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Abstract: A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of 

piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an 

equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of 

the original PWA systems and includes both the discrete and continuous signals in one general description. In a more 

general way, the process is assumed to include common delays in input or output channels of magnitude k. Then the 

NGMV control strategy [1] can be applied.  The NGMV controller is related to a well-known and accepted solution for 

time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes [2].  

1. Introduction 

    Control algorithms developed for piecewise affine systems are often designed using optimal control 

or Model Predictive Control (MPC) techniques. The first hybrid MPC algorithm, developed for mixed 

logical dynamical systems (equivalent to piecewise affine systems under certain mild conditions), was 

presented in [3]. Unfortunately, this algorithm has the drawback that it has a high on-line computational 

demand.  This is mainly caused by the mixed integer quadratic programming problem (NP hard) that has 

to be solved on-line, at each discrete-time instant.   

     The delayed discrete-time PWA model is more general than most PWA models. It includes 

disturbances and what might be significant time-delays. Many existing control strategies are not so 

effective for this type of problem.  State dependent systems are easier to understand and design than 

hybrid systems including both state and input constraints and involving explicit switching conditions. 

This motivates the development of an equivalent state-dependent framework of PWA systems that 

absorb these features in the system model.  

   State dependent systems can arise when parametric uncertainty is present in a model [4], or when the 

actual Nonlinear (NL) system can be approximated by a state-dependent system and an LTI model may 

be a very poor approximation.  The other advantages of this model are:  

1. A state-dependent model needs less supervision by logical constructs than controllers developed 

with traditional techniques for hybrid systems. 
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2. System time-delays and disturbances are more naturally modeled in the plant than some other 

hybrid control system models (eg. MLD ).  

3. They are easy to extend to systems with other types of nonlinearity or uncertainties. 

After obtaining  the hybrid system in the state-dependent form, the so called Nonlinear Generalized 

Minimum Variance (NGMV) controller, which is very simple to compute and implement, can be 

applied. In the following this transformation process and the properties of the resulting NGMV 

control law are explored. The focus is on implementation and design issues. 

         The rest of the paper is organized as follows. In section 2, the definitions of PWA systems and 

state-dependent systems are presented and the method by which a PWA system is transformed into a 

state-dependent system, which includes the hybrid characteristics, is discussed. In section 3, the general 

system models, that include three different types of subsystems, are described.  The NGMV control law 

for this system is considered in section 4.  Finally, conclusions are drawn in section 5.  

2.  Discrete-Time PWA Systems and State-dependent Systems 

2.1 Piecewise Affine Systems 

In this work, we focus on delayed discrete-time PWA systems, whose state-space representation is: 

                                  1x t A x t B u t k D di i i    ( ) ( ) ( ) ( )t                                                    (1a)        

y t C x t E u t ki i  ( ) ( ) ( )                                                                  (1b) 

where is the state,  is the input,  is the output and  is the disturbance and k 

denotes the magnitude of the common delay elements. Each affine subsystem
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A B C D Ei i i i i( , , , , )

hiu

,  

is defined on a cell   that is a polyhedron. Moreover, in order to simplify the exposition, we 

assume that our cells are polyhedral sets defined by matrices ,   and as follows: 
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 The cells satisfy   , their union defines the admissible set of states and 

inputs .  Note that the delayed discrete-time PWA system defined in (1)  can also include 
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measurement noise  e.g. rewrite (1b) as( )v t y t C x t E u t k v ti i   ( ) ( ) ( ) ( )

1  (t)

. However, in this section, we 

use system (1) to define the delayed discrete-time PWA systems. The model with output measurement 

noise  will be defined in a general format in section 3. ( )v t

Although PWA systems have been studied in many papers, the system disturbances (  in system 

(1)) are not included in many of them, for example [5]. For those existing works focused on piecewise 

affine systems with disturbances [6] [7], disturbances can only belong to a small bounded set. Unlike 

these models, the disturbances in this work are assumed to be zero-mean, independent, Gaussian white 

noise. The model also includes an explicit common delay k on the input channel, which is not always 

included in the existing literature, where time-delays are often modeled using additional state variables,   

(see for example [8]).   

d t( )

     A PWA system (1) is called well-posed [9], if x t y( ),  are uniquely defined functions 

of   x t u t, ( k d t( ) ), ( ) . For a well-posed PWA system, the sets i  have mutually disjoint interiors, and are 

often defined as the partition of a convex polyhedral set. i.e.  i ji j     , . Note that the well-

posedness requirement of a PWA system is contradicted with the definition in equation (2), where i  

and  can have overlapping boundaries from the definition “j   ”.  To ensure the well-posedness, some 

of the inequalities in equation (2) have to be written in the form and .   hix G u t hiu iu( )G x tix ( )

, ( )) ( ) ( ( ), ( )) (u t u t k x t u t d 

) ( ( ), ( )) ( )t x t u t u t k  

2.2    State dependent systems 

      A state dependent system involves state equation matrices that are time-varying since they depend 

upon the states and also upon control inputs, or even some other external parameters or command signal.  

Such an equation has the form: 

         ( 1) ), ( )) ( ) ( ( ) )                                       (3a)x t u t x t x t t   ( (x t

y

,
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where  depend on    , , ,   ( )x t  and .  The actual dependence is on past values of u(t) since 

different states will be affected by different delayed values of u(t) (greater than a delay k). The state-dependent 

form involves a system model that is applicable to a wide range of nonlinear dynamical systems.  It can 

( )u t



express evolutions of continuous (linear) variables through linear dynamic equations, of discrete 

(nonlinear) variables through propositional logic statements, and also represent the mutual interaction 

between the two.  State-dependent systems are therefore capable of modeling a broad class of systems, 

including PWA systems.       

Proposition 1:   Every well-posed PWA system (1) can be written as a state-dependent system (3).  That 

is, for any feasible polyhedral partition of state plus input set  i1
s
i   and  its corresponding  

parameters , i = 1, . . . , s, of system (1),  there exists  a combination of ( , , , , )i i i i iA B C D E

  ( , ), ( , ),  (( ( , ), , ), ( , ))x u x u x u x u x u     of system (3), such that all trajectories ( ), ( ), ( )x t u t y t  of the 

PWA system (1) also satisfy the state-dependent model (3). 

Proof: Consider the PWA system (1), to rephrase the condition (2) in logic form, we introduce an 

auxiliary logic variable 0 1( ) { , }i t  , where .  
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The well-posed system (1) with the partition (2), can then be written in the form: 
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The value of the logic variable  0 1( ) { , }i t   in system (4) depends on the state and input variables  ( )x t  
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where constant .  Then,                           nm
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i ix ix iu iu

j l
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where j and l denote the j-th row and the l-th row, respectively. By substituting (5) in (4a) and (4b) 

obtain: 
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Hence, the PWA system (1) is transformed into a NL state-dependent system (6) having the form of (3):  
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 Remarks:   Note that the well-posedness of the original PWA system implies that  ( )i t  and  

are , and . In general, the feasible state plus input set    of  (2) is non-convex, 

i.e. there must be some inequalities take the ‘<’ form. Nevertheless, the ‘<’ function can also be defined 

like the ‘ ’ function as
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3. System Model Description  

3.1 System Plants 

In order to derive the control algorithm for state-dependent systems, we use the general system 

description in [1]. The plant is nonlinear and may include two nonlinear subsystems. Considering the 

input signals are normally bounded for PWA systems, the first NL subsystem is defined as a saturation 

type nonlinearity in this paper. The second is a so called state-dependent NL equation form. However, the 

reference and disturbance signals are assumed to have linear model representations.  The system is shown 

in Fig.1, including the nonlinear plant model and the linear reference/disturbance models.  The zero-mean 

white measurement noise is denoted { (  and it has a covariance matrix .  There is no loss of 

generality in assuming that the zero-mean, white noise signals

)}v t fR

{ ( )}t and  ( )t2 , that feed the reference 

and disturbance models, have identity covariance matrices.  
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Fig 1:   The System Description 

Reference model:                 ( 1) ( ) ( )r r r rx t A x t D t                                                         (7) x t Rr
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r t C x tr r( ) ( )    and    W z                                               (8) C zI A Dr r r( ) ( )  1
r

1

Error weighting:                   2( 1) ( ) ( ) ( ) ,p p p px t A x t B r t y t                         (9) x t Rp
np( ) 

                                                  2( ) ( ) ( ) ( )p p p py t C x t E r t y t                                                             (10) 

Nonlinear Plant:                                  -k
ku t z u t                                                                      (11) 

where k  denotes the magnitude of the common delay elements in the output signal paths. The total 

forward path plant model:         -k
2k 1k

u t z u t       (12) 

and . Although the first nonlinear subsystem can be a general nonlinear system [1], a 

saturation characteristic is defined here to ensure the input signal  is bounded i.e. 

, where    and   are the lower and upper bounds. The second nonlinear 

subsystem  is represented by the state-dependent model equations, shown in Fig.1.                                         

1 1( ) ( )ku t u t

1 min m( ) [ , ]u u
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Total Linear Sub-System State Equation Model:  Combining the linear reference and error weighting 

model, obtain the augmented state equation for the total linear sub-system as: 
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The resolvent operator may now be defined as:  1( ) ( )z zI A 1      so that,     

             1 1
0( ) ( ) ( ) ( ) ( )x t z Bu t k z D t      

Note that he signal  0 ( )t  is to be minimized in a variance sense as discussed in Section 4.  

3.2 State Prediction Equations       

The Kalman filter is needed to estimate the states of the combined linear model. These results are well 

known [10] and will be omitted here. For a time-invariant system define: 

                          1 1 1 1 2 2
0 ( , ) ( ) ( ) ...k k k kT k z I A z z z I z A z A z A               1 1

2

                  (15) 

which denotes a transfer operator with finite pulse response. It is then easy to show that a k-step ahead 

state prediction can be expressed as:  

  (16)           1 1 2
0 2 2 2 2 2ˆ ˆ ˆ( | ) ( | ) ( , ) ( ) ( | ) ( ) ( 1) ...... ( 2) ( 1)k k k kx t k t A x t t T k z By t k A x t t A By t A By t ABy t k By t k                

Now consider the second nonlinear system model in the so called linear state dependent (LSD) state-

space form. [11]. It is the system defined in (3) with   steps common delay: k

            2 2 1 2 2 1 1 2 1( 1) ( , ) ( ) ( , ) ( ) ( , ) ( )x t x u x t x u u t k x u t                      (17a) 

              2 2 1 2 2 1( ) ( , ) ( ) ( )y t x u x t u t   k                          (17b) 

where is a vector of sub-system states, is a vector of the LSD sub-system inputs, (t)2x ( )1u t 2 ( )y t is a 

vector of sub-system output signals and 2 ( )t  is a vector of disturbance signals. The total combined 

vector of linear and state-dependent system model states is defined as      2

TT T
t x t x t   
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and to simplify 

notation in (17), write  and similarly for ,  and  . 2( ) ( ( ),t x   1( ))u tt

Prediction model:    The k-steps prediction of the state and output signals can similarly be defined:      
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4. Nonlinear Generalized Minimum Variance Control Law 

4.1 NGMV Control Problem 
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Fig. 2:  Single Degree of Freedom Closed-Loop Control for the NL Hybrid Plant 

The optimal NGMV control problem involves the minimization of the variance of the signal   0
t  

shown in Fig. 2.   The signal  0 ( )t  is to be minimized in a variance sense, where:   

        0 ( ) c c ct P e t t u t                                                          (21) 

and the cost index: 

                                  0 0 0 0
T TJ E t t E trace t t        (22) 

where E   denotes the unconditional expectation operator.    The signal  0 ( )t  involves an error signal 

dynamic cost-function weighting matrix 1(cP z ) , that is represented by a linear state-space sub-system 

with output  ( )p cy t P e t .  The criterion also includes the nonlinear state weighting 

term   c t ( )zy t   and enables a limit to be introduced on all the linear and state-dependent 

subsystem states,  that are to be penalized.  That is, the weighting on a certain combination of states may 

be included in the criterion via the signal   1( ) ( )z c zt C x t   2 2 ( )z x t( )y t , where 1 1( ) ( )z zy t x t �  

and  . The operator  can include dynamics and NL terms, and for simplicity can be 

augmented to the second linear state-dependent (LSD) sub-system states. The final term in the criterion 

is the NL dynamic control signal costing operator term 

2 ( )zy t  2 2( )z x t��  c

  c .u t    If the smallest delay in each output 

channel of the plant is of magnitude k -steps this implies the control at time t affects the output at least 

steps later.  For this reason the control signal costing can be defined to have the form:  k

                                                         c c
k

ku t z u t                                             (23) 



Typically this will be a linear operator but it may also be chosen to be NL to cancel the plant input 

nonlinearities in appropriate cases.  The control weighting operator  is assumed to be full rank and 

invertible.    The choice of dynamic weightings is critical to the design and the weighting is 

typically a low-pass filter and  is a high-pass filter.    

ck

cP

c

4.2 Solution of the NGMV Optimal Control Problem 

The solution of the optimal control problem may be obtained by expanding the expression for the 

inferred output  
0
( )t  and by then introducing a prediction equation.  Recall,  

                                
0
( ) ( ) ( ) ( )( )c c c p z ct P e t t u t y t y t u t           (24) 

The first error weighting term may be written in a more concise form, using (10), as: 

    1 1 2( ) ( ) ( )p c p py t P e t C x t E y t                                                            (25) 

where ( ) nx t R

1zC

,  .  Similarly, if the linear and nonlinear subsystem state weightings are 

denoted by  and , respectively, then the state weighting term: 

1pE  

2z

pE

t

  1 2 2( ) ( ) ( ) ( )z c z zy t t C x t x t                                                           (26) 

Hence, the inferred output or signal to be minimized:      

                                      0 0( ) ( ) ( ) ( )( )ct t E u t k u                                           (27) 

where  1 2 1 1 2 p z zC C C              and 1pE E  . Thence,   

0 2 1( ) ( ) ( )( ) ( )( )k k ct t E u t k u     t                                               (28) 

In the set of channels with explicit delay k  the control signal affects the outputs  0 ( )t  at least k - steps 

later and the control signal weighting is therefore defined to have the form .  

Substituting into (28) obtain:   

( ( )( )k
kz u t )( )u tc c

                                           0 2 1( ) ( ) ( ) ( )k k ckt t E u t          k

1

 (29) 

The prediction may be obtained in terms of (16) and (19) as: 
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which may be written more concisely, with an obvious definition of matrix terms, as: 

                                                                                        (30) 1
1

ˆ ˆ( | ) ( | ) ( , ) (kt k t t t k z u t 
     

Note that the predicted values of the state related terms in (29) therefore become: 

1 1
1 2 2 2 2 2 1 0 2 2 1

ˆ ˆ ˆ( | ) ( | ) ( 1) ( 2) ... ( ) ( | ) ( ( , ) ( , )) (k
kt k t C A x t t t k t k t x t t C T k z B k z u t    

                   (31)  

Prediction Equation:   The  steps ahead prediction of the signalk
0
( )t , from (29) and (30), 

    2 10
ˆ ˆ( | ) ( | ) ( ) (k k ckt k t t k t E u t           )  

 1
1 2 1

ˆ ( | ) ( , )( )( ) ( ) ( )k
k k k ckt t k z u t E u t    

             

                                                 (32)  1
2 1

ˆ ( | ) ( ( , ) ) ( )k
k k ckt t k z E u t    

           

T

)

The cost-function involves the minimization of the weighted error and control signals, in a variance 

sense.  The variance may be written in terms of the prediction 

and the prediction error: , using the orthogonality properties  [12], as:      

   0 0{ ( ) ( )}TJ E t k t k

0 (t k | t)0̂ (t k | t) 

   (33)            
0 0 0 0

ˆ{ ( | ) ( | )} { ( | ) ( | )}TJ t k t t k t t k t t k t

The prediction error  does not depend upon control action and hence the cost is minimized 

by setting the predicted values of the signal 

0( |t k t

0
( )t , for k steps ahead, to zero. 

Theorem 4.1:  NGMV Controller for State Dependent and NL Systems 

The NGMV optimal controller to minimize the variance of the weighted error, states and control signals 

may be computed from the following state and operator equations.  The assumption is made that the 

nonlinear operator  ckkc cP  
��

 

,c cP  c

 has a finite gain  stable causal inverse, due to the choice of 

weighting operators  and . 

2m

Optimal control signal:  The optimal NGMV control action can be computed as:  

                                            1
1

ck 2k 1k
ˆu(t) (k, z ) E (t | t)    


           k                          (34) 



or                                         1 k 1
ck 2k 1k

ˆu(t) (t | t) (k, z ) E ( u)(t)    
                              (35) 

where . The controller structure corresponding to Equation (35) is shown in Fig. 3 pE E  
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  Fig. 3:  Control Signal Generation and Controller Modules 

Proof:  For stability analysis the time functions can be considered to be contained in extensions of the 

discrete Marcinkiewicz space 2 ,m ( )nR R  [13] and [14].  This is the space of time sequences with time-

averaged square summable signals, which have finite power.  The aim of the nonlinear control design is 

then to ensure certain input-output maps are finite-gain  stable and the cost-index is minimized.   2m

Recalling from (19) that the estimate: , depends only on 2x̂ (t | t)     1 1ku t u t 

( )

, let 

1 1
2 0ˆ( | ( ) ( )f f1 0) ( )x t t T T z u t  z e t  

Combine linear and nonlinear terms in the state weighting operators as:      

                                                         0 0 1 1c c cu (t) N u (t) u (t) 
� � �� � �                                              (36)                

where                                    1
0 0 1z 0cN u (t) C (z )Bu (t) 
��

                                                    (37) 

and                        (38)   1
1 1 2 2 2 2 2 2 1 1c ˆu (t) (t k 1) (t k 2) ... (t)x (t | t) (k, z )u (t)     
��

       

and note from (19) that this implies:   

 1
2 2 2 2 2 1 12 2

ˆ ˆ( | ) ( 1) ( 2) ... ( ) ( | ) ( , ) ( ) ( )( ) c1 1x t k t t k t k t x t t k z u t u t 
       

��
       . 

Rearranging, the desired expressions for the optimal control and plant output signals become: 

                                                                           (39)   1 k 1
k ck 1 f1c cu(t) P C A T (z )r(t)

    ��
 

                                      1k
k k ck 1 f1c cu t z P C A T (z )r(t)

    ��
    k 1

ck

                                       (40) 

The assumption is made that the cost-weightings are chosen, so that the operator   1

kc cP


 
��

   is also 

finite gain  stable. Under this assumption the two systems in the expressions for the control and output 

signals (39) and (40) only involve finite gain stable systems.                                                                                 

2m



5.  Conclusions  

An NGMV controller for delayed PWA systems, whose switching sequence depends on the state and on 

the control input, has been proposed. These PWA systems can be translated into NL state-dependent 

systems by introducing some binary functions representing the conditions describing the crossing of the 

switching surfaces. The advantage of state-dependent systems over PWA systems is that state-dependent 

systems are much easier to design, as both the state and input constraints and the switching conditions, 

can all be included in the system model. The state-feedback NGMV design methodologies provide a 

possible relatively simple way to synthesize controllers for hybrid systems.   

There are some hybrid systems where the switching conditions are more complicated and cannot 

be modeled as PWA systems. The state-dependent system may be extended to model these types of 

hybrid system in future. A discrete supervisor is needed for this extension and an NGMV controller is 

also needed for the continuous time control part. 
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