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Analytical procedure, based on the linearized stability analysis, is presented for the deter-

mination of the buckling load and the buckling temperature of a straight, geometrically

perfect, axially loaded steel column subjected to an increasing temperature simulating

fire conditions. The non-linear kinematical equations and the non-linearity of material

are considered. The stress-strain relation for steel at the elevated temperature and the

rules for reduction of material parameters due to increased temperature are taken from

European standard EC 3. Theoretical findings are applied in the parametric analysis of

a series of Euler’s columns subjected to two parametric fires. It is found how the slender-

ness of the column, the material non-linearity, the temperature dependence of material

parameters and the stiffness of restraints at supports effect the critical temperature.

While these parameters have major influence on the critical temperature, they have no

effect on the shape of the buckling mode.

Keywords: steel column; inelastic buckling; Reissner beam; high temperatures; critical
temperature.
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1. Introduction

Steel columns are very efficient structural elements both in terms of construction

time and load bearing capacity. Steel is vulnerable to fire, however, and steel struc-
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tures, potentially exposed to fire, require a particularly careful design. This espe-

cially holds true for steel columns as they are loaded in compression and are thus

prone to buckling. With an increase of temperature, strength of steel and the stiff-

ness of columns decrease leading to buckling at an even much lower level of external

loading than at the room temperature. The practical design of columns exposed to

fire is regulated by several building codes such as, e.g. Eurocode 3,1 BS59502 and

ISO 834.3 These standards offer simplified methods of analysis for isolated columns,

which sometimes do not give sufficiently reliable quantitative predictions of the fire

bearing capacity of a column, if it is a part of a frame.

A greater accuracy and a deeper insight into the thermal and mechanical be-

haviour of a column during fire can be obtained by the use of sophisticated math-

ematical models and modern numerical tools of solution. These formulations make

it possible to consider and analyse various material models, fire load scenarios,

boundary conditions, restraints and geometric imperfections. Such numerical mod-

els have also been applied to steel columns subjected to elevated temperatures,

e.g. see Ref. 4–18. The research is often focused onto the effect of boundary re-

straints in a column caused by the presence of other members that frame into it,

because their influence is of an utmost significance, and is often hard to predict

computationally.8,9,11,15,19,20 Most of the formulations employ translational and

rotational springs in modelling the restraints. Note that the restraints can either

improve21 or decrease the sustainability of the column to fire.5,8,22

Analytical solutions are much more difficult to obtain and are only limited to

the determination of fire resistance. The majority of analytical solutions revolves

around the Merchant–Rankine equation and the second-order theory of beams.

Skowronski23 derived an analytical formula for the fire resistance of a simple steel
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column. Toh et al.24 derived the formula of the critical temperature for axially and

eccentrically loaded columns. Tang et al.25 improved their formulae by taking into

account the effects of an initial crookedness, residual stresses, material models and

the load eccentricity. Huang and Tan8 significantly improved the results presented in

Tang et al.25 by additionally considering axial restraints. For columns with internal

slide release Eisenberger and Ambarsumian26 determined the exact buckling load

with use of exact stiffness matrix. With analytical tehnique, called the effective

stiffness method Yang and Park27 developed the buckling analysis of constrained

stepped columns.

The present article presents a systematic analytical procedure for the determina-

tion of the critical temperature of a straight, geometrically perfect, axially restraint

and axially loaded steel column exposed to fire. A series of standard simplifications

and assumptions need to be introduced, however, to enable the analytical solution

to be derived. In particular, we assume that a steel column can be realistically

modelled by a kinematically exact planar beam model of Reissner28 neglecting the

effect of shear strain29. Next, we assume a non-linear, temperature dependent ma-

terial law, which accounts for both viscous and plastic strains. The mathematical

expressions for the stress-strain law of steel at high temperatures are taken from

Eurocode 31 along with the explicit expressions for temperature-dependent mate-

rial parameters. As the walls of the steel sections are thin, we further assume that

the temperature field in the column is uniform, but somewhat delayed with regard

to temperature of the surrounding gas.1 After the thermo-mechanical equations are

set up, the fundamental equilibrium solution of the column is obtained and the set

of linearized equations at the fundamental equilibrium state is derived. The condi-

tion for the existence of the non-trivial solution of the linearized equations supplies
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us with the value of the buckling temperature. This approach differs from that of,

e.g. see Ref. 8, 10, 11, 17, who define the critical temperature of a compressed col-

umn as the temperature, for which the axial force, after an initial increase and a

subsequent decrease, again reaches its value at the room temperature30. The de-

tails of the formulation are presented in Secs. 2 and 3. Sec. 4 presents the results

of extensive parametric studies. The main findings are gathered in Conclusions.

2. Basic theory

2.1. Preliminaries

We consider a straight steel column of initial, undeformed length L and a constant

I-shaped cross-section. The column is centrically loaded with an axial force F while

simultaneously being exposed to fire (Fig. 1). The plane of deformation of the

column is the plane (x,z) of the Cartesian coordinate system (x,y,z). The reference

axis of the column is assumed to coincide with its centroidal axis.

cross section-
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Fig. 1. Euler’s columns and a typical cross-section.
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Modeling the interaction between fire and a structure is a hard job to do. The

majority of models assume two independent analysis steps, the first one being the

determination of the temperature field in the column and the second one consisting

of the determination of the stress and strain field due to a combined effect of

mechanical and temperature loads. In what follows, we only shortly describe the

first step, while the second step is presented in detail.

2.2. The temperature field

The variation of temperature of gas in the fire compartment depends on many

parameters, like the type and amount of fire load, area of the fire compartment,

thermal properties of walls, area and the position of openings.31,32. To avoid such

a complexity, one usually introduces the so called parametric temperature-time

curves, which uniquely define explicit temperature-time relationships for typical

situations.33 These relationships have been constructed from the results of exten-

sive experimentations. After the time-variation of the gas temperature in the com-

partment has been obtained, we determine the temperature within the structure.

This requires the integration of the differential equation of heat conduction.34 We

assume that temperature over the whole surface of the steel structure is uniform.

Moreover, as typical steel sections are thin-walled, it is reasonable to assume a uni-

form temperature over the cross-sections. Then the temperature change becomes

dependent only on time, yielding the solution as given in Eurocode 31:

∆Ts,t = ksh
Am/V

caρa

ḣnet,d∆t. (2.1)

Here ∆Ts,t presents the temperature increment in time interval ∆t, ksh is the cor-

rection factor for the shadow effect, m = Am/V is the section factor for unprotected
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steel members, Am is the surface area of the member per unit length [m2], V is the

volume of the member per unit length [m3], ca is the specific heat of steel [J/kgK],

ḣnet,d is the design value of the net heat flux per unit area [W/m2], and ρa is the

unit mass of steel [kg/m3]. According to Eurocode 31 the value of ∆t should be less

or equal to 5 seconds.

Fig. 2 shows the development of temperature with time in an unprotected steel

cross-section for two different parametric fire curves and for four different standard

I-shaped cross-sections commercially labelled as HEA 300, HEB 400, HEA 500 and

IPE 300 with thermal parameters according to Eurocode 3.1 The characteristic

parameters of the cross-sections are presented in Table 1. The two fire curves being

considered are the ISO 8343 fire curve, and the natural fire curve13. The time

increment equal to ∆t = 2 s was used in evaluating Eq. (2.1). The graphs in Fig.

2 clearly show that smaller the section factor, larger is the delay of temperature.

This becomes unimportant for temperatures higher than about 900◦C (i.e., after

about 50 minutes for the ISO 834 fire). In contrast, the delay is significant at any

stage of the development of the natural fire.
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Fig. 2. Temperature vs. time curves for different steel sections. (a) ISO 834 (ISO 834, 1975) and
(b) natural fire (Srpčič, 1991).
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Table 1. Geometrical data for cross-sections.

m
[
m−1

]
J [cm4] A [cm2] h [cm] b [cm] tf [cm] tw [cm]

HEA 300 153 18 260 113 29 30 1.40 0.85

HEA 500 107 86 970 198 79 30 2.30 1.20

HEB 400 97 57 680 198 40 30 2.40 1.35

IPE 300 216 8 360 53.8 30 15 1.07 0.71

2.3. The stress–strain field

Once the temperature distributions in the structure during fire have been obtained,

we may start the mechanical analysis. We find the solution in an incremental way.

We divide the time of the duration of fire into time intervals [ti−1, ti] (i = 1, 2, 3, . . .).

We assume that the stress and strain state at time ti−1 is given and wish to ob-

tain the state at time ti, i = 1, 2, 3, . . . . The column is modelled by Reissner’s

geometrically exact beam theory,28 but with the effect of shear deformations be-

ing neglected. Taking into account that the distributed forces are absent and shear

strains neglected, Reissner’s theory yields the following governing equations:

f1 = 1 + u i′ − (1 + εi) cos ϕi = 0, (2.2)

f2 = wi′ + (1 + εi) sin ϕi = 0, (2.3)

f3 = ϕ i′ − κi = 0, (2.4)

f4 = H i′ = 0, (2.5)

f5 = V i′ = 0, (2.6)
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f6 = M i′ − (1 + εi)Qi = 0, (2.7)

f7 = N i = Hi cos ϕi − Vi sin ϕi, (2.8)

f8 = Qi = Hi sin ϕi + Vi cos ϕi, (2.9)

f9 = N i =
∫

A
σidA, (2.10)

f10 = Mi =
∫

A
z σidA. (2.11)

Here (•)′ denotes the derivative with respect to x. In Eqs. (2.2)–(2.11) εi and κi

are the extensional strain of the centroidal axis and its pseudocurvature, ui and wi

are the components of the displacement vector of the centroidal axis of the column

in x and z directions, and ϕi is the cross-sectional rotation around y. N i and Qi

are the axial and the shear force and Mi is the bending moment. Hi and Vi are the

components of the resulting cross-sectional force with respect to the spatial axes x

and z, respectively. Eqs. (2.10) and (2.11) represent the constitutive equations of

the cross-section, relating the axial force and the bending moment to the normal

stress σi. Natural and boundary conditions corresponding to Eqs. (2.2)–(2.11) are

(Fig. 1):

bottom, x = 0:

ui(0) = 0, (2.12)

wi(0) = 0, (2.13)

s1
1Mi(0)− s1

2ϕ
i(0) = 0; (2.14)
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top, x = L:

sH

(Hi(L) + F
)

+ µHui(L) = 0, (2.15)

s2
1Vi(L) + s2

2w
i(L) = 0, (2.16)

s2
3Mi(L) + s2

4ϕ
i(L) = 0. (2.17)

Various combinations of boundary conditions of Euler’s columns can be modeled

by choosing appropriate parameters s1
1, s

1
2, s

2
1, s

2
2, s

2
3, s

2
4, sH , µH ∈ {0, 1}. Eqs. (2.2)–

(2.11) and (2.12)–(2.17) consist of 16 non-linear algebraic and differential equations

for 16 unknown functions and parameters.

Based on the given stress and strain state at time ti−1 and temperature at ti, we

can determine the strain Di at time ti of any point of the column by the equation

Di = Di−1 + ∆Di, (2.18)

where ∆Di (i = 1, 2, 3, . . .) is the increment of the total strain (also termed the

geometrical deformation) in time interval i. The principle of additivity of strains is

adopted that the total strain increment ∆Di is the sum of the strain increments

due to temperature, ∆Di
th, stress, ∆Di

σ, and viscosity (creep) ∆Di
cr :

∆Di(T i, σi, ti, Di
cr) = ∆Di

th(T i) + ∆Di
σ(T i) + ∆Di

cr(σ
i, T i, Di

cr, t
i). (2.19)

In Eq. (2.19), the quantities in the parentheses indicate the dependence of the

increment on the particular quantity. The functional relation of the temperature

strain increment, ∆Di
th(T i), is provided by Eurocode 31. There the total rather

than the incremental temperature strain, Dth, is given with a formal expression
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Dth = f(T );1 thus, ∆Di
th(T i) = f(T i) − f(T i−1). The stress-dependent strain

increment, ∆Di
σ, also termed the mechanical strain increment, is assumed to be

equal to the sum of elastic and plastic strains, ∆Di
σ(T i) = ∆Di

e(T i)+∆Di
p(T i). The

viscous strain increment, ∆Di
cr, is, in general, a function of the current temperature,

stress, time and the total viscous strain Di
cr.

13 In experiments, however, it is very

difficult to determine separately, in unique and accurate way, plastic and viscous

parts of the strain at high temperature. This is one of the reasons why it is often

assumed that both the plastic and viscous strains can be treated as a combined

plastic strain.1,35 In such a case, ∆Di is given by

∆Di(T i) = ∆Di
th(T i) + ∆Di

σ(T i), (2.20)

where ∆Di
σ now combines the contributions of both plastic and viscous strains.

Such a simplified material model for steel at high temperature is also adopted by

Eurocode 31 and is given as

σi(Di
σ) =





Es,T Di
σ

∣∣Di
σ

∣∣ ≤ Dp,T

fp,T − c + (b/a)
√[

a2 − (Dy,T −Di
σ)2

]
Dp,T <

∣∣Di
σ

∣∣ ≤ Dy,T

fy,T Dy,T <
∣∣Di

σ

∣∣ ≤ Dt

fy,T

[
1− (

Di
σ −Dt

)
/ (Du −Dt)

]
Dt <

∣∣Di
σ

∣∣ ≤ Du

.

(2.21)

This model will also be used in our formulation. In Eq. (2.21) Dp,T denotes the

strain at the proportional limit, Dy,T is the yield strain, and Es,T is elastic modulus.

Parameters Dp,T , Dy,T , fp,T , fy,T and Es,T are dependent on a, b and c, which are

fully described in Eurocode 31. The remaining material parameters in Eq. (2.21) are

Dt = 0.15 and Du = 0.20 and are temperature independent. The symbolic graph

of the stress−strain curve for steel at high temperature is depicted in Fig. 3a. The

temperature-dependence of material parameters is considered via the reduction
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factors kp,T , ky,T and kE,T ; i.e., the change of the proportional limit is given by

fp,T = kp,T fy,20; yield strength is given by fy,T = ky,T fy,20; and elastic modulus

by fE,T = kE,T Es,20. Here fy,20 and Es,20 denote the values of fy and Es at room

temperature (20◦C). The variation of the reduction parameters with temperature

is displayed in Fig. 3b.1
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Fig. 3. (a) Stress–strain relationship for steel in tension and compression according to Eurocode
31; (b) temperature-dependent reduction factors.

The development of the stress–strain state in a steel column during fire is fully

determined by the system of 10 non-linear algebraic and differential Eqs. (2.2)–

(2.11) for 10 unknown functions of x: ui, wi, ϕi, N i, Qi, Mi, εi, κi, Hi,Vi. The

general analytical solution is not available and the solution must therefore be ob-

tained numerically, e.g. by the finite element method. In contrast, the buckling

loads can be obtained analytically. The derivation is given in the next section.
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3. Linearized buckling analysis

3.1. Fundamental equilibrium path

We seek the loss of stability of a column subjected to both an axial compression load

and an increasing temperature. Prior to buckling, such a column remains straight

and vertical. Hence the fundamental equilibrium solution is characterized by the

condition ϕi = 0. Inserting ϕi = 0 in Eqs. (2.2)–(2.9) gives:

ui′ + εi = 0, (3.1)

wi′ = 0, (3.2)

κi = 0, (3.3)

Hi′ = 0, (3.4)

Vi′ = 0, (3.5)

Mi′ − (1 + εi)Qi = 0, (3.6)

N i = Hi, (3.7)

Qi = Vi. (3.8)

As κi = 0 and Di
th is constant with respect to x, y, z, Eqs. (2.10) and (2.11), when

combined with Eq. (2.20), can be written in the form

N i = σi(εi, κi = 0, Di
th, T i)A, (3.9)
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Mi = 0. (3.10)

The integration of Eqs. (3.4) and (3.5) gives Hi(x) = Hi(0) = const. and Vi(x) =

Vi(0) = const. Considering the result in Eqs. (3.7)–(3.9) gives N i(x) = const.,

Qi(x) = const. and εi = const. From Eqs. (3.6), (3.8) and (3.10) it follows that

Qi(x) = Vi(x) = 0. Thus, the fundamental equilibrium of the column is described

with the following system of non-linear equations:

ui = εix, (3.11)

wi = 0, (3.12)

ϕi = 0, (3.13)

Hi = Hi(0) = const., (3.14)

Vi = 0, (3.15)

Mi = 0, (3.16)

N i = Hi = const., (3.17)

Qi = Vi = 0, (3.18)

N i = σi(εi, κi = 0, Di
th, T i)A, (3.19)

κi = 0 (3.20)
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and the boundary condition (3.39)

(
sHHi(L) + F

)
+ µHui(L) = 0. (3.21)

The remaining boundary conditions, Eqs. (2.12)–(2.14), (2.16)–(2.17), are satisfied

identically. Table 2 displays two different fundamental solutions corresponding to

Eq. (3.21) with sH = 0, F = 0, and sH = 1, respectively. The solution of the above

given non-linear algebraic equations must be obtained iteratively.

Table 2. Geometrical data for cross-sections.

boundary condition εi(x) ui(x) N i(x) = Hi(x)

(1) ui(L) = 0 0 0 σi(εi = 0, κi = 0, Di
th, T i)A = const.

(2) Hi(L) = −F − µ∗Hui(L) const. 6= 0 εix −F − µ∗HεiL

Note: ∗µH 6= ∞

3.2. Buckling load

The linear theory of stability enables to find the critical point on the fundamental

equilibrium path by the linearization of the governing equations.36 It is convenient

to write Eqs. (2.2)–(2.11) in a vector form: f = [f1, f2, . . . , f10]T = 0. The arguments

of functions fi are also written in the vector form: x = [u i′, εi, ϕi, wi′, ϕ i′, κi, H i′,

Vi′, Mi′, Qi, N i]. The linearization of the functional f is the directional derivative

of f(x) in the direction of δx

δf =
d
dα

∣∣∣∣
α=0

f(x + αδx). (3.22)

In the context of the stability theory, δx means the perturbation in x.

The linearization of equilibrium Eqs. (2.2)–(2.11) when written at the funda-

mental equilibrium solution gives
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δf1 = δui′ − δεi = 0, (3.23)

δf2 = δwi′ + (1 + εi)δϕi = 0, (3.24)

δf3 = δϕi′ − δκi = 0, (3.25)

δf4 = δHi′ = 0, (3.26)

δf5 = δVi′ = 0, (3.27)

δf6 = δMi′ − (1 + εi)δQi = 0, (3.28)

δf7 = δN i = δHi, (3.29)

δf8 = δQi = δVi +N iδϕi, (3.30)

δf9 = δN i = Ci
11(ε

i, κi = 0, Di
th, T i)δεi + Ci

12(ε
i, κi = 0, Di

th, T i)δκi, (3.31)

δf10 = δMi = Ci
21(ε

i, κi = 0, Di
th, T i)δεi + Ci

22(ε
i, κi = 0, Di

th, T i)δκi. (3.32)

In Eqs. (3.31) and (3.32), Ci
11, Ci

12 = Ci
21, Ci

22 are the components of the tangent

constitutive matrix of the cross-section. Due to the symmetry of the cross-section

with respect to the plane (x, z) and a uniform temperature field in the column,

these components assume rather simple forms:

Ci
11(ε

i, κi = 0, Di
th, T i) =

∂σi

∂εi
A = Ei

tA = const., (3.33)
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Ci
12(ε

i, κi = 0, Di
th, T i) = C21(εi, κi = 0, Di

th, T i) = 0, (3.34)

Ci
22(ε

i, κi = 0, Di
th, T i) =

∂σi

∂εi
J = Ei

tJ = const.. (3.35)

The linearized equilibrium Eqs. (3.23)–(3.32) must be complemented with the lin-

earized boundary conditions (2.12)–(2.17). After the linearization has been per-

formed we have:

bottom, x=0:

δui(0) = 0, (3.36)

δwi(0) = 0, (3.37)

s1
1δMi(0)− s1

2δϕ
i(0) = 0, (3.38)

top, x=L:

sHδHi(L) + µHδui(L) = 0, (3.39)

s2
1δVi(L) + s2

2δw
i(L) = 0, (3.40)

s2
3δMi(L) + s2

4δϕ
i(L) = 0. (3.41)

Eqs. (3.23)–(3.32) constitute the system of 10 algebraic-differential equations which

have to be solved with respect to their boundary conditions (3.36)–(3.41) for the

perturbations δx from the equilibrium state. After a systematic elimination of the

unknowns is made, we end up with the system of two differential equations for δu i

and δwi:

δu i′′ = 0, (3.42)

δwi′′′′ + ki2δwi ′′ = 0, (3.43)

in which the buckling load parameter ki has been introduced as
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ki2 =
(1 + εi)|N i|

Ei
tJ

> 0. (3.44)

The general solutions of Eqs. (3.42) and (3.43) are

δui(x) = Ki
1x +Ki

2, (3.45)

δwi(x) = Ci
1 cos kix + Ci

2 sin kix + Ci
3x + Ci

4. (3.46)

The unknown integration constants, Ki
1, Ki

2, Ci
1, Ci

2, Ci
3 and Ci

4, in Eqs. (3.45) and

(3.46) are obtained from the requirement that the solutions (3.45) and (3.46) satisfy

the linearized static and kinematic boundary conditions (3.36)–(3.41). By their

imposition to the solutions (3.45) and (3.46), we get a system of six homogeneous

algebraic linear equations for six unknown integration constants Ki
1, Ki

2, Ci
1, Ci

2, Ci
3,

Ci
4, which can be written in a matrix form as

Li
T yi = 0, (3.47)

where Li
T and yi denote the tangent matrix of the current equilibrium state on

the fundamental path, and the vector of unknown constants, respectively. The non-

trivial solution of Eq. (3.47) is only possible if

detLi
T = 0. (3.48)

Because Eqs. (3.45)–(3.46) are separated, matrix Li
T can be written as a product of

two matrices, i.e. Li
T = Hi

T Ki
T. Thus, condition (3.48) appears to be equivalent

to

detLi
T = detHi

T detKi
T = 0. (3.49)
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Here matrix Hi
T depends solely on Ki

1, Ki
2, and matrix Ki

T is expressed solely with

Ci
1, Ci

2, Ci
3, Ci

4. It is easy to show that detHi
T 6= 0 for any Ki

1 and Ki
2; thus condition

(3.49) implies

detKi
T = 0. (3.50)

The condition, enforced by Eq. (3.50), determines the critical point of the structure.

This is either limit or bifurcation point. The bifurcation point results in buckling

of the column and most probably its loss of stability; for slender columns, this is a

dominant form of instability if the column is exposed to the fire.

The explicit form of matrix Ki
T can easily be deduced and is given by

Ki
T =




1 0 0 1
Ci

22ki2s1
1

1+εi

kis1
2

1+εi

s1
2

1+εi 0

s2
2 cos(kiL) s2

2 sin(kiL) −Ci
22ki2s2

1
(1+εi)2

+ Ls2
2 s2

2

ki(Ci
22s2

3ki cos(kiL)+s2
4 sin(kiL))

1+εi

ki(−s2
4 cos(kiL)+Ci

22s2
3ki sin(kiL))

1+εi − s2
4

1+εi 0




.

Its determinant reads

detKi
T = Ai + Bi cos(kiL) + kcr Ci sin(kiL), (3.51)

where

Ai = 2
(
1 + εi

)2
s1
2 s2

2s
2
4,

Bi = −2(1 + εi)2s1
2s

2
2s

2
4 + ki4Ci2

22s
2
1(s

2
3s

1
2 + s1

1s
2
4)− ki2L(1 + εi)2Ci

22µV(s2
3s

1
2 + s1

1s
2
4),

Ci = Ci
22s

2
3

(
Ci

22k
i2s1

1

(− Ci
22k

i2s2
1 + L(1 + εi)2s2

2

))
+ Ci

22(1 + εi)2s1
2s

2
2s

2
3 +

(
Ci

22s
1
1(1 + εi)2s2

2 + Ci
22k

i2s2
1s

1
2 − L(1 + εi)2s2

2s
1
2

)
s2
4,

and ki2

cr = (1+εi
cr)|N i

cr|
Ei

tJ
. Condition (3.50) along with Eqs. (40) and (42) evaluated at

the fundamental solution (see Table 2),

detKi
T = 0, (3.52)



June 29, 2009 19:43

Buckling of an axially restrained steel column under fire loading 19

Ncr + Fcr + µHεcrL = 0, (3.53)

Ncr − σcrA = 0, (3.54)

constitute a system of three algebraic equations for three unknowns in the critical

point: critical axial force Ncr, critical axial strain εcr and critical temperature Tcr

of steel column at the instant of buckling. For an axially restrained and unloaded

column (µH = ∞), buckling occurs only due to the increase of temperature; thus

εcr = 0 and Fcr = 0, and the buckling load follows from Eqs. (3.52) and (3.54).

This time the only unknowns are Ncr and Tcr.

In the present article, we discuss only the four classical boundary conditions of

Euler (Fig. 1). As then the boundary conditions are relatively simple, Eq. (3.52) can

even further be simplified. For a simply supported column, labelled PPC (pin-pin),

this equation takes the form:

detKT = C2
22,crk

3
cr(1 + εcr)L sin(kcrL) = 0. (3.55)

Its solution is kcrL = nπ (n = 1, 2, . . .). For a given load F = Fcr, the smallest

value of the critical temperature, Tcr, appears to be at n = 1. Once kcrL = π has

been established, the critical force Ncr is found from Eq. (3.54). For a partially

restrained pin-pin column (µH 6= ∞), the critical temperature is determined from

Eq. (3.44), i.e. from (1 + εcr)|Ncr| = EtJπ2

L2 . Similarly, for an axially restrained

column (µH = ∞), we have Ncr = A |σcr| = EtJπ2

L2 . The determination of the

critical values of the remaining Euler’s columns is analogous and need not to be

explained further. The solutions are displayed in Table 3.
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Table 3. Euler’s columns. Critical force,Ncr.

Type of the column detKT = 0 (µH 6= ∞) detKT = 0 (µH = ∞)

PPC (1 + εcr)|Ncr|∗ = EtJπ2

(L)2
Ncr = A |σcr| = EtJπ2

(L)2

FC (1 + εcr)|Ncr|∗ = EtJπ2

(2L)2
Ncr = A |σcr| = EtJπ2

(2L)2

FFC (1 + εcr)|Ncr|∗ = EtJπ2

(0.5L)2
Ncr = A |σcr| = EtJπ2

(0.5L)2

PFC (1 + εcr)|Ncr|∗ = EtJπ2

(0.69915565...L)2
Ncr = A |σcr| = EtJπ2

(0.69915565...L)2

Note: ∗ Ncr = −Fcr − µHεcrL

3.3. Description of the solution method

As the viscous strains of the material model considered here are accounted for only

indirectly (as a part of plastic strains), the systems of non-linear Eqs. (3.52)–(3.54)

and (2.1) are uncoupled and can be solved separately. In the first step, we solve

algebraic Eqs. (3.52)–(3.54) for the three critical values Tcr, Ncr and εcr. In the

second solution step, we solve Eq. (2.1) for tcr. Similarly, if we choose Ncr, εcr, Lcr

as the basic unknowns, these are determined in the first solution step, while tcr is

determined later on from Eq. (2.1).

The accuracy of the solutions of Eqs. (3.52)–(3.54) is solely dependent on the

machine precision of a computer and the round-off errors. In contrast, the accuracy

of tcr also depends on the time step, ∆t.

4. Parametric studies

The parametric studies presented in this section will show the effects of fire regime,

boundary conditions, material and geometrical properties and the external load on

the buckling resistance of steel columns in fire. The material model of steel for the

high-temperature range employed here follows the building standard Eurocode 31,

and steels labeled as S 235, S 275 and S 355 are used. The values of yield strengths
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and elastic moduli at room temperature are shown in Table 4. In all the parametric

studies, standard sections with commercial labels HEA 300, HEA 500, HEB 400

and IPE 300 are used.

Table 4. Material properties of steel at room
temperature (T = 20◦C).

fy,20 [kN/cm2] Es,20 [kN/cm2]

S 235 23.5 21 000

S 275 27.5 21 000

S 355 35.5 21 000

The stress-strain curves of steel at various temperatures are depicted in Fig. 4.

As observed from Fig. 4, temperature is a significant factor of strength and ductility

of steel (Fig. 4a). Of a particular importance to the bearing capacity of columns

is that the ductility is much larger at high temperatures. Fig. 4b shows changing

of the elastic modulus with strain at various temperatures. Note that strength and

elastic modulus of steel at 800◦C take only about 10% of their values at the room

temperature. The decrease of the ultimate axial bearing capacity of the cross-section

with temperature is presented in a numerical form in Table 5.

Table 5. The variation of the ultimate axial bearing capacity of the cross–
section, ‖Nult‖ = Nult,T /Nult,20 = fy,T /fy,20, and the related ultimate
axial strain, Dσ,ult, with temperature.

T [◦C] 20 200 300 400 500 600 700 800

‖Nult‖ 1 1 1 1 0.78 0.47 0.23 0.11
∣∣Dσ,ult

∣∣ [◦/◦◦] 1.1095 20 20 20 20 20 20 20

As already discussed, the accuracy of Tcr is only dependent on the machine pre-

cision, while the accuracy of tcr also depends on the time step ∆t. This is illustrated
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Fig. 4. (a) Stress–strain law of steel (in tension and in compression) (Eurocode 3, 2003). (b)
Elastic modulus vs. strain.

in Table 6 for a column made of profile HEA 300 and being subjected to the ISO

834 fire. The figures in the table indicate, however, that the differences in tcr are

negligible, if ∆t is less than about 20 seconds. As expected, Tcr is insensitive indeed

to the value of ∆t.

Table 6. The effect of the time step, ∆t, on the accuracy of tcr and Tcr (HEA 300,
λcr = 40).

∆t [s] 1 5 10 20 60 120 300

tcr [min] 12.1779 12.1833 12.1906 12.2071 12.2887 12.4407 13.1105

Tcr [◦C] 471.2 471.2 471.2 471.2 471.2 471.2 471.2

In what follows, we systematically analyse various effects on buckling of steel

columns in fire.

4.1. The effect of fire regime and material model

Our first analysis is concerned with the effects of the fire regime and the material

model on buckling of an axially unrestrained steel column (PPC, µH = 0). Two
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material models are employed: a perfectly elastic material and an elasto-plastic

material (see Fig. 4a). The same dependence on temperature is assumed for elastic

modulus Es,T for both perfectly elastic and elasto-plastic material model, employing

the expression Es,T = kE,T Es,20. In the analyses, the following data were used:

section HEA 300, steel S 235 and load F = Fcr = 0.5 Nult,20. The related ultimate

axial bearing capacity is Nult,20 = 1327.75 kN. Fig. 5a shows the variation of the

critical time, tcr, with the column slenderness, λ = λPPC = L
√

A/J, for the ISO 834

and natural fires. The related variation of the critical temperature, Tcr, is presented

in Fig. 5b. If compared to the natural fire, the ISO 834 fire results in substantially

smaller critical times for both material models and any column slenderness. In

contrast, the critical temperature graphs coincide for the two fire regimes and are

thus independent on how fire develops (Fig. 5b). As expected, buckling of very

slender columns (λ > 115) still occurs in the elastic range of material; the material

non-linearity is, however, essential for less slender columns. “Short” elastic columns

with the slenderness less than about 75 experience neither buckling nor the fracture

of material. Points A∗ and A in Figs. 5a and 5b mark the exact positions needed

to determine these particular slendernesses.

4.2. The effect of boundary condition

Fully analogous conclusions as stated above hold true for any Euler’s column. This

can be observed in Fig. 6b where the graph of the critical temperature as a function

of the column slenderness is depicted. Here, the column slenderness is defined as

λ = Lu

√
A/J, where Lu is the buckling length of the particular column under

consideration. As already discussed, the buckling length remains constant during

the temperature increase; thus, Lu = 2 for the FC column, and Lu = 0.5 for the

FFC column (Table 3). If instead we employ the same slenderness for all columns,
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say λPPC as in Fig. 6a, the graphs do not coincide. As we see from this figure, the

cantilever column is more prone to buckling compared to the fix-fix column.
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4.3. The effect of the cross-section

The effect of properties of the cross-section on buckling is very much within our

expectations (Fig. 7). The effects were analysed for two fire regimes. We employed
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only steel S 235. The PPC column was subjected to Fcr = 0.5Nult,20 = 1327.75 kN.

The column with section IPE 300, which has the smallest moment of inertia, buckled

first. The column with section HEB 400 buckled the last despite the fact that it has

not the largest moment of inertia. This is due to its small section factor. As indicated

by Eq. (2.1), the transfer of temperature over the cross-section is proportional to the

section factor. Consequently, smaller the factor, bigger is the delay of temperature.

Hence buckling occurred much earlier in the columns having a large section factor.

For a relatively short column, buckling may even not take place in natural fire, if

the column is made from the HEA 500 or HEB 400 sections. This is indicated by

points A and B in Fig. 7b.
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Fig. 7. Euler’s columns. The effect of the cross-section on buckling of steel column in fire for two
fire regimes. (a) ISO 834 (ISO 834, 1975), and (b) natural fire (Srpčič, 1991).

4.4. The effect of yield strength and load ratio

Next we analyze the effects of yield strength, fy,T , and load ratio on buckling of

a steel column exposed to high temperatures (Fig. 8). The columns were assumed

to be subjected to three different axial loads, i.e. Fcr = 0.3Fref , Fcr = 0.5Fref
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and Fcr = 0.7Fref , where the reference load, Fref , was taken to be equal to the

ultimate bearing capacity of the HEA 300 section made of steel S 235 at the room

temperature (Fref = Nult,20 = 2655.5 kN). As expected, buckling occurs first for the

columns with the lowest yield strength. Particularly in the range λ > 50, the effect

of yield strength on the buckling temperature is rather important. Its effect on the

separation point between elastic and plastic buckling is also substantial, which is

clearly observed in Fig. 8. This point occurs at λ ∼= 135 for Fcr = 0.3Fref , at λ ∼= 115

for Fcr = 0.5Fref and at λ ∼= 100 for Fcr = 0.7Fref (Fig. 8).
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Fig. 8. Euler’s columns. The effect of yield strength, fy,T , and the load ratio on buckling of
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4.5. The effect of material model

The effect of the adopted material model on the buckling resistance is shown in

Fig. 9, where the critical stress ratio, σcr/σy,20, vs. the column slenderness is de-

picted for the range of temperatures from 20◦C to 800◦C. The drop of the critical

stress ratio with temperature is significant. For instance, the buckling resistance of
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a column with slenderness λ = 60 at T = 500◦C is about 41% and at T = 800◦C

only about 5% of the related resistance at the room temperature. The point, sepa-

rating elastic and plastic buckling regimes, also notably varies with the slenderness.

A somewhat unexpected is found the position of the point separating the loss of

stability by buckling and the material failure of the column. At the room tempera-

ture, the slenderness as high as 93 triggers buckling, while at temperatures higher

than 200◦C, the slenderness of about 2 is already sufficient for buckling. Hence, in

practice buckling will appear to be the only mode of fracture of columns due to

fire.
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derness, λ, at different temperatures.

4.6. The effect of axial restraints

Our final discussion directs into the effect of the stiffness of axial restraints. The

HEA 300 section, made of steel S 235, is employed. Two load ratios were analysed:

Fcr = 0.3Nult,20 and 0.5Nult,20, where Nult,20 = 2655.5 kN. For convenience, the
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stiffness of the axial restraint, µH , is normalized, and the normalized quantity

denoted by βH = LµH/Es,20A. Here L = 5 m, Es,20 = 21 000 kN/cm2 and A =

159 cm2. The analysis was preformed for βH = 0, 0.01, 0.05, 0.1, 1 and 5. Fig. 10

depicts the variation of the critical temperature with the slenderness of the column.

As we see from the figure, the stiffness of the axial restraint can either improve or

reduce the buckling resistance of the column. That is, the buckling resistance is

dramatically reduced for sufficiently slender columns, λ > 16, while it can be much

improved for the columns having λ < 16. Such a controversial behaviour can be

explained with the help of Fig. 11, where we show the variation of the normalized

axial force, ‖N‖ = |N | /(0.3Nult,20), and the normalized tangent bending stiffness

of the cross-section, ‖C22‖ = EtJ/Es,20J, with temperature. The variations for two

column slendernesses (λ = 10 and 60) and for two axial restraints (βH = 0.01 and

1) are shown. When temperature increases in the less slender column (λ = 10), the

bending stiffness of the cross-section suddenly drops down, causing the instability

of the column. For the slender column, λ = 60, the bending stiffness decreases much

more slowly; hence, the size of axial force N , and not the bending stiffness becomes

critical for buckling. A very different graphs of the axial force are observed for

columns with λ = 10 and different βH ’s (Fig. 11a). There, buckling for βH = 0.01

takes place at a totally different relationship between the axial force and the bending

stiffness of the cross-section compared to βH = 1.

A very similar behaviour of columns is observed, if the restraint is rigid (µH =

∞) and the column is pin-like supported at both ends. Some further results for the

critical temperature, the related normalized axial force and the normalized bending

stiffness of the cross-section are given in Table 7.
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5. Conclusions

We presented an analytical procedure for the determination of the critical tempera-

ture of an axially loaded, axially restrained, geometrically perfect steel column, if

exposed to a temperature increase, which is characteristic for the standard or natu-

ral fire. Within the assumption that steel at high temperature behaves in accordance

with the material model proposed by European standard Eurocode 3,1 the critical
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Table 7. The effect of βH and λ on the critical temperature, axial force and cross-sectional
bending stiffness of axially restrained steel columns, F = 0kN.

λ 8 12 13 21 94 120 180

βH = ∞ 1014 847 113 109 109 76 45

βH = 5 1014 848 794 133 114 78 46

Tcr [◦C] βH = 1 1020 855 800 467 131 88 49

βH = 0.05 1094 904 887 735 344 273 118

βH = 0.01 1161 1071 1046 885 582 552 319

βH = ∞ 0.037 0.082 0.977 0.983 0.983 0.614 0.273

βH = 5 0.036 0.081 0.109 0.941 0.974 0.614 0.273

‖N‖ βH = 1 0.035 0.078 0.103 0.677 0.940 0.614 0.273

βH = 0.05 0.021 0.055 0.061 0.150 0.535 0.506 0.268

βH = 0.01 0.008 0.024 0.028 0.054 0.222 0.266 0.212

βH = ∞ 0.0003 0.0013 0.0187 0.0491 0.0493 1 1

βH = 5 0.0003 0.0013 0.0021 0.0470 0.1083 1 1

‖C22‖ βH = 1 0.0003 0.0013 0.0020 0.0338 0.9405 1 1

βH = 0.05 0.0002 0.0009 0.0012 0.0075 0.5373 0.8274 0.9816

βH = 0.01 0.0001 0.0004 0.0005 0.0027 0.2239 0.4367 0.7809

temperature is determined exactly. As a result of extensive parametric analyses,

the following findings can be stated:

• The dependence of material parameters on temperature, the slenderness of

the column and the shape of the cross-section, all have a significant effect

on the critical temperature.

• Buckling lengths of Euler’s columns are not subject to change during fire.

• The critical temperature is found to be a unique function of the slenderness

of a steel column for a given cross-section, the loading level, and for any of

Euler’s columns.

• For the axially restrained columns, the buckling resistance decreases with

an increase of the stiffness of the axial restraint for columns with slenderness
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λ > 16, and increases for columns with λ < 16.

Of a particular interest for a structural engineer are the findings that the critical

temperature is a unique function of the slenderness for all Euler’s columns and

that buckling rather than the over-strengthening of the cross-section is the mode

of collapse of the steel column subjected to a fire-like increase of temperature.
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