaluated by automatically 

processing simulated ultrasonic signals at different operating conditions. Instead of using 

a two-echo model, a five-echo model is constructed with (6 .1 ) and (6 .2 ) as following:

Ai is designed as Aj = 2 Â  = 4A3 = 8 A4 = I 6 A5 ;
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n(t) is zero-mean uniform noise with amplitude of .

The signal-to-noise ratio (SNR) is defined as 201ogio(A,./A„), where A. and A„

represents peak amplitude of each echo and noise respectively. Hence the SNR for echoes 

1 to 5 is 24 dB, 18 dB, 12 dB, 6 dB and 0 dB respectively.

Two scenarios are used in the simulation.

(1) Spacing r, is kept the same so that periodic spacing is simulated.

(2) Spacing T. is changed randomly between 80 ns and 200 ns to

simulate random spacing cases.

Simulation and corresponding auto-processing was performed 100 times for each equal 

spacing case and total 1000 times for the random spacing case. Typical processing results 

are shown in Figures 6.5 for scenario 1 and in Figure 6.6 for scenario 2 respectively.

Generally, the circularity curve is clean with significant peaks corresponding to 

real echoes and a few small peaks elsewhere. Such detection ability is largely due to the 

pattem-based property of the feature extraction algorithm. A DWFP is either accepted as 

a possible distinctive pattern and then characterized with large fidelity, or rejected. To 

remove the few interference peaks in the circularity curve, a peak-picking procedure is 

applied to pick the dominant peak in a ±60 ns neighborhood. However, this comes with 

the price of the resolution limit between two echoes. In this dissertation, the ± 60 ns 

window was chosen based on the fact that the DWFP distorted significantly when the 

spacing between two echoes is less than about 50 ns .
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Figure 6.5 (a) Simulated five-echo signal with periodic spacing of 80 n s . (b) The 
circularity curve. The circles on the x-axis indicate the actual locations of the echoes. 
Note that each echo has a significant peak associated with it, even for the weakest one 
(SNR = 0 dB).
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Figure 6.6 (a) Simulated five-echo signal with random spacing, (b) The circularity curve. 
The circles on the x-axis indicate the actual locations of the echoes. Note that each echo 
has a significant peak associated with it, even for the weakest one (SNR = 0 dB).
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Intuitively it can be seen that the detection precision is very high. Actually, if an 

echo is detected, the bias of the detected location from the true location is usually within 

±5 n s . The detection is also robust in that echoes at low SNR levels still can be 

automatically detected without any filtering.

Quantitatively, a performance index called detection ratio (DR) is proposed to 

evaluate the performance of the algorithm. In every simulation, for each of the five 

known echoes, if it is detected with a precision of ± 5 by one and only one detected 

peak, the detection count increases by one for this known echo. The DR is defined as the 

ratio of its detection count to the number of simulation. For example, if an echo is 

detected 87 times in 100 simulations, the DR for this echo is 87%.

The quantitative result for the equal spacing case is shown in Figure 6.7. As can 

be seen, the detection ratio decreases as the SNR level of the echo goes down, which is as 

expected. However, even at very low SNR levels, about 50% of the echoes still can be 

detected with a precision of ±5 ns (Five sample points).

It is interesting to note that, at the same SNR level (the same line in Figure 6.7), 

the detection ratio does not always increase with spacing. Instead, the detection ratio is 

very high for the narrowly spaced eases (<95 ns). It decreases significantly for the 

spacing range from 120 ns to 140 ns and increases again. Such fluctuation may be 

caused by the limited duration (128 n s ) and the periodic property of the simulated signal, 

i.e., for some spacing cases, the interaction between the simulated echoes may lead to 

“difficult” patterns to be recognized.
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Figure 6.7 Detection ratios of equally spaced echoes. For each spacing case, there are five 
echoes representing different SNR levels to be detected. The precision of the detection is
±5 n s .

TABLE 6.3

DETECTION RATIO OF FIVE RANDOM SPACED ECHOES REPRESENTING
DIFFERENT SNR LEVELS

SNR (dB) 24 18 12 6 0

DR 100% 96.6% 95.3% 88.2% 70.1%
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For random spacing cases, the spacing between any two echoes varies from 80 ns 

to 200 n s . As shown in Table 6.3, the deteetion ratio deereases as the SNR level of the 

eeho goes down, which is as expected. Again, even at very low SNR levels, there is still 

more than 70% chance for an echo to be detected with a precision of ± 5 .

In this chapter, no filtering was applied to the simulated signal. For echoes with 

low SNR level, their DWFP patterns become noisy also. The feature extracted therefore 

becomes unstable, which can lead to poor detection ratio. However, by using additional 

filtering procedures, such as pruning and thresholding [11], noise can be suppressed and 

higher detection ratios may be obtained.

Sinee the duration of a single echo is 128 ns and the simulated spacing is from 

80 ns to 200 n s , this work is actually dealing with partially overlapped echoes. Although 

the detection performance is good when the spacing is larger than 80 n s , the real 

challenge is encountered when the spacing between two echoes is less than 80 n s . The 

overlapping is so significant that the DWFP patterns are distorted significantly so that the 

DWFP with a well-developed circle inside eannot be used as the distinctive pattern of the 

true echoes anymore. To overcome such difficulty, one option is to identify different 

distinctive patterns by experiment/observation and then develop a corresponding auto­

detection algorithm. Another option is to use higher frequency ultrasound so that the 

overlapping can be physically reduced.
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6.6 Ultrasonic Imaging of Microelectronic Device

The reliability of modem microelectronic devices is of great concern because of 

the severe environment where they are working. Generally, these devices are multilayer 

structures consisting of one or more semiconductor dies mounted on a substrate with 

various attaching paste. Typical failures are delaminations, cracks, voids, metal 

corrosion, and so on; they are generally localized at the interface between different layers 

[110]. Ultrasonic imaging has already been demonstrated as an effective non-destructive 

technique to inspect the integrity of microelectronic devices. One of the key steps in 

ultrasonic imaging of microelectronic devices is to identify the echoes corresponding to 

each interface. Due to the thinness of each layer, it usually requires an expert to figure out 

the suitable inspection parameters.

As a further evaluation of the proposed ultrasonic echo detection algorithm, it is 

used here to process the ultrasonic waveforms generated on a plastic encapsulated IC 

package. A schematic of the sample is shown in Figure 6.8.

Molding Compound
Gold Wire

A

Ijeadfism c Epoxy 

Figure 6.8. Cross-section schematic of a plastic encapsulated IC package.
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The waveform acquisition was carried out in pulse-echo mode with a raster 

scanning set up. The system used is a SONIX UHR-2001® high resolution scanning 

acoustic microscope (Figure 6.9). A 75 MHz transducer with a focal length of 12 mm 

was used. The sampling frequency is 1 GHz. The scanning resolution is 5 0 //m .

H M M H M ii l u a a HuvaaaMaiiMM

Figure 6.9 UHR-2001® Scanning Acoustic Microscope. (Courtesy of Sonix, Inc.)

The resulting ultrasonic image gives a top view of the intemal structure of the 

plastic encapsulated IC package is shown in Figure 6.10. The region of interest where the 

ultrasonic waveforms were collected is the center area (including the die and the die pad) 

as indicated by the blue box. At the 50 jum scanning resolution, it corresponds to a 

210x210 grid. A typical ultrasonic waveform is shown in Figure 6.11(a). The 

corresponding DWFP sequence is shown in Figure 6.12. Note that some DWFP patterns 

have a well-developed circle inside. They are indications of candidate echoes from 

different interfaces. Using the circularity as the feature of the DWFP patterns,
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Figure 6.10 Ultrasonic image giving a top view of the intemal stmcture of a plastic 
encapsulated IC package. The blue box indicates the region where the ultrasonic 
waveforms were collected.
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Figure 6.11 (a) A ultrasonic waveform collected on the plastic encapsulated IC package, 
(b) The circularity curve of the same waveform. The significant peaks indicate the 
locations of suspect discontinuities.
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Figure 6.12 The DWFP sequence of the waveform in Figure 6.11(a). Note some patterns 
have well developed circle inside. The wavelet used: Mexican hat. Scale range: 6:20.
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the corresponding circularity curve was calculated and is shown in Figure 6.11(b). The 

sharp peaks clearly indicate the locations of suspected discontinuities. Applying the same 

procedure to a series of waveforms along a straight line, a B-Scan cross-sectional 

“interface image” can be generated as shown in Figure 6.13(a). Suspected interfaces such 

as the die top and the die attach are clearly highlighted as white lines in the image. Also 

can be seen is obvious die tilt. For comparison, a standard B-Scan image generated with a 

commercial scanning acoustic microscope is shown in Figure 6.13(b).

6.7 Conclusions

This chapter presents a new approach for the detection of multiple ultrasonic 

echoes in the thin multilayer structures and the estimation of their locations. The basic 

idea is to make use of the two-dimensional property of the time scale (frequency) 

representation and develop a knowledge-based signal processing technique. A dynamic 

wavelet fingerprint is generated at each sample point to characterize the local time- 

frequency structure. A distinctive DWFP pattem with a well-developed circle inside was 

used to automatically detect multiple echoes under different simulation conditions.

The performance of the algorithm was evaluated with simulated ultrasonic 

signals. It shows that the proposed algorithm has advantages of high precision, low 

ambiguity, robustness and that it can be used to detect partially overlapped echoes.

Further evaluation was carried out by applying the proposed algorithm on 

ultrasonic waveforms obtained from a plastic encapsulated IC package. Similar DWFP
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Figure 6.13 (a) The B-Scan image generated with the proposed echo detection algorithm. 
Suspected interfaces can be seen as white lines in the image, (b) The standard B-Scan 
image generated with a commercial scanning acoustic microscope.
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patterns were found for these practical waveforms. Multiple interfaces were detected as 

white lines in a B-Scan image.

The feature used in this chapter to characterize the distinctive DWFP is the 

circularity. Although simple to use, it may not be robust enough to totally remove noise. 

Additional features may be added in further research to improve the detection 

performance.
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK

Transient signal detection and characterization remains a critical topic in many 

ultrasonic inspection and imaging applications. The ultimate goal is to answer two basic 

questions: when does a transient occur in the ultrasonic waveforms and what does it 

represent?

Traditionally these two questions are answered separately: we make a decision 

based on some threshold values if a transient signal is present and estimate its location, 

then we analyze its property for identification and classification purposes. On the other 

hand, traditional detection and estimation techniques are generally based on physical or 

statistic models. However, in practical applications the distribution and property of the 

defects or abnormalities inside the object under test is usually unknown, which makes the 

model-based approach problematic.

A pattem-based approach was proposed and presented in this dissertation to 

address the detection and characterization issues in a coupled way. The basic idea is to 

generate dynamic wavelet fingerprints to differentiate actual transient signals from noise 

so that actual transients can be detected; at the same time, the dynamic wavelet 

fingerprints can be used naturally as a characterization/recognition tool.

The procedure to generate the dynamic wavelet fingerprint was described in 

Chapter III. It consists of pulse detection plus slice projection of the continuous wavelet
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transform coefficients in the neighborhood of each pulse. It was found that the dynamie 

wavelet fingerprint is intuitive and self explanatory which directly highlights the 

differences between different signals.

The choiee of wavelet greatly influences the dynamic wavelet fingerprint which is 

generated. For the same group of signals, some wavelets generate more differentiable 

patterns that lead to better classifieation performance. So far, the choiee of wavelet for 

different applications is based on a “trial and error” approach. How to choose or design 

an “optimum” wavelet for a speeific application remains an interesting topic for future 

work.

Another important parameter to generate a dynamic wavelet fingerprint is the 

time window used to isolate the transient signal of interest. Although the full width at half 

maximum power (FWHM) is proposed in Chapter III, as shown in later examples, this 

window can be just large enough to incorporate significant information to fully 

characterize the transient signal of interest.

To extract features from dynamic wavelet fingerprints, the moment invariants 

developed in the computer vision field were proposed in Chapter III. Although distinctive 

to characterize different patterns, the computational load is too heavy to be used in many 

real-time applications. Moreover, the calculation of these invariants is a “blaek-box” 

operation. The outputs are abstract values which are hard to understand by humans, so an 

artificial neural network or other classifier is needed to handle these numbers. However, 

as its name implicates, the dynamic wavelet fingerprint does show some patterns like 

“areh”, “loop” and “whorl”. Therefore it is possible to use advaneed fingerprint
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recognition techniques to extract significant information from the dynamic wavelet 

fingerprints. Actually, as seen in the later chapters, different features (generally simple 

and straightforward) were selected and extracted based on direct observation of the 

dynamic wavelet fingerprints and the specific goal of the application.

As the first demonstration of the use of the dynamic wavelet fingerprint for 

ultrasonic signal recognition, an ultrasonic materials sorting system was developed to 

differentiate several plates by learning and recognizing the dynamic wavelet fingerprints 

of corresponding echoes from the plate surface. Excellent performance was achieved with 

100% ratio of correct identification.

Other applications covering a broad spectrum in ultrasonic inspection and 

imaging fields were then tested. From a frequency point of view, the range is from 1 

MHz, 15 MHz up to 75 MHz. It covers both pulse echo and through transmission modes, 

ultrasonic NDE and medical imaging, bulk waves and guided waves. The sequence of 

these studies is chronologically arranged in this dissertation. Consequently, the early 

studies may not use the most optimal technique.

The first application is ultrasonic periodontal probing. As a novel diagnostic tool, 

this system uses ultrasound to measure the depth of the periodontal pocket. Due to the 

complex anatomy of the periodontal tissue, the ultrasonic waveforms received are too 

complicated to be interpreted directly. A dynamic wavelet fingerprint based algorithm 

was developed to bring out the hidden trend of the variation of the waveform: the regular 

variation of the inclination of the dynamic wavelet fingerprints. A two-dimensional PET 

based algorithm was developed to extract this inclination feature by calculating an
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inclination index. Then the regular variation of the inclination can be seen as regular 

peaks and valleys in the inclination index curve. Based on observations of the results 

from a simplified phantom, which is a steel block with holes, the regular variations of the 

dynamic wavelet fingerprints were mapped into three reflection regions: the first 

significant peak clearly arises from the probe tip, the second significant peak may be 

caused by the tooth surface, and the third significant peak may correspond to the bottom 

of the periodontal pocket.

Full-mouth ultrasonic probing data from 14 patients in two visits were then 

proeessed automatieally with the proposed algorithm. Taking the manual probing results 

as the “gold standard”, a 40% agreement ratio was found in site by site eomparison. 

Statistically, however, lack of agreement between ultrasonic and manual probing was 

found in terms of the “limits of agreement” proposed by Bland and Altman. This may 

arise from the simplified model used in the algorithm. Hence more detailed elinical 

experiments are required in the future to understand the physics behind the intuitive 

variation of the dynamic wavelet fingerprints. One suggestion is to generate a two- 

dimension eontour of the periodontal pocket sinee the point-by-point eomparison is 

strongly affected by random faetors such as the foree used and the angle with whieh the 

probing is carried out, etc. Another suggestion is to improve the stability of the probing 

hardware. The variation of the water flow during the probing process may eause 

significant variations in the waveform collected.

The next ultrasonic application demonstrated here is multi-mode Lamb wave 

tomography. Lamb waves are guided waves that ean propagate long distanees in thin- 

wall struetures and are sensitive to different defects present in their path. Lamb wave
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tomography has been proven as a reliable and efficient non-destructive evaluation 

technique for large structures such as plates and tubes. Taking advantage of the 

dispersion characteristics inherent in Lamb wave propagation, Lamb wave tomography 

maps thickness variations (corrosion, delamination, etc.) into arrival time variations. The 

sensitivity and precision of the generated tomography is directly related to the accuracy 

of the arrival times measured experimentally. Another property of Lamb wave is that 

multi-modes propagate simultaneously in the media. Since different modes are sensitive 

to different types of defects, it is reasonable to generate tomographic reconstructions for 

each mode. However, due to the dispersion and multi-mode characteristics, it is 

challenging to extract the arrival times of each mode, especially with additional 

requirements of automation and real time extraction.

Based on the assumption that the arrival order of different modes is unchanged, 

the dynamic wavelet fingerprint based algorithm developed in this dissertation first 

detects potential modes and then removes false signals by recognizing dynamic wavelet 

fingerprints for the true modes. Specifically, it was found that the area of the white region 

of the dynamic wavelet fingerprint can be used as a feature to differentiate actual modes 

from noise and interference. An experimentally determined threshold was used in the 

algorithm to implement the classification.

The performance of the proposed algorithm was evaluated by computing mean 

square errors between 10000-point sequences of experimental and theoretical arrival 

times, which gave an MS-error of 0.43, 4.23 and 6.29 for the A l, AO and SO modes 

respectively. Tomographic images of four plates were also generated for each mode from 

the corresponding estimated arrival times. The spatial resolution of all reconstructed
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images was good enough to ensure visual detection of all the defects studied, even 

without post processing of the images.

To optimize the performance of the suggested algorithm, it is necessary to choose 

carefully the experimental parameters, such as frequency and duration of the wave 

packet, so that multiple modes are more separated in time or more differentiable in terms 

of their dynamic wavelet fingerprints. One suggestion is to generate every single mode in 

a defect free plate and experimentally watch its own dynamic wavelet fingerprint. In this 

way, better understanding of the variation of the dynamic wavelet fingerprints may be 

obtained and it may help to design a more robust algorithm.

The last application discussed in this dissertation is ultrasonic inspection of thin 

multilayer structures. In general, the ultrasonic waveforms received from these structures 

have multiple echoes which may be partially overlapped. This invalidates most traditional 

detection techniques, especially for non-destructive evaluation cases where the number 

and property of the defects are unknown before the test. On the other hand, the slight 

mismatch of acoustic impedance and attenuation in many multilayers may lead to low 

signal to noise ratio, which adds another difficulty to detecting and estimating 

corresponding echoes.

In this application, dynamic wavelet fingerprints were generated at each sample 

point to achieve maximum resolution capability. By watching the experimental results of 

simulated ultrasonic signals, it was found that the dynamic wavelet fingerprint with a 

well-developed circle inside can be used as a distinctive pattern to recognize echoes in 

the signal. To extract this distinctive feature, the eccentricity of the center white region of
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the dynamic wavelet fingerprint was calculated and used to generate a circularity curve. 

Then the significant peaks in the circularity curve which dominate their neighborhood are 

picked out as true echoes.

It was found that the proposed algorithm has advantages of high precision, low 

ambiguity, robustness and that it can be used to detect partially overlapped echoes.

Further evaluation was carried out by applying the proposed algorithm on the ultrasonic 

waveforms obtained from a plastic encapsulated IC package. Similar dynamic wavelet 

fingerprint patterns were found in these practical waveforms. Multiple interfaces were 

detected as white lines in the B-Scan image.

It was noted that a few false peaks may still exist in the circularity curves. To 

remove these false peaks, additional features beside circularity may be required. A 

database may be built to accumulate experience from known cases so that a knowledge- 

based system can be developed to achieve robustness and flexibility.

In summary, this dissertation presents a knowledge-based ultrasonic signal 

processing technique based on the dynamic wavelet fingerprint. Because of its intuitive 

and self-explanatory characteristics, it is possible to customize an efficient algorithm to 

highlight the hidden features in a class of signals and achieve satisfactory detection and 

characterization results.

Finally, the author would like to end this work by citing an old saying: “Seeing is 

believing.”
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APPENDIX A

SOURCE CODE OF ULTRASONIC PERIODONTAL PROBING

clear
lsShow= 0;
fid=fopen('ERRIog.txt', 'a+'); 
chan = ddeinitCexcer, 'Sheetl'): 
sum_data =zeros(2048,1); 
dirname = 'd:V;

site= {'BD' 'BMI' 'BMe' 'LD' 'LMI' 'LMe'};
patient={'RI' 'RC 'BS' 'SM' 'SMA' 'PAB' 'JW 'NK' 'KE' 'SL' 'GH' 'DK' 'JJ'}; 
%patient={'test1-3\P1' 'test1-3\P2' 'test1-3\P3' 'test4-6\P4' 'test4-6\P5' 'test4-6\P6' 'test\P7' 
■test\P8' 'test\P9' 'test\P10' 'test\P11' ’test\P12' 'test\P13' 'test\P14'};

for whichP = 6:6 
Licount = 1;
UData=zeros(6*32, 1); 
for which! = 31:31 

MisRead=0; 
for whichS = 1:6

whichtooth = [patient{whichP}num2str(whichl) char(site(whichS)) 'l.txt']; 
filename =[dirname whichtooth];

try
ddd= ioad(fiiename); 

catch
ERRmsg = [num2str(whichP)num2str(which!)' : '  'Cannot Load data. Tooth 

missing.Nn /n'j;
fprintf(fid, ERRmsg); 
if(MisRead ~= 0)

Licount = Licount - MisRead; 
for mis=1 iMIsRead

UData(Ucount + mis -1) = 0; 
end 

end
Licount = Licount + 6; 
break; 

end
MisRead=MisRead+1; 
ddd^ddd';
[m n]=size(ddd); 
if(m ~= 2500)
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ERRmsg = [num2str(whichP)num2str(whichT)num2str(whichS) ' : '  'Data 
format is wrongAn'];

fprintf(fid, ERRmsg); 
exit; 

end
if(n == 62)

ERRmsg = [num2str(whichP)num2str(whichT)num2str(whichS) ' : '  'Data 
doubledAn'];

fprintf(fid, ERRmsg); 
ddd=ddd(:, 32:62); 

end
dtemp= ddd(1:2048,:); 
sum_data = dtemp'; 
sum_data = mean(sum_data); 
clear dtemp; 
clear ddd
amp = max(abs(sum_data)); 
s u m_data=s um_data/am p;

ns=64;
if( lsShow~1) 

subplot(6,1,1); 
plot(sum_data, 'k'); 
xllm([1 2046]); 

end
[swa,swd] = swt(sum_data, 5, 'colfS'); 
swd(1,:)=0;
pH = iswt(swa,swd,'coif3'); 
if( lsShow==1) 

subplot(6,1,2); 
plot(pH, 'k'); 
xlim([1 2048]); 

end
cf = cwt(pH, 1 :ns, 'mod');
Ecf= mean(cf.^2);
SER = medfilt1(Ecf, 24); 
if( lsShow==1) 

subplot(6,1,3); 
plot(Ecf, 'k'); 
hold on
plot(SER, 'k', 'MarkerSize', 1.5); 
hold on 
xlim([1 2048]); 
hold off 

end
x_1=diff(SER); 
yR_1 =[0x_1]; 
yL_1 =[x_1 0]; 
blg_1 = (yL_1>=0); 
yL_1( big_1 )= 5; 
smalLI = (yL_1<0); 
yL_1 ( smalLI )= 1; 
big_1 = (yR_1>=0); 
yR_1(big_1 )=1; 
smalLI = (yR_1<0); 
yR_1 ( smalLI )= -5;
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feng = find(yR_1 ~  yL_1); 
if( lsShow==1) 

subplot(6,1,4); 
plot(SER, 'k'); 
xlim([1 2048]); 
hold on
plot(feng, SER(feng), 'ko', 'MarkerSize', 1.5) 

end

fwidth =24; 
s_step=0.25; 
s_h=0.05; 
swd(:,:)=0;
bak = lswt(swa,swd,'colf3'); 
cfX = cwt(bak, 1:ns, 'morl'); 
if( lsShow==1) 

figure(2); 
for dw =1:9*9 

subplot(9,9, dw); 
if feng(dw) > fwidth 

neighbor= cfX(:, feng(dw)- fwidth:feng(dw)+ fwidth); 
neighbor= abs(neighbor); 
top= max(max(neighbor)); 
neighbor= neighbor/top; 
tem=neighbor; 
tem(:,:)=0; 
for h=0.1:s_step:1.0

x= find( (neighbor>=h -s_h) & (neighbor<=h +s_h) ); 
tem(x)=1; 

end
imshow(tem);

end
end

end

target= 250;
Pwindow= 8;
FirstPeak=0;
SeoondPeak=0;
psize=size(feng);
PeaksNumber= psize(2); 
for Pindex =1 :PeaksNumber

If feng( Pindex ) > fwidth & feng( Pindex ) <= (2048- fwidth) 
interface= feng( Pindex);
neighbor= cfX(:, interface- fwidth:interface-i- fwidth); 
neighbor= abs(neighbor); 
top= max(max(neighbor)); 
neighbor= neighbor/top; 
tem=neighbor; 
tem(:,:)=0; 
for h=0.1:s_step:1.0 

x= find( (neighbor>=h -s_h) & (neighbor<=h +s_h) ); 
tem(x)=1; 

end
tem= 1- tern; 
tem= abs( fft2(tem));
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t= tern; 
tem(:, :)=1;
tem(t< mean (mean(t)) )  =0;
A1 = tem(1:32,1:24);
A2= tem(1:32, 26:49);
A3= tem(33:64,1:24);
A4= tem(33:64, 26:49);
PeakFeature(Pindex) ={ sum( sum ( Al )) + sum( sum ( A4 )) ) /( sum( sum ( A2 )) 

+ sum( sum ( A3 )) ); 
else

PeakFeature(Pindex) = NaN; 
end 

end
xa= find(PeakFeature>0);
PeakFeatureOK= PeakFeature(xa); 
mFF= mean(PeakFeatureOK); 
stdFF= std(PeakFeatureOK);
FeatureThreshold = 1.0 ;
Pindex=1;

while Pindex <= PeaksNumber
If feng{Pindex)>100 & Pindex >Pwindow & Pindex < ( PeaksNumber - Pwindow) 

if(PeakFeature(Pindex)>= FeatureThreshold) 
tMax= max( PeakFeature(Pindex-Pwindow: Pindex+Pwindow)); 
if PeakFeature(Pindex) == tMax 

if FirstPeak==0 
if feng(Pindex)>150 & feng(Pindex)<300 

FirstPeak=1;
Pwindow= 8; 

else 
target=250;
Pindex = PeaksNumber + 1; 

end 
else

if SecondPeak==0 
if feng(Pindex)>=300 

SecondPeak=1;
Pwindow= 8; 

end 
else

target = feng(Pindex);
Ptarget= Pindex;
Pindex = PeaksNumber + 1; 

end 
end 

end 
end 

end
Pindex= Pindex +1; 

end
if( lsShow==1) 

figure{3); 
subpiot(6, 1,1);
piot(feng, PeakFeature, 'k');hoid on;
xiim([0,2048]);
yiim([0,2.5]);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

hold on 
end
dis= (target -250)* 0.0075; 
UData(Ucount) = dis;
Licount

end
= Ucount + 1;

clear Ecf
clear FeatureThreshold
clear FirstPeak
clear MisRead
clear PeakFeature
clear PeakFeatureOK
clear PeaksNumber
clear Pindex
clear Ptarget
clear Pwindow
clear SER
clear SecondPeak
clear amp
clear ans
clear bak
clear cf
clear CfX
clear fwidth
clear interface
clear m
clear mPF
clear n
clear neighbor
clear ns
clear pH
clear feng
clear psize
clear stdFF
clear sum_data
clear swa
clear swd
clear tMax
clear target
clear whichtooth
clear xa

end
range= ['r' num2str(1) 'o' num2str(whichP) ':r' num2str(192) 'o' num2str(whichP)]; 
rc = ddepoke(chan, range, UData); 

end

rc = ddeterm(chan); 
fclose(fid);
disp('End Processing!!');

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

APPENDIX B

STATISTICAL EVALUATION OF THE AGREEMENT BETWEEN ULTRASONIC 
PROBING AND MANUAL PROBING METHOD

In this appendix, additional evaluation results by the Bland-Altman method are 

presented for the ultrasonic and manual probing measurements obtained on May 18, 2001 

and August 17, 2001.
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May 18 - Patient #  3
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May 18 - Patient # 5
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Average probing depth by ultrasonic and manual method (mm)
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May 18 - Patient # 9
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May 18 - Patient # 11
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May 18 - Patient # 13
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Aug 17 - Patient # 1
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Aug 17 - Patient #  3
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Aug 17 - Patient # 5
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Aug 17 - Patient # 7

o»
I -2

c - 4

Average probing depth by ultrasonic and manual method (mm)

Aug 1 7 -Patient # 8

1 2 3 4 5 6 7
Average probing depth by ultrasonic and manual method (mm)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



155

Aug 17 - Patient # 9
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Aug 17- Patient# 11
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Average probing depth by ultrasonic and manual method (mm)
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APPENDIX C

SOURCE CODE OF TOPS EXTRACTION OF MULTI LAMB MODES

clear 
dispC'); 
dispC'):
info= Welcome!'; 
disp(info); 
dispC');
lnfo= 'This program is developed to analyse Lamb waveforms and extract the TOFs of the first 
three modes.'; 
disp(info); 
disp('');

fna = input('Please enter data file name: ','s'); 
fname = ['d:V fna];
disp('ln Processing. Please wait...'); 
disp('');

try,
lsShow= 1; 
r = zeros(10000, 3); 
fid = fopen(fname, 'r');
TOFs = zeros(1,20);
%signal = fread(fid, 6500*15, 'inti 6'); 
for m=1:1

signal = fread(fid, 6500*1, 'inti 6'); 
signai= signal- mean(signai); 
signai= [signal' zeros(1, 4000) ]; 
signai= signai( 301: (2048+300) );

if isShow==1 
subpiot(5,1,1); 
piot(signal); 
hold on
xiim([1 iength(signai) ]); 
xiabei('(a)','FontSize',14); 

end
cfX = cwt(signai, 1:64, 'morl'); 
cf2= mean(cfX.^2);
[swa,swd] = swt(signai, 4, 'coif3');
swd(1:3,:)=0;
swa(:,:)=0;
sx = iswt(swa,swd,'coif3'); 
cfY = cwt(sx, 8:0.1:15, 'cgau2');
[swa,swd] = swt(cf2, 6, 'coif3'); 
swd(1:5,:)=0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



159

SER = iswt(swa,swd,'coif3'): 
if lsShow==1 

subplot(5,1,3): 
piot(cf2);
xlim([1 Iength(cf2) ]); 
xlabel('(b)','FontSize',14); 

end
if lsShow==1 

subplot(5,1,5); 
hold on 
plot(SER):
xlim([1 length{SER) ]); 
xlabel('(c)','FontSize',14); 

end
x_1=diff(SER); 
yR_1 =[0 x_1]: 
yL_1 =[x_1 0]; 
big_1 = (yL_1>=0); 
yL_1(big_1)= 5; 
smalU = (yL_1<0): 
yL_1 ( smalLI ) -  1; 
big_1 = (yR_1>=0); 
yR_1(big_1 )=1; 
small_1 = (yR_1<0); 
yR_1( small_1)= -5; 
feng= find(yR_1 == yL_1); 
feng= feng( feng>100 ); 
if lsShow==1 

plot(feng, SER(feng), 'ro'); 
end
thres_peak= 0.1* mean(SER); 
feng = feng( SER(feng)> thres_peak ); 
fwidth = 10*2*2;
PeaksNumber^ length(feng); 
realjeng = feng; 
for p=1:5

local_region= cf2( feng(p) -fwidth: feng(p)+ fwidth); 
ppp= find( locaLregion == max( locaLregion)); 
real_feng(p) = feng(p)-fwidth + ppp -1; 

end
PeakFeature= zeros(PeaksNumber, 2); 
if lsShow~1 

figure(2); 
end
for dw =1:5 

if lsShow==1 
subplot(1,5, dw); 

end
interface= real_feng(dw); 
if ( interface >fwidth )

neighbor= cfY(:, interface- fwidth:interface+ fwidth); 
neighbor= abs(neighbor); 
top= max(max(neighbor)); 
if(top~=0) 

neighbor= neighbor/top; 
end
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tem^neighbor;
tem(:,;)=0;
x= find( neighbor>=0.9): 
tem(x)=1; 
dwfp=tem;
PeakFeature(dw, 1) = sum(sum(dwfp)); 
PeakFeature(dw, 2) = PeakFeature(dw, 1); 
if lsShow==1 

imshow(dwfp):
title( [ num2str( PeakFeature(dw, 1)) ]

end 
end 

end
exce!_data= [PeakFeature feng'];
GoodOnes= find(exceLdata(:,1 )>500); 
if( length(GoodOnes) >= 3 )

GoodModes= excel_data( GoodOnes,:);
TOFs = GoodModes(:,3): 
clear GoodModes; 

end
clear GoodOnes;

r(m, 1)=TOFs (1) 
r(m, 2)= TOFs (2) 
r(m, 3)= TOFs (3) 
clear excel_data;

end

start_point= 1500; 
sample_size= 6500; 
sample_rate= 25; 
delay_line= 12.1; 
nulLarea =0;
r = (r + start_point+ nulLarea )/sample_rate - delayjine; 
OUTname = [fna '.txt']; 
save(OUTname, 'r','-ASCir)

fclose(fid);
disp('TOFs were saved in:');
disp(OUTnanne);
disp('Done!');

catcfi, 
estr = lasterr; 
disp(estr);
disp('An error has occured. Program ended'); 
dispC'); 

end
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APPENDIX D

ILLUSTRATIONS OF THE DWFP BASED ALGORITHM TO MEASURE THE 
ARRIVAL TIMES OF THE MULTIPLE LAMB WAVE MODES

In this appendix, additional processing results of the four aluminum plates in 

Chapter V are presented.
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Plate #15- 0.99 MHz -Projection 1
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Plate #1- 0.99 MHz -Projection 1
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Plate #1- 0.99 MHz -Projection 2
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Plate # 5- 0.99 MHz -Projection 1
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Plate # 5- 0.99 MHz -Projection 2
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Plate # 6- 0.99 MHz -Projection 1
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Plate # 6- 0.99 MHz -Projection 2
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