49,189 research outputs found

    Buckling of an axially restrained steel column under fire loading

    Get PDF
    Analytical procedure, based on the linearized stability analysis, is presented for the determination of the buckling load and the buckling temperature of a straight, geometrically perfect, axially loaded steel column subjected to an increasing temperature simulating fire conditions. The nonlinear kinematical equations and the nonlinearity of material are considered. The stress strain relation for steel at the elevated temperature and the rules for reduction of material parameters due to increased temperature are taken from European standard EC 3. Theoretical findings are applied in the parametric analysis of a series of Euler's columns subjected to two parametric fires. It is found how the slenderness of the column, the material nonlinearity, the temperature dependence of material parameters, and the stiffness of restraints at supports effect the critical temperature. While these parameters have major influence on the critical temperature, they have no effect on the shape of the buckling mode

    Hybrid materials based on polyethylene and MCM-41 microparticles functionalized with silanes: catalytic aspects of in situ polymerization, crystalline features and mechanical properties

    Get PDF
    New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature

    NGMV control of delayed piecewise affine systems

    Get PDF
    A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude k. Then the NGMV control strategy [1] can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes [2]

    Active stabilization to prevent surge in centrifugal compression systems

    Get PDF
    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range. This has important implications for implementation in gas turbine engines since the Helmholtz frequencies can be over 100 Hz, making actuator design extremely challenging
    • …
    corecore