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Abstract
Human African trypanosomiasis (HAT) remains a major neglected tropical disease in Sub-

Saharan Africa. As clinical symptoms are usually non-specific, new diagnostic and prognos-

tic markers are urgently needed to enhance the number of identified cases and optimise

treatment. This is particularly important for disease caused by Trypanosoma brucei rhode-
siense, where indirect immunodiagnostic approaches have to date been unsuccessful. We

have conducted global metabolic profiling of plasma from T.b.rhodesiense HAT patients

and endemic controls, using 1H nuclear magnetic resonance (NMR) spectroscopy and

ultra-performance liquid chromatography, coupled with mass spectrometry (UPLC-MS) and

identified differences in the lipid, amino acid and metabolite profiles. Altogether 16 signifi-

cantly disease discriminatory metabolite markers were found using NMR, and a further 37

lipid markers via UPLC-MS. These included significantly higher levels of phenylalanine, for-

mate, creatinine, N-acetylated glycoprotein and triglycerides in patients relative to controls.

HAT patients also displayed lower concentrations of histidine, sphingomyelins, lysopho-

sphatidylcholines, and several polyunsaturated phosphatidylcholines. While the disease

metabolite profile was partially consistent with previous data published in experimental

rodent infection, we also found unique lipid and amino acid profile markers highlighting sub-

tle but important differences between the host response to trypanosome infections between

animal models and natural human infections. Our results demonstrate the potential of meta-

bolic profiling in the identification of novel diagnostic biomarkers and the elucidation of path-

ogenetic mechanisms in this disease.

Author Summary

Metabolic profiling of biofluids and tissues in disease and healthy individuals is a powerful
approach to discover new markers for diagnosis. We have applied these techniques to the
protozoan infection human African trypanosomiasis (HAT), otherwise known as sleeping
sickness. The form of HAT endemic in East Africa, caused by Trypanosoma brucei
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rhodesiense, requires technically demanding direct microscopic diagnosis, as there are no
indirect rapid diagnostic tests available. We studied the metabolite profiles in plasma from
HAT patients and controls. Clear biochemical differences were discovered between control
individuals and patients, including changes in the overall lipid composition and concen-
tration of certain amino acids. These may have been caused by the inflammatory immune
response to infection and the uptake of particular molecules by the parasites, although fur-
ther research will be required for confirmation. We demonstrate that plasma metabolic
profiles are characteristic for T. b. rhodesiense infection. While some of these changes are
consistent with those observed in an experimental mouse infection model of HAT, many
are unique to this clinical study and indicate the necessity of validating experimental ani-
mal study data in clinical disease studies. Our results also reveal biochemical changes in
patients that will help us understand the development of disease.

Introduction
Human African Trypanosomiasis (HAT) is caused by infection with either of two subspecies of
Trypanosoma brucei. Trypanosoma brucei (T. b.) gambiense causes chronic disease (that can last
months or years) and is endemic in Western Africa while T. b. rhodiesiense causes a more acute
illness in Eastern and Southern Africa, which is typically fatal within less than a year of infection
if untreated [1,2]. Diagnosis is a critical challenge for treatment and control of this disease as
patients display an array of non-specific inflammatory symptoms, often indistinguishable from
other endemic illnesses such as malaria or enteric fever [1,3]. Infection with T. b. gambiense is
routinely screened using the Card Agglutination Test for Trypanosomiasis (CATT) and also a
new generation of lateral-flow rapid diagnostic tests are being deployed based on the host-
response to commonly expressed variant surface glycoproteins (VSG) [4]. However no such
serological approach has been successful for T. b. rhodesiense probably due to the greater diver-
sity of VSG expression. New diagnostic techniques are urgently needed for this disease in order
to meet theWorld Health Organization (WHO) target of elimination by 2020 [5,6].

In search for novel markers of disease, we have conducted global untargeted metabolic pro-
filing of plasma from rhodesiense trypanosomiasis patients from Uganda and matched con-
trols. Metabolic profiling (also termed metabonomics/metabolomics) can be used to
characterise biochemical patterns associated with specific physiological and/or pathological
states [7]. In the field of parasitic infections, this approach has shown capacity for characteris-
ing infection-induced metabolic changes in the host, within infected tissues and systemically
(as measured by plasma or urine profiles). As yet, parasitic metabolic profiling studies have
largely focused on in vitro assays [8–10] and experimental rodent models [11–15]. There have
been very few examples of identifying the metabolic signature of a specific parasitic infection in
humans [16], largely because human profiles are confounded by strong genetic and environ-
mental variation, and are often superimposed upon a background of other concurrent endemic
infections. In mice, infection with T. b. brucei (a subspecies of T. brucei that is not infective to
humans) resulted in augmented plasma levels of lactate, acetylglycoproteins and creatine, and
reductions in phosphatidylcholine and lipoproteins, as well as elevated pro-inflammatory cyto-
kines [11,17]. Increases in plasma pro-inflammatory cytokines have also been measured in
clinical samples [18,19], although metabolic similarities between the mouse model and humans
remain to be investigated. In this study we present the first characterisation the metabolic
effects of T. brucei rhodesiense infection in humans, and highlight both similarities and differ-
ences to results from published mouse model infections with T.brucei brucei.
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Plasma samples were analysed by proton nuclear magnetic resonance (1H NMR) spectros-
copy and reversed-phase ultra-performance liquid chromatography, coupled to mass spec-
trometry (RP-UPLC-MS). 1H NMR is a highly reproducible method optimal for analysing
complex biological mixtures, such as plasma, with minimal sample preparation [20]. Evidence
from a range of experimental models have highlighted marked changes in plasma lipids follow-
ing T. brucei ssp infection, such as hypertriglyceridaemia [11,21–23]. Consequently, lipid pro-
files were separately characterised via UPLC-MS, to provide complementary information on
the different lipid species altered in disease. We hypothesised that the metabolic phenotype of
individuals with HAT rhodesiense infection would be distinct from that of uninfected individu-
als, yielding a range of discriminatory markers that may be of diagnostic value.

Methods

Ethics Statement
The human plasma samples in this study were collected under protocols approved by ethics
committees in Uganda (UNCST) and UK (North of Scotland Research Ethics Committee),
conforming to the principles of the Declaration of Helsinki. Ethical consent forms and infor-
mation sheets were designed in English and translated into local languages. Informed consent
was given as a signature or a thumb-print (as approved by the UNCST) after verbal explana-
tion. For those aged under 18, affirmative consent as well as the consent of their legal guardian
was obtained.

Patient Information and Sample Collection
A total of 46 HAT patients and 21 controls were recruited at Lwala Hospital, Kaberamaido Dis-
trict and Serere Health Centre, Serere District in Eastern Uganda, between November 2008 and
March 2010. Controls were healthy individuals who were confirmed as non-infected with
either trypanosomes or Plasmodium sp. having undergone parasitological assessment. Study
sites, recruitment protocols, treatment regimens, disease progression characteristics and clini-
cal examination methods have been published elsewhere [24]. Patients with intercurrent infec-
tions of malaria, filariasis or schistosomiasis were excluded. Plasma and cerebral spinal fluid
(CSF) samples were collected from all patients prior to treatment as part of normal diagnostic
and staging procedures. Staging was carried out in accordance with WHO criteria [25] defining
late stage by the presence of parasites in the lumbar CSF and/or a CSF white blood cell count
(WBC)> 5/μl. Aliquots of 1–2 ml of plasma were immediately frozen and then maintained in
liquid nitrogen until transfer to the UK. After air-freight (24 hours on dry ice) samples were
maintained at -80°C until analysis. A summary of the parasitological and demographic charac-
teristics of the patients is presented in supplementary S1 Table.

1H NMR Acquisition and Processing
All sample preparation was performed in one batch in a randomised order. Prior to acquisition,
plasma samples were diluted 1:1 with plasma buffer (0.142 M NaHPO4, 2 mMNaN3, 0.08%
(volume/volume i.e. v/v) 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) solu-
tion, 20% (v/v) D2O; all SIGMA-Aldrich, Germany), and transferred into 5 mm NMR tubes.
1H NMR data were acquired (over 3 days) on a Bruker Avance 600 MHz (14.1 T) NMR Spec-
trometer with BB probe head and refrigerated SampleJet autosampler (Bruker, Germany),
using Topsin (3.1) software (Bruker BioSpin, Germany). Samples were acquired at 300 K
(~27°C) using a standard one-dimensional pulse with water suppression program for general
metabolite screening [26]; sequence as follows: 2 second (s) relaxation delay (RD)– 90° pulse–
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4 μs delay—90° pulse– 100 μs mixing time– 90° pulse– 2.73 s acquisition (ACQ) of free induc-
tion decay (FID) signal. Number of dummy scans (ds) was 4, and number of acquired FID’s
(ns) was 64. To enhance the visualisation of low molecular weight molecules, a Carr-Purcell
Meiboom-Gill (CPMG) spin-echo pulse spectrum was also acquired for each sample [26], with
the following pulse sequence: 2 s RD– 90° pulse–(τ– 180°–τ)n-ACQ, where spin echo time τ =
300 μs, number of loops n = 128, total spin echo time 2nτ = 76.8 ms, ds = 4 and ns = 64. All
FID’s were multiplied by an exponential function with a 0.3 Hz line broadening prior to Fou-
rier transformation into spectral data (spectral width of 18 kHz collected over 131,072 data
points). Spectra were processed using automatic phasing, baseline correction and calibrated to
the TSP peak via an in-house algorithm in MATLAB (version R2013a, Mathworks Inc.) and
Topspin. The residual water signal was removed prior to automatic spectral alignment [27],
and probabilistic quotient normalisation [28], using an in-house MATLAB script. Addition-
ally, artefactual peaks arising from EDTA buffer [29] present in blood collection tubes were
removed from all plasma spectra for final analysis. The regions removed were 2.53–2.62, 2.7–
2.735, 3.08–3.256, 3.60–3.66 ppm which may have resulted in the loss of some endogenous
metabolic information. Spectral assignments of metabolite peaks were identified using Che-
nomx NMR suite profiler 8.1 software and known assignments from in-house NMR databases
and literature [30,31].

Plasma Lipid Profiling UPLC-MS Acquisition and Processing
Due to sample limitations, additional aliquots of only a subset of plasma samples were used for
lipid profiling (n = 30, see supplementary S1 Table). As for NMR, sample preparation for
UPLC-MS was performed in one day in one batch, in a randomised manner. Samples under-
went protein precipitation using isopropanol, as described by Sarafian et al, 2014 [32]. Briefly,
50 μl plasma was mixed 1:3 (v/v) with ice-cold isopropanol (SIGMA-Aldrich), incubated for 10
mins at room temperature, and then overnight at -20°C. Samples were then centrifuged at
20,817 x g (14,000 rpm) at 4°C for 20 mins and 100 μl of the supernatant (subsequently
referred to as test samples) were transferred to MS vials (Waters Corp., UK) for analysis and
placed in the auto-sampler (kept at 8°C). Additional aliquots from each plasma-isopropanol
sample were pooled to generate a quality control (QC) master sample. The QC was injected
before starting the run to optimise the injection volume and to condition the column, and then
injected every 8 samples for assurance of a stable run.

Lipid profiling was performed on an Acquity UPLC system (Waters Ltd. Elstree, UK) cou-
pled to a Q-TOF Premier mass spectrometer (Waters Ltd., Manchester, UK). Mass spectra for
all samples were acquired continuously, firstly in positive and then negative ion electrospray
(ESI+ and ESI-) modes, over the course of 3 days. The separation conditions for reversed-
phase UPLC have been previously established [33,34]. Gradient elution was performed using a
CSH C18 (1.7 μm, 2.1 x 100 mm) column (Waters Corporation, Milford, USA) kept at 55°C.
The mobile phases consisted of 0.1% (v/v) formic acid and 10 mM ammonium formate in
60:40 (v/v) acetonitrile (ACN)/HPLC-grade water (mobile phase A) and 0.1% formic acid (v/v)
and 10 mM ammonium formate in 90:10 (v/v) IPA/ACN (mobile phase B) at a flow rate of 0.4
ml/min (all solvents purchased from SIGMA-Aldrich except water which was from Fisher,
Germany). The sample injection volume was 5 μl and 10 μl for ESI+ and ESI-, respectively.

The MS parameters were set as follows: capillary voltage, 3 kV (ESI+) and 2.5 kV (ESI-);
sample cone voltage, 30 V (ESI+) and 25 V (ESI-); source temperature, 120°C; desolvation tem-
perature, 400°C; desolvation gas flow, 800 L/h and cone gas flow, 25 L/h. For mass accuracy, a
0.2 ng/μl leucine encephalin (mass/charge ratio (m/z) 556.2771 in ESI+ and m/z 554.2615 in
ESI−) solution at 20 μl/min was used as the lock mass. Data were collected in centroid mode
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with a scan range of 50–1200 m/z, with lock mass scans collected every 30 seconds and aver-
aged over 3 scans to perform mass correction. Additionally, data-dependent acquisition
(DDA) of the QC sample was performed for structural elucidation for each ionisation mode.

Chromatograms and spectra were displayed using MassLynx (version 4.1; Waters Corp.).
The MassLynx package ‘Databridge’ was used to convert the data files into NetCDF format.
The package XCMS (R software) and an in-house developed script was used for the pre-pro-
cessing of the data (peak-picking, alignment, grouping, zero filling, and median-fold change
normalisation) [35]. Integrals of metabolic features with a coefficient of variation (CV) greater
than 30% in the QC samples (n = 6) were removed in Microsoft Excel (2013, Microsoft, USA)
prior to analysis.

Statistical Analysis
Metabolic data from plasma 1H NMR spectra and lipid profiling UPLC-MS data were initially
analysed in SIMCA software (V. 13.0, Umetrics) via Principal Component Analysis (PCA)
[36], a non-supervised descriptive model used to investigate inherent similarities/differences
across the data set and identify outliers. Analyses resulted in the removal of one NMR sample
with an acquisition artefact thus bringing the final total to n = 66: 45 HAT and 21 controls (see
S1 Table). PCA was additionally used to identify and remove contaminant/artefactual features,
as described by Vorkas et al, 2015 [34], and to evaluate experimental reproducibility by assess-
ing QC sample clustering for both ESI+ and ESI- runs. This was followed by Partial Least
Squares Discriminant Analysis (PLS-DA), and Orthogonal PLS-DA (O-PLS-DA) [37]. Both
are multivariate regression models used to assess the spectral differences that contribute
towards classification of patients vs. controls, and to determine how well these differences can
predict class separation. Contribution of within-class variation that is uncorrelated to the sepa-
ration between classes is minimised in O-PLS-DA models, which were used for final extraction
of discriminating metabolites. See supplementary protocols in supporting information (S1
File) for further details on data processing, analyses, and model validation.

For NMR data, metabolites integrals were then compared between HAT patients and con-
trols via the two-tailed Welch’s (unequal variance) T-test in Microsoft Excel, followed by Ben-
jamini-Hochberg multiple test correction [38]. Those where p<0.05 was observed were
labelled as statistically significant discriminatory markers. For UPLS-MS data, threshold crite-
ria for initial selection of markers were variables with a correlation value p(corr)[1]>0.5 and
covariance p[1]>0.05, as visualized on the OPLS-DA S-plot, to extract the most discriminatory
and robust features (see supporting protocols). This was followed by conducting a two-tailed
Welch’s T-test with Benjamini-Hochberg correction, whereby the final statistical discrimina-
tory criteria was also p<0.05 after multiple testing correction. Lipid species assignment of dis-
criminatory features was based on the accurate mass-to-charge (m/z) ratio, searched against
online MS database METLIN (https://metlin.scripps.edu) and previous published results gen-
erated in-house [34,39], as well as on the MS/MS information obtained in the DDA experi-
ments of QC samples.

Integrals of these discriminatory variables were re-imported into SIMCA as new loadings
for O-PLS-DA models, to evaluate the sensitivity and specificity of the combination of these
metabolites for biomarker potential. O-PLS-DA models was performed twice, separately for
NMR and UPLC-MS data. Firstly, models were generated using integrals of all significantly dis-
criminatory markers, and secondly using only integrals of the top 5 discriminating markers,
defined as those which displayed the greatest % difference between patients and controls. Cal-
culations are further explained in supplementary protocols (see Supporting Information S1
File).
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To explore links between potentially complementary metabolic datasets, NMR metabolite
integrals were correlated with corresponding integral of discriminatory lipid profiling features
from matching patient samples (n = 16), via Pearson correlation in MATLAB, followed by Ben-
jamini-Hochberg correction. Similarly Pearson -based correlation analyses (with multiple test
correction) was performed between metabolic (NMR and/or MS) data sets. Relationships
between patient demographic data and metabolic datasets were assessed using Spearman corre-
lation analysis, Mann-Whitney tests, and mixed linear models as appropriate, in JMP (v.10.0,
SAS, USA).

Results
1H NMR Spectroscopy Shows Marked Differences in Plasma between
Human African Trypanosomiasis Patients and Controls
Inherent differences between T. b. rhodesiense infected HAT patients and uninfected controls
dominated overall dataset variability, demonstrated by the partial separation of these two pop-
ulations along the first component in PCA (Fig 1A), indicative that the HAT infection pro-
duced a strong metabolic response. No significant differences between metabolic profiles based
on demographic factors (gender, age, or diagnostic stage) were found. Metabolic disparities
between patients and controls were further examined using O-PLS-DA (a supervised model-
ling method that maximises differences between classes whilst minimising within-class varia-
tion), which showed complete segregation between patients and controls, also along the first
component (Fig 1B). The model had a Q2Y (model predictive capability parameter) value of
0.708, indicating that the model was robust. Further validation through permutation testing
found that the likelihood of achieving the same discriminatory result by chance was zero (p = 0
for both R2Y and Q2Y). It is noteworthy that although the first two components of the PCA
model only cumulatively account for 18.1% of the total variance (R2) in the data set, indicating
variability in sample composition, the O-PLS-DA model indicates that the metabolic signature
is robust.

Examination of the corresponding O-PLS-DA loadings revealed that the lipid peaks
accounted for the majority of the discrimination. In total, 34 endogenous metabolites were
identified from NMR spectra though only 31 of these displayed distinct peaks that were used
for integral calculation (signals from isoleucine, leucine and lysine were superimposed by over-
lapping lipid peaks), and compared between patients and controls (shown in S2 Table). Those
metabolites that were significantly higher in disease are shown in Fig 2A, whilst metabolites
significantly lower in disease are shown in Fig 2B. The majority of lipid moieties detected in
plasma were significantly reduced in patients, including those containing unsaturated bonds
(CH = CH and C = CCH2C = C), lysyl group in plasma albumin, and cholesterol (Fig 2B). In
contrast, lipid glyceryl and ketene (CH2CO) groups were significantly higher in patients than
in controls (Fig 2A). Several plasma amino acids were also significantly discriminatory between
HAT and controls, including histidine and alanine, which were found in lower concentrations
in patients, and phenylalanine, which was augmented. Other significant changes included an
increase of creatinine, N-acetyl glycoprotein, formate andmyo-inositol in HAT patients whilst
citrate was higher in controls. No associations between discriminatory metabolites and patient
demographic data (age, gender or diagnostic stage) were found though the sample size in this
study limited the power of this analysis (this was particularly the case for staging as our cohort
had relatively few early cases—see S1 Table).

Additional O-PLS-DA models were built, firstly using integrals of all 16 discriminatory
metabolites, followed by models using only the top 5 metabolites. The latter were defined as
those which displayed the biggest measured percentage difference between HAT and controls,
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Fig 1. Plasma in HAT patients display different 1H NMRmetabolic profiles compared with controls. PCAmodel (A) and O-PLS-DAmodel (B) score
plots of plasma 1H NMR spectra across HAT patients and controls. Each circle represents a spectra from one sample, whereby patients are presented in red
(n = 45) and controls in dark grey (n = 21). Abbreviations: R2X, model fit parameter for variation in spectral data; R2Y, model fit parameter for variation in
classifier data (for O-PLS-DA); Q2, model predictive parameter for spectral data in PCA (Q2X) and for classifier data in O-PLS-DA (Q2Y). Individual
component contribution of R2X are shown on the axes as percentage.

doi:10.1371/journal.pntd.0004200.g001
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representing metabolites of most practical diagnostic potential. These consisted of phenylala-
nine, formate and lipid moieties CH2CO, CH = CH, and glyceryl. In both O-PLS-DA models,
results provided identical specificity scores for classifying patients and controls samples,
namely 95.24% (with 95% confidence intervals [CI] of 86.1–100%). Model sensitivity was
88.89% (79.7–98.1% CI) using all NMR discriminatory markers, and 84.44% (73.9–95.0% CI)
using just the top 5 metabolites (see S3 Table for confusion matrices).

Lipid Profiling UPLC-MS Reveals Compositional Differences in Plasma
Lipid Species between HAT and Controls
Lipid plasma profiles were further examined using reversed-phase UPLC-MS. In total, 8771
metabolic features were detected in positive ionisation mode (ESI+), whilst 2543 features were
observed in negative mode (ESI-). Following the exclusion of peaks with CV> 30% across the
QC’s, as well as the removal of contaminant peaks present in either QC’s or blank controls,
6952 features in ESI+ and 1714 features in ESI- were retained for final analyses. PCA models
showed tight clustering of QC samples compared with the remaining test samples (supplemen-
tary information S1 Fig), assuring the robustness of the MS experimental runs.

As noted with NMR, lipid profiling results showed an inherent separation between the two
classes already in the first two components of PCA, observed in both ionisation modes (see S1
Fig). These differences were confirmed in the corresponding O-PLS-DA models (S1 Fig). Per-
mutation testing confirmed model robustness (ESI+, p = 0.004 for R2Y and p = 0 for Q2Y and
for ESI-, p = 0 for both R2Y and Q2Y). Metabolic features responsible for class discrimination
(i.e. HAT patients vs. controls) were visualised in S-plots in SIMCA, with the cut-off values of
p(corr)[1]>0.5 and covariance p[1]>0.05 were used as selection criteria (see Methods), shown
in Fig 3A and 3B. Integrals of selected discriminatory features highlighted in the S-plots are
shown in Fig 3C and 3D, demonstrating significant decreases in lysophosphatidylcholines 16:0
and 18:0, as well as increases in phosphatidylcholine 32:0 and 34:1.

Overall, lipid profiling analysis identified 37 unique features that were statistically different
between HAT and controls, 12 of which were found to be significantly different in both of
these modes (Table 1). Features included six lysophosphatidylcholines (LysoPCs 16:0, 18:0,
18:1, 18:2, 20:3 and 20:4), four phosphatidylcholines (PCs 32:0, O-34:1, 38:3 and 38:5) and two
sphingomyelin species (SMs d40:1 and d41:1). Further information on UPLC-MS assignments

Fig 2. Differences in plasmametabolites between HAT patients and controls detected by NMR. Bar-charts show relative levels of plasmametabolites
that were significantly altered between patients (shown in red, n = 45) and controls (shown in grey, n = 21), as measured by 1H NMR spectroscopy. (A)
Metabolites higher in patients than controls. (B). Metabolites lower in patients than controls. Bars represent group mean average with standard error of the
mean as error bars. Significance measured via Welch T-test with multiple test correction, shown as asterisks; * p<0.05, ** p<0.01, *** p<0.001. A.U.,
arbitrary units; NAG, N-acetyl glycoproteins.

doi:10.1371/journal.pntd.0004200.g002
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of features can be found in S4 Table. The majority of lipid classes studied were glycerophospho-
lipids (LysoPCs and PCs), followed by sphingolipids (mainly sphingomyelins) and triglycerides
(see Table 1 and S4 Table). Free fatty acids were detected using our MS methodology but did
not significantly differ between patients and controls.

In total, six significantly altered lysoPCs measured in this study were found to be lower in
patients than controls. Significantly lower intensities were also observed for eight out of nine
sphingolipids, including seven sphingomyelins (SM) as well as nervonic ceramide (Cer d42:2).
Only SM d34:1, the smallest of the analysed SM species, was found to be higher in patients
than controls. Additionally, patients had augmented levels of six triglycerides (TG) species and
depleted levels of cholesterol ester (CE) 18:2 in patients, in line with NMR findings where we
detected higher glyceryl moieties and lower cholesterol in HAT.

Fig 3. Plasma in HAT patients display different lipid profiles compared with controls. S-plots of O-PLS-DAmodel for plasma lipid profiling UPLC-MS
features detected in ESI+ mode (A) and ESI- mode (B), whereby each circle represents one feature with a unique combination of m/z and retention time
values. Discriminatory features selected surpassed p[1] and p(corr)[1] threshold criteria, highlighted in red boxes (see Methods). See S1 Fig for
corresponding scores plots. Integrals of features highlighted in the S-plots are shown as bar-chart showing mean averages ± standard error of the mean, for
both ESI+ (C) and ESI- (D). Patients levels are shown in red (n = 16) and controls in dark grey (n = 14). Significant differences, as measured via Welch T-test
with multiple test correction, are labelled with asterisks, where *** p<0.001. Abbreviations: A.U., arbitrary units; LysoPC, lysophosphatidylcholine; PC,
phosphatidylcholine.

doi:10.1371/journal.pntd.0004200.g003
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Table 1. Discriminatory lipid species observed in plasma via UPLC-MS.

Lipid Species ESI+ ESI-

P-value % Difference P-value % Difference

Increased in HAT Cer (d42:2) - - 2.51E-03 54.30%

PC (32:0) 2.49E-05 104.20% 2.58E-03 111.70%

PC (32:1) - - 1.29E-04 62.50%

PC (34:1) - - 8.21E-03 35.00%

PC (34:2) - - 1.29E-04 40.20%

PC(O-34:1)/ PC(P-34:0) 3.93E-04 86.20% 2.00E-03 84.30%

PE (36:2) - - 2.51E-03 54.40%

PS (39:3) - - 4.42E-03 37.50%

SM (d34:1) 1.75E-02 96.10% - -

TG (51:2) 6.52E-05 98.00% - -

TG (52:3) 4.40E-03 45.40% - -

TG (53:2) 6.73E-04 86.10% - -

TG (53:3) 4.02E-04 77.50% - -

TG (54:2) 3.74E-04 70.30% - -

TG (54:5) 2.20E-03 68.20% - -

Decreased in HAT CE (18:2) 1.12E-04 -53.10% - -

LysoPC (16:0) 1.93E-05 -58.60% 5.42E-04 -60.10%

LysoPC (18:0) 1.11E-04 -72.60% 4.42E-03 -69.50%

LysoPC (18:1) 1.98E-05 -66.50% 1.00E-04 -62.50%

LysoPC (18:2) 3.28E-04 -80.50% 3.18E-04 -78.20%

LysoPC (20:3) 5.97E-05 -75.00% 7.00E-04 -77.90%

LysoPC (20:4) 4.36E-06 -75.60% 2.62E-04 -73.10%

PC (40:5) 1.13E-02 -39.20% - -

PC (36:3) 6.56E-03 -33.90% - -

PC (38:3) 1.93E-03 -43.00% 2.51E-03 -30.70%

PC (38:5) 1.71E-02 -40.90% 1.29E-04 -28.80%

PC (38:6) 1.63E-02 -33.30% - -

PC (40:4) 3.25E-03 -47.90% - -

PC (40:6) 2.94E-02 -32.70% - -

PC(O-34:3)/PC(P-34:2) 8.43E-04 -52.80% - -

SM (d38:1) - - 3.46E-03 -37.60%

SM (d39:1) - - 4.42E-03 -52.10%

SM (d40:1) 1.01E-03 -43.90% 3.46E-03 -48.60%

SM (d40:2) - - 2.58E-03 -60.20%

SM (d41:1) 1.06E-03 -58.60% 2.00E-03 -48.20%

SM (d41:2) - - 4.42E-03 -55.30%

SM (d42:1) - - 3.92E-04 -52.50%

Molecular species that not detected in a particular electro-spray ionisation (ESI) mode were omitted from the table. For more description of detected lipid

species (including retention times and mass/charge ratios) see supplementary S2 Table.

Abbreviations: -, no discriminatory marker detected that ionisation mode; Cer, ceramide; CE, cholesterol ester; LysoPC, lysophosphatidylcholine; LysoPE,

lysophosphatidylethanolamine; NS, not statistically significant; PC, phosphatidylcholine; PE, phosphatidylehtanolamine; PS, phosphatidylserine; RT,

retention time; SM, sphingomyelin.

doi:10.1371/journal.pntd.0004200.t001
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In general, differences in lipid species concentrations between patients and controls were
similar across the lipid subclasses, with the exception of the phosphatidylcholines. In contrast,
our UPLC-MS results indicate that PCs that contained a high number of saturated bonds were
significantly decreased in patients (e.g. PCs 38:5, 38:6, 40:5), whilst those with two or fewer
unsaturated bonds were increased (e.g. PCs 32:0, 32:1, and 34:1, see Table 1). These results mir-
ror the NMR findings, where lipid moieties with unsaturated bonds (CH = CH and
C = CCH2C = C) were significantly lower in patients than controls (Fig 2).

Similar to the NMR data, additional O-PLS-DAmodels were generated using the integrals all
37 markers from both ionisation modes, followed by further models using only the top 5 fea-
tures with the greatest % difference (as shown in Table 1). As most of the largest changes were
observed in the positive mode, we selected the feature from this ionisation mode only. These
included PC(34:3), PC(32:0), TG(51:2), PC(O-34:1) and SM(d34:1). Both O-PLS-DA models
with either all markers or top 5 gave identifical sensitivity and specificity scores, namely 93.75%
(81.9–100% CI) and 85.71% respectively (67.4–100% CI; see S5 Table for confusion matrices).

Potential links between UPLC-MS and NMR data was explored by correlating lipid meta-
bolic features with NMRmetabolite levels measured via NMR. Whilst multiple trends were
observed, including links between lipid MS species and several NMR lipid moieties, 3-hydroxy-
butyrate (a ketone body generated from fatty acid break-down), and energy associated metabo-
lites, e.g. creatinine and lactate), none of these associations remained statistically significant
after Benjamini-Hochberg multiple test correction was performed, due to lack of statistical
power. No significant links were observed between MS data and age and/or gender data (analy-
ses could not be performed for diagnostic staging due to limited numbers of early stage within
this subset of data—see S2 Table).

Discussion
The HAT infection was characterised by strong metabolic differences in plasma profiles, based
on both NMR and UPLC-MS, which shows the potential of this approach in the development
of novel diagnostic marker sets. The discriminatory profile was largely driven by variation in
lipids and amino acids. Phenylalanine was the single most discriminatory metabolite as
detected by NMR, with the largest percentage difference between HAT and controls in concen-
tration. Raised levels of phenylalanine have been frequently linked with infection and inflam-
mation [40]. Phenylalaninemia has previously been reported in patients with enteric fever [41],
and with malaria [42] Evidence suggests that this phenomenon may be related to neurological
effects seen in cerebral malaria [42], since high levels of phenylalanine are known to be neuro-
toxic [43]. Other differences in plasma amino acid concentrations included significant
decreases in histidine and alanine in HAT. Histidine concentrations have been shown to be
negatively correlated with inflammatory disease markers in humans [44–46] and this would be
consistent with clinical evidence of systemic inflammatory responses in HAT [3].

Creatinine concentration was also found to be significantly higher in HAT, potentially a sign
of renal dysfunction which is one of the clinical features observed in sleeping sickness [47,48].
Additionally, concentrations of N-acetyl groups of plasma glycoproteins were also higher in
patients. Most of these have been shown to belong to α1 acid glycoprotein [49,50], another
inflammatory marker known to be associated with the acute-phase response. This result is simi-
lar to what has been found with experimental murine infection of T. b. brucei where plasma
acetylated glycoproteins (dominated by O-acetyls) were found to be augmented [11].

Some of the most pronounced changes observed in the NMR spectra were the clear dispari-
ties in the plasma lipid composition between the two groups. In addition to their roles as
energy reserves and major constituents of membranes, lipids also represent highly biologically
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active metabolites, with involvement (or function) in signalling and a range of inflammatory
processes, e.g. prostaglandins and leukotrienes synthesis [51]. Our results showed that the
majority of the concentrations of discriminatory lipids were significantly reduced in patients.
These primarily included lipids containing unsaturated bonds (CH = CH and
C = CCH2C = C), CH3 and CH2CH2COmoieties, and albumin lysyl groups, and high-density
lipoprotein (HDL) cholesterol. Dyslipidaemia has been observed in a range of infections, mea-
sured primarily using lipid-specific biochemical serum assays, as opposed to comprehensive
metabolic profiling, whereby significantly reduced HDL and total cholesterol have been
reported in malaria [52], enteric fever [53] and others [54,55]. Decreased lipoprotein CH3 moi-
eties were also observed in experimental murine T. b. brucei infection [11], confirming the
need for deeper assessment into the variety of lipid species, to help dissect their different roles
during infection.

Further investigation of the lipid profile with UPLC-MS indicated that HAT patients dis-
played significantly lower levels of polyunsaturated phosphatidylcholines (e.g. PC 40:6, 40:5,
38:5 and 38:3), although PC molecules with 2 or fewer unsaturated bonds were in contrast
increased. This profile presents a more complex picture than was obtained in experimental
mouse infections with T. b. brucei, where an overall decrease in plasma PC concentrations was
measured by NMR [11].

A range of lysophophatidylcholines (e.g. LysoPC 16:0, 18:0, 18:2) intensities was also signifi-
cantly lower in patients. Despite the fact that Trypanosoma brucei ssp have the capability to
produce many of their lipids de novo, they are known to scavenge several lipid precursor mole-
cules from the host and have been shown to require lipid uptake for optimal growth [56,57].
More specifically, these include fatty acids and lyso-phospholipids, which are assembled to
make phospholipids, the most dominant lipid component of T. brucei ssp [58]. As fatty acyl
chain composition in T. b. rhodesiense bloodstream forms have a high proportion of long-
chain polyunsaturated fatty acids [59,60], it could be hypothesised that the lower plasma con-
centrations of polyunsaturated lipids in HAT patients may be due to increased uptake by the
parasites.

Numerous sphingomyelin species were also found in lower concentrations in infection (e.g.
SM d40:1, d41:1 and d42:1), accompanied by a significant increase of ceramide. The sphingoli-
pid turnover is regulated by the balance between enzymatic degradation and synthesis, with
ceramide being a major break-down product. Oxidative stress, inflammatory cytokines and
infection can trigger sphingomyelinase enzymes to increase ceramide generation. Higher levels
of ceramide, in turn, have been linked to increased cell autophagy and apoptosis (the latter par-
ticularly in endothelial cells leading to increased vascular permeability), additional pro-inflam-
matory cytokine and chemokine synthesis, and other metabolic disorders (e.g. insulin
resistance and obesity) [61]. Thus, the changes in sphingolipids observed in HAT further high-
lights the widespread inflammatory effects on the host, associated with T. b. rhodesiense
infection.

Another characteristic of HAT patients was hypertriglyceridaemia. Not only is this result is
in agreement with a range of rabbit and non-human primate models of T. brucei spp infections
[21,22], but is also consistent with marked increases in serum triglycerides in T. b. gambiense
HAT [62]. However, the disease discriminatory potential of hypertriglyceridaemia (often com-
bined with increases in circulating free fatty acids) will require further investigation as it has
been shown to be a common feature across numerous infections in humans [52–54].

In summary, the presented work is the first to apply a comprehensive metabolic profiling
approach to the investigation of Trypanosoma brucei infection in humans and highlights the
potential of metabonomic technology for developing a diagnostic platform for HAT. The mod-
els generated based on both NMR and UPLC-MS were robust, thus the utility of this
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technology in an exploratory capacity is evident. Similarities but importantly significant differ-
ences in discriminatory NMRmetabolites were identified to previously published metabolic
profiles in experimental rodent T. brucei spp. infections. We identified a range of discrimina-
tory plasma metabolites in clinical HAT that collectively have diagnostic disease marker poten-
tial (up to 93.75% sensitivity and 95.24% specificity). While some of these markers have been
associated with other infections or inflammatory processes, the effects of specific infection on a
combined panel such as in this study has not previously been reported and may prove diagnos-
tically effective in differentiating HAT from other endemics disease. However, it is obvious that
neither NMR spectroscopy nor UPLC-MS are platforms that can be used at point-of-care in
developing countries. Therefore the functionality of these platforms lies in characterisation of
the metabolic consequences of a parasitic infection, with subsequent development of simpler
clinical assays such as a biochemical dipstick based on the strongest differentiating biomarkers.
Of particular interest from our results were differences in lipids, observed in both NMR and
UPLC-MS, that dominated the variation in metabolic profiles between HAT and controls. Fur-
ther investigation of inflammatory lipid mediators such prostaglandins and leukotrienes would
also be of particular interest, to better understand pathology and provide key insights into links
between lipid metabolism and immune responses in the host. Detailed lipid sub-species charac-
terisation with the use of lipid reference standards and MS/MS are required to further isolate
novel diagnostic candidates to ultimately aid in the detection and management of T. b. rhodie-
sienseHAT, moving closer towards the WHO goal of disease eradication.

Supporting Information
S1 Fig. Differences observed in plasma lipid-MS profiles between HAT patients and con-
trols.Multivariate model scores plots based on lipid MS features of plasma samples. PCA mod-
els based on first two component of all plasma test samples (as light grey circles, n = 30) and
QC’s (as blue circles, n = 6) in positive ionisation (ESI+) mode (A) and negative (ESI-) mode
(B). PCA models of the first two components of plasma test samples only, comparing HAT
patients (red circles, n = 16) vs. controls (dark grey circles, n = 14), in ESI+ (C) and ESI- (D).
O-PLS-DA models of test samples comparing HAT vs. controls (labelling and group sizes as
described for PCA), in ESI+ (E) and ESI- (F). O-PLS-DA based on both predictive and orthog-
onal components for ESI+ but only on the first predictive component for ESI- (the orthogonal
component for this model reduced the predictive ability of model and was thus omitted).
Abbreviations: R2X, model fit parameter for variation in spectral data; R2Y, model fit parameter
for variation in classifier data (for O-PLS-DA models); Q2, model predictive parameter (for
spectral data Q2X in PCA/for classifier data Q2Y in O-PLS-DA), SD, standard deviation.
(TIF)

S1 Table. Patient and control cohort demographic information.
(PDF)

S2 Table. Plasma metabolite levels measured via 1H NMR spectroscopy.
(PDF)

S3 Table. Confusion matrices of HAT vs. control classification ability of NMR discrimina-
tory markers.
(PDF)

S4 Table. List of Discriminatory Lipid Species detected via UPLC-MS in both ionisation
modes.
(PDF)
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tory markers.
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S1 File. Supplementary protocols for statistical analyses.
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