17 research outputs found

    Case Study: First-Time Success ASIC Design Methodology Applied to a Multi-Processor System-on-Chip

    Get PDF
    Achieving first-time success is crucial in the ASIC design league considering the soaring cost, tight time-to-market window, and competitive business environment. One key factor in ensuring first-time success is a well-defined ASIC design methodology. Here we propose a novel ASIC design methodology that has been proven for the RUMPS401 (Rahman University Multi-Processor System 401) Multiprocessor System-on-Chip (MPSoC) project. The MPSoC project is initiated by Universiti Tunku Abdul Rahman (UTAR) VLSI design center. The proposed methodology includes the use of Universal Verification Methodology (UVM). The use of electronic design automation (EDA) software during each step of the design methodology is also presented. The first-time success RUMPS401 demonstrates the use of the proposed ASIC design methodology and the good of using one. Especially this project is carried on in educational environment that is even more limited in budget, resources and know-how, compared to the business and industrial counterparts. Here a novel ASIC design methodology that is tailored to first-time success MPSoC is presented

    A High Performance Advanced Encryption Standard (AES) Encrypted On-Chip Bus Architecture for Internet-of-Things (IoT) System-on-Chips (SoC)

    Get PDF
    With industry expectations of billions of Internet-connected things, commonly referred to as the IoT, we see a growing demand for high-performance on-chip bus architectures with the following attributes: small scale, low energy, high security, and highly configurable structures for integration, verification, and performance estimation. Our research thus mainly focuses on addressing these key problems and finding the balance among all these requirements that often work against each other. First of all, we proposed a low-cost and low-power System-on-Chips (SoCs) architecture (IBUS) that can frame data transfers differently. The IBUS protocol provides two novel transfer modes – the block and state modes, and is also backward compatible with the conventional linear mode. In order to evaluate the bus performance automatically and accurately, we also proposed an evaluation methodology based on the standard circuit design flow. Experimental results show that the IBUS based design uses the least hardware resource and reduces energy consumption to a half of an AMBA Advanced High-Performance Bus (AHB) and Advanced eXensible Interface (AXI). Additionally, the valid bandwidth of the IBUS based design is 2.3 and 1.6 times, respectively, compared with the AHB and AXI based implementations. As IoT advances, privacy and security issues become top tier concerns in addition to the high performance requirement of embedded chips. To leverage limited resources for tiny size chips and overhead cost for complex security mechanisms, we further proposed an advanced IBUS architecture to provide a structural support for the block-based AES algorithm. Our results show that the IBUS based AES-encrypted design costs less in terms of hardware resource and dynamic energy (60.2%), and achieves higher throughput (x1.6) compared with AXI. Effectively dealing with the automation in design and verification for mixed-signal integrated circuits is a critical problem, particularly when the bus architecture is new. Therefore, we further proposed a configurable and synthesizable IBUS design methodology. The flexible structure, together with bus wrappers, direct memory access (DMA), AES engine, memory controller, several mixed-signal verification intellectual properties (VIPs), and bus performance models (BPMs), forms the basic for integrated circuit design, allowing engineers to integrate application-specific modules and other peripherals to create complex SoCs

    Sovelluskohtainen käskykantaprosessori tulevaisuuden radiomikropiireihin

    Get PDF
    Licensed Assisted Access is a 3GPP specified feature, for using the unlicensed frequen-cy band as a supplemental transmission medium to the licensed band. LAA uses clear channel assessment, for discovering the channel state and accessing the medium. LAA provides a contention based algorithm, featuring a conservative listen-before-talk scheme, and random back-off. This CCA scheme is thought to increase co-existence with existing technologies in the unlicensed band, namely, WLAN and Bluetooth. Application-specific instruction-set processors can be tailored to fit most applications, and offer increased flexibility to hardware design through, programmable solutions. ASIP architecture is defined by the designer, while the ASIP tools provide retargetable compiler generation and automatic hardware description generation, for faster design exploration. In this thesis, we explore the 3GPP LAA downlink requirements, and identify the key processing challenges as FFT, energy detection and carrier state maintenance. To design an efficient ASIP for LAA, we explore the different architectural choices we have available and arrive at a statically scheduled, multi-issue architecture. We evaluate dif-ferent design approaches, and choose a Nokia internal ASIP design as the basis for our solution. We modify the design, to meet our requirements and conclude that the pro-posed solution should fit the LAA use case well

    Survey on Machine Learning Algorithms Enhancing the Functional Verification Process

    Get PDF
    The continuing increase in functional requirements of modern hardware designs means the traditional functional verification process becomes inefficient in meeting the time-to-market goal with sufficient level of confidence in the design. Therefore, the need for enhancing the process is evident. Machine learning (ML) models proved to be valuable for automating major parts of the process, which have typically occupied the bandwidth of engineers; diverting them from adding new coverage metrics to make the designs more robust. Current research of deploying different (ML) models prove to be promising in areas such as stimulus constraining, test generation, coverage collection and bug detection and localization. An example of deploying artificial neural network (ANN) in test generation shows 24.5Ă— speed up in functionally verifying a dual-core RISC processor specification. Another study demonstrates how k-means clustering can reduce redundancy of simulation trace dump of an AHB-to-WHISHBONE bridge by 21%, thus reducing the debugging effort by not having to inspect unnecessary waveforms. The surveyed work demonstrates a comprehensive overview of current (ML) models enhancing the functional verification process from which an insight of promising future research areas is inferred

    Manual for Automation of Dc-microgrid Component Using Matlab/Simulink and FPGA\u27s

    Get PDF
    Solar Energy is one of the abundantly available renewable energy source. Solar panels are semiconductor materials which capture the solar energy from every band in the visible light spectrum, infrared spectrum and ultra violet spectrum and converts it into electrical energy. The DC community microgrid is used to supplement utility electrical power supplied to the neighbored with renewable sources such as solar panels, emergency back-up power through batteries or generators. Smart Cloud Interconnected environment increases the standard of living and facilitates ease to rectify faults, debug components and reinstate or replace obsolete components with newer ones. Automation of the DC microgrid components provides a simple yet efficient way to connect to the grid and to every component in the grid remotely. It is essential to find the node of failure in the grid for technicians and engineers to work on and to debug the issue to facilitate smooth running of the grid without shutdown. FPGAs are used as target devices for end synthesis of the model that is created on Simulink. These FPGAs are links between cloud and power electronics components. To utilize the energy resource efficiently we need to monitor the input and output of every component at every node in the grid. Simulating models on Simulink will let us connect the component and test engineer to the grid to detect any flaws or failures on time. FPGAs are easily reprogrammable and have long life with excellent capability to withstand stress. This thesis report provides a set of procedures to create and simulate a real time component model and to generate HDL files to build a clean code which can be redeployed on target FPGAs

    Computer-Mediated Communication

    Get PDF
    This book is an anthology of present research trends in Computer-mediated Communications (CMC) from the point of view of different application scenarios. Four different scenarios are considered: telecommunication networks, smart health, education, and human-computer interaction. The possibilities of interaction introduced by CMC provide a powerful environment for collaborative human-to-human, computer-mediated interaction across the globe

    Veröffentlichungen und Vorträge 2003 der Mitgleider der Fakultät für Informatik

    Get PDF

    A Heterogeneous System Architecture for Low-Power Wireless Sensor Nodes in Compute-Intensive Distributed Applications

    Get PDF
    Wireless Sensor Networks (WSNs) combine embedded sensing and processing capabilities with a wireless communication infrastructure, thus supporting distributed monitoring applications. WSNs have been investigated for more than three decades, and recent social and industrial developments such as home automation, or the Internet of Things, have increased the commercial relevance of this key technology. The communication bandwidth of the sensor nodes is limited by the transportation media and the restricted energy budget of the nodes. To still keep up with the ever increasing sensor count and sampling rates, the basic data acquisition and collection capabilities of WSNs have been extended with decentralized smart feature extraction and data aggregation algorithms. Energy-efficient processing elements are thus required to meet the ever-growing compute demands of the WSN motes within the available energy budget. The Hardware-Accelerated Low Power Mote (HaLoMote) is proposed and evaluated in this thesis to address the requirements of compute-intensive WSN applications. It is a heterogeneous system architecture, that combines a Field Programmable Gate Array (FPGA) for hardware-accelerated data aggregation with an IEEE 802.15.4 based Radio Frequency System-on-Chip for the network management and the top-level control of the applications. To properly support Dynamic Power Management (DPM) on the HaLoMote, a Microsemi IGLOO FPGA with a non-volatile configuration storage was chosen for a prototype implementation, called Hardware-Accelerated Low Energy Wireless Embedded Sensor Node (HaLOEWEn). As for every multi-processor architecture, the inter-processor communication and coordination strongly influences the efficiency of the HaLoMote. Therefore, a generic communication framework is proposed in this thesis. It is tightly coupled with the DPM strategy of the HaLoMote, that supports fast transitions between active and idle modes. Low-power sleep periods can thus be scheduled within every sampling cycle, even for sampling rates of hundreds of hertz. In addition to the development of the heterogeneous system architecture, this thesis focuses on the energy consumption trade-off between wireless data transmission and in-sensor data aggregation. The HaLOEWEn is compared with typical software processors in terms of runtime and energy efficiency in the context of three monitoring applications. The building blocks of these applications comprise hardware-accelerated digital signal processing primitives, lossless data compression, a precise wireless time synchronization protocol, and a transceiver scheduling for contention free information flooding from multiple sources to all network nodes. Most of these concepts are applicable to similar distributed monitoring applications with in-sensor data aggregation. A Structural Health Monitoring (SHM) application is used for the system level evaluation of the HaLoMote concept. The Random Decrement Technique (RDT) is a particular SHM data aggregation algorithm, which determines the free-decay response of the monitored structure for subsequent modal identification. The hardware-accelerated RDT executed on a HaLOEWEn mote requires only 43 % of the energy that a recent ARM Cortex-M based microcontroller consumes for this algorithm. The functionality of the overall WSN-based SHM system is shown with a laboratory-scale demonstrator. Compared to reference data acquired by a wire-bound laboratory measurement system, the HaLOEWEn network can capture the structural information relevant for the SHM application with less than 1 % deviation

    Efficient Modelling and Simulation Methodology for the Design of Heterogeneous Mixed-Signal Systems on Chip

    Get PDF
    Systems on Chip (SoCs) and Systems in Package (SiPs) are key parts of a continuously broadening range of products, from chip cards and mobile phones to cars. Besides an increasing amount of digital hardware and software for data processing and storage, they integrate more and more analogue/RF circuits, sensors, and actuators to interact with their (analogue) environment. This trend towards more complex and heterogeneous systems with more intertwined functionalities is made possible by the continuous advances in the manufacturing technologies and pushed by market demand for new products and product variants. Therefore, the reuse and retargeting of existing component designs becomes more and more important. However, all these factors make the design process increasingly complex and multidisciplinary. Nowadays, the design of the individual components is usually well understood and optimised through the usage of a diversity of CAD/EDA tools, design languages, and data formats. These are based on applying specific modelling/abstraction concepts, description formalisms (also called Models of Computation (MoCs)) and analysis/simulation methods. The designer has to bridge the gaps between tools and methodologies using manual conversion of models and proprietary tool couplings/integrations, which is error-prone and time-consuming. A common design methodology and platform to manage, exchange, and collaboratively develop models of different formats and of different levels of abstraction is missing. The verification of the overall system is a big problem, as it requires the availability of compatible models for each component at the right level of abstraction to achieve satisfying results with respect to the system functionality and test coverage, but at the same time acceptable simulation performance in terms of accuracy and speed. Thus, the big challenge is the parallel integration of these very different part design processes. Therefore, the designers need a common design and simulation platform to create and refine an executable specification of the overall system (a virtual prototype) on a high level of abstraction, which supports different MoCs. This makes possible the exploration of different architecture options, estimation of the performance, validation of re-used parts, verification of the interfaces between heterogeneous components and interoperability with other systems as well as the assessment of the impacts of the future working environment and the manufacturing technologies used to realise the system. For embedded Analogue and Mixed-Signal (AMS) systems, the C++-based SystemC with its AMS extensions, to which recent standardisation the author contributed, is currently establishing itself as such a platform. This thesis describes the author's contribution to solve the modelling and simulation challenges mentioned above in three thematic phases. In the first phase, the prototype of a web-based platform to collect models from different domains and levels of abstraction together with their associated structural and semantical meta information has been developed and is called ModelLib. This work included the implementation of a hierarchical access control mechanism, which is able to protect the Intellectual Property (IP) constituted by the model at different levels of detail. The use cases developed for this tool show how it can support the AMS SoC design process by fostering the reuse and collaborative development of models for tasks like architecture exploration, system validation, and creation of more and more elaborated models of the system. The experiences from the ModelLib development delivered insight into which aspects need to be especially addressed throughout the development of models to make them reusable: mainly flexibility, documentation, and validation. This was the starting point for the development of an efficient modelling methodology for the top-down design and bottom-up verification of RF Systems based on the systematic usage of behavioural models in the second phase. One outcome is the developed library of well documented, parameterisable, and pin-accurate VHDL-AMS models of typical analogue/digital/RF components of a transceiver. The models offer the designer two sets of parameters: one based on the performance specifications and one based on the device parameters back-annotated from the transistor-level implementation. The abstraction level used for the description of the respective analogue/digital/RF component behaviour has been chosen to achieve a good trade-off between accuracy, fidelity, and simulation performance. The pin-accurate model interfaces facilitate the integration of transistor-level models for the validation of the behavioural models or the verification of a component implementation in the system context. These properties make the models suitable for different design tasks such as architecture exploration or overall system validation. This is demonstrated on a model of a binary Frequency-Shift Keying (FSK) transmitter parameterised to meet very different target specifications. This project showed also the limits in terms of abstraction and simulation performance of the "classical" AMS Hardware Description Languages (HDLs). Therefore, the third and last phase was dedicated to further raise the abstraction level for the description of complex and heterogeneous AMS SoCs and thus enable their efficient simulation using different synchronised MoCs. This work uses the C++-based simulation framework SystemC with its AMS extensions. New modelling capabilities going beyond the standardised SystemC AMS extensions have been introduced to describe energy conserving multi-domain systems in a formal and consistent way at a high level of abstraction. To this end, all constants, variables, and parameters of the system model, which represent a physical quantity, can now declare their dimension and associated system of units as an intrinsic part of their data type. Assignments to them need to contain besides the value also the correct measurement unit. This allows a much more precise but still compact definition of the models' interfaces and equations. Thus, the C++ compiler can check the correct assembly of the components and the coherency of the equations by means of dimensional analysis. The implementation is based on the Boost.Units library, which employs template metaprogramming techniques. A dedicated filter for the measurement units data types has been implemented to simplify the compiler messages and thus facilitate the localisation of unit errors. To ensure the reusability of models despite precisely defined interfaces, their interfaces and behaviours need to be parametrisable in a well-defined manner. The enabling implementation techniques for this have been demonstrated with the developed library of generic block diagram component models for the Timed Data Flow (TDF) MoC of the SystemC AMS extensions. These techniques are also the key to integrate a new MoC based on the bond graph formalism into the SystemC AMS extensions. Bond graphs facilitate the unified description of the energy conserving parts of heterogeneous systems with the help of a small set of modelling primitives parametrisable to the physical domain. The resulting models have a simulation performance comparable to an equivalent signal flow model
    corecore