14,582 research outputs found

    Impact of glucuronide interferences on therapeutic drug monitoring of posaconazole by tandem mass spectrometry

    Get PDF
    Background: Posaconazole is a novel antifungal drug for oral application intended especially for therapy of invasive mycoses. Due to variable gastrointestinal absorption, adverse side effects, and suspected drug-drug interactions, therapeutic drug monitoring (TDM) of posaconazole is recommended. Method: A fast ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification of posaconazole with a run-time <3 min was developed and compared to a LC-MS/MS method and HPLC method with fluorescence detection. Results: During evaluation of UPLC-MS/MS, two earlier eluting peaks were observed in the MRM trace of posaconazole. This was only seen in patient samples, but not in spiked calibrator samples. Comparison with LC-MS/MS disclosed a significant bias with higher concentrations measured by LC-MS/MS, while UPLC-MS/MS showed excellent agreement with the commercially available HPLC method. In the LC-MS/MS procedure, comparably wide and left side shifted peaks were noticed. This could be ascribed to in-source fragmentation of conjugate metabolites during electrospray ionisation. Precursor and product ion scans confirmed the assumption that the additional compounds are posaconazole glucuronides. Reducing the cone voltage led to disappearance of the glucuronide peaks. Slight modification of the LC-MS/MS method enabled separation of the main interference, leading to significantly reduced deviation. Conclusions: These results highlight the necessity to reliably eliminate interference from labile drug metabolites for correct TDM results, either by sufficient separation or selective MS conditions. The presented UPLC-MS/MS method provides a reliable and fast assay for TDM of posaconazole. Clin Chem Lab Med 2010; 48:1723-31

    Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study

    Get PDF
    A challenge that must be addressed when conducting studies with complex natural products is how to evaluate their complexity and variability. Traditional methods of quantifying a single or a small range of metabolites may not capture the full chemical complexity of multiple samples. Different metabolomics approaches were evaluated to discern how they facilitated comparison of the chemical composition of commercial green tea [Camellia sinensis (L.) Kuntze] products, with the goal of capturing the variability of commercially used products and selecting representative products for in vitro or clinical evaluation. Three metabolomic-related methods—untargeted ultraperformance liquid chromatography–mass spectrometry (UPLC-MS), targeted UPLC-MS, and untargeted, quantitative 1HNMR—were employed to characterize 34 commercially available green tea samples. Of these methods, untargeted UPLC-MS was most effective at discriminating between green tea, green tea supplement, and non-green-tea products. A method using reproduced correlation coefficients calculated from principal component analysis models was developed to quantitatively compare differences among samples. The obtained results demonstrated the utility of metabolomics employing UPLC-MS data for evaluating similarities and differences between complex botanical products

    Determination of acrylamide in food by gas and liquid chromatography-mass spectrometry

    Get PDF
    Acrylamide in food was determined by gas chromatography - mass spectrometry (GC-MS) after bromination of acrylamide and underivatized acrylamide was quantified by ultra performance liquid chromatography -mass spectrometry (UPLC-MS). Two different sample preparation methods were used and optimised. The GC-MS method was used for various food matrices like breads, potato crisps, potato crackers, french fries. The UPLC-MS method was used for analysis of coffee. The limit of detection and limit of quantification for acrylamide were 7 ”g.kg-1 and 20 ”g.kg-1 by GC-MS, 9 ”g.kg-1  and 30 ”g.kg-1 by UPLC-MS. For both methods the reproducibility, given as relative standard deviation was < 5% , and the recovery was close to 100 %

    Metabolomic profiling predicts outcome of rituximab therapy in rheumatoid arthritis.

    Get PDF
    ObjectiveTo determine whether characterisation of patients' metabolic profiles, utilising nuclear magnetic resonance (NMR) and mass spectrometry (MS), could predict response to rituximab therapy. 23 patients with active, seropositive rheumatoid arthritis (RA) on concomitant methotrexate were treated with rituximab. Patients were grouped into responders and non-responders according to the American College of Rheumatology improvement criteria, at a 20% level at 6 months. A Bruker Avance 700 MHz spectrometer and a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer were used to acquire (1)H-NMR and ultra high pressure liquid chromatography (UPLC)-MS/MS spectra, respectively, of serum samples before and after rituximab therapy. Data processing and statistical analysis were performed in MATLAB. 14 patients were characterised as responders, and 9 patients were considered non-responders. 7 polar metabolites (phenylalanine, 2-hydroxyvalerate, succinate, choline, glycine, acetoacetate and tyrosine) and 15 lipid species were different between responders and non-responders at baseline. Phosphatidylethanolamines, phosphatidyserines and phosphatidylglycerols were downregulated in responders. An opposite trend was observed in phosphatidylinositols. At 6 months, 5 polar metabolites (succinate, taurine, lactate, pyruvate and aspartate) and 37 lipids were different between groups. The relationship between serum metabolic profiles and clinical response to rituximab suggests that (1)H-NMR and UPLC-MS/MS may be promising tools for predicting response to rituximab

    Metabolic perturbations associated with the consumption of a ketogenic medium-chain TAG diet in dogs with idiopathic epilepsy

    Get PDF
    Consumption of diets containing medium-chain TAG (MCT) has been shown to confer neuroprotective effects. We aim to identify the global metabolic perturbations associated with consumption of a ketogenic diet (medium-chain TAG diet (MCTD)) in dogs with idiopathic epilepsy. We used ultra-performance liquid chromatography-MS (UPLC-MS) to generate metabolic and lipidomic profiles of fasted canine serum and made comparisons between the MCTD and standardised placebo diet phases. We identified metabolites that differed significantly between diet phases using metabolite fragmentation profiles generated by tandem MS (UPLC–MS/MS). Consumption of the MCTD resulted in significant differences in serum metabolic profiles when compared with the placebo diet, where sixteen altered lipid metabolites were identified. Consumption of the MCTD resulted in reduced abundances of palmitoylcarnitine, octadecenoylcarnitine, stearoylcarnitine and significant changes, both reduced and increased abundances, of phosphatidylcholine (PC) metabolites. There was a significant increase in abundance of the saturated C17 : 0 fatty acyl moieties during the MCTD phase. Lysophosphatidylcholine (17 : 0) (P=0·01) and PC (17:0/20:4) (P=0·03) were both significantly higher in abundance during the MCTD. The data presented in this study highlight global changes in lipid metabolism, and, of particular interest, in the C17 : 0 moieties, as a result of MCT consumption. Elucidating the global metabolic response of MCT consumption will not only improve the administration of current ketogenic diets for neurological disease models but also provides new avenues for research to develop better diet therapies with improved neuroprotective efficacies. Future studies should clarify the involvement and importance of C17 : 0 moieties in endogenous MCT metabolic pathways

    Metabolic labelling of cholesteryl glucosides in Helicobacter pylori reveals how the uptake of human lipids enhances bacterial virulence.

    Get PDF
    Helicobacter pylori infects approximately half of the human population and is the main cause of various gastric diseases. This pathogen is auxotrophic for cholesterol, which it converts upon uptake to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl and 6'-phosphatidyl α-glucosides (CAGs and CPGs). Owing to a lack of sensitive analytical methods, it is not known if CAGs and CPGs play distinct physiological roles or how the acyl chain component affects function. Herein we established a metabolite-labelling method for characterising these derivatives qualitatively and quantitatively with a femtomolar detection limit. The development generated an MS/MS database of CGds, allowing for profiling of all the cholesterol-derived metabolites. The subsequent analysis led to the unprecedented information that these bacteria acquire phospholipids from the membrane of epithelial cells for CAG biosynthesis. The resulting increase in longer or/and unsaturated CAG acyl chains helps to promote lipid raft formation and thus delivery of the virulence factor CagA into the host cell, supporting the idea that the host/pathogen interplay enhances bacterial virulence. These findings demonstrate an important connection between the chain length of CAGs and the bacterial pathogenicity

    Furan-PNA : a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA

    Get PDF
    We here report on the design and synthesis of tailor-made furan-modified peptide nucleic acid (PNA) probes for covalent targeting of single stranded DNA through a crosslinking strategy. After introducing furan-containing building blocks into a PNA sequence, hybridization and furan-oxidation based crosslinking to DNA is investigated. The structure of the crosslinked products is characterized and preliminary investigations concerning the application of these systems to double stranded DNA are shown
    • 

    corecore