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Resumo

Atualmente, a localização outdoor (feita via GPS, redes móveis, etc.) está facilmente disponível,
em veículos, smartphones ou aparelhos especializados. Para além de ajuda à navegação, a infor-
mação de localização é também utilizada para personalizar a partilha de informação, o que é de
óbvio interesse do ponto de vista da otimização quer da experiência do utilizador, quer de estraté-
gias de marketing. Por outro lado, os sinais utilizados para a localização outdoor não têm precisão
suficiente para o problema da localização indoor ou podem nem estar disponíveis, pelo que é
necessária uma solução alternativa. A solução deste problema, além das vantagens associadas à
localização outdoor, traz benefícios na gestão de trabalhadores (importante em profissões de risco)
e na automação de edifícios, nomeadamente para potenciar Ambient Assisted Living (permitindo
a idosos ou pessoas com deficiência serem mais autónomos).

Existem três grandes fontes independentes de informação disponíveis para a localização in-
door: sensores inerciais, sinais de oportunidade (wi-fi, bluetooth, campo magnético, etc.) e o
mapa/planta do edifício. Nesta abordagem, escolheu-se não utilizar os sinais de oportunidade
como fonte de informação, dado que estes implicam um trabalho de análise prévia do edifício,
para obter a distribuição desses sinais. Para que o sistema possa ser implementado em diferentes
locais facilmente, usar-se-á apenas um par de IMUs de baixo custo (Inertial Measurement Units)
colocadas em ambos os pés e um smartphone para processamento de dados, dotado da planta do
edifício. A escolha da utilização de sensores inerciais externos ao smartphone é justificada pelo
facto da colocação nos pés permitir o uso de Zero Velocity Updates (quando se deteta que o pé
está plantado no chão), que diminuem o erro de integração. Adicionalmente, a utilização de mais
do que um sensor permite cruzar a informação dos dois pés, permitindo aumentar a robustez do
sistema e diminuir o impacto dos erros de ambos os sensores.

A solução deste problema passa por vários sub-problemas. É ncessário notar que o problema
pressupõe não só o cálculo incremental da posição do utilizador conhecendo a sua posição inicial
(Pedestrian Dead Reckoning) como também a deteção desta (Indoor Localization). No entanto, no
contexto desta tese, o foco será dado ao problema de Dead Reckoning numa perspetiva de manter a
sua viabilidade a longo prazo, evitando acumulação de erro. Numa primeira fase, é necessário de-
tetar a ocorrência de um passo, estimar o seu comprimento e a sua direção. Estas estimativas estão
limitadas pelas propriedades dos sensores inerciais e pelo facto de as interferências magnéticas no
interior de edifícios inviabilizarem a utilização do magnetómetro deixando a estimativa da direção
apenas a cargo do giroscópio, que sofre desvios com o tempo. Paralelamente, é necessário cruzar
a informação incremental da posição do utilizador, a sua trajetória, com a informação do mapa,
para que se corrijam erros e se possa obter a localização atual do utilizador a qualquer momento.

No âmbito da dissertação, desenvolveu-se uma aplicação Android capaz de localizar o seu
utilizador apenas com informação de dois sensores inerciais de 6 graus de liberdade a 100Hz
colocados nos pés e da planta do edifício, sabendo a sua localização inicial.
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Abstract

Outdoor localization (using GPS or mobile networks) is nowadays widely available in vehi-
cles, phones or dedicated equipment. Besides helping with navigation, location information can
also be used to optimize information sharing, improving user experience and empowering compa-
nies to carry out custom marketing strategies according to user profile. However, the signals that
are used for outdoor localization are either not sufficiently precise or even unavailable in certain
indoor scenarios and as such an alternative system is needed. Solving the problem of indoor local-
ization enables not only indoor navigation and optimized information sharing but also workforce
management (especially important for jobs with risks) and building automation. It is a great aid
for Ambient Assisted Living, and as such can indirectly allow seniors or handicapped people to be
more autonomous.

There are three main independent sources of information to achieve indoor localization: in-
ertial sensors, opportunistic signals (wi-fi, Bluetooth, magnetic field fluctuations, etc.) and the
map or plan of the building. In this approach, no opportunistic signals will be used, as doing so
would require a previous scan of the building to obtain the signal distributions. With scalability
and ease of deployment in mind, only low-cost IMUs (Inertial Measurement Units) will be used.
The sensors will be placed on both feet and a smartphone, loaded with the floor plan, will be used
for data processing. The decision of using inertial sensors external to the smartphone is explained
by the fact that foot-placed IMUs enable the usage of Zero Velocity Updates (zeroing the velocity
when the foot is on the ground), bounding the integration error. Additionally, using more than one
sensor enables sensor errors and drifts to be estimated and compensated to a certain degree and
allows the system to be more robust.

The indoor localization problem can be divided in sub-problems. It is important to note that
localization implies not only the incremental estimation of the user position from a known starting
position (Pedestrian Dead Reckoning - PDR) but also the estimation of the starting position if it is
unknown. However, in this dissertation, the focus will be on PDR, with the goal of making it viable
even in longer walks, avoiding large error accumulation. The first sub-problems are step detection
and estimation of length and direction. These estimates are limited by the properties of the inertial
sensors and by the fact that indoor magnetic interferences make magnetometer readings nearly
unusable, which causes the step direction to be estimated solely by the gyroscope. The gyroscope
is affected by linear acceleration, temperature and drifts over time and as such these errors must
be modeled. Consequently, parallel to step quantification, it is necessary to match the incremental
position of the user (i.e. his/her trajectory) with map information. This is crucial for the correction
of errors (bounding the error propagation typical of inertial sensors), and for the estimation of the
current position of the user at all times.

In this thesis work, an Android application capable of locating the user from the signal of two
foot-mounted 6-DOF IMUs at 100Hz, the floor plan and the knowledge of the initial position was
developed.
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“To achieve great things, two things are needed
A plan, and not quite enough time”

Leonard Bernstein
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Chapter 1

Introduction

1.1 Motivation

The advent of smartphones and their widespread distribution mean that most people carry

around a powerful set of sensors. As such, there is an opportunity for techniques and methods

to be easily scaled, with virtually no hardware cost, if they are developed specifically for this

platform.

Similarly to outdoor localization, developing an indoor localization (IL) solution enables nav-

igation (e.g. guiding costumers around shopping malls, airports, etc.), workforce management

(optimizing allocation of human resources in hospitals, policeman and security in a building, and

managing operations with associated risk such as rescue or reconnaissance missions, etc.) and

context-dependent information sharing (e.g. targeted advertising, as in suggesting items while

moving through a store and possibly retrieving profile information from a user according to its

past purchases and movement inside the store). Knowledge of user location can also be applied to

social networking, medical care in hospitals, to mobile robots or augmented reality. Furthermore,

it also enables applications in the field of home automation, optimizing the experience of the user

and energy use, for example. This enables Ambient Assisted Living services, creating an environ-

ment that is compatible with the needs of the elderly or disabled people and enabling them to be

as autonomous as possible [1].

Current localization systems are not able to provide a suitable solution. On the one hand, some

systems are not accurate enough, as observed when outdoor localization techniques such as GPS

are used to try to determine an indoor location (low signal availability and insufficient precision for

indoor applications). On the other hand, accurate systems often require the installation of specific

equipment such as beacons, which increases cost of installation and maintenance [2]. Methods

that require fingerprinting of the building or measurement of opportunistic signals such as Wi-Fi

readings or magnetic field fluctuations require collection and periodic update of detailed building

data which hinders their scalability and increases cost [3].

An alternative that is being increasingly explored leverages MEMS (Micro Electro-Mechanical

Systems) inertial sensors. Even though the smartphone contains a set of sensors (an IMU, inertial
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measurement unit), relying on these for a purely inertial sensor proves to be an extremely difficult

task, due to the different carrying contexts (position of the phone relative to the user). Current ap-

proaches either leverage opportunistic signals and fingerprints or impose several carrying context

limitations (such as holding the phone in front of the user or in the pocket of the pants) or use

activity matching (detecting activities such as stair climbing, riding an elevator or other interesting

motion signatures [4]) to correct large errors while being unable to deal with large portions of

movement without any specific piece of information that can provide absolute localization. These

methods also have less information to obtain step length when compared to distributed wearable

sensors, since using fixed sensors means the signal pattern can be predicted with added confidence.

However, even if using an IMU in a fixed position, depending exclusively on raw inertial

sensor readings proves to be an impossible task, as error propagates quite rapidly due to sensor

errors and errors translating the signals to the Earth Frame (as described in Chapter 2). Double-

integrating acceleration data without any knowledge of velocity is an impossible task (and even if

the initial velocity is zero, if it does not return to zero after the user stops, for example, error will

build), which leads to inaccurate user tracking results. It is also necessary to rotate the acceleration

signals from the sensor coordinate system to Earth’s coordinate system (estimation of current

orientation and rotation, attitude), as the displacement that is being estimated is in the Earth frame.

The main limitation of using inertial data for attitude estimation is that, in an indoor setting, the

magnetometer signal is very distorted mainly because of soft and hard iron effects caused by

the structure of the building, and as such requires sophisticated modeling to be usable [5, 6].

Without applying magnetometer data, estimation of orientation around the z-axis in the world

frame depends solely on the gyroscope. This means that precision errors as well as bias drift will

result in large deviations from the actual true orientation. As such, without additional information,

absolute localization is impossible. Therefore, there must be an additional and independent source

of information so that errors can be corrected (or at least bounded) and the algorithm can adapt

to the user and its surroundings, enabling the conversion of a series of steps into a series of user

positions.

An interesting source of additional independent information is the building floor plan, as it is

more easily collected (available through computer vision techniques applied to floor plans present

in buildings, for example) and of a much more static nature in comparison with the mapping of

wireless signals or magnetic field disturbances. Acquisition of floor plans is outside the scope of

this project, and the assumption is made that the floor plan exists in the system.

Furthermore, there is another piece of information that can be very important. If the IMUs are

fixed to the foot of the user it is possible to exploit the fact that when a foot moves the other foot

will be planted on the ground bearing all weight, as it means the foot will not be moving (zero

velocity and zero angular rate of turn). Adjusting the velocity estimates at that point will bound

integration errors and is key for the displacement reconstruction accuracy and stability over time.

These methods are named ZUPT (Zero velocity UPdaTe) and ZARU (Zero Angular Rate Update),

respectively.

Alternatively or in parallel, using more than one IMU in a fixed position will allow for the
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sensor measurement errors, which are the main cause of the lack of stability of inertial PDR

systems, to be compensated. A compromise between signal quality/amount of information and

cost/simplicity of the system is necessary. As such, the system developed during this thesis work

will make use of only two foot-placed 6-DOF IMUs (3-axes accelerometer, 3-axis gyroscope, one

IMU on each foot) as a proof of concept.

1.2 Problem Overview and System Concept

Approaching IL through inertial sensors leads to simplifying the problem to Pedestrian Dead

Reckoning (PDR), as one cannot infer absolute position from inertial sensors alone. PDR means

looking at the problem as a tracking problem and not as a localization problem. The system needs

to track the trajectory (position of the user through time) the user is describing, obtaining future

positions as a combination of the trajectory and the initial position. In the context of this thesis

work, and since neither a source of absolute location (such as distance to a Wi-Fi access point)

nor an absolute source of direction (filtered magnetometer signal) will be used, which makes the

absolute localization of the user within the building a very complicated problem, a simplifying

assumption of known initial position will be made. This assumption does not severely hamper the

applicability of the solution, as the initial location can either be matched to the entrance of the

building through integration with GPS in an outdoor context [7], manually provided by the user or

even retrieved through other IL methods (such as planting a single beacon on the entrance of the

building). Throughout the system, design choices were always done with keeping assumptions to

a minimum in mind. In fact, besides the initial location and floor plan availability assumptions, the

only other assumption that is made is that the sensor is fixed to the foot and as such its orientation

and position will always be the same as the foot, which will be enforced by tightly fitting the

IMU to the shoe. There will be no gait limitations or behavioral assumptions (such as walking in

straight lines or with no lateral or backwards steps or even assuming that forward motion is done

by preserving neutral distance perpendicularly to the step (i.e. no exaggerated sideways opening

of the lower limbs). Furthermore, even if there is not a period where the foot is still between every

step (the stance phase, as described and explored in Chapter 3) so that ZUPT and ZARU can be

applied, as is the case of running, the system will still provide displacement estimates, even if

these are much more prone to error (due to the lack of updates and possible sensor saturation from

acceleration outside the input range).

Each IMU, integrated in a sensor array named Pandlet which was developed at Fraunhofer

Portugal, (which also contains a magnetometer, barometer, humidity sensor, among others), will

be mounted on the top of the foot, as shown in Figure 1.1. When designing a foot-mounted IMU

PDR system and shoes with integrated sensors, one of the ideas is to include the sensors inside the

heel of the boot [8–10]. However, placing it on the top of the foot has some advantages, namely

smaller impacts (acceleration due to strong impacts on the heel can exceed the input range and the

gyroscope is sensitive to linear acceleration - see Chapter 2) and less heating (which causes sensor

bias drift). Furthermore, mounting it beneath the shoelaces has the added bonus of not requiring
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additional straps. In all cases, a final solution contained in a smaller case could be easier to fit

beneath the shoelaces, be accompanied by adjustable straps or even integrated in the top of the

shoe/boot, so as to ensure perfect fixation of the IMU to the foot and in turn better quality of the

obtained signal.

Figure 1.1: Placement of the Sensors

As mentioned in the previous section, lack of velocity information, less than ideal precision

and sensor drift will be the main limitations of the inertial sensor based system. PDR, as a tracking

problem, means that each point depends on the estimation of the previous points and propagating

errors can quickly make the system unusable. Additional sources of information will be needed

along with an effective way to merge all available information. In order to overcome these limita-

tions the following design choices were made:

• Integration of Multiple Sensors - Since the errors and especially the sensor drift will be

independent in different sensors, using more than one IMU will allow for errors to be com-

pensated for and better estimates to be computed. (Chapter 4)

• Placement of Sensors on the Feet - Placing the IMUs on the feet enables the use of ZUPT,

by exploring the characteristics of human gait. The fact that while one foot swings the other

is planted on the ground and as such will have zero velocity can be explored by detecting

these instances and correcting the calculation of velocity at that point, mitigating the prob-

lem of unknown initial velocity and bounding the error of the velocity estimation (and, as a

consequence, of position estimation).(Chapter 3). In addition, the stationary foot will also

have zero angular rate of turn. Detecting these periods allows gyroscope measurement er-

rors to be detected and compensated, increasing the accuracy of the attitude (orientation and

rotation) estimation (Chapter 2).

• Map Matching - This comparison between map and position or trajectory, named map

matching (MM), is a key part of the system. MM will be responsible for further correcting

errors in step length and direction and estimating drift. The main goal of MM is to bound

errors during movement in constrained areas (narrow corridors for example) so that the
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error can be estimated and inertial tracking can remain usable for longer periods of time.

(Chapter 5)

Taking a closer look at the PDR problem and the user tracking, it is necessary to detect and

measure changes in position (in normal human gait, the result of steps). As such, information

from the Inertial Measurement Unit (IMU) is processed in order to obtain three important pieces

of information: Step Occurrence, Step Length and Heading of the Step. These three pieces of

information are based on uncertain measurements, and errors propagate. An erroneous detection

of a step will always be followed by an erroneous quantification of the non-existent step, for

example. Dealing with uncertainty will be crucial throughout the system. In addition, and in

order to be able to quantify a step in terms of length and heading, an attitude estimation algorithm

is necessary. This is because the acceleration signal needs to be translated from the sensor own

coordinate system to the earth system, so that displacement is calculated on the Earth coordinates.

By estimating the current sensor attitude, it is possible to obtain the acceleration and angular rate

in earth coordinates by rotating the values obtained in the sensor coordinates.

In sum, the system should be able to continuously estimate the sensor attitude from the gyro-

scope and accelerometer values and then use these to detect and quantify steps. The trajectories

generated by analysis of the signals from both IMU are then fused, constrained by the map and

corrected so that the series of positions that they describe are valid. This correction should im-

prove the accuracy of the system, by preventing error propagation and improving the detection

and quantification of steps through adaptation to the user. Throughout the system, computational

complexity of the chosen algorithms must be kept in check, so that it can run in a smartphone in

real-time.

1.3 Deconstructing the Problem

This problem can be subdivided in smaller problems not only to help with clarity but also

because they are mostly independent and can be tackled individually to some extent. As such, the

challenges can be divided into several tasks or modules:

• Attitude Estimation - In order to quantify a step in terms of its length and heading (as well

as height, if necessary), the attitude of the sensor - and consequently of the foot, as the IMU

is fixed - needs to be estimated. As mentioned before, this is crucial in order to be able to

obtain acceleration values that correspond to movement in the Earth coordinates (x, y and z

- North, East and Down) so that the translation of the foot can effectively be applied on the

map enabling the calculation of heading and direction simultaneously (by estimating how

much the foot has moved in each direction).

Attitude estimation is done through the accelerometer reference to the Earth z-axis through

the measurement of the Earth’s gravitational acceleration (which provides the gyroscope

current pitch and roll angles). From an initial alignment of the y- and x-axis (rotation around
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the z-axis, yaw angle) that must be provided, the gyroscope will be used to keep track of

rotation around all axis (and being the sole source of yaw).

• Zero Velocity Update Region Segmentation - Due to the great importance of the ZUPT in

mitigating integration errors and its intrinsic relationship with step detection - in this thesis

work a step will be defined as the interval between two zero velocity regions - accurately

identifying the regions of the signal where the foot is planted is crucial, doubling as a step

detector.

• Floor Change Detection - Most IL systems work either in 2D or 2.5D (2D plus floor infor-

mation) since buildings are usually structured in different floors and even in places where

stairs or ramps are abundant, a 2D tracking coupled with changing of the floor map accord-

ing to detected floor transitions will be sufficient. As such, the main goal is to detect the

action of climbing or descending stairs through detection of patterns of vertical displace-

ment within steps and elevator through characteristic acceleration patterns namely on the

z-axis. The detection of a floor change also helps correct position errors since if stairs are

detected, the position can be adjusted to the nearest exit.

• Step Quantification - Once a step is detected, the acceleration vector, translated to Earth

coordinates, is used for the estimation of the displacement associated with that step, by

smoothing of the signal and double-integration. Additionally, it is necessary to analyze

whether the estimated motion is compatible with the expectations (namely in terms of max-

imum velocity and step length) or we need to reprocess the signal to find different zero-

velocity regions.

• Fusion of Information from Different IMUs - In order to compensate errors due to sensor

drift or incorrect estimations of the algorithm, the series of positions of each sensor as

well as the estimated heading and step length must be compared, matched and adjusted.

Ideally, this module does not impose heuristic assumptions (such as straight line walking

or prediction of next step) and instead leverages only anatomical constraints, namely the

maximum distance between feet.

• Trajectory Generation and Map Matching - This sub-problem is where the bigger im-

provements can be made and can substantially increase the accuracy of the system even

when using less than ideal estimates for the movement of the user. When generating trajec-

tories, one needs to be able to deal with the uncertainty associated with every estimation.

As for MM, it is important that it is capable of locating the user even as PDR error builds

and of providing valuable learning feedback for the previous module. Ideally, absolute po-

sition could be retrieved from Matching a sufficiently long and informative trajectory with

a sufficiently constrained map, where the trajectory would only fit in one starting location.
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• Knowledge Representation - Representing the map (resolution, structure), positions, tra-

jectories and probabilities, orientation and profiles (for the user and possibly for the building

as well) are topics that run parallel to the previous problems and that need to be explored.

1.4 Aim of the Thesis

The aim of this dissertation is to develop a PDR system capable of maintaining adequate ac-

curacy (within 2 meters) over significant distance (over 100 meters). The system will be based

on two IMUs developed at Fraunhofer Portugal, mounted on both feet, under the shoelaces. The

IMUs communicate with a smartphone through Bluetooth connections. The smartphone is respon-

sible for the processing of the data and estimation of the position of the user in real-time. Besides

the inertial info retrieved from the two IMUs, the system will start from a known position and

heading and will have the information of the floormap.

The system should be able to work on its own but also work as complement to other IL systems

that make use of opportunistic signals, as an enhancer of short-term accuracy. In the context of the

dissertation, the developed system will work in 2D, without detection of floor changing activities.

1.5 Contributions

The main contribution of this thesis is the fusion of information of the two IMUs using a step

as a basic unit of displacement, instead of approaches which apply a Kalman Filter to constrain

the continuous estimates of displacement from the measured signals. Alternatively, the proposed

Gaussian Filter algorithm with anatomical constraints and drift modeling is much less computa-

tionally expensive.

In terms of Map Matching, a new truncated Gaussian distribution algorithm through sampling

is proposed. When said algorithm is incapable of generating a valid position, a geometric MM

algorithm specifically tailored for indoor pedestrian tracking is applied, which is capable of recov-

ering from absolute errors of over 5 meters in building areas with adequate constraints.

Furthermore, an attitude filter based on Madgwick’s Gradient Descent Filter [11] with addi-

tional frequency filters and specifically geared towards foot attitude estimation during gait was

developed and implemented. An analysis of alternative methods for Map Matching focused on the

specific needs of this system is done, including a novel analysis of how Active Contour Models

can be applied to this problem.
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1.6 Thesis Structure

This work is divided in 4 chapters describing the various sub-problems, which are, to a certain

extent, independent. Within each Chapter, besides the implementation details of the developed

IL system, there is an overview of the state of the art methods and how they can be applied to

the specificities of each respective model within this project. Moreover, the performance of the

respective module is discussed. Algorithm choices are described in detail and its advantages and

disadvantages are evaluated.

In short, Chapter 2 reviews attitude representations, the attitude estimation problem for 6-

DOF IMU and the alternative filters that can be applied. Chapter 3 tackles step detection and

quantification, namely in terms of data processing (specifically ZUPT) and integration of the fil-

tered acceleration signal, in order to obtain the displacement relative to a step. The decision to

treat displacement as a discrete event (step) instead of continuously integrating data and filtering

will also be described in detail in this Chapter. In turn, Chapter 4 is focused on the processing of

information from both feet with the goal of compensating errors through enforcement of anatom-

ical constraints, resulting in an improvement over the estimates from both sensors independently.

Chapter 5 contains a review of MM algorithms with special emphasis on those geared towards

indoor pedestrian localization applications and presents the developed MM algorithm, as well

as other alternatives that were tested and conceptualized but are not implemented in the current

system.

Following this review and presentation of the implementation details, a system overview is

presented on Chapter 6, where the interaction between all modules is explained in further detail.

Chapter 7 describes the tests that were performed, presents the results and contains its analysis and

discussion. Finally, Chapter 8 reasserts the critical analysis of the performance of the system that

is done throughout each chapter, its limitations, possible improvements and research directions. It

also contains final remarks regarding this dissertation.



Chapter 2

Attitude Estimation

In order to use inertial data to estimate displacement in the Earth coordinates, it is necessary to

obtain the orientation and rotation (attitude) of the IMUs, so that the accelerometer and gyroscope

signals can be rotated into the Earth coordinate system. This is necessary because the sensor

measures acceleration and rotation in its own instantaneous coordinate system which will change

according to the rotation and translation it experiences during movement. Only after applying the

coordinate transformation, and with adequate processing, can the signals be integrated in order to

obtain the displacement in the Earth frame and track the movement of the user. In this system, the

sensors will be carefully strapped with the shoelaces so that there is no relative movement between

the foot and the sensor. As such, the goal of this module is to relate the instantaneous coordinate

system of the foot and the sensor to the Earth coordinate frame.

The key with attitude estimation is that the accelerometer measures proper acceleration (ac-

celeration in the instantaneous rest frame of the object) instead of the acceleration in a particular

coordinate frame, and as such, an accelerometer resting on top of a table will measure Earth’s

gravity acceleration (' 9.81ms-2 upwards). If we describe Earth’s North-East-Down as x-y-z ( as

in Figure 2.1), acceleration data will provide a long term reference to the z-axis, even as mea-

surements get clouded with acceleration from the movement itself. Even though the short-term

precision of the estimation is not ideal, the accelerometer does not experience drift and as such the

reference to the z-axis will remain stable over time. On the other hand, the gyroscope will enable

short-term tracking of rotation with adequate precision, however, its accuracy will deteriorate with

time as its bias - estimated rate of turn when stationary - changes (which is a result of sensitivity

to temperature, linear acceleration or errors in calibration) [12]. The signal of the gyroscope can

be modeled as in Equation 2.1, where bs(t) is the sensor bias (non-zero mean noise) and ns is

zero-mean sensor noise.

Ωsensor(t) = Ωtrue(t)+bs(t)+ns(t) (2.1)

The challenge is to use gyro data to track short-term movements while accounting for bias

and using accelerometer data to make sure the z-axis reference is kept. As no magnetometer is

used on this system and as such there is no long-term reference to the Earth’s North direction,

9
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Figure 2.1: Rotation relative to the East-North-Up Frame. Throughout the document, θ (heading),
will be used to refer to the angle between north and the current direction relative to the xy plane

.

integration of angular rate of turn will lead to drift over time. Nonetheless, the attitude estimation

module should guarantee a stable reference to the z-axis and leave the correction of drift around

the z-axis to the Dead Reckoning and Map Matching Modules, as described in Chapters 4 and 5.

Adequate alignment with the z-axis will enable the step tracking to return precise displacement in

the x-y plane, even if it is rotated around the z-axis. As floors are usually plane, the modulus of

the displacement will be the step distance, even if rotated in direction. Obtaining accurate distance

estimation in the floor plane is very important, as it means position filtering can correct errors with

the main focus being heading and with good confidence on the traveled distance.

For simplicity, in this work the Pitch angles refers to rotations around the Earth x axis, the

Roll angle to rotations around the Earth y axis and finally, the Yaw angle to rotations around the

Earth z axis. Rotations around the z axis are important since that is what quantifies the direction

(heading) of movement in the xy plane.

In this Chapter, the state of the art regarding approaches to attitude estimation is presented,

followed by the implementation details of the designed attitude estimation filter and a review on

the design of the entire module.

2.1 Attitude Representations

The orientation and rotation of a body in regards to a fixed coordinate system can be described

by multiple conventions, which will be briefly reviewed below.

2.1.1 Rotation Matrices, Euler Angles and Axis-Angle

Euler Angles and Tait-Bryan Angles (sometimes also called Euler Angles and as such the

name Proper Euler Angles would apply to the former) are perhaps the most intuitive convention

for rotation representation. Euler Angles describe a rotation by the sequence of rotations over

three axis (that must be defined and ordered a priori). These representations can be intrinsic (the
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second and third rotations apply on the rotated axis) or extrinsic (when the rotations are relative

to the original coordinate frame axis). There are 12 possible representations of rotation with Euler

Angles: X-Y-X (rotation around the x axis, then around the y axis and finally around x again), Y-

Z-Y, Z-Y-Z, X-Z-X, Y-X-Y, Z-X-Z, both intrinsic and extrinsic. Tait-Bryan Angles, mostly used

in aerospace navigation include another 12 combinations: X-Y-Z, X-Z-Y, Y-X-Z, Y-Z-X, Z-X-Y,

Z-Y-X, again intrinsic or extrinsic. This means that the axis being used and their order must be

carefully defined.

In order to compute and apply these rotations to vectors, one can use a rotation matrices, as

exemplified in Equation 2.2 for an extrinsic X-Y-Z Tait-Bryan convention with angles α , β and γ

respectively:

1 0 0

0 cos α sin α

0 −sin α −cos α

∗
 cos β 0 sin β

0 1 0

−sin θ 0 −cos θ

∗
cos γ sin γ 0

sin γ −cos θ 0

0 0 1

=

=

 cosβ −cosγsinβ sinβ sinγ

cosαsinβ cosαcosβcosγ− sinαsinγ −cosγsinα− cosαcosβ sinγ

sinαsinβ cosαsinγ + cosβcosγsinα cosαcosγ− cosβ sinαsinγ


(2.2)

The main issue with Euler Angles is gimbal lock, which occurs when a degree of freedom is

lost through a rotation that aligns two of the axis. For example, if the sensor rotates around the x

axis 90deg we arrive at a gimbal lock configuration. At this point, if the rotation continues, the ro-

tation around the y axis would change from 0 to 180deg. It is this kind of numerical instability and

difference between two very close values for attitude that makes this convention unsuitable for this

application. In addition, executing the rotation through rotation matrices is more computationally

expensive than the alternatives we will present below.

Alternatively, a rotation can be represented by a unit vector describing the axis around which

the rotation will take place and its angle (as in Figure 2.2), since any rotation in a 3-Dimensional

space is equivalent to a rotation around a fixed axis (Euler’s rotation theorem). A rotation in

this representation (ω̂), called Axis-Angle, can then be applied to a vector (ê) efficiently with the

Rodrigues’ Formula, (2.3).

êrot = (cos θ)ê+(sin θ)(ω̂× ê)+(1− cos θ)(ω̂.ê)ω̂ (2.3)

While the axis-angle representation has good properties and avoids the gimbal lock problem

by using a fourth redundant parameter to describe a 3D rotation, the similar but more sophisticated

approach with quaternions has added value because of interesting mathematical properties.
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Figure 2.2: Axis Angle Representation of Rotation θ around axis ω

.

2.1.2 Quaternions

Quaternions (4D complex number) are widely used in attitude estimation and rotation rep-

resentation problems due to the efficiency of rotating vectors, the ability to interpolate between

rotations and the inherent simplicity of the numerical system once its relation with the orientation

of the object is understood [13]. A quaternion is made up of a real component (q0) and three

imaginary components (iq1, jq2 and kq2). A unit quaternion q̂ can be used to describe a rotation

θ along an axis r̂ (2.4):

q̂ = [q0 q1 q2 q3] = [cos
θ

2
(sin

θ

2
)r̂], with

√
q2

0 +q2
1 +q2

2 +q2
3 = 1 (2.4)

This rotation can be easily applied to the previous attitude to obtain the new attitude by quater-

nion multiplication as in Equation 2.5:

â⊗ b̂ = [a0 a1 a2 a3]⊗ [b0 b1 b2 b3] =


a0b0−a1b1−a2b2−a3b3

a0b1 +a1b0−a2b3−a3b2

a0b2−a1b3−a2b0−a3b1

a0b3−a1b2−a2b1−a3b0



T

(2.5)

Additionally, quaternions can be differentiated so that the attitude can be updated using the

angular rate and the time interval, (2.6):
d
dt qw(t)
d
dt qx(t)
d
dt qy(t)
d
dt qz(t)

=
1
2


−qx(t) −qy(t) −qz(t)

qw(t) qz(t) −qy(t)

−qz(t) qw(t) qx(t)

qy(t) −qx(t) qw(t)


ωx(t)

ωy(t)

ωz(t)

 (2.6)
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Quaternions allow for simple representation of current attitude, rotations and addition of a ro-

tation to a past attitude, enabling efficient calculations. Furthermore, they are unambiguous, do

not suffer from Gimbal Lock, are numerically stable (it is easier to normalize a quaternion than

correcting numerical errors in rotation matrices) and can be initialized even when there is no rota-

tion [1 0 0 0], unlike the Axis-Angle representation. In conclusion, the quaternion representation

will be the one applied in this work.

2.2 Sensor Fusion - Review of the State of the Art

Sensor Fusion is the process of obtaining more precise, accurate or overall reliable values for

a measurement by using multiple sources of information (sensors or external knowledge about the

system). In this case, sensor fusion will play a crucial role in attitude estimation since if this task

was done with simple integration of the raw angular rate of turn retrieved from the gyroscope,

the propagation of integration errors as well as the bias instability of the gyroscope itself would

lead to wildly inaccurate estimates in a few steps. As such, a fusion algorithm which combines

the best features of both the gyroscope and the accelerometer is necessary. This algorithm should

enable the update of the attitude estimate every time a new accelerometer or gyroscope sample

is available and remain stable over time. The algorithm may simply filter and fuse the data (first

order) or also model its drift (second order).

2.2.1 Kalman Filter

The Kalman Filter (KF) and its extensions (Extended Kalman, Unscented Kalman) are popular

sensor fusion algorithms, as they are designed to produce estimates of variables from noisy sensor

data. The KF works in two steps: Prediction and Update. During the Prediction Step, the algorithm

uses the current state of the system and the process model to predict the next state of the model.

Immediately after, the sensor measurements are inserted in the measurement model and a new

estimate is made. The final estimate of the filter for each iteration is a weighted average of the

process model and the measurement model that controls how much the algorithm reacts to changes

in measurements. The key is that the estimates for the state variables always have an associated

covariance value, that describes the certainty the algorithm has regarding the current estimate.

The first stage in designing a Kalman Filter is deciding on which state variables to model (x̂).

In the case of a Sensor Fusion algorithm for attitude estimation, these may be the current attitude

(in quaternion or Euler Angles form) and the current angular rate of turn or the gyro biases. The

next stage is to design the process model (Fk), that is, how to predict the next state for all variables

from the previous state. In position tracking systems where the velocity is a state variable, a simple

process model would assume no acceleration and predict that the new position would be a result

of the current velocity through the time-step between iterations. The process model also includes

a process noise matrix, which describes how certain we are that the system will act that way (Bk).

On the update step, the goal is to estimate the residual (ỹ), which is the difference between the

actual measurements (zk) and the "measurement prediction" from the measurement model (Hk)
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and the current estimate (x̂), also with associated noise (Rk). The final state estimate is then the

average weighted by the Kalman gain (Kk), which can also be computed from the covariance of the

system at that time. The equations (Prediction, Measurement Update and Final Estimate) which

describe the KF are presented below (2.7, 2.8 and 2.9):

Prediction:

StateEstimate −> x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk

Covariance −> Pk|k−1 = FkPk−1|k−1Fk
T +Qk

(2.7)

Update:

Innovation −> ỹk = zk−Hkx̂k|k−1

Covariance −> Sk = HkPk|k−1Hk
T +Rk

(2.8)

Kalman Gain and new estimates:

Optimal Kalman gain −> Kk = Pk|k−1Hk
T Sk
−1

State Estimate −> x̂k|k = x̂k|k−1 +Kkỹk

Estimate Covariance −> Pk|k = (I−KkHk)Pk|k−1

(2.9)

The power of the Kalman Filter comes from the combination of a process model and smart

prediction and the measurements, in an environment where all noise is modeled and the estimates

have an associated covariance which is propagated throughout all iterations and represents the

confidence the system has in the current estimates. However, it can only be applied to linear

systems and will only work ideally if the uncertainty can be modeled as a Gaussian distribution.

There are extensions of the Kalman Filter that can be applied to non-linear problems, such as

the Extended and Unscented Kalman Filter. Alternatively, the Divided Difference Filter ( [14]) is

better suited for highly non-linear models and uses multidimensional functions to approximate the

non-linear transforms, based on a multivariate extension of Stirling’s Interpolation Formula [15].

Its computational cost is similar to the Kalman Filter. For different distribution models of the

measurement or process noise (i.e. non-Gaussian), it is possible to apply particle filters (which

will be described in further detail in Chapter 5), at the cost of greatly increased computational cost,

since they model all distributions through sampling. Another advantage of the Kalman Filter is the

simplicity of explicit drift modeling for the design of second order filters. Since sensor drift can

be used as one of the state variables, the errors can be estimated and updated explicitly, along with

the propagation of the respective covariance matrices. Despite the accuracy advantages, modeling

additional state variables comes at the cost of added computational cost, which is already superior

to that of the alternatives listed below.
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2.2.2 Complementary Filter

A simpler approach to the sensor fusion problem comes in the shape of the complementary

filter, which attempts to fuse the long-term stability of the accelerometer with the short-term pre-

cision of the gyroscope. It is designed to combine as a high-pass filtered gyroscope data and

low-pass filtered accelerometer data as described in Equation 2.10, where α is a smoothing factor

(between 0 and 1, usually equal or greater than 0.95) that describes how much we want to trust

the gyroscope. Larger values of α lead to a smaller impact of gyro integration errors, however,

the effect of noise in the acceleration signal (namely from movement) is magnified. The reverse is

also true, with smaller values magnifying gyro drift.

θt = α ∗ (θt−1 +ωgyr ∗dt)+(1−α)∗ (θacc) (2.10)

Alternatively, and by implementing a PID controller together with the filter, it is possible to de-

sign a second order complementary filter. The update function would then follow Equations 2.11,

2.12 and 2.13, with tunable parameters kb and ki describing the proportional and integral gain of

the controller:

Obtaining estimated direction of gravity from current attitude

v̂ =

 2(q1q3 +q0q2)

2(q2q3 +q0q1)

q0
2−q1

2−q2
2 +q3

2

 (2.11)

Error Calculation (between current attitude v̂ and normalized accelerometer reading v̄)

e = v̂× v̄ (2.12)

Corrected Rate of Turn

Ω̂ = Ωsensor + kpe+ ki

∫
e dt (2.13)

The corrected rate of turn (Ω̂)is then used as the quaternion derivative and integrated, to obtain

the current attitude. It is also important to note that after this calculation, the quaternion needs to

be normalized, so that numerical errors do not affect the precision of the calculation and that the

quaternion can in fact represent a real rotation.

Complementary filters are much simpler than Kalman Filters and have a smaller computa-

tional cost while having competitive accuracy and precision, making them very attractive. The

main issue with the Complementary Filter algorithm is that its simple first order form does not

produce estimates with sufficient degree of precision and robustness, especially for the estimation

of foot attitude during human gait, where the acceleration signal can be quite corrupted. On the

other hand, the PID controller can have trouble converging especially due to the nature of the

accelerometer signal. Additionally, it does not explicitly model drift.
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2.2.3 Gradient Descent Filter

Aligning the direction of gravity as estimated by the accelerometer with the direction that

is being estimated by the current attitude quaternion results in infinitely many solutions, as any

quaternion that is parallel to the z-axis will have the same direction, which means it can have

any possible rotation around it. Madgwick et al. [11, 16] proposed solving this as a minimization

algorithm, so that the orientation of the sensor (quaternion q̂) is that which minimizes the dif-

ference between the direction of its estimate for the z-axis and the estimate of gravity from the

accelerometer ā, as in Equation 2.14.

f (q̂, ā) = q̂∗⊗ [0 0 0 1]⊗ q̂− ¯a =

 2(q2q4−q1q3)− āx

2(q1q2 +q3q4)− āy

2(1
2 −q2

2−q3
2)− āz

 (2.14)

The authors proposed using the Gradient Descent method to minimize function f and derived

the Jacobian matrix analytically (quite simple in the case of alignment with a simple direction such

as [0 0 1]), enabling the fast computation of the gradient and efficient solving of the minimization

problem (2.15).

J(q̂) =

−2q3 2q4 −2q1 2q2

2q2 2q1 2q4 2q3

0 −4q2 −4q3 0

 (2.15)

The calculated error vector will then be: (eq. 2.16)

ê = f (q̂, ā)T J(q̂) (2.16)

Without a reference for the alignment of the y-axis, the solution may have some numerical

noise depending on the result of the gradient descent algorithm. However, this fluctuation as

well as the introduction of acceleration noise (erroneous gravity direction) is controlled by the

β factor, which determines how much the calculated error will influence the final estimate by

controlling how much the gyroscope-based estimation tilts in the direction of the error derived

from the direction of gravity as estimated from the acceleration data. The minimum β value is

limited by the gyroscope measurement error (with zero mean) and is expressed as the magnitude

of the quaternion derivative, as described in Equation 2.17, where q̂ is any unit quaternion and ω̃

is the estimated gyro error.

β =

∥∥∥∥1
2

q̂⊗ [0 ω̃ ω̃ ω̃]

∥∥∥∥=
√

3
4

ω̃ (2.17)

Furthermore, and unlike typical applications of the Gradient Descent algorithm, because the

rate of convergence of a single iteration is greater than the physical rate of the change of orien-

tation, only a single iteration is necessary, resulting in a very efficient algorithm. The attitude

estimate is then obtained by integration (eq. 2.18) of the derivative of each quaternion component.
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This derivative is obtained from the rate of turn measured by the gyroscope (eq. 2.6), q̇ and the

direction of the error given by the normalized error vector, ê.
qw(t)

qx(t)

qy(t)

qz(t)

=


qw(t−1)

qx(t−1)

qy(t−1)

qz(t−1)

+


q̇w(t−1)−β êw

q̇x(t−1)−β êx

q̇y(t−1)−β êy

q̇z(t−1)−β êz

×dt (2.18)

It is true that without a reference source for the y-axis (magnetometer), this algorithm will

introduce fluctuations in the yaw angle (around the z-axis). Nevertheless, these fluctuations, when

controlled by a small β value and adequate filtering and processing, can be manageable. With a

6-DOF IMU, drift cannot be modeled, as the errors in each specific axis cannot be numerically

calculated (as the system cannot arrive at a completely defined solution without a second direction

reference, namely the magnetometer reference to the North). The main advantage is that this

filter provides greater accuracy on the alignment of the z-axis estimate with gravity, which is

very desirable from a point of view of accurate distance quantification relative to the xy plane, as

explored in Chapter 3. As such, this filter will be the base of the attitude estimation filter to be

applied on this system.

2.3 Zero Angular Rate Update (ZARU)

Compensating for gyroscope bias is the main challenge in attitude estimation. After integra-

tion of the gyro values, uncompensated bias will cause the attitude estimation to drift. The goal of

the IMU fusion and map matching modules will be to compensate for the drift in the attitude esti-

mation. Detecting and compensating gyro drift, however, requires information regarding average

error in the measurements (as will be estimated by the MM module) or the expected rate of turn at

a given moment - this is where ZARU comes into play.

Human gait is made up of several stages in cyclic succession: heel strike -> stance -> toe-off

-> swing -> heel strike (...). When the foot is in the stance phase, there is no acceleration due to

movement, no velocity and no rotation, even if the accelerometer signal does not point exactly in

the direction of gravity and the gyroscope does not return zero rate of turn in all axis (precision

and bias issues). If we can detect the stance phase of gait, we can retrieve a very valuable piece of

information: the angular rate of turn is zero for all the samples that make up that phase (this will

be explored further in Chapter 3 and in Section 2.4.3).

Once the samples corresponding to the ZARU are detected, they are set to zero and bias can be

estimated by taking the average value of the gyroscope measurements that were detected as Zero

Angular Rate.
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2.4 Implementation of the GD-ZARU Filter

This section describes the implementation of the attitude filter which is based on the Gradient

Descent Algorithm aided with ZARU.

2.4.1 Pre-Filtering

Before feeding the data into the attitude estimation algorithm and in order to minimize the

amount of noise in the signal, the data is preprocessed. Since studies in human gait inertial signal

frequency content have concluded that 98% of the signal content is within the frequencies up to

10Hz (and 99% at 15Hz) [17] and band-passing gyroscope signals improves the Signal to Noise

Ratio of the signal [18], it is necessary to filter out the unnecessary and noisy frequencies. Ac-

celerometer data should be low-pass filtered at a cut-off frequency of at least 10Hz. Angular rate

data will be only low-pass filtered with a cut-off frequency between 10 and 30Hz. The absence of

a high-pass filter is due to the fact that filtering the signal at 0.1Hz would require a large number

of samples to be used in the filtering window (increasing computational cost). Since the algorithm

applies ZARU and estimates bias drift and as such there should not be any DC component in the

signal, the data will only be low-pass filtered.

There are several types of filters that can be used to achieve the real-time (or near real-time)

filtering that is necessary. Examples include the moving average filter, the median filter, Kalman

filters, Butterworth filters, Discrete Wavelet Package Shrinkage ( [19]) and Window filters (namely

the one-parameter Kaiser-Bessel). In this work, all filters are Kaiser-Bessel Windows [20], since

they are real-time (only use past samples to arrive at the current filtered estimate), easily tunable,

efficient and linear phase. The filter coefficients are given by Equation 2.19 (where I0 is the zeroth

order Modified Bessel Function, N is the window size and the α parameter controls the relationship

between main-lobe width and side-lobe height in the frequency domain) and are precomputed.

Since N will be odd and the coefficients will be symmetric, this (type I linear-phase FIR filter) will

have no phase delay and will have an integer group delay of 4 samples [21], making it suitable for

this application.

ω[n] =
I0

(
πα

√
1− ( 2n

N−1 −1)2
)

I0(πα)
, 0 < n < N−1 (2.19)

2.4.2 Initialization

The initial estimation of attitude is done solely with the accelerometer data, which provides

the pitch and roll angles with a indeterminate yaw angle. Equations 2.20, 2.21 and 2.22 describe

the calculation of the initial attitude from the normalized acceleration signal. Pitch, yaw and roll

are described by φ , θ and ψ respectively.

Since the yaw measure is arbitrary (set to zero), the estimated angle will be rotated to fit

the initial direction that the system assumes is available (input by the user, retrieved by GPS or
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through the direction of the building entrance), as there is no absolute source of heading available.

All subsequent heading changes will be corrected with the initial offset.

ψ(roll) = arctan(
Ay

Az
) (2.20)

φ(pitch) = arctan(
−Ax

Aysinψ +Azcosψ
) (2.21)

q̂0 =


cosθcosψcosφ + sinθsinψsinφ

cosθsinψcosφ − sinθcosψsinφ

cosθcosψsinφ + sinθsinψcosφ

sinθcosψcosφ − cosθsinψsinφ

 (2.22)

2.4.3 ZARU

Detection of Zero Velocity and Zero Angular Rate (which are connected) are crucial in order to

bound the error associated with integration of the acceleration and angular rate signals [22]. There

are several algorithms to detect Zero Velocity periods [23], which will be analyzed in further detail

in Chapter 3. The features which were used to detect these periods were acceleration magnitude,

acceleration variance and angular rate of turn magnitude. Detection of Zero Angular Rate follows

the same general idea (as Zero Velocity periods also mean Zero Angular rate), however, in this

case they will not be used for step detection as is the case with the Zero Velocity Detection in the

Step Quantification Module. Instead, the goal is to detect and correct gyro bias and its drift.

Since ZARU will estimate and correct bias continuously, erroneous detections may distort

the signal, which introduces error that is not as easily corrected as distance estimation errors, for

example, and propagates through all future estimates of the system. As such, the criteria for ZARU

detection will be much stricter than ZUPT. Samples which are classified as Zero Angular Rate will

be zeroed and the bias (difference to zero) is stored. As samples arrive at the ZARU module, the

average bias is removed.

2.4.4 Attitude Update

As described in Section 2.2.3, attitude estimation is done in two steps: error calculation and

quaternion integration. Before calculating the error (difference between the estimate of the direc-

tion of the z-axis from current quaternion and current acceleration vector), it is useful to apply

a second low-pass filter on the accelerometer data. Even though frequencies up to 20Hz can be

useful for the reconstruction of the displacement of the foot, filtering out frequencies up to the

3-8Hz range can be beneficial for the filtering of the movement-induced noise and estimation of

the gravity direction.

Once there is an estimate of the error, which will be the direction of the gradient of the min-

imization problem, it is applied to each of the coordinate derivatives (see eq. 2.6 and 2.18) as

estimated from the gyroscope measurements, according to the step value β .
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2.5 Parameter Tuning

As described during the previous Sections, there are several tunable parameters that will

greatly influence the performance of the filter. An overview of the entire module is presented

in Figure 2.3, where all tunable parameters are presented in parenthesis.

Figure 2.3: Attitude Estimation Module and Tunable Parameters - Raw gyroscope data is corrected
and raw accelerometer data is used to obtain the gradient of the correction that minimizes the
difference between the attitude estimate of the z-axis and the gravity measurement. These two
estimates are used for attitude estimation

.

A list of the all values for the parameters is presented below, with discussion regarding their

robustness across different gait samples, impact of varying the parameter value on the overall at-

titude estimation and general design process. It is important to note that the current system has
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a sampling rate of 100Hz per sensor per foot, so each second the system will receive (100 [fre-

quency] × 2 [accelerometer + gyroscope] × 2 [IMU on each foot] × 3 [3-axis] = 1200 samples),

which need to be processed at or near real-time alongside the position estimation correction algo-

rithms (step detection, quantification, fusion of information from both feet and map matching), so

computational costs need to be reasonable for all processing.

• Accelerometer Low-Pass Filter 1 - As mentioned above, 98% of the gait inertial signal

content is present in frequencies up to 10Hz. At a sampling frequency of 100Hz, the system

will be able to use 10 samples per period. Since the low-pass filter is not ideal, frequen-

cies slightly above 10Hz will still appear (attenuated), allowing the signal to be used for

displacement reconstruction with adequate accuracy. In this application, a filter with a wide

main lobe and strong attenuation of the side lobes is desirable. The side lobe attenuation of

the filter is 100dB, which translates to a main lobe width of 26Hz. The filter window size is

21 samples, a trade-off between precision and computational complexity.

• Gyroscope Low-Pass Filter - In [18], the authors test several cut-off frequencies for their

band-pass filter, with different optimal results for different subjects and gait speed. This

makes filter design very complicated, as either the cut-off frequency is dynamically defined

from gait speed or a compromise must be made. Applying no pre-filter to the gyroscope

signal is an option, but solving noise problems before the attitude estimator is highly ben-

eficial. Additionally, filtering acceleration without filtering rate of turn can lead to poorer

performance of the attitude estimation algorithm. As such, and to avoid losing important

rotation information, the cut-off frequency was set to 20Hz, again with 100dB side-lobe

attenuation.

• ZARU Detector - As explored in Section 2.4.3 all thresholds are stricter than the ones

used on the ZUPT/Step Detector described in Chapter 3, while using the same features and

classifier: Acceleration magnitude lower threshold is set at 9.5 and its higher threshold at

10.5; Acceleration variance threshold is set at 0.3 with a window size of 31 samples; Angular

rate threshold is set at 0.3, which is much lower than the one on the step detector, as there is

drift modeling (which will ensure that the returned angular rate returns to zero and does not

drift) and setting samples to zero erroneously causes wrong estimates of drift (which create

increasing errors).

• Accelerometer Low-Pass Filter 2 - In order to reduce the movement-induced noise in the

gravity estimation, the acceleration signal is re-filtered with a cut-off frequency of 5Hz and

30dB side-lobe attenuation, so that the direction of the gravity vector is more stable even

under high linear acceleration caused by movement.
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• Step size β - The step size is limited by the gyroscope measurement error. Empirically, the

attitude estimation was best for smaller β values. The zero-mean gyroscope measurement

error was set to 1 deg/s (the error with non-zero mean is of a larger magnitude).

2.6 Review of the Attitude Estimation Module

The Attitude Estimation Module, which also acts as a pre-filter, is lightweight, real-time and

stable. However, it does have a number of tunable parameters that greatly influence its perfor-

mance and that are, at the moment, static. Firstly, it may be beneficial to relate the cut-off

frequency of the filters with features such as step frequency, gait speed or signal magnitude, as

interesting frequency bands may change for different subjects and gait speed [18].

Examples of the quaternion estimates through time, separated by quaternion component, are

presented on Figures 2.5 and 2.7. Figures 2.4 and 2.6 show the estimate of the route travelled,

which were routes 8-route-A and zigzag respectively, as shown in Chapter 7. There is a slight

drift on the heading estimates for the right foot (which can be caused by incorrect calibration).

Note that there is no information for initialization of yaw and as such it is arbitrary. In these

examples, the yaw was forced to be 0°, and as the x and y axis of the IMUs are pointing in the

same direction in the first experiment but in different directions on the second (for ease of placing

under the shoelaces, the opening of the case for the charger is facing the outside of the foot on

both shoes) the initial estimates for the latter have opposite signals.

During the design of the algorithm, there was an attempt to dynamically set the β value accord-

ing to the magnitude of the acceleration vector, as a function of the confidence of the estimation

of the direction of gravity: if the magnitude of the measurement vector is considerably greater

than 9.81ms−2 then there is movement noise in the signal, the estimate is less precise and less

correction in the direction of the estimated error should be applied. As this did not improve the

final result, it was discarded. Nonetheless, if movement induced noise on the accelerometer signal

can be detected in a more sophisticated manner, it may be beneficial to dynamically change the

weight given to the acceleration-based attitude estimate. It is important to note that without dy-

namic application of accelerometer-based corrections, better results relative to the pitch and roll

angles (alignment of the z-axis with gravity) will always result in the introduction of noise in the

yaw angle (heading), as can be seen in Figure 2.6, where the left foot estimates are much more

accurate in terms of yaw while the right foot estimates are more accurate in terms of pitch and roll.

Finally, classification of samples as zero angular rate could be improved, as explained in the

following Chapter, and that enables better estimation of the gyro bias drift even before further

information or processing is applied.
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Figure 2.4: Route 8-route-A - Estimation of positions (each IMU independently) corresponding
to the attitude estimation of Figure 2.5. Red and blue dots represent positions for the left and right
foot respectively. Axes units in meters

.

(a) Attitude estimates for left foot (b) Attitude estimates for right foot

Figure 2.5: Example of quaternion attitiude estimates through route 8-route-A (see Chapter 7 and
Figure 2.4). X-axis describes sample number (at 100Hz sampling frequency) unit is equivalent to
the hundredth of a seconf, Y-axis describes value of the quaternion component
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(a) PDR on the x-y plane
(b) 3D tracking

Figure 2.6: Errors on Pitch and Roll angles vs Error on Yaw angle - Red dots represent positions
of the left foot and blue dots represent positions of the right foot. Initial and final height should be
the same. Travelled route is zigzag, see Chapter 7. All axes in meters.

(a) Attitude estimates for left foot (b) Attitude estimates for right foot

Figure 2.7: Example of quaternion attitiude estimates through route zigzag (see Chapter 7 and
Figure 2.6). X-axis describes sample number (at 100Hz sampling frequency). Y-axis describes
the value of each quaternion component. Note the symmetric values due to different orientation
of the sensor mounted sensor relative to the foot.



Chapter 3

Step Detection and Quantification

For continuous location to be possible, the position of the user must be known, not only with

adequate precision but also with adequate time resolution (less than a second, as indoors a couple

of meters can be a significant distance). This means that either absolute location can be retrieved

at all times (not possible with the desired approach) or the displacement of the user can be tracked

in real-time (PDR).

Tracking the movement of users is intricately linked to detecting and quantifying their steps

(normal means of human movement) and requires detection of steps and the estimation of the step

length and heading. While step detection is not mandatory, as displacement can be continuously

tracked through the double integral of the acceleration signal, coupled with attitude estimation and

aided by ZUPT and ZARU, step detection and segmentation of the corresponding samples can be

helpful for two reasons: forwards and backwards filtering of the samples for smarter ZUPT; ability

to fuse information from both feet using a step as a unit of displacement (explored in full detail in

Chapter 4), which is much simpler than continuous information fusion.

A step can be defined as a translation of the foot that is greater than a certain threshold, as a

movement with a certain cyclic inertial pattern (in terms of acceleration and angular turn) or more

simply as the period containing movement between two periods where the sensor is detected to

be still. This is an interesting approach since when one foot moves, the other is still and bearing

the weight of the user, assuming normal gait. This is a key property, and will be exploited in the

ZUPT algorithm. With this approach, lifting one foot off the ground and putting it down on the

exact same spot will be counted as a step by the system. Despite this, if attitude estimation and

the ZUPT-aided displacement estimation is working properly, the calculated displacement will be

zero on all three axes.

In this Chapter, there is an analysis of the importance and the implementation of ZUPT, detec-

tion of Zero Velocity periods (which will be equal to step detection) and step quantification (both

in length and heading).

25
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3.1 Zero Velocity Update (ZUPT)

ZUPT is ubiquitous in recent foot-IMU based systems, as it bounds the error associated with

the integration of signal from imperfect accelerometers and attitude estimates that cannot com-

pletely compensate for gyroscope bias drift [1]. Integration of signals with noise or bias will lead

to drift that makes estimation of displacement from double integration of the acceleration signal

unsuitable for tracking (cubic error growth with time, [24]). Figure 3.1 shows the velocity signal

resulting from the integration of the acceleration signal (after the frequency filtering and attitude

estimation as described in the previous Chapter) without applying ZUPT.

Figure 3.1: Velocity Estimates from Integration without ZUPT. Velocity in ms−2, x axes represents
samples (at 100Hz sampling), unit is equivalent to the hundreth of a second. From the top: velocity
estimates for the right foot (x, y an z axes); velocity estimates for the left foot (x, y and z axis).

Human gait is a cyclic movement composed of several stages, which can be divided in two

big groups: stance and swing. During each foot stance (namely on the midstance, if using the

classification suggested by Perry and Burnfield in [25], and displayed in Figure 3.2) phase, it is

firmly planted on the ground, bearing the weight of the subject. At that point, it is stopped, with

no movement-induced acceleration, no velocity and zero turn rate. As such, ZUPT and ZARU

are closely linked and can be detected by the same parameters. As mentioned in Chapter 2, the

principle is the same: the detection of the stance phase. By setting the estimated velocity at zero

for samples that are detected to belong to the stance period of gait and correcting the signal based

on the estimate of error (difference between zero and the actual value), error is bounded to linear

growth with number of steps, making tracking methods a feasible approach for the IL problem.

As one can see in Figure 3.1, the velocity estimates fail to return to zero without ZUPT, and

since every sample depends on the previous state, drift accumulates, leading to wildly inaccurate

estimates.



3.1 Zero Velocity Update (ZUPT) 27

Figure 3.2: Gait Stages as divided by Perry and Burnfield in [25] and presented in [26]

After the samples corresponding to a step are segmented, there are several ways to apply the

ZUPT [27]. The simplest alternative would be to average the velocity error (difference between

values which are supposed to be zero and the actual value). A second alternative, which was

the one that was implemented, calculates the necessary correction through the Residual Velocity.

Residual Velocity refers to the final value of velocity after the reconstruction of the signal in the

segmented window. Since samples are segmented according to the detection of the Zero Velocity

(stance) periods, the final velocity should be zero. The correction is done by subtracting half of

the residual velocity to all the non-zero samples, so that both ends of the velocity curve are as

close to zero as possible. Figure 3.3 shows the result of Updating and compensating errors when

reconstructing the velocity signal, for the same signal as in Figure 3.1. There is no propagation of

error on the signal, even if there are small errors in each small estimate.

Figure 3.3: Velocity Estimates from Integration with ZUPT. Velocity in ms−2, x axes represents
samples (at 100Hz sampling)

More sophisticated reconstruction of the signal could be done, through several fixed-interval

smoothing formulas [28] (among those the Rauch-Tung-Striebel formula [29]). In case of Kalman
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Filter driven algorithms, the smoothing can work in 3-passes [30]: The first pass occurs when

naturally processing the samples the first time, calculating error covariance matrices; Once the

end of the step (detection of a posterior ZUPT interval) the algorithm performs a backwards pass

to correct all covariance matrices; Lastly, a forwards pass is done to redo all estimates through

using new error estimates. These formulas are geared towards state-space estimation methods,

namely the Kalman Filter, however, similar approaches could eventually be extended to segmented

signals.

3.2 Techniques for Detection of Zero Velocity - Steps

Since the detection of steps is not the ultimate goal of the system, the Step Detection Module

is responsible, above all, for timely ZUPT and bounding of errors in displacement reconstruction.

If there are persistent erroneous detections because of a different walking pattern and that causes

erroneous ZUPT that either greatly increase or decrease the true displacement distance, that is a

problem. However, if due to small movements, dragging of the feet at heel strike or during a sharp

movement (such as avoiding an obstacle) an additional small step is counted which increases the

travelled distance by only a few centimetres, that will not be a problem, as the IMU Fusion and

Map Matching Modules will be responsible for the correction of said small errors. The main goal

is the correct classification of ZUPT periods.

Detection of Zero Velocity with great accuracy is a challenge, and the key to displacement

reconstruction. As briefly described in the previous Chapter, there are several methods available

for Zero Velocity detection. An overview of these methods is provided below.

3.2.1 State Machines

The periodicity of human gait can be explored for step detection, namely through Finite State

Machines (FSM). By defining the various states that make up a step and the transition between

them, step detection can take advantage of the temporal relation between states (for example, the

Midstance follows the Loading Response as defined in [25] and shown on Figure 3.2) to increase

robustness of the segmentation. Accurate modeling of the states and their transitions (which state

can transition to which and how) enables detecting all stages of the gait in succession and a robust

step segmentation, as it does not depend on a single test. Instead, FSM look for various patterns

(that can be more flexible than a static peak searching) and leverages their sequence to reach a more

dynamic segmentation decision. In [26], the authors segment gait in the 5 stages represented in

the bottom part of Figure 3.2 in red (including "Initial Contact"). Additional states and transitions

are included in order to model the signal behavior for backwards gait and stair climbing. These

transitions are represented in Figure 3.4.

One key of the detection of state transitions is the use of the gyroscope measurements for

angular turn caused by foot dorsiflexion and plantar flexion (i.e. around an axis perpendicular

to the foot length, going out laterally from the ankle), which are the ones where the transition

between states can be seen more easily. This requires the IMU to be fixed at a position in which
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Figure 3.4: Finite State Machine algorithm overview, in [26]. Green states represent regular for-
ward motion, orange states represent backwards gait and the yellow state represents stair climbing.

one of the 3 axes is parallel with the ankle main axis. The authors enumerate several features that

are used for transition detection:

• Variance of the accelerometer and gyroscope measurements

• Angular rate of turn in the ankle main axis and its derivative

• Acceleration and angular rate of turn magnitude

• Specific force - Acceleration Magnitude after compensating for gravity

Alternatively, it is possible to model state transitions as a Hidden Markov Model, which can

deal with states that are not detected or more complicated patterns of human movement such as

very fast walking or running by estimating which states belong to which step and how many steps

were taken by using an HMM smoother on the detected states. This approach is used in [31], where

the states correspond to segmentation of the gyroscope axis corresponding to the main ankle axis

according to the magnitude of its signal.

These approaches provide interesting results and are very robust, but require sophisticated

empirical modeling and the isolation of the axis of the gyroscope (since estimates of turn from a

rotated gyroscope axis will not be precise enough), in order to reflect the movement of the ankle.

3.2.2 Gait Cycle Detection

The main challenge with Zero Velocity interval detection is on its borders, specifically on its

start. This is because the beginning of the stance phase is through the "Initial Contact" where large

acceleration spikes occur. In addition, relative motion between the foot and the IMU introduce
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additional noise (that also propagates to the attitude estimate) which makes for an added challenge.

This problem is tackled in [32] by using Kinesiology knowledge as an added source of information,

namely the proportion of the step duration that makes up stationary and moving stages. The idea

is to compare the timespan of gait and the ZUPT interval as estimated by the angular rate of turn

on the main ankle axis with the standard kinesiology proportions. This match is done through a

Bayesian probabilistic model, where accelerometer data is also used.

This approach suggests placing the IMU on the toe in order to increase the signal strength

of rotation on the axis parallel to the main ankle axis, which is the axis where rotation is most

characteristic of all gait (rotation on other axes is more prevalent in changes of direction, for

example). It provides great results in reducing the fuzziness around the boundaries of the Zero

Velocity period, however, it also requires the alignment of one axis of the gyroscope with the main

rotation axis and suggests an awkward fit on the shoe.

3.3 ZUPT Interval Detection - Implementation Details

A third class of algorithms focus on more general features of the inertial signals in the stance

phase to detect steps, without requiring a specific orientation for the mounting of the IMU on the

shoe. Since versatility is a desirable trait in the designed system (and tests are being done simply

by strapping the IMU under the sholaces), algorithms that do not require the detection of highly

differentiated states of the gait cycle (which are mainly detected through rotation on the main ankle

axis as explored in the previous two Sections) are very interesting.

While PDR systems based on unconstrained inertial sensors (such as a smartphone) need to

focus on the detection of the foot strike impacts (which propagate through the body, regardless

of if the phone is in the pocket, hand or a bag) through dynamic tresholds, robust FSMs or even

Machine Learning Classifiers, foot-mounted IMUs can explore the idea behind ZUPT: the foot on

the ground will have no velocity, no acceleration (apart from gravity) and no rate of turn. The most

common and simple algorithm for step detection is the moving variance estimator, which calcu-

lates the variance of the acceleration magnitude in windows around a certain point, since very low

variance of the accelerometer signal is a characteristic of the stance phase. This simple threshold

classifier can be combined with other signal features to obtain a more robust classification [23],

especially if used not only as a step detector but also as a ZUPT interval detector.

Working on the algorithm proposed in [22] (and as briefly mentioned in Chapter 2), ZUPT

detection will be done using three features:

• Acceleration Magnitude - Since the acceleration magnitude on the stance phase should

only reflect the gravitational acceleration, the stance phase is characterized by a magnitude

around 9.81ms−2. This threshold could be made more accurate if the attitude estimate for

the pitch and roll angles (z-axis alignment with gravity) was sufficiently accurate and gravity

could be removed from the acceleration signal in the Earth frame. However, errors in attitude

estimation would lead to errors in velocity reconstruction which would propagate, and a
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robust z-axis alignment would come at the cost of a loss of precision in the yaw angle

(heading) estimate.

• Acceleration Variance - This condition is usually the one that is chosen on systems with

a single test, and it is the most accurate and robust [23], especially for step detection and

general ZUPT interval detection. Nevertheless, it is benefficial to fuse this condition with

other tests that can help locate the boundaries of the interval with added precision.

• Angular Rate Energy (Magnitude) - This is a key feature for the detection of the border of

the ZUPT interval, as explored in the algorithms presented in the previous Sections. Even

though the IMU placement is not geared towards isolating angular turn of a specific axis,

the beginning and end of the stance phase are noticeable on the gyroscope magnitude and

the fact that it is so sensitive to small rotations mean that during most, if not all, of the swing

period, the magnitude of the angular rate of turn will be below a certain threshold.

The selected thresholds were the ones described in [22]: Acceleration Magnitude between 9

and 11ms−2; Acceleration Variance lower than 0.5(m2s−4) on a 30 sample window; Angular Rate

Energy lower than 1 rad/s. The three tests are then combined with a Boolean AND, where True

(1) describes a ZUPT interval (foot stationary on the ground) and False (0) describes a movement

interval (foot is moving). An example of the obtained signals is presented on Figure 3.5. Refer

to Figure 3.7, below, for an illustration of the signals on which the thresholds are applied and the

final segmentation result. The first boolean condition testing is set to always true before the first

step so as not to detect an additional foot in contexts where the initialization of the IMU introduces

error in the measurements and small extra steps would be detected at startup.

Figure 3.5: ZUPT Detection - 3 Boolean Conditions and Filtered Decision Signal. From the top:
C1 - Acceleration Magnitude; C2 - Acceleration Variance; C3 - Angular Rate Magnitude. The Last
Signal is the result of the Boolean AND on the 3 conditions. X axis - samples (100Hz sampling).
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The resulting signal is then filtered with a skewed median filter of 15 samples, where a True

result requires 13 True samples. This was done in order to increase robustness of the algorithm in

occasions where the lack of specificity of the first boolean condition (as can be seen in Figure 3.5),

so as not to detect partitioned ZUPT intervals or erroneous small updates. The resulting decision

signal is shown in Figure 3.6 with no temporal processing. The steps are well intercalated, which

reflects the need for synchronization only if the sampling frequency was unstable or the time

difference was larger than the duration of the step. Order of step detection is important since

the information from both feet is processed and fused as it arrives at the Fusion module (see

Chapter 4) and two consecutive steps on the same foot without the processing of an existing step

on the opposite foot lead to strong erroneous filtering and overall positioning error.

Figure 3.6: Filtered Decision Signal for both feet. Left foot on top and right foot on bottom.

Finally, the system is made more robust through two checks on the integrity of the step de-

tection. If two consecutive steps of length greater than 0.5 meters are detected by the step tracker

module to be on the same foot, there is a reprocessing of the data of the opposite step with more

relaxed thresholds (namely regarding acceleration variance and gyroscope energy), in order to

make sure no step was missed. Additionally, if during step quantification the estimated velocity is

above a certain threshold (4 m/s), the corresponding samples are also reprocessed. An illustration

of the correct segmentation of the original signal through the method described in this section is

presented on Figure 3.7.
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Figure 3.7: Segmentation of the Raw Data according to the ZUPT detection method, for one
foot. In order: Acceleration (x, y and z axes, in ms−2), Gyroscope (x,y and z axis, in rad/s) and
the features relative to the three boolean conditions (acceleration magnitude [ms−2] , acceleration
variance [m2s−4] and angular rate energy[rad/s]). X axis represents samples (at 100Hz sampling).
Red vertical lines represent the beginning of midstance and ZUPT (when the toe hits the floor) and
the green lines represent the toe-off - end of the ZUPT interval

3.4 Step Length Estimation

Fixing the IMUs to the feet enables the use of tracking through actual displacement recon-

struction. Unlike the usage of an unconstrained smartphone, the length of a step can be retrieved

by direct processing of the inertial signals and as such does not rely on modelling the relationship

between step frequency or acceleration magnitude and step length. On smartphone based PDR,

the MM algorithm would provide feedback in terms of the weights given to the Linear or Non-

Linear models (3.1 and 3.2, with step Length SL, tunable weights A,B,C and K, step frequency

and variance SF and SV and Acceleration magnitude Amax and Amin) obtained empirically, essen-

tially tailoring the algorithm to the user. However, a change in the carrying context, gait speed or

irregular movements (such as avoiding obstacles or climbing stairs) can disrupt the model. This

makes PDR that relies solely on smartphone inertial signals infeasible.

SL = A+B.SF +C.SV (3.1)

SL = K− 4
√

Amax−Amin (3.2)

On the other hand, foot-placed IMU systems focus on processing the signals so that double

integration can be performed without accumulation of error. Even though the estimation of each
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individual step length can be more or less influenced by error - derived from the prefiltering that

may not be ideal for the signal features within a certain window, attitude estimation errors, in-

correct detection of Zero Velocity and numerical integration errors - ZUPT prevents drifting of

the signals. Error builds as a consequence of small estimation errors on each individual steps but

remains stable over time. As a result, estimation of Step Length is only a function of double in-

tegrating the acceleration signal and applying ZUPT to the first integral - velocity. The numerical

integration is done by the rectangle rule. Systems using ZUPT, depending on the precision of the

inertial sensors and chosen algorithms, can achieve a distance estimation accuracy of 95-99% of

the travelled distance [33, 34].

It is important to note that distance estimation requires acceleration data in the Earth frame,

which means that the acceleration signal retrieved from the accelerometers needs to be rotated

according to the attitude provided by the attitude estimation module. As such, the precision of

these signals will depend on the precision of the detection of the z-axis direction. Even if there is

not an adequate heading estimation, if the rotation of the x and y acceleration data indeed aligns

with the xy plane (even if the x and y direction are slightly rotated), the estimation of distance

will be precise. This provides additional information for the IMU fusion and MM modules, as

there is a greater confidence on distance estimates compared to heading estimates and that can be

exploited when correcting trajectories.

3.5 Heading Estimation

Step quantification requires not only step length but also step heading. Step heading has, in

most cases, a greater effect in the PDR accuracy than the estimation of step length [35].

3.5.1 Heading from IMU Attitude Estimation

Alternatively, accurate estimation of sensor attitude through time will result in stable estimates

of displacement not only regarding 2D distance in the xy plane but also regarding heading (yaw

angle). However, and as mentioned in Chapter 2, without an absolute source of information,

heading estimation will drift due to sensor imprecision and bias drift. As such, it is necessary to

design a drift estimation and reduction/elimination strategy.

3.5.2 Future Work - Heading from Magnetometer

As mentioned before, relying on compass readings in indoor environments is not feasible,

as magnetic disturbances would result in errors that can reach 40° even in contexts where the

IMU is fixed to the body of the user [36]. It is this very fact that enables magnetic fingerprinting

approaches which attempt to model the the disturbances in order to provide an additional source

of absolute localization. Nonetheless, and since many IMUs come within a set of MEMS that

also contains a 3-axis magnetometer, it may be useful to model the magnetic disturbances [35]

so that they can be compensated for or filter the readings with a confidence metric so that an
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absolute measurement can be used when samples are detected to be undisturbed [37]. However,

methods that attempt to model or compensate predictable errors or filter out unreliable magnetic

field measurements require initial calibration and that makes them unsuitable for a system that can

be used simply by placing the sensors on the feet and requires no knowledge of how to calibrate.

All attitude estimation algorithms benefit from a second Earth field measurement (to complement

the z-axis estimate from gravity), especially the Gradient Descent algorithm that was implemented

on the current system. However, these algorithms are designed with general attitude estimation in

mind, assuming availability of reliable magnetic reading and applying them to the PDR problem

in indoor contexts requires sophisticated and specific filtering of the data.

Nevertheless, the fact that two MEMS sensors are used coupled with the fact that there is

continuous knowledge of their relative position may enable novel filtering of the magnetic readings

that could be used to obtain additional information with which to refine the inertial measurements.

These include smarter filtering of the magnetic field readings in order to retrieve a confidence

metric that would allow for its use when noise-free and refinement of the estimation of relative

position of the two feet by the consecutive detection of similar magnetic disturbances, without

requiring pre-calibration.

3.5.3 Heuristic Approaches to Drift Elimination

Detecting and compensating drift without resorting to sources of information that are external

to the IMU requires some assumptions to be made so that the errors can be estimated as the

deviation of the measured values from the assumptions (the heuristics). These heuristic approaches

were first applied to the PDR problem by Borenstein and Ojeda in [9], with their work on the

Heuristic Drift Elimination (HDE), which has been built on by several authors in order to extend

its capabilities to less constrained contexts and improve robustness. Examples of extensions to

HDE include generalization to 3D (Extended HDE [38]), additional processing before correcting

the heading to a dominant direction (Advanced HDE [39]) or added robustness for buildings where

curved corridors or open spaces exist, which deteriorate normal HDE performance (improved

HDE [40]).

In general, HDE assumes that since most man-made buildings are made up of straight corri-

dors and rooms where the main directions are orthogonal to each other (i.e. turns at 90 ° angles)

and people tend to walk along these main directions, small deviations from the expected main

direction can be attributed to drift and therefore corrected and be used for drift correction when

heading changes are sharper. This simple approach works well for highly constrained buildings

with narrow corridors, but will have trouble with open areas and buildings with unconventional

plants or unconstrained trajectories where small heading changes over time are actually signifi-

cant. Moreover, these algorithms also need to be able to deal with movements such as obstacle

avoidance, wandering within a corridor and complete changes of direction.

In this system, and following the corollary of unconstraining trajectories and making the fewest

amount of assumptions possible, Heuristic Drift Elimination will not be used. Enhanced Drift

Elimination following the assumption of plane floors, where the user does not gradually ascend or
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descend is used for the correction of errors in the pitch and yaw angles and is a reasonable assump-

tion. However, these errors are of smallest importance, as there are two sources of information for

the calculation of both angles (gyroscope and accelerometer). Furthermore, as there are buildings

with small ramps, the correction could possibly introduce error in specific occasions. For these

reasons, no Heuristic Elimination of Drift was performed in the current system.

3.6 Vertical Displacement and Detection of Floor Changes

PDR is usually approached at in 2.5D (x/y and floor detection) since there is no advantage

of using a complete 3D model, as tracking 3D position is not necessary for the disambiguation

of overlapping positions. This is so because possible positions with same x and y coordinates,

even if there are ramps or small stairs, are always divided in well defined floors. This makes 2D

tracking coupled with floor detection sufficient for indoor contexts. After attitude estimation and

the proper filtering (which is also necessary for the 2D tracking), measuring vertical displacement

is as simple as reconstructing the z-axis position signal. However, actual tracking will only be

necessary when stair climbing and elevator riding activities are detected.

Detecting floor changing activities with suitable accuracy is a very rewarding source of in-

formation for PDR systems with map matching, as it can help correct large errors that standard

MM techniques can have trouble with by providing a near-absolute source of location (with the

caveat there can be multiple possible staircases in the same direction to perform the correction).

While unconstrained IMU systems (namely smartphone based) need to have algorithms such as

State Machines or Machine Learning Classifiers [4,41] in order to detect floor changing activities,

foot-placed IMU systems can easily detect the characteristic vertical displacement on stairs. As

for elevators and escalators, the key would be to detect the acceleration signature, by detecting the

start and stop of the ascent or descent and the vibration that is inherent to these machines. Coupling

this approach with the smartphone barometer (which is used in smartphone based systems [42])

could detect these transitions with promising accuracy. However, this was left out of the scope

of the present work. Nonetheless, the vertical displacement is calculated at every step and made

available to all modules, so that future activity recognition modules can easily access this informa-

tion. Figure 3.8 illustrates a simple experiment using the developed system, which clearly shows

that each step can be detected even if current acceleration filter is not suitable for the complete

reconstruction of the vertical displacement (superior values of acceleration and stronger impacts

compared to normal gait).

It is worth noting that while in the presented example the attitude filter probably had an imper-

fect alignment with the z-axis during the descent stage for the left foot, which was exacerbated by

the fact that this vertical reconstruction deals with higher acceleration values than the horizontal

reconstruction, a fusion algorithm such as the one developed in this work for the 2-D case could

improve the estimates. Nevertheless, once the attitude estimates stabilized, it is possible to see that

the estimates of vertical displacement are the same and it is also possible to see the step where no

stair step is climbed (roughly in the middle), in both feet.
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(a) 3D reconstruction

(b) Z-axis reconstruction

Figure 3.8: Vertical Displacement Reconstruction - The red dots and red curve represent the de-
tected positions of the left foot and the blue dots and line represent right foot positions. The route
consists of going down two sets of stairs and then climbing back up to the start position(0,0,0).
Unit for all axes is meters (except X-axis on the left, which is in step number). Left - scatter plot
of the detected positions in 3D. Right, evolution of z position.

3.7 Review of the Step Quantification Model

Systems with foot-mounted IMUs have several advantages over unconstrained IMUs. The

possibility of applying ZUPT and ZARU which enable robust displacement reconstruction and at-

titude estimation respectively makes for smaller errors (due to more robust attitude estimates) and

slower error propagation (from the bounded growth of errors in the velocity signal reconstruction).

As a result, the PDR problem can be solved without resorting to step length models and is solvable

even without an absolute source of heading (providing the initial orientation is known).

The combination of 3 Boolean conditions and skewed median filter is a simple and effective

method for ZUPT (or step) detection. Nevertheless, using dynamic thresholds, adding extra fea-

tures and a more sophisticated Truth Table, using a FSM without imposing restrictions on the

placement of the IMU or restricting measurements to a single axis or even extending the current

algorithm with a Bayesian model could provide better results, as the key is correct and strict clas-

sification of the ZUPT intervals, especially at its boundaries. This algorithm is robust enough to

detect all ZUPT periods, even if it sometimes returns partitioned ZUPT intervals which are re-

flected in a larger step count and in errors (which are small, since they occur in the middle or

close to the ZUPT samples, and can be corrected easily by the Fusion module). Results for step

detection can be found in Chapter 7. Improving this detection could also have a positive effect in
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attitude estimation, if the detection is extended to ZARU, and improve the estimates both in Step

Length and Heading.

After detection of the ZUPT, and since the set of samples corresponding to a specific step

is segmented and available for offline processing (which needs to be efficient so as to keep the

system near-real time), more sophisticated correction and smoothing algorithms could be devel-

oped, namely without requiring state space error modeling. Reconstructing the velocity signal as

accurately as possible needs to make use of as much information as possible.

In the current system there is no detection of floor changing activities nor floor detection, even

though some experiments with 3D tracking on stairs were done (which are presented in Chapter 7).

When deciding the focus of the thesis within the broader scope of IL the focus was given to 2D

tracking and its stability in prolonged periods of time. This is due to the fact that a PDR module can

always be embedded in a broader IL system (such as one using opportunistic signals or wireless

signal beacons) and improve the interpolation of positions between signal updates or when the

wireless signals are not available or its measurements are not precise enough.



Chapter 4

Integration of Multiple Sensors

4.1 Motivation

Solving the PDR problem through inertial sensors is a matter of obtaining enough indepen-

dent information that errors arising from the imperfect precision of sensors can be detected and

compensated or at least bounded. This is crucial because a given position depends on the pre-

vious estimates, and error builds very quickly. In Chapters 2 and 3, and besides the algorithms

required to reconstruct displacement from accelerometer and gyroscope data, additional sources of

information were discussed, ZARU and ZUPT. Further sources of information can be artificially

created through heuristics, however, these constrain the system and do not support movement that,

while completely normal and possible, does not verify the assumption (of straight line walking,

for example).

Apart from artificially created sources of information, additional information can come from

using multiple sensors. The information from each sensor is then fused together and improved by

exploiting the fact that the spatial relationship between the sensors is known, assuming they are

fixed to a certain body part. In a preliminary stage, the idea behind sensor integration was to create

a framework that could make use of as much information as possible, by allowing a PDR solution

to use all available sensors (smartphone, smartwatch, body-fixed IMUs). As the design of the

system evolved, the advantages of foot-mounted IMUs (ZUPT/ZARU) over a set of sensors where

the updates were not possible was clear: The possibility of actual displacement reconstruction over

the use of step quantification models and the better performance in terms of heading estimation

even in a system without a magnetometer.

This chapter describes the design process and the IMU fusion algorithm that was developed.

The algorithm receives as input the quantified steps from each feet independently and fuses the

information so that the estimated position (its output) is calculated from additional information.

The main motivation behind the usage of multiple sensors is the independence of their sensor

biases (non-zero mean error), which means that these errors can be estimated and compensated.

It is possible to create a multiple IMU array fixed to the body at the foot so that the both attitude

estimates and displacement reconstruction can use multiple measurements for angular rate of turn

39
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and acceleration, allowing for much more precise estimation of the sensor biases when coupled

with ZARU/ZUPT [43, 44].

Alternatively, and with hardware cost in mind, this system aims to use two low-cost 6 DOF

(Degree of Freedom - 3-axis gyroscope and 3-axis accelerometer) IMUs, one on each foot, fusing

the information through the knowledge of the restriction that applies to their relative position

(namely, leg opening restricts the distance between both feet). Additional behavioural heuristics

could be introduced, such as assuming the user will never walk with the feet at larger than shoulder

width distance sideways or predicting the user trajectory to be smooth. Though adding heuristics

can increase performance in certain contexts (as explored in section 3.5.3), the focus of the system,

as mentioned before, is performing DR through displacement reconstruction only, without filtering

movement with predefined assumptions.

4.2 Synchronization

When using multiple IMU units that communicate wirelessly with the processing device (in

this case, a smartphone), it is crucial to synchronize the measurements, so that the system can

retrieve the temporal order of the measurements it is receiving. When initializing the measurement

with the two IMU units, their clocks do not initialize at the same time. Despite this, by taking the

elapsed time as the difference between the initial time and current time, the system can know the

temporal sequence of the data even if there is a difference in initialization time (which is in the

order of the hundredth of a second). This would not be enough if perfect synchronization of the

events of both feet was needed. In this system, step quantification is done individually (with the

only interaction being in the case of two consecutive steps being detected on the same foot, as

described in the previous Chapter), and as such the only requisite is that the sampling rates are

consistent and that the initial delay is shorter than the time difference between two steps, with

which the system easily complies.

It was also necessary to filter and buffer sensor events, as the sensors return measurements that

are not necessarily in temporal order, despite correctly labelling their timestamps as shown in the

example stream presented in Figure 4.1. The retrieved values correspond to: Sensor type (here

only accelerometer, A, and gyroscope, G, data is being retrieved); Timestamp (in nanoseconds);

x,y and z axis values (ms−2) for the accelerometer and rad/s for the gyroscope; sensor accuracy

(measure of the certainty of the sensor, currently not modeled or used).

It is worth mentioning that the Pandlets sensor array includes an Android Application Pro-

gramming Interface that makes the MEMS sensor array easily to integrate into Android Appli-

cations. The retrieved sensor events are identical to the ones that would be retrieved from the

smartphone internal sensors.
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Figure 4.1: Example of the Sensor Events retrieved from an IMU - The timestamps do not follow
a temporal order. Refer to the text for an explanation of the presented values.

4.3 Gaussian Step Fusion Algorithm

In Kalman Filtering approaches to displacement reconstruction and tracking there is no explicit

definition of step, instead focusing on real-time estimation of all state variables, namely position,

velocity and sensor errors. In these systems, introducing an inequality constraint that limits the

distance between the two feet at all times, the estimates and related covariance matrices can reflect

the upper bound of the distance, and help obtain a better estimate than any of the IMUs by itself.

Examples of Inequality Constraint KF are presented in [45–48]. The proposed novel Gaussian

Step Fusion Algorithm builds on this maximum spatial distance formulation but is much more

lightweight, does its corrections on a step basis and is of easy integration with the MM module, as

will be explored in Chapter 5.

4.3.1 Properties of 2D Gaussian Distributions

A Gaussian distribution (usually called normal distribution in 1D) is a very common contin-

uous probability distribution in statistics. It is suitable for the approximation of the probability

distribution of several processes, most notably and interestingly for the problem at hand, of physi-

cal quantities that are derived from several measurements with associated measurement errors [49].

Gaussian distributions have very interesting properties that make their application in propagation

of uncertainties and crossing of multiple values very useful, namely:

• Simplicity of Representation - A Gaussian distribution is completely described by two pa-

rameters: mean (expected value) and covariance (variance in 1D and variance + correlation

in multiple dimensions). These distributions assign a non-zero probability to all combina-

tion of variables in the variable space, however, the areas that are far from the expected

value and outside the covariance matrix range will have very small probability density val-

ues (99.7% of the total probability is within 3 standard deviations of the mean).

• Simplicity of Sum and Product - Computing the sum or product of two multivariate Gaus-

sian distributions can be done analytically and with a single matrix inversion, which makes
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it very simple in the 2D case. The sum of two independent gaussians is gaussian, as is

the multiplication of independent distributions (in this case, an unnormalized gaussian). By

calculating the moments (mean and variance) of the resulting distribution (either sum or

product), we obtain a new simple representation of the current expected value and variance

(which can be seen as the confidence in the value).

2D Gaussians can be used to describe the belief of the system in relation to the current po-

sition. Using such distributions, the mean µ will represent the current expected value and the

covariance matrix, Σ will describe the confidence the system has in that measurement. Σ and µ

are described in 4.1, with VAR(X) representing the variance of distribution X and COV(X,Y)

(equal to COV(Y,X)) represents the covariance of the X and Y distributions.

µ =

[
X̄

Ȳ

]
, Σ =

[
VAR(X) COV (X ,Y )

COV (Y,X) VAR(Y )

]
(4.1)

The location after a step can be thought of as the sum of the distribution that describes the past

position and the distribution that describes the travelled distance in each direction. This results

in a new estimate with larger values on the covariance matrix (less confidence), which is to be

expected, as an uncertain value was added to another. This calculation is simple, as the sum of

two bivariate gaussians has the following moments (mean µ3 and covariance Σ3), (4.2):

µ3 = µ1 +µ2 , Σ3 = Σ1 +Σ2 (4.2)

The fusion of two estimates for the same value (an estimate from the algorithm and a new step,

for example) is done through the multiplication of both distributions. Multiplication will reduce

the covariance, giving the system higher confidence on its estimates. This can be exemplified

by thinking of two pieces of information: one that says that a variable is between 3 and 10 with

absolute certainty and the other that says the same variable is between 7 and 13 again with absolute

certainty. By fusing both pieces of information we see that the variable will be between 7 and

10. This is the key for the retrieval of more accurate estimates from two different sources. The

moments of the product of the two distributions can be obtained as in eq.(4.3), where the -1 power

describes matrix inversion:

µ3 = Σ2(Σ1 +Σ2)
−1

µ1 +Σ1(Σ1 +Σ2)
−1

µ2 , Σ3 = Σ1(Σ1 +Σ2)
−1

Σ2 (4.3)

4.3.2 Implementation

The filter will propagate the uncertainty of measurements and of the current position (through

the sum) and refine the measurements through crossing the information with the knowledge of the

maximum foot distance (product of distributions).

The filter is initialized by providing the initial position and covariance (which will be zero if

the position is known with absolute certainty). At this point, both feet will be at the same position.
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Once a step is detected, the possible position of the corresponding foot after said step is applied

can be anywhere around the foot that is planted on the ground, with a distance smaller than the

maximum foot distance. In this system, the maximum foot distance is defined statically at 1.5

meters, which is used as the value for 3 standard deviations of the distribution. This means that

said distribution limits 99.7% of foot strikes to occur within 1.5 meters of the opposite foot (and

95.45% within 1 meter), which translates to a variance of 0.25 m2. This distribution around the

planted foot will then be crossed with the step information in order to correct it if they are not

in agreement. Even though this distribution says that the expected value is that the two feet are

at the same position (or at the same relative position as in the start), when the product of this

anatomical constraint distribution and the actual step is done, the result will be much closer to the

actual step measurement (which has smaller covariance). Figure 4.2 describes this initial model

of where the foot can go. As soon as one foot is detected to be moving, anatomical constraints

give the system the first piece of information of where the foot will land (the second one being the

step quantification estimate). This first distribution is retrieved by eq. 4.4, applied to the case of a

moving right foot.

µRight = µLe f t , ΣRight = ΣLe f t +

[
0.25 0

0 0.25

]
(4.4)

Figure 4.2: Modelling the Uncertainty of a Step - Possible Location of the Moving Foot - The
stationary foot is at the center of this distribution. The circles represent the distance within 1, 2
and 3 standard deviations. Axes units in meters.

Secondly, the quantified step is added (according to estimated length, l, and heading, θ ) to

the current position of the corresponding foot, with a covariance matrix that attempts to mimic

the sensor uncertainty (eq. 4.5). The probability distribution cannot be completely modelled by a

bivariate gaussian as the error in distance (smaller) and heading (larger) cannot be translated to x

and y (Figure 4.3, left), but it can be approximated (Figure 4.3, center). At first, and due to the fact

that there is much greater certainty in the distance estimation, an attempt to model the correlation

between the two variables was made (Figure 4.3). However, as the algorithm runs and propagates
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the distributions for a longer period and especially on sharp turns, a highly correlated distribution

did not always return better results, especially if there are errors in step detection or quantification.

Furthermore, the product of distributions with correlation can sometimes result in distributions

that do not model the system uncertainty as well, especially when the multiplied gaussians are

very different. As such, a simpler model with no correlation (still using different variance values

for the two axes) was adopted. In Figure 4.3, the distribution of the position of the foot after the

step is represented in pink, the yellow distribution marks the entire area where the foot can be after

a step, as explained above, and the blue line represents the step (from the past position of the foot

to the new expected position).

µt = µt−1 +

[
l× cos(θ)

l× sin(θ)

]
, Σt = Σt−1 +

[
0.0001+ | l

12 × sin(θ)| 0

0 0.0001+ | l
12 × cos(θ)|

]
(4.5)

Figure 4.3: Modelling the Uncertainty of a Step - Left, True Distribution - Right, Correlated
Distribution - Center, Implemented Distribution

These two estimates of position provide two sources of information which can be fused in

order to retrieve a single estimate that is more accurate than each one individually. As such, both

distributions are multiplied together, as described in eq. 4.3. The resulting distribution will be the

current estimate of the foot position, as in Figure 4.4.

In this first illustrative example, the feet were at the same position and that knowledge was

considered by the system to be certain (i.e. zero covariance). The following Figure (4.5) shows

how the system performs for a second step. Note how the anatomical constraint distribution en-

compasses a larger area, reflecting the initial uncertainty regarding the location of the planted foot.

The distribution of the position after the step has such an elongated form because it better models

the uncertainty associated with the step (larger uncertainty for heading than length) without having

to use correlation values.

As is readily apparent from the algorithm, the product of the two distributions will always

cause a slight reduction in travelled distance. In order to compensate for this, the past location

of the foot that is moving is also crossed with the location of the stationary foot. This acts like



4.3 Gaussian Step Fusion Algorithm 45

Figure 4.4: Final probability distribution of the foot position after the multiplication of the step
estimate and anatomic constraint, in red. The black line represents the corrected step. Axes units
in meters

a reverse verification: the place where the foot started the step had to be within the radius of the

stationary foot.

4.3.3 Drift Modelling

The algorithm as is would already provide better estimates than the individual step estimates.

Nevertheless, and since errors can be easily detected by exaggerated corrections, that is, by fi-

nal positions that are significantly different from the position estimates from step addition, it is

possible to model the system drift by compensating for the corrections that the system is making.

After the final probability distribution, the difference in estimated angle from a simple addi-

tion of the step (with the current drift estimate compensated for) to the effective angle - from the

original uncorrected position (before the "reverse verification") to the final estimate of the foot

expected value - is added to the drift estimate of that foot. Despite the fact that the values are usu-

ally very small and end up working as an effective proportional controller, there can be erroneous

step detections or quantifications that result in sharp corrections by the algorithm. As such, the

angle is only added to the drift estimate if it is likely to have come from actual sensor drift and not

from erroneous estimates or sharp turns. In order to decide if the angle difference should be added

to the drift estimate, the following test is applied (eq. 4.6), where θdi f f represents the difference

between the estimated heading (from the Step Quantification Module) of the current step and the

last received step of that foot (all values in radians):

deviation = θ f inal−θinitial , dri f t+= deviation i f |deviation× cos(θdi f f )|< 0.05 (4.6)

The difference between the current and last step values is used because if the direction of

walk did not vary greatly and the algorithm feels the need to perform corrections then it is surely

because of sensor drift. On the contrary, if there are inconsistencies in the location of the feet
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Figure 4.5: Green ellipsis - anatomical constraint / blue ellipsis - step and associated uncertainty /
red line - step estimate. Axis in meters.

at a certain point and there is a sharp turn, a large correction is expected that is not a result of

drift. This correction is still necessary, as it will align the relative distance between the feet, it just

does not reflect drift. Additionally, this test is also useful for heading corrections caused by the

MM algorithm, in order to decide if the correction should only be considered on that step (mainly

as a correction of position, see Chapter 5) or if in fact there is a heading drift that should be

compensated. Figure 4.6 shows how the drift modelling works even while in a curved trajectory,

where it can be noted that the feet are not properly aligned right after the first change of direction

but that error is corrected by the final shown step (and the final corrected steps have the same

heading as the initial estimate after correcting for the estimated drift). At this point, estimated drift

for the left foot is 10°while drift for the right foot is 5°. The full route can be seen in Figure 4.8b.

Figure 4.6: .
Drift Modelling and Correction during a Curved Trajectory - The ellipsis represent the

probability distribution of the position whose expected value is at the center of the ellipsis. Red
and Blue lines represent step estimates for the left and right foot, respectively. Black lines

represent the actual step that was added.
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4.4 Module Overview

A diagram of the Gaussian Filter for IMU fusion is presented on Figure 4.7, below.

Figure 4.7: Overview of the Gaussian Step Fusion Algorithm - Color code: Orange - input; Yellow
- current system estimates; Blue - intermediate distributions; Green - final result, new system
estimate

The Gaussian Filter provides better estimates than either of the two IMUs by itself (as can

be seen in Figure 4.8). It is capable of modelling drift in the signal to the extent possible with

only step information, especially if the bias of the individual IMU are in opposite directions. It

does, however, cause a small decrease of the travelled distance that is not fully negated by the

initial product between the moving foot position and the position of the stationary foot. Despite

the fact that the modelling of the uncertainty of the step is a very rough approximation of the true

non-gaussian distribution, this algorithm provides a very robust and lightweight alternative to the

Inequality Constraint Kalman Filters that allows for the discretization of displacement in steps

(and the associated advantages of forwards and backwards quantification of the step as explored

in the previous Chapter).
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(a) Example of the Correction for route open (b) Example of the Correction for route 8-route-B

Figure 4.8: Gaussian Filter Results - Red and blue dots represent independent positions for the left
and right foot respectively. Black dots represent the positions for both feet corrected by the Filter.
Refer to Chapter 7 for the description of the routes. X and Y coordinates in meters. The routes are
rotated 180º and mirrored in the X axis (so that applying the routes on the map image coordinates
where (0,0) is the top left corner is immediate)



Chapter 5

Map Matching

5.1 Overview and State of the Art

The IL Problem can be simplified to PDR if the starting location is known. The starting

location can be retrieved through detecting the entrance the user took by outdoor GPS tracking or

by asking the user to mark it on the map. The end-goal of any IL solution would be for it to be able

to function without a starting location. As such, the ideal Map Matching approach must be able to

work without any kind of starting information. This means that the trajectory that is retrieved from

the PDR modules could be completely relative, requiring a comparison to all possible trajectories

(at best, if absolute heading is obtained through attitude, the trajectory can be oriented to a certain

extent, decreasing candidate positions in buildings with symmetric structures). If a probabilistic

approach is chosen, then the algorithm must be able to work with a starting condition of uniform

distribution of probability for the entire plane. In this work, the focus is on accurate and stable

long-term tracking. Nevertheless, common algorithms for IL applications can be applied to PDR

and as such are reviewed in this chapter.

MM algorithms are usually grouped into 4 groups [50], [51]: Geometric, Topological, Prob-

abilistic and Advanced. Geometric methods, the simplest, include point-to-point, point-to-curve

and curve-to-curve matching for the estimation of current link and position within the link. Topo-

logical methods, as an extension of the geometric methods, take into account not only shape but

connectivity between the links. These are widely applied in road map-matching, as the roadmap

is inherently a graph, but they can still be of interest if the floorplan can be simplified to a link

and nodes model. Probabilistic methods establish a confidence region on the map based on the

variances of the error of the sensors. If more than one link (in the case of a map graph) is within

the region of confidence, several criteria such as heading similarity, connectivity or closeness are

used for the estimation of position. As an example, in Figure 5.1, Simple Geometric approaches

would not be able to select a link with certainty. Topological algorithms would select the bottom

link because of the similarity in heading between the link and the P2-P3 segment. Probabilistic

approaches would estimate the probability of matching in each node, with the bottom node having

a greater probability, due to the topological reasoning. These methods were developed mainly

49
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for absolute estimates of location such as from GPS or other wireless signals but can be adapted

for IMU-based PDR and, while incapable of solving the complete IL problem, can be useful in

tracking systems.

Figure 5.1: An example of a network and 3 measured positions, in [50]

.

There are two main types of approaches for IL MM with an inertial PDR-system with unknown

initial position: Shape Matching and Probabilistic Filters (KF, PF and related algorithms, CRF,

etc.). The former are predicated on comparing the shape of the trajectory with the topological

information of the map (as a link and nodes model). On the other hand, the latter attempt to

model the errors of the measurements and estimations to create a probability distribution of the

user location (as a Gaussian cloud or through weighted particles) in a continuous or discrete map.

5.1.1 Shape Processing and Adaptive Matching

Taking advantage of the simplification of the map through graph representation, matching

shapes to the graph can be simpler than probabilistic approaches for the initial localization prob-

lem, both in computational power and speed. Due to its low resolution when locating the user

inside a given link and in open spaces, once the user is located in a certain area, one can then

turn to the widely used probabilistic approaches for more precise tracking, avoiding initialization

on a large area. Shape processing and matching is probably more useful as a lighter alternative

to the unknown starting location problem for systems with no absolute source of location (such

as wireless signals or signals from beacons), since initializing probabilistic approaches on a very

large area can take a long time to converge. These algorithms can also be interesting for situations

where the map matching algorithm is estimating location with less certainty or having trouble

matching to valid paths, by leveraging the entire shape (especially interesting if there is a large

number of points). In all cases, the usability of such algorithms depends on the ability to generate

simple graphic representations of the floormap.

In order to use shape matching, it is necessary to define an adaptive shape comparison algo-

rithm, capable of detecting similarities in trajectories made up of possibly erroneous link length
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Figure 5.2: Representation of trajectories with Local Angles (left) and Global Angles (right),
in [52]

.

and link angles. As such, the algorithm must be able to look past translations and length differ-

ences, finding common subsequences within adjustable tolerable ranges. As with all algorithms

for mobile applications, the computational cost of querying for shapes and performing the com-

parison must not be too great.

In [52], the authors propose two comparison metrics, based on either Local Angles (heading

variation between steps) or Global Angles (azimuth of step, relative to a specific orientation) as

illustrated in Figure 5.2. As with all shape comparisons algorithms, being able to have an idea

of the absolute orientation of the path and map (i.e. the North direction) simplifies the searching

procedure, as similar shapes with different orientations (larger than a threshold) will not be ade-

quate candidates. Global Angle based comparison needs two parameters to be defined: range and

percentage. For every subsection of the path of length equal to range, there must be an equivalence

of angles (with tolerance both on angle measurement and time-shifting, as long as order is kept).

Local Angle based comparison verifies if for every subsection of length equal to range the sum of

all angles is equal (within a tolerance value). The authors also present an effective indexation and

querying algorithm based on Suffix Trees (a classic text string search algorithm).

A different approach is described in [53], where a computer vision inspired shape comparison

algorithm, the shape filter, is employed. The shape filter enables a primary discard of trajectories

that are not similar. By calculating the interception of lines that are generated from the trajectory

centroid at specified angles with the trajectory itself as illustrated in Figure 5.3 (once again, having

a reference of the absolute orientation is very beneficial), a code descriptor of the shape can be

used for the selection of appropriate candidates. In this approach, the shape filter is followed by
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Figure 5.3: Example of the Shape Filtering algorithm, in [53]
.

comparison of angles through a simpler version of a chain code (discrete local angle represen-

tation) and edge length in order to filter out shapes that matched due to wrong angle detections,

"fake turns".

Yet another different approach is suggested in [54], based on detecting the Longest Common

Subsequence for given parameters of space and time tolerance, as shown in Figure 5.4 for a 1-D

trajectory. Sampling of trajectories for faster comparison is suggested.

Once the set of possible user positions is restrained to a single link, IL is simplified to PDR

(or in the case of a problem or error with tracking that requires more sophisticated/robust map

matching, PDR can be resumed).

Classical MM algorithms (geometrical and topological) can be extended to work with PDR

instead of GPS signals. Matching of readings to the map will take into account trajectory orien-

tation, proximity of the estimated position and the link and connectivity of links, as illustrated in

Figure 5.5, [55], [56]. The weight of each similarity can be weighted differently according to the

graph properties, such as density or even building specific information. For example, artificially

describing an open space with a mesh of links and nodes can work if connectivity considerations

are ignored (as there are no physical constraints blocking any type of movement from link to link).

The network would function in a grid-like manner in that area. Furthermore, adopting a proba-

bilistic approach (by matching to multiple position with associated probability) on denser parts of

the map network can help mitigate the lack of resolution resulting from the extreme discretization

that this model causes.
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Figure 5.4: Longest Common Subsequence trajectory (1-D) comparison with space (ε) and time
(δ ) tolerance, in [54]

.

Figure 5.5: Matching of PDR measurements; An example of a transition to a parallel link, in [55]

.

There are a number of other similarity metrics that can be applied. A good example of such
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a metric is the Fréchet distance, [57], [56], intuitively defined as the shortest "leash" that can

link two trajectories, commonly illustrated by the trajectories described by a dog and its owner,

without backtracking but with the ability to stop at different times. The backtracking restrictions

are relaxed in some variants of the metric, such as weak Fréchet distance.

Finally, in [58], the authors describe a shape simplification method named Discrete Curve

Evolution (Figure 5.6), where a polyline (connected set of oriented segments) is simplified by

node elimination, minimizing the loss of information, with the added benefit of noise reduction.

The choice of node is done through the sum of distances between a given node and its immediate

neighbors and between the neighbors. The shape can be compared to the map until elimination of

additional nodes no longer results in an increase in similarity. This technique could be employed

in prefiltering of shapes.

Figure 5.6: Discrete Curve Evolution - reducing noise while maintaining information in discrete
shapes. Sequence of curves following elimination of additional nodes, in [58]

.

Through exploitation of the simplification of the variable space that arises from the link-node

representation, it is possible to combine different approaches for shape and map matching, esti-

mating the position within a link according to a weighted function of the different methods or

following a probabilistic approach and propagating alternative matches with their respective prob-

abilities.

Methods that rely on shape processing and matching are very interesting solutions for deciding

in which link of the graph the user is currently in, which can also be useful for this PDR-centric

system, as they are lighter than probabilistic methods such as the PF (described below), exploit

a map representation to improve robustness and could benefit from using the independent trajec-

tories generated by processing of the signal of the two IMUs. Despite all of this, these methods

do not provide enough accuracy - while great at selecting which node the user is in, the methods

are not great at defining where in the node the user is, and the simplification of the map further

hinders localization accuracy - and have trouble with open spaces - even though these can be rep-

resented by a mesh of links and nodes, this shortcut means that the most interesting properties of

the representation, its topography, is lost.



5.1 Overview and State of the Art 55

5.1.2 Probabilistic Approaches: Dealing with Uncertainty

Even if the map representation provides helpful constraints and if the PDR module provides

estimates with a good degree of confidence, matching the position of the user to the map to a single

point according to the measured displacement can never be done with total certainty. In fact, often

times the uncertainty in the estimated position is very significant. As such, map matching can be

approached from a probabilistic point of view, in the frame of Bayesian inference.

The uncertainty can be modelled or thought of as noise, which is usually considered additive

but can also be implemented as multiplicative. Bayesian Filtering (BF) is a suitable approach and

consists in finding the state x at time n, of a system that obeys a function f with noise b. There is

a measurement function, h, which computes the output y of the system, while factoring in noise v
as in Equations 5.1 and 5.2, ( [59]).

xn = f (xn−1,d) (5.1)

yn = h(xn,v) (5.2)

The goal of the application of BF to this problem is to calculate the state (Position of the user)

at time n through the system and measurement functions. To account for the uncertainty of the

system and measurements, variables can be described as probabilistic distributions. As such, x and

y can be described as Equation 5.3- the system model (estimating a state based on the previous

state); and Equation 5.4 - the measurement model (the probability of a measurement based on

current state).

xn = p(xn|xn−1) (5.3)

yn = p(yn|xn) (5.4)

Assuming that state transitions depend only on the previous state (Markov property), the goal

is to calculate the probability of a given state given the measurement through Equation 5.5.

p(xn|yn) =
p(yn|xn)∗ p(xn|yn−1)

p(yn|yn−1)
(5.5)

A Bayes filter can be directly applied to a map through a space discretization. By tessellating

the map, the probability of the user being in a certain cell after a certain movement can be updated

through the probability of that movement causing the user to move from neighboring cells to said

cell [36].

5.1.3 Recursive Bayesian Filtering

Recursive Bayes models are implemented through two steps. The first one, the prediction

step, involves calculating the prior, the probability of the state (position) given the last measure-
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Figure 5.7: Recursive Bayesian Filter, from [59]
.

ment (last position and estimated displacement). The update step involves the likelihood and the

evidence and incorporates the current measurement. Figure 5.7 illustrates the process. The actual

analytical computation of Equation 5.5 is intractable, so the recursive Bayes filter will be a generic

approach for the filtering problem.

There are three possible implementations of recursive BF: Hidden Markov Models, Kalman

Filters and Particle Filters (PF). HMMs imply a discretization of the state variables ( [60] applies

it to the IL problem through discretization of the points of interest, i.e., rooms, and focusing on

turn detection). KFs are optimal filters for linear problems with noise with Gaussian distribu-

tions (Extended and Unscented KF can be used to approximate non-linear systems). PF are an

approximation of p(xn|yn) through a large number of random samples and are a very promising

and widely applied algorithm in PDR based IL systems [42], [61], [62], [63], [64].

PF work through the generation of a large number of particles (procesing power will be the

limiting factor) within the region where the user may be (in the case of an unknown location

problem, throughout the entire map) uniformly. The prediction step will consist in the estimation

of the position of the particles through Equation 5.6, where l is the estimated step length and θ is

the estimated heading. δ introduces variation, by introducing zero-centered Gaussian noise [42].[
xi

t

yi
t

]
=

[
xi

t−1 +(lt +δ li
t)cos(θt +δθ i

t )

yi
t−1 +(lt +δ li

t)sin(θt +δθ i
t

]
(5.6)

Once the new particle positions are calculated, their weight (which is always normalized)

needs to be updated. This can take into account map restrictions (set weight to zero if particle

prediction crosses an obstacle), behavioral information (assumptions from normal human patterns

such as the likelihood of walking very near walls being smaller than walking in the center of

a corridor) and likelihood of observations according to the environment, parameters that must

be modeled. Searching the entire map for particle-wall collisions can be very time-consuming,

especially when particles are distributed throughout the entire map. An approach to indexing

obstacles for faster querying is described in [64].



5.1 Overview and State of the Art 57

Particle filters can suffer from degeneracy, which means that some particles will start describ-

ing increasingly less significant parts of the distribution as weights decrease [65]. As such, and to

compensate for particle death (when particles cross obstacles), it is important to have a perform

resampling, by generating a new particle distribution within the area of greatest importance, with

the same information as the degenerating distribution. The position of the user at a given time can

be estimated through the centroid of the particle distribution.

It may be interesting to perform post-processing on the particle distribution, such as smoothing

of trajectories or calculation of the most likely trajectory. In [66], the authors illustrate the applica-

tion of the Viterbi algorithm [67] to this problem. The Viterbi algorithm computes the most likely

sequence of states based on the probability of moving from state to state according to observations

(emission probability). The algorithm requires discretization of the state space which is achieved

by clustering particles into states. Emission probability is computed from the particle weights.

5.1.4 Conditional Random Fields

CRF, [68], are probabilistic graphical models that take as input a vector of observations and

attempt to predict a vector of latent variables. In CRF, the goal is to maximize the probability of a

state (in this application, the position of the user) conditioned on the observation (again, the initial

position and estimated displacement). CRF are useful because they model how observations relate

to states and to transitions between states, which in a IL problem is very advantageous, as the PDR

information refers to changes in user position.

States are defined by cells resulting from the discretization of the map. We then define feature

functions, which define how strongly the observations (Z) support a sequence of states: f(St-1,St,Z).
These features will take into account connectivity (map constraints), distance and heading between

the two states (cells) [69] and any other restrictions that may be added, such as including activity

information or tinkering probabilities according to expected behavior (based on assumptions such

as increased likelihood of people walking in the middle of a corridor or being closer to the inside

than outside wall when at a turn) [70, 71].

After defining the feature functions, it is necessary to set the weight of each feature. This can

be done by training (matching the output of the PDR module to the ground truth trajectory) with

several samples. The final step is to compute the most likely sequence of states and that is done

through the Viterbi algorithm.

5.1.5 Correction and Learning

An ideal MM algorithm is not only robust enough to deal with noisy or uncertain data but is

also able to improve the estimations of the PDR module through correction of erroneous position,

drift estimation and, if relevant, feedback for tunable parameters such as step length models.

Road network based algorithms can provide feedback to the PDR module for heading adjust-

ment and step length: If the matching process implies constant correction of heading direction, a

heading correcting parameter can be calculated. Similarly, if the matched positions on the graph
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correspond to an increase or decrease of step length and sharp turns are detected at an incorrect

time (for example, if the user was expected to be far from the intersection where he turned) step

length estimates can be shortened or lengthened.

Grid-based bayesian methods also provide feedback to the PDR module, relatively to step

length estimations. This is crucial in order to avoid discretization error. By measuring whether

the expected turns are occurring before or after the actual map intersection, the algorithm adjusts

the expected step length. This algorithm does not make any heading corrections, however, the

grid-like and probabilistic environment is very robust to incorrect readings.

Particles can carry more information than just their own position. Through tracking the step

length and heading bias hypothesis that each particle followed, it is possible to retrieve information

that can be used to improve the PDR module, as the particles with larger weight carry better

parameters for step length and heading bias [64], [61].

Feedback from CRF approaches is possible by comparing the past trajectory once refined with

the Viterbi algorithm to the raw trajectory provided by the PDR module, and adjusting persistent

errors in drift or step length.

5.2 Problem Specific Algorithms

A PDR system that aims to be stable and robust for longer walks requires not only accurate

attitude estimation, step detection and quantification and, in the case of multiple sensors, smart

sensor fusion, but also a robust map matching algorithm, as a source of information that is com-

pletely independent from all inertial data. The goal of a MM algorithm for this specific application

should be to detect and correct small errors as soon as possible and to be able to recover from er-

rors that could not be corrected due to insufficient constraints in the vicinity of the current position

(such as error accumulated during a long walk through an open space). Moreover, due to the ac-

curacy requirements (under 2 meters) and the errors associated with discretization [36], opting for

a continuous solution is preferable.

A Particle Filter could be a very interesting algorithm that could even bypass the need for an

IMU fusion approach as developed for this system. On the other hand, attempting to keep com-

putational costs at a minimum so that the system can work in real-time on a mobile platform calls

for the exploration of different types of algorithms. In the following sections, three approaches

are explored: Energy Minimization, Generation of Truncated Gaussian Distributions and problem

specific Geometric Matching.

5.3 Energy Minimization Formulations

At any moment in the system, there are two pieces of information: the estimated trajectory

(after step fusion) and the map. The trajectory may be incompatible with the map (going through

walls) and should be corrected with it, while keeping in mind that the original estimate, while

noisy, will have very important information such as relative angles between steps and travelled
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distance, that should remain as unaltered as possible. From this, two different goals emerge:

achieving a good fit between map and conserve the original information of the trajectory.

Energy Minimization methods attempt to solve problems where there are multiple constraints

which model the degree of satisfaction of each goal and compute an overall energy score that

must be minimized. Examples of these problems include finding spatial conformations of proteins

(balancing the attraction and repulsion between atoms in a complex molecule [72]) and dynamic

segmentation of images (finding the contour of an object from an initial guess). The latter example,

known in computer vision as Active Contour Models or Snakes [73], uses an energy model to

iteratively find a contour of an object. This energy model is usually made up of two forces which

should be balanced (minimization of total energy function): internal and external, as in eq.5.7.

Etotal =
∫

Eint +Eextds (5.7)

On the one hand, internal energy corresponds to the constraints imposed on the contour F with

arclength s - F(s) - , namely imposing a spring-like contraction (modeled with the first derivative

of the curve) and aiming for smoothness of the contour (minimization of the second derivative of

the curve). The internal energy is a function of the balance of contraction (total contour length)

and smoothness (total curvature) as described by parameters α and β respectively (eq.5.8).

Eint = α|F ′(s)|2 +β |F ′′(s)|2 (5.8)

On the other hand, external energy is a function of the total energy of the curve according to

where it is on the image. For contour detection, the image gradient magnitude is computed, as the

contour borders will be regions of high intensity change in the image. As a result, the external

energy will be symmetric to the gradient, so that the borders have the lowest energy within the

image (eq.5.9). The λ parameter weighs the importance of edge minimization. Together, the three

tunable weights describe how important it is for the contour to be short, smooth or tight to the

image edges.

Eext =−λ |∆Img| (5.9)

These equations can be solved for a continuous domain by computation of the total energy

gradient direction and definition of the step size, however, it is much simpler and effective to

perform discretization and solve them in the discrete domain, by the techniques presented in the

following subsection. Furthermore, for the current application, the energy functions will be more

complex to model and the shape to match with the map will not be a closed contour. An example

of the application of an Energy Minimization algorithm is presented on Figure 5.8.
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Figure 5.8: Example of an Energy Minimization algorithm application. The image is a portion of
the Fraunhofer Porto 1st floor map at 5cm resolution. Axes values are the result of the 5cm grid

.

5.3.1 Discrete Active Contour Model

Discrete Active Contour Models (Snakes) will have discrete equations for energy which will

be the sum of the energy at every individual point of the curve (5.10). In this application, the curve

will be defined by the trajectory of the user. The energy function reflects the goal which is to avoid

walls and obstacles on the map while maintaining the properties of the original trajectory V, with

n vertices vi.

Etotal = ∑
vi∈V

Eint(vi)+Eext(vi) (5.10)

The internal energy function can be modeled just as in the continuous case by the following

equation (5.11):

Eint(vi) = α|vi− vi−1|2 +β |vi+1−2vi + vi−1|2 (5.11)

In order to meet the requirements of the problem, the internal energy function needs to be

tinkered to reflect the need for keeping the distance between individual points the same while
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also constraining abrupt changes of heading, so that the map is not able to impose a completely

different shape on the trajectory even if distance between each point is kept. As a result, the

function for the internal energy of point vi should penalize changes of distance from the original

distance between vi and vi+1, O(vi,vi+1) and attempt to smooth out the trajectory by minimizing

the minimum distance from vi to the line connecting vi−1 to vi+1, D(vi,vi−1,vi+1) (eq.5.13) as in

eq.5.12.

Eint(vi) = α|(vi− vi−1)
2−O(vi,vi+1)|+βD(vi,vi−1,vi+1) (5.12)

D(v2,v1,v3) =
|(x2− x1)(y1y0)− (x1− x0)(y2− y1)|√

(x2− x1)2 +(y2− y1)2
(5.13)

External energy should heavily penalize going through obstacles. As such, a distance trans-

form is applied to the map, where the value of each pixel will be the minimum euclidean distance

to an obstacle pixel. Once this is computed, energy values for free pixels will be negative with

absolute value equal to the distance to the nearest wall or obstacle, Dobstacle, (with a cap of 10

pixels, which at a 5cm resolution corresponds to half a meter). This is done in order to provide

an incentive to move away from the walls even though the energy at those pixels is still negative

and they are valid positions but not to provide an incentive to move to the center of the corridor

or room (which in large rooms would severely change the trajectory). Additionally, the minimum

distance from each obstacle pixel to the nearest non-obstacle pixel, D f ree is also computed and

used to give positive energy to those pixels as a function of how impossible to reach they are. The

energy of a certain pixel pi is then given by: (eq.5.14)

Eext(pi) =


λ1D f ree(pi), i f pi is Obstacle

−λ2max(Dobstacle(pi),10), i f pi is Free

(5.14)

Now that the energy of each point is defined, it is necessary to find a method to solve the

minimization problem. For each original point of the trajectory, the algorithm will compare the

total energy on the current point an on the eight immediate neighbors, as in Figure 5.9.

Figure 5.9: Discrete Snake Iteration Process
.
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A solution could be found greedily by moving each point to the one with lowest energy un-

til all points were in local minima (which is not guaranteed to be an optimal solution), through

Dijkstra’s shortest path algorithm [74] (since a graph can be constructed from the connection of

trajectory points and path length is the associated energy) or more interestingly through Dynamic

Programming with the Viterbi Algorithm. It is important to note, however, that the computational

complexity of using a second order model is O(m3 ∗n), for n points and m neighbors, while using

a first order model (where each point only depends on the previous point) has a complexity of

O(m3 ∗n) (the greedy approach has a complexity of O(mn). As such, and because when perform-

ing offline testing, even after restricting the maximum number of points in the trajectory to be

processed, the required convergence time was too great for a real-time (or near-real time) mobile

application, the snake had to be reduced to a first order internal energy function (despite worse

results). As a result, the internal energy is described by eq.5.15, which added a compensation for

deviating from the original angle between vi−1 and vi, A(vi−1,vi).

Eint = α1|(vi− vi−1)
2−O(vi,vi+1)|+β |6 vi−1̂ vi−A(vi−1,vi)| (5.15)

The difference between the results of first and second order models, for a straight walk) is

easily observed in Figure 5.10, where the first order model is unable to achieve adequate smoothing

of the trajectory, whereas the second order model achieves a much closer result to reality.

(a) 1st Order Contour Model (b) 2nd Order Contour Model

Figure 5.10: Differences between applying first and second order Discrete Active Contour Models
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5.3.2 Limitations and Future Work

The main limitation of this approach is the fact that modelling walk using just the relationship

between two points is very complicated (as a step deals with three positions - moving foot starting

position, opposite foot position and moving foot final position). However, the complexity of the

search even when applying the Viterbi algorithm is too great. Nevertheless proper tuning of first

order snakes could provide interesting corrections.

Further challenges to be tackled include the estimation of drift, which is very complicated to

merge with the energy minimization algorithm and correction of heading for the steps immedi-

ately after the correction. Furthermore, for good results to be obtained, an adequate number of

points before and after colliding with a wall are needed, which means that this correction should

only occur multiple steps after an incompatible trajectory has been found, and as such can be

troublesome to implement in a near-real time system. Finally, and besides constraining each indi-

vidual estimated position not to be in invalid positions, it is necessary to impose a constraint not

to allow positions that would require steps to go through obstacles. This is a challenge that while

compatible with first order energy functions, would also increase the complexity of the algorithm.

Still, active contours can eventually be an interesting approach to the map matching problem,

especially if used in conjunction with other methods and relied upon only in circumstances of large

errors that cannot be corrected by the methods proposed in the following Sections, especially for

trajectories that do not loop.

5.4 Truncated Gaussian Distribution

The main idea behind the IMU fusion approach that was introduced in the previous Chapter is

representing position estimates with associated uncertainty in a simple and easily updatable way.

This can be extended by the map matching module through the generation of truncated gaussian

distributions. While the numerical calculation of the moments (mean and covariance) of a bivariate

truncated gaussian is possible [75], a simpler and more effective way of modelling the influence of

the map on the estimated position distributions when they have significant overlap with obstacles

is to sample from the resulting position distribution. By discarding samples that are in impossible

locations (obstacles), the resulting distribution of samples can be used to estimate a new distribu-

tion which will be similar to the truncated gaussian. An example of this process is presented in

Figure 5.11, where it is possible to see that new estimates for the probability distribution of the

position of the foot is obtained by sampling and discarding according to the obstacles on the map.

The main advantage of approaching map matching as a third source of information for the

Gaussian Filter is the easy integration of the methods and the resulting simplicity of estimating

drift or correcting the covariance matrices. This method works very well in correcting small

heading errors, which can provide invaluable drift information that helps the algorithm calibrate

the errors for accurate estimates in posterior open spaces, or correct errors that accumulated during

those open areas.
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Figure 5.11: Generation of Truncated Gaussian Distributions
.

In cases where the estimated position has severe overlap with an obstacle, the immediate idea

would be to increase the covariance matrix (uncertainty) in a smart way and implement a search

heuristic that would provide an adequate final distribution. This, while possible, would require

more complex modelling of the uncertainty of the system at each point and could eventually mean

dealing with distributions that would encompass very large areas. While this would be a conse-

quence of the actual true uncertainty of the system, subsequent steps would require very complex

sampling strategies and could approximate a particle filter system. Furthermore, this algorithm

would not use the information of the previous (or even immediately posterior) steps, which means

that, even if the current position uncertainty is a function of the previous steps, there is a loss of

information that could help correct larger errors. Nonetheless, this strategy is very interesting and

further improvements on the propagation of the covariance matrices and in the sampling strategy

could turn this Gaussian Filter into a very simplified yet very accurate version of a particle filter.

In all cases, it would benefit from an additional shape matching or geometric matching method to

help in cases of inability of correction or to correct or detect large errors.

5.5 Geometric Matching with Heading conservation

After designing and implementing the truncated gaussian algorithm, it was clear that there was

a need for an additional algorithm capable of correcting larger errors which could complement it

strengths. The truncated gaussian algorithm, together with the IMU fusion, provides adequate

estimates of heading and its drift. It may, however, have trouble matching to future positions if

errors accumulate and cause it to go straight into a wall instead of through the room door. Despite

this, even in situations where considerable heading error has propagated, the overall signal can be

matched to the correct position once the only way to keep moving in the approximate direction

of the current heading is through a single door or opening. An example of such a correction is

presented in Figure 5.12.
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Figure 5.12: Example of Correction through the nearest available path in the direction of current
heading, within the white circle

The designed algorithm builds on the heading correcting capacities of the gaussian framework

by trusting the general direction of the heading and assuming that movement is indeed occurring

in that direction even if error have accumulated. In these situations, and as soon as an impossible

position estimate appears, the correct location should be searched along a line perpendicular to the

step. Figure 5.13 presents an example of such a correction.

5.5.1 Limitations and Future Work

The main limitation of this method is the lack of a confidence metric which would allow the

system to measure whether the current correction makes sense according to its past trajectory. It

would be interesting for the system to calculate how much error could possibly have been accumu-

lated (and have evaded the gaussian filter) so that the corrected position distance would not exceed

the system estimate. In cases where the current information is not enough to make a confident

decision, a more robust approach is needed, such as waiting for subsequent steps in order to apply

the correction on more data and estimate the current position with added certainty.

In short, matching the position geometrically through exploitation of the general direction of

the walk is interesting, however, the system needs to be made more flexible, so that it can provide

good results in the following scenarios:

• Heading has just changed and is temporary (user is in a curved trajectory) and the collision

with a wall occurs at this different angle

• Consecutive estimates of position for both feet lead to two different corrections
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Figure 5.13: Example of Correction through the nearest available path in the direction of current
heading, searched alongside a direction perpendicular to the step. Fuzzy points represent orig-
inal step while solid dots represent the corrected step. The previous position is represented in
blue while the next position is in green. Coordinates of the right plot are in grid cells, each cell
corresponding to 5cm.

• Position correction leads to loss or gain of distance which cannot be easily recovered by the

system

• Consecutive wrong corrections followed by erroneous drift estimates by the gaussian frame-

work lead to wildly inaccurate estimates

Maintaining stability and above all the ability to recover from incorrect matches is crucial, and

as such it may be required for the system to keep track of multiple estimates in some situations. In

more complicated cases, shape matching strategies described above such as turn detection, active

contours or shape filters can be applied.
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System Overview

The system architecture that was used was already present at Fraunhofer Portugal. This so-

lution completely rewrote the attitude estimation, step tracker and position tracker while fusing

the heading and step length estimation modules (as they work together in this system). All im-

provements were added to the existing code, providing an alternative to the existing system, from

the algorithms to the sensor sources: smartphone inertial only, smartphone inertial + wireless sig-

nals, smartphone wireless signals only or foot-mounted IMU. Integration of wireless signals and

foot-mounted IMU PDR is not ready at the moment, as it is dependent on a fusion model that

can get the best out of both localization methods. Two designs are possible, where either PDR

information interpolates positions between wireless signals readings (the easiest to implement, as

a wireless signal based system is already ready at Fraunhofer) or information from the wireless

readings corrects DR errors.

As of the writing of this document, the real-time system works solely up until the IMU sensor

fusion (pure Dead Reckoning), but is already capable of displaying real-time non-map matched

information to the user through the Google Indoor Maps interface. Future work will begin by the

implementation of the Map Matching Module within the already existing framework.

Testing was done on the Android Studio tester, with the sensor signal being prerecorded and

then fed into the system from a text file. Once the Position Tracker commits a new position, that

position and the step that caused it are printed to a text file so that all map matching algorithms can

first be tested in Python Code, due to ease of implementation and numerous available libraries.

An overview of the system architecture is presented in Figure 6.1. This diagram is simpli-

fied and does not include auxiliary classes such as the ones necessary for vectors and quater-

nions, among others. Green round boxes represent system inputs, blue, yellow and orange boxes

represent processing classes (where the algorithms are implemented), and white boxes represent

information classes (used to store and communicate measurements and estimates between the pro-

cessing classes). Blue boxes apply both in offline Android Studio tests and real-time scenarios

while orange apply only to real-time and yellow to offline processing and testing. Purple boxes

correspond to additional classes or modules that could interact with the current system, as an

extension.
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Figure 6.1: System Overview - Simplified System Architecture. Refer to text for color code
explanation



Chapter 7

Experiments and Results

7.1 Overview of Tests and Routes

In order to test the performance of the developed PDR system, 5 routes were designed. The

subjects followed the presented routes as closely as possible, with no specific markers throughout

the route but with well defined start and end points. The length of the routes was estimated through

the floorplan (which has a 5cm resolution). Throughout the route, the subject should tap the screen

everytime a step is taken, which will be the ground truth for step detection. The system was tested

on 5 users of different height and gender.

The routes are presented in Figures 7.1 through 7.3 and the reasoning behind each one is briefly

discussed below. On all figures, the route (in blue) is overlayed on the floormap of the 1st Floor

of the Fraunhofer Portugal Porto Office. The start point is represented by a green star and the end

point by a red star. If the start and end points are the same, the location is represented by a yellow

star. The blue arrows on top of the trajectory help in understanding the direction of movement in

that part of the map. The red boxes represent obstacles that were placed on the open space in order

to guide the subject through the designed trajectory.

All routes are at least 100m long, so that there is a long enough test to the attitude estimation

stability, accurate step detection and quantification and map matching. The routes are a mix of

highly constrained trajectories (sharp turns between corridors) and loops in open spaces (where

there are no immediate map constraints to correct growing errors).

The first two routes (On Figure 7.1), codenamed 8-route-A and 8-route-B respectively for

their shapes, test the stability of the heading estimate and drift correction through long straight

walks between sharp turns. Route 8-route-A, on the left, is 116.5 meters long, while route 8-
route-B, on the right, is 117.9 meters long.

The third and fourth routes (On Figure 7.2), which were codenamed open and loop, test the

robustness of the attitude estimation and IMU fusion algorithm by imposing a complex trajectory

with round changes of direction and walking segments at non-standard orientations (i.e. not along

the main axes of the map). Route open (Figure 7.2a) is 120.8 meters long, while route loop
(Figure 7.2b) is 103.2 meters long. For the sake of clarity since the starting point is revisited, on
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route open the initial path is the top one. The lower path, leading to the corridor is travelled on the

second time the starting point is passed.

At last, route zigzag is a highly constrained route full of turns designed to test the efficiency

and robustness of the MM module. It is presented on Figure 7.3 and is 100 meters long.

(a) 8-route-A (b) 8-route-B

Figure 7.1: "Eight-like" Testing Routes
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(a) open route (b) loop route

Figure 7.2: Open-Space Testing Routes
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Figure 7.3: Zigzag route

.
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7.2 Step Detection

Data for step detection testing was retrieved from all 5 users. The results are presented in

Table 7.1.

7.2.1 Results

Table 7.1: Step/ZUPT Detection Results

Subject Nr. of Trials Average Nr. of Steps Average Step Error Max Error
1 9 175 0% 0 steps
2 4 177 1.83% 5 steps/2.81%
3 4 182 0.83% 2 steps/1.19%
4 3 175 0% 0 steps
5 3 164 10.38%(R) / 0%(L) 20 steps/22.6%(R)

7.2.2 Discussion

All users performed trials for at least routes open, loop and 8-route-B. A key need for the

success of the deployed algorithm is adequate setup of the IMUs beneath the shoelaces. Users 1

and 4 had the most robust mounting of the IMU, which enabled perfect detection of steps. On the

other hand, user 5, which had much looser sneakers, probably had an imperfect fit on the Right

IMU. Still, and as the PDR and Complete System results will present, it had a manageable impact

on the accuracy of the system. Incorrect ZUPT detection happens because a looser fit may result

in interrupted ZUPTs as the sensor moves within the shoelaces after stronger impacts even after

the foot is stopped. Despite this, the resulting steps (note that a step for the system is all periods

between two consecutive ZUPT) will result in very small displacement (under 10cm) and as such

do not introduce large errors. There were also two other conducted tests (one for subject 2 and

another for subject 3) where imperfect fixation (actual perceptible relative movement) of the IMU

caused errors of 8.64 (14 steps) and 14.75% (27 steps) respectively (which were on the zigzag
and 8-route-B routes), which were not included in Table 7.1 but were included in the PDR and

Complete System results as the algorithm was capable of correcting those errors. We can conclude

that route shape has no impact on step detection.

In short, a good fixation of the IMU is crucial. This is not always possible without outside

straps or a smaller sensor array, as some shoes cannot accommodate the Pandlet Sensor Array

where the IMU is included. Despite the fact that the estimates are very precise for subjects with

well-mounted IMUs, and as mentioned in Chapter 3, the detection can be made more robust.

Even though the module provided good results for different users (which naturally have dif-

ferent gait speed) provided the IMU was well fixed, additional tests should be done regarding the

impact of gait speed on step detection.
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7.3 PDR - Step Quantification + Information Fusion

This Section presents and discusses the results obtained for PDR with the fusion of information

from the two IMUs without using the floor map information. The results are presented in two

Tables: Table 7.2 sorts the results by route while Table 7.3 sorts the results per subject. Subject

4, as is visible in Table-7.1, participated in three trials. However, despite providing stable results

for the step detection, the amount of bluetooth noise along the trial routes coupled with the fact

that during those trials magnetometer signals were also being retrieved (despite not being used

for processing), resulted in a lack of signal to maintain a stable connection. The resulting slightly

corrupted signal while not enough to corrupt the signal step detection (based on magnitude of the

signal), seriously corrupted the heading and step length estimates of two of the trials. The results

for the remaining trial (on route loop) are included in the first table, but were left out of the second.

7.3.1 Results

Table 7.2: PDR-only results by route

Route Nr. of Trials Avg. Measured Distance (m) True Distance (m) Avg. PDR Error (m)
open 5 117.4 120.8 3.73
loop 4 105.5 103.2 1.88
8-route-A 4 114.9 116.5 1.87
8-route-B 5 112 117.9 6.11
zigzag 5 98.44 100 1.79

Table 7.3: PDR-only results by subject

Subject Nr. of Trials Avg. Distance Error (%) Avg. PDR Error (%) Max Distance Error Max PDR Error
1 9 -0.93 2.12 -3.4m / -2.44% 5.28m / -4.56%
2 5 -2.33 1.60 -4.5m / -4.50% 2.37m / -2.30%
3 5 -2.14 3.64 -10.4 / -8.82% * 11.3m / -9.58% *
5 3 -1.22 3.81 -5.3m / -5.14% 5.81m / -4.93%

7.3.2 Discussion

The asterisk on the table is due to the fact that the maximum error was obtained from one of

the trials that had wildly inaccurate step detection due to loosening of the IMU. Even though the

trial from subject 2 where the same thing happened had a very low PDR error, these errors could

only be corrected by the Map Matching Module, as shown in the following Section. Without this

trial, the maximum distance error for subject 3 is 3.3m / -3.20% with a PDR error of 3.52m /

-2.91%. As the results show, even though users 2, 3 and 5 have trials where step detection was

significantly different from the measured number of steps, sensor fusion is capable of achieving

good results as a IMU-only solution. Still, there are some important things to comment. All

distance estimates were done through the floor map, which means that the ground truth may not be

absolutely correct. Nevertheless, there seems to be a slight underestimation of the traveled distance
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with the exception of the highly irregular loop route. This may be due to the Gaussian Filter

algorithm, which could benefit from distance compensation. Furthermore, the average distance

error by subject is decreased by the fact that there are trials with underestimates and overestimates

of distance, which does not happen for the average PDR error, as distance is always positive.

Despite this, for the trials where step detection was most accurate, the distance estimates are

satisfactory. Additionally, the distance error does not correlate with PDR error, both for cyclic and

non-cyclic routes.

These PDR results are very interesting and make it seem that if sufficiently robust MM and

drift estimation is accomplished, PDR can remain stable for increasingly long routes.

7.4 Complete System

The final positioning results obtained by processing with the complete system are presented in

Table 7.4

7.4.1 Results

Table 7.4: Results of the Map Matched PDR system

Route Nr. of Trials Avg. Final Error(m) Avg. Final Error(%) Max Error
open 5 1.31 1.09 1.45m
loop 4 1.93 1.87 2.77m
8-route-A 4 1.70 1.44 1.62m
8-route-B 5 1.34 1.15 2.14m
zigzag 5 0.75 0.75 1.02m

7.4.2 Discussion

The accuracy of the complete system is very interesting, both for highly constrained and more

open routes. It is important to mention that some of the errors in the open and loop routes were

caused by incorrect matches on the map for the final turn, namely the one presented on Figure 7.4

and an incorrect estimate of entering the room at the end of route loop. There were trials in which

the system error was slightly greater than the PDR error, which reflects the need for improvement

of this module. Nevertheless, trials in which the step detection, distance estimation and PDR error

were very inaccurate, managed to return good results.

As discussed in Chapter 5, the system is not yet ready for sufficiently robust recovery in case

of errors and could have trouble with readjusting some of the routes, depending on the path that

would be taken next.
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Figure 7.4: Example of incorrect Map Matching - The incorrect matching on the pillar, where the
true trajectory is below it and not above, caused matching troubles on the following corridor and
an incorrect match on the left turn. On this example PDR error is inferior to the final system error.
True trajectory is represented by the white curve

.

7.5 Final Remarks and Further Testing

Despite the fact that the map matching algorithm is still not robust enough to work in every

circumstance, three 10 minute walks were done. Trial 1, with a completely random trajectory,

managed to keep positioning error under two meters for approximately 2 minutes and 175m until

the map matching module introduced an error from which it could not recover. Trial 2, in the

same conditions, kept location error under two meters for 5 minutes and nearly 500m, while

eventually recovering from a maximum error of 15m to a final error of 6m (despite being in the

wrong room of the building, the estimated heading was correct). It is important to note that in

circumstances where the geometric matching algorithm returns significantly different estimates

for the location of each foot consecutively, the algorithm is not yet capable of settling on a stable

position, which means that unless subsequent corrections point to the same position, the system no

longer works. That is what happened on both these trials and robustness regarding these uncertain

scenarios is undoubtedly the first point of emphasis for future work towards the generalization of

the applicability of the system. Finally, a cyclic route (similar to both 8-routes) compatible with
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the current strengths of the system was tried out for a 10 minute walk. The system had a final

location error of 1.5m while never accumulating an error over 3 meters. This trial is depicted on

Figure 7.5.

It is worth mentioning that step detection was 100% accurate for all 3 longer trials, of 741, 860

and 1041 steps (perfectly fixed IMU and carried out by subject 1) and that the cause of failure of

the first two trials was simply the inability of the map matching module to converge on a position

correction.

Figure 7.5: 10 minute walk example for a route similar to the 8-routes
.

Further testing is necessary, in order to better tune the parameters of the attitude estimation

module and to better understand the precision of the velocity reconstruction. As increased robust-

ness is added to the MM module longer routes should be designed, with the goal of achieving

stable tracking of routes longer than 1000 meters.
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Chapter 8

Conclusion and Remarks

8.1 Conclusions

Designing an Indoor Localization solution based solely on inertial sensors requires great ac-

curacy in trajectory estimation. Since IMUs, especially low-cost units, are not sufficiently precise

and suffer from significant bias drift, the fusion of multiple sources of information is necessary.

The results of this work show that using multiple IMUs (one on each foot) and the floor plan

information can provide sufficiently accurate results (under 2 meters).

Even though estimating foot attitude during gait from a 6-DOF IMU is very challenging and

results in an indefinite result per definition (no reference for the yaw angle), leveraging ZARU and

smart frequency filtering allows the system to obtain stable representations of attitude even without

applying heuristic approaches to drift elimination. Furthermore, the applied attitude estimation

filter does not have a prohibitive computational cost for mobile applications.

Step quantification through the use of ZUPT provided satisfactory distance estimates (error

around 2% of traveled distance). Despite its simplicity, the implemented ZUPT-detection algo-

rithm enables accurate detection of ZUPT intervals, provided proper fixation of the IMU unit.

The key to drift reduction is the fusion of information from both IMUs. The proposed Gaussian

Filter algorithm returns position estimates that are better than the estimates from each individual

IMU. It is capable of explicit drift estimation and is robust enough to erroneous inputs that sporadic

incorrect segmentation and quantification of steps is easily compensated for. The errors of the

PDR system before map-matching are not much greater than the distance estimation errors, even

though heading drift is the primary source of error. As such, even if there are large portions of the

trajectory in open spaces, the error accumulation should not be too great for a robust map matching

algorithm to correct.

Finally, the proposed map matching framework based on the generation of truncated Gaussian

distributions through sampling merges well with the Gaussian Filter algorithm for IMU fusion,

further improving its drift estimation and compensation capabilities and making Dead Reckoning

stable for long walks provided the building has enough constraints for the position to be peri-

odically corrected. At the same time, the geometric matching algorithm proves to be a smart
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approach, as looking for openings in the currently estimated direction of walking makes great use

of the natural constraints of buildings, such as doors and corridors (that are often the only way to

leave an area in a certain direction). Nevertheless, this algorithm still needs refinement, and for

a system to depend solely on DR stability (or on trajectory generation), a shape matching algo-

rithm capable of correcting large errors (provided an initial estimate of position exists) could be

crucial for a stable solution. In fact, if shape matching is robust enough, and due to the accuracy of

the trajectory estimation, complete Indoor Localization (i.e., localization from unknown starting

position) could eventually be possible, by matching a sufficiently long trajectory to a sufficiently

constrained map.

In sum, the developed system shows that an inertial sensor based Pedestrian Dead Reckon-

ing approach can be accurate and stable enough to function as a standalone Indoor Localization

solution. Moreover, merging wireless signal localization techniques such as Wi-Fi or magnetic fin-

gerprinting could provide very valuable absolute localization information while using the inertial

info as a source of accurate interpolation of position between signal readings.

Such a system provides an alternative for localization in places deprived of ubiquitous local-

ization signals (such as GPS) and enables fast deployment without the need for fingerprinting of

wireless signals (Wi-Fi or magnetic disturbances), instead requiring only the floor plan, which is

of a much more static nature than the wireless signals and can be more readily obtained (through

image analysis techniques, for instance). This, coupled with the use of low-cost MEMS sensors,

means the cost of the system is much lower. Among the benefits a stable IL solution provides, this

approach is especially interesting for users in dangerous activities such as rescue missions (where

no fingerprinting is possible) and for navigation in large areas such as airports or shopping malls

where the floor plans are increasingly available in the Google Indoor Maps platform.

8.2 Limitations, Future Research and Final Remarks

Besides the fact that the MM module still needs to be implemented in Android for a true near-

real time online system, there are still some limitations of the current algorithms and some further

work that could improve the accuracy and robustness of the system. The limitations and possible

improvements on the algorithms and modules that constitute the current system are summarized

in Table 8.1.

Parallel to the improvement of the current system, additional design choices or modules could

improve the accuracy of the system:

• Mangetometer Data - Using magnetometer data to provide an absolute heading reference

while exploiting the fact that there are IMUs in two different locations not only to filter out

disturbances more easily (avoiding the use of incorrect heading readings that would cause

the yaw angle to fluctuate) but also to possibly retrieve information regarding the relative

location of the feet according to the detected disturbances. The latter could refine the GF

estimate of the relative position of the feet by matching the patterns of the magnetic signals

retrieved on the two feet in areas with disturbances.
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• Multiple IMUs - Using multiple IMUs on each foot would improve the attitude estimate

of each foot and the precision of the retrieved signals, as the zero mean and non-zero mean

errors would be independent. Additionally, it would allow for much more reliable bias drift

estimation. As a consequence the accuracy of the system would naturally improve. This is

a trade-off between cost and accuracy.

• Wireless signal fingerprinting - As mentioned before, the PDR-only system can be ex-

tended by fingerprinting wireless signals (namely through detection of Wi-Fi access points)

if it is advantageous for a specific application.
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Table 8.1: Overview of limitations and future work

Algorithm /
Module

Limitations Possible Improvements

Prefiltering Current cut-off frequency of filters is
static and can remove representative
frequencies for certain types of gait.

Study the relationship between gait
speed (or other important features)
and frequency content of the inertial
signal to implement dynamic cut-off
frequencies.

Attitude
Estimation

Increasing precision of z-axis align-
ment introduces numerical noise in
the yaw estimate.

Dynamically set the weight of the
accelerometer estimate of attitude
(gravity direction) according to its
uncertainty (amount of movement in-
duced noise in the signal) and/or im-
prove the filtering of the acceleration
signal in order to improve the attitude
estimate.

Step Tracker Thresholds of ZUPT-detection are
static and can have trouble detecting
the exact sample where the ZUPT-
interval should begin;
Detection of ZUPT-intervals (steps)
sometimes causes the commitment of
errouneous small additional steps;
System is not ideally robust to errors
of the ZUPT-detector.

Dynamically adjust the ZUPT-
detection intervals, refine the
classification of samples at the
boundaries, experiment with other
techniques such as FSM or Bayesian
inference frameworks;
Increase the robustness of the
step estimates, especially in cases
where multiple steps are detected
consecutively on the same foot.

Step
Quantification

Reconstruction of displacement is
not ideally precise.

Implement a more sophisticated
smoothing algorithm for increased
precision of the velocity and dis-
placement signal reconsturction.

Gaussian
Filter

Step Uncertainty Model is not a per-
fect representation of the actual step
uncertainty;
Step Length reduction due to correc-
tions is not compensated at any time.

Improve the Step Uncertainty Model
through correlation of displacement
in both directions (x and y) and ro-
bust propagation and bounding of the
resulting distributions.
Compensate distance loss that is esti-
mated not to be completely caused by
distance measurement errors (instead
being caused by heading errors)

Map
Matching

Covariance matrix of position esti-
mates can be modeled by the MM al-
gorithm, increasing uncertainty when
invalid movements are detected;
Sampling algorithm should enable
faster acquisition of viable samples
in scenarios where obstacles exist;
Geometric MM is not sufficiently ro-
bust and has trouble in specific sce-
narios, specifically in collisions at
angles that do not correspond to leav-
ing an area (such as turning around
near a wall when error has accu-
mulated) and when corrected esti-
mates for consecutive foot-strikes re-
turn very different results

Model uncertainty of estimates when
irregular steps are detected, exploit-
ing the map constraints: Increase
uncertainty when a significant area
of the distribution overlaps with an
obstacle and use a sampling algo-
rithm with smart heuristics for ef-
ficient computation of more infor-
mative truncated Gaussian distribu-
tions. Make system robust to scenar-
ios when the correction of consecu-
tive steps is different; Create a con-
fidence metric for the position cor-
rection; Use a register of the uncor-
rected trajectory to correct large er-
rors through a shape matching algo-
rithm.
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