43 research outputs found

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    Development of Robust Analog and Mixed-Signal Circuits in the Presence of Process- Voltage-Temperature Variations

    Get PDF
    Continued improvements of transceiver systems-on-a-chip play a key role in the advancement of mobile telecommunication products as well as wireless systems in biomedical and remote sensing applications. This dissertation addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. The proposed design techniques and circuit-level attributes are aligned with current built-in testing and self-calibration trends for integrated transceivers. In this work, the main focus is on enhancing the performances of analog and mixed-signal blocks with digitally adjustable elements as well as with automatic analog tuning circuits, which are experimentally applied to conventional blocks in the receiver path in order to demonstrate the concepts. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for baseband operational transconductance amplifiers is proposed that enables a third-order intermodulation (IM3) improvement of up to 22dB. Fabricated in a 0.13µm CMOS process with 1.2V supply, a transconductance-capacitor lowpass filter with the linearized amplifiers has a measured IM3 below -70dB (with 0.2V peak-to-peak input signal) and 54.5dB dynamic range over its 195MHz bandwidth. The second circuit is a 3-bit two-step quantizer with adjustable reference levels, which was designed and fabricated in 0.18µm CMOS technology as part of a continuous-time SigmaDelta analog-to-digital converter system. With 5mV resolution at a 400MHz sampling frequency, the quantizer's static power dissipation is 24mW and its die area is 0.4mm^2. An alternative to electrical power detectors is introduced by outlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier's measurement results at 1GHz with the measured DC voltage output of an on-chip temperature sensor show that the amplifier's power dissipation can be monitored and its 1-dB compression point can be estimated with less than 1dB error. The sensor has a tunable sensitivity up to 200mV/mW, a power detection range measured up to 16mW, and it occupies a die area of 0.012mm^2 in standard 0.18µm CMOS technology. Finally, an analog calibration technique is discussed to lessen the mismatch between transistors in the differential high-frequency signal path of analog CMOS circuits. The proposed methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies

    Energy Efficient Techniques For Algorithmic Analog-To-Digital Converters

    Get PDF
    Analog-to-digital converters (ADCs) are key design blocks in state-of-art image, capacitive, and biomedical sensing applications. In these sensing applications, algorithmic ADCs are the preferred choice due to their high resolution and low area advantages. Algorithmic ADCs are based on the same operating principle as that of pipelined ADCs. Unlike pipelined ADCs where the residue is transferred to the next stage, an N-bit algorithmic ADC utilizes the same hardware N-times for each bit of resolution. Due to the cyclic nature of algorithmic ADCs, many of the low power techniques applicable to pipelined ADCs cannot be directly applied to algorithmic ADCs. Consequently, compared to those of pipelined ADCs, the traditional implementations of algorithmic ADCs are power inefficient. This thesis presents two novel energy efficient techniques for algorithmic ADCs. The first technique modifies the capacitors' arrangement of a conventional flip-around configuration and amplifier sharing technique, resulting in a low power and low area design solution. The other technique is based on the unit multiplying-digital-to-analog-converter approach. The proposed approach exploits the power saving advantages of capacitor-shared technique and capacitor-scaled technique. It is shown that, compared to conventional techniques, the proposed techniques reduce the power consumption of algorithmic ADCs by more than 85\%. To verify the effectiveness of such approaches, two prototype chips, a 10-bit 5 MS/s and a 12-bit 10 MS/s ADCs, are implemented in a 130-nm CMOS process. Detailed design considerations are discussed as well as the simulation and measurement results. According to the simulation results, both designs achieve figures-of-merit of approximately 60 fJ/step, making them some of the most power efficient ADCs to date

    Energy Efficient Techniques For Algorithmic Analog-To-Digital Converters

    Get PDF
    Analog-to-digital converters (ADCs) are key design blocks in state-of-art image, capacitive, and biomedical sensing applications. In these sensing applications, algorithmic ADCs are the preferred choice due to their high resolution and low area advantages. Algorithmic ADCs are based on the same operating principle as that of pipelined ADCs. Unlike pipelined ADCs where the residue is transferred to the next stage, an N-bit algorithmic ADC utilizes the same hardware N-times for each bit of resolution. Due to the cyclic nature of algorithmic ADCs, many of the low power techniques applicable to pipelined ADCs cannot be directly applied to algorithmic ADCs. Consequently, compared to those of pipelined ADCs, the traditional implementations of algorithmic ADCs are power inefficient. This thesis presents two novel energy efficient techniques for algorithmic ADCs. The first technique modifies the capacitors' arrangement of a conventional flip-around configuration and amplifier sharing technique, resulting in a low power and low area design solution. The other technique is based on the unit multiplying-digital-to-analog-converter approach. The proposed approach exploits the power saving advantages of capacitor-shared technique and capacitor-scaled technique. It is shown that, compared to conventional techniques, the proposed techniques reduce the power consumption of algorithmic ADCs by more than 85\%. To verify the effectiveness of such approaches, two prototype chips, a 10-bit 5 MS/s and a 12-bit 10 MS/s ADCs, are implemented in a 130-nm CMOS process. Detailed design considerations are discussed as well as the simulation and measurement results. According to the simulation results, both designs achieve figures-of-merit of approximately 60 fJ/step, making them some of the most power efficient ADCs to date

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Energy Harvesting for Self-Powered Wireless Sensors

    Get PDF
    A wireless sensor system is proposed for a targeted deployment in civil infrastructures (namely bridges) to help mitigate the growing problem of deterioration of civil infrastructures. The sensor motes are self-powered via a novel magnetic shape memory alloy (MSMA) energy harvesting material and a low-frequency, low-power rectifier multiplier (RM). Experimental characterizations of the MSMA device and the RM are presented. A study on practical implementation of a strain gauge sensor and its application in the proposed sensor system are undertaken and a low-power successive approximation register analog-to-digital converter (SAR ADC) is presented. The SAR ADC was fabricated and laboratory characterizations show the proposed low-voltage topology is a viable candidate for deployment in the proposed sensor system. Additionally, a wireless transmitter is proposed to transmit the SAR ADC output using on-off keying (OOK) modulation with an impulse radio ultra-wideband (IR-UWB) transmitter (TX). The RM and SAR ADC were fabricated in ON 0.5 micrometer CMOS process. An alternative transmitter architecture is also presented for use in the 3-10GHz UWB band. Unlike the IR-UWB TX described for the proposed wireless sensor system, the presented transmitter is designed to transfer large amounts of information with little concern for power consumption. This second method of data transmission divides the 3-10GHz spectrum into 528MHz sub-bands and "hops" between these sub-bands during data transmission. The data is sent over these multiple channels for short distances (?3-10m) at data rates over a few hundred million bits per second (Mbps). An UWB TX is presented for implementation in mode-I (3.1-4.6GHz) UWB which utilizes multi-band orthogonal frequency division multiplexing (MB-OFDM) to encode the information. The TX was designed and fabricated using UMC 0.13 micrometer CMOS technology. Measurement results and theoretical system level budgeting are presented for the proposed UWB TX

    COMPUTE-IN-MEMORY WITH EMERGING NON-VOLATILE MEMORIES FOR ACCELERATING DEEP NEURAL NETWORKS

    Get PDF
    The objective of this research is to accelerate deep neural networks (DNNs) with emerging non-volatile memories (eNVMs) based compute-in-memory (CIM) architecture. The research first focuses on the inference acceleration and proposes a resistive random access memory (RRAM) based CIM architecture. Two generations of RRAM testchips which monolithically integrate the RRAM memory array and CMOS peripheral circuits are designed and fabricated using Winbond 90 nm and TSMC 40 nm commercial embedded RRAM process respectively. The first generation of testchip named XNOR-RRAM is dedicated for binary neural networks (BNNs) and the second generation named Flex-RRAM features 1bit-to-8bit run-time configurable precision and leverages the input sparsity of the DNN model to improve the throughput and energy efficiency. However, the non-ideal characteristics of eNVM devices, especially when utilized as multi-level analog synaptic weights, may incur a notable accuracy degradation for both training and inference. This research develops a PyTorch based framework that incorporates the device characteristics into the DNN model to evaluate the impact of the eNVM nonidealities on training/inference accuracy. The results suggest that it is challenging to directly use eNVMs for in-situ training and resistance drift remains as a critical challenge to maintain a high inference accuracy. Furthermore, to overcome the challenges posed by the asymmetric conductance tuning behavior of typical eNVMs, which is found to be the most critical nonideality that prevents the model from achieving software equivalent training accuracy, this research proposes a novel 2-transistor-1-FeFET (ferroelectric field effect transistor) based synaptic weight cell that exploits hybrid precision for in situ training and inference, which achieves near-software classification accuracy on MNIST and CIFAR-10 dataset.Ph.D

    Design, verification and integration of a fast digitizer for nuclear structure experiments. Application to EXOGAM and NEDA detectors

    Get PDF
    Els experiments en estructura nuclear es porten a terme per poder entendre les propietats d’un sistema molt complex, el nucli atòmic. Els isòtops nuclears posseeixen propietats molt diferents, com ara puguen ser la estabilitat, deformació, secció eficaç de producció, modes de desintegració, etc. És evident que un enteniment complet d’aquestes propietats és necessari per poder satisfer les finalitats a les quals es pretén arribar, tant en el marc de la física teòrica nuclear, com en aquelles aplicacions que se’n deriven d’ella, com ara: radioteràpia, imatge mèdica, astrofísica, biologia, ciència dels materials, etc. Fins al moment, s’han predit un nombre de 6000 isòtops existents, encara que les propietats de tan sols uns 3000 s’han estudiat parcialment. La mesura de les propietats del nucli no és per res una tasca fàcil. Requereix d’un ampli coneixement sobre la interacció de la radiació amb la matèria, la instal·lació de complexos detectors amb centenars de canals, així com la electrònica associada i les granges d’ordinadors que s’utilitzen per al processat. L’eina més utilitzada pels físics avui en dia per a obtenir les propietats del nucli és la coneguda com espectroscòpia de rajos gamma, que utilitza l’espectre d’energies d’aquests rajos mitjançant la energia dels rajos que col·lisionen al detector. Per a dur aquesta tasca eficientment, sobretot a aquells nuclis anomenats “nuclis exòtics”, es necessita una complexa infraestructura, que per al cas de la anàlisi de la estructura nuclear, s’implementa amb espectròmetres de rajos gamma d’altra resolució, junt amb detectors complementaris com ara els detectors de neutrons i els detectors de partícules carregades. Pel que fa a la electrònica, es evident que moltes aplicacions s’encaren cada cop més a la electrònica digital, la qual fa més fàcil la implementació d’una electrònica més flexible, donada la versatilitat dels dispositius programables per a poder implementar algoritmes complexos, així com també de la seua integració. Tanmateix, algunes de les mesures que s’utilitzen per a la caracterització del nucli, com per exemple el temps de vol o la resolució en energia encara es fan actualment amb mètodes analògics, donada la gran dificultat per dur-los a terme mitjançant electrònica digital sense degradar la qualitat de la mesura. Aquesta tesi mostra el rendiment que se’n pot obtenir d’un sistema digital qual es fan mesures amb espectròmetres de rajos gamma d’altra resolució, on el desafiament és mantenir la qualitat dels sistemes analògics pel que fa a la resolució en energia, i amb la millora que aporten els sistemes digitals per a poder donar més flexibilitat, integració, millorar les comunicacions, així com també reduir els costs. Concretament, el text tracta sobre el disseny, proves i la integració d’un digitalitzador d’alta velocitat, que siga capaç de complir amb les especificacions que es requereixen per al espectròmetre d’alta resolució EXOGAM (EXOtic GAMma array), així com també del futur detector de neutrons NEDA (NEutron Detector Arrary), que serà utilitzat complementàriament amb EXOGAM i AGATA. Les Conclusions d’aquest text mostren l’èxit al integrar un sistema digital que fins al moment s’ha utilitzat mitjançant mètodes analògics. D’aquesta manera, amb la prova de que fer espectroscòpia de rajos gamma mitjançant sistemes digitals, aquest text estableix un marc de treball per a futures aplicacions al camp de la instrumentació i electrònica aplicada per al futur de la recerca en la estructura del nucli atòmic.Nuclear structure experiments are carried out in order to understand the many properties of a very complex body: the nucleus. Different nuclear isotopes involve very different properties as for example stability, deformation, production cross-section, decay modes, etc. It is well known that a comprehensive understanding of these properties is compulsory in order to deal with the most recent challenges of nuclear fundamental physics, as well as in more applications such as: radiotherapy, medical imaging, astrophysics, biology, material sciences, nuclear energy, etc. Up to now, around 6000 different nuclear isotopes are predicted to exist, but until now the properties of only 3000 have been partially studied. Measuring nuclear properties mentioned above is not an obvious task. It requires a large knowledge about interaction of radiation with matter, complex detectors arrays with hundreds of channels, and therefore, complicated electronics to achieve such measurements. The most well-known and useful method used to observe the nuclear properties is the gamma-ray spectroscopy, which obtains the energy spectra based on the energy of the gamma rays impinging in the detector. In order to perform efficiently the gamma-ray spectra, and to be capable of observing the properties of exotic nuclei, it is required complex and expensive instrumentation, which, for the case of nuclear structure is being implemented by means of high-resolution gamma-ray spectrometers coupled with ancillary detectors, such as neutron detector or charged particle detectors. Regarding the electronics, it is obvious that most applications are heading towards the digital electronics, making possible and easier the implementation of more generic and flexible electronics, given the capability to implement more complex data analysis algorithms, faster communication protocols and reconfigurable firmware, among others. However, part of the measurements used to characterize the nucleus when performing high-resolution spectroscopy, such as the time of flight or the energy resolution, still, the performance obtained with analog electronics overcomes the capabilities of digital systems, entailing a big challenge when these measurements move to the digital world without a big performance drop. This text aims to introduce and show the capabilities which can be obtained with digital systems when performing measurements with high-resolution gamma spectrometers, keeping a good energy resolution while enhancing capabilities related to integration, economic, flexibility and communications. Concretely text deals with the design, verification and integration of a high-speed digitizer, capable to deal with the requirements of the HP-Ge high- resolution gamma-ray spectrometer EXOGAM (EXOtic GAMma array) and the future NEDA (Neutron Detector Array) fast neutron detector, used as an ancillary neutron detector for EXOGAM and AGATA. Finally, the conclusion shows the successful attempt to integrate a digital system in a task which has been implemented up to the date with analog electronics. Therefore, showing the evidence that high-resolution gamma-ray spectroscopy with digital systems is definitely possible, this text establishes an outline for future applications in the field of instrumentation applied for the nuclear structure research
    corecore