1,601 research outputs found

    A Novel Path Planning Optimization Algorithm for Semi-Autonomous UAV in Bird Repellent Systems Based in Particle Swarm Optimization

    Get PDF
    Bird damage to fruit crops causes significant monetary losses to farmers annually. The application of traditional bird repelling methods such as bird cannons and tree netting became inefficient in the long run, keeping high maintenance and reduced mobility. Due to their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low battery capacity that equals low flight duration, it is necessary to evolve path planning optimization. A path planning optimization algorithm of UAVs based on Particle Swarm Optimization (PSO) is presented in this dissertation. This technique was used due to the need for an easy implementation optimization algorithm to start the initial tests. The PSO algorithm is simple and has few control parameters while maintaining a good performance. This path planning optimization algorithm aims to manage the drone's distance and flight time, applying optimization and randomness techniques to overcome the disadvantages of the traditional systems. The proposed algorithm's performance was tested in three study cases: two of them in simulation to test the variation of each parameter and one in the field to test the influence on battery management and height influence. All cases were tested in the three possible situations: same incidence rate, different rates, and different rates with no bird damage to fruit crops. The proposed algorithm presents promising results with an outstanding reduced average error in the total distance for the path planning obtained and low execution time. However, it is necessary to point out that the path planning optimization algorithm may have difficulty finding a suitable solution if there is a bad ratio between the total distance for path planning and points of interest. The field tests were also essential to understand the algorithm's behavior of the path planning algorithm in the UAV, showing that there is less energy discharged with fewer points of interest, but that do not correlates with the flight time. Also, there is no association between the maximum horizontal speed and the flight time, which means that the function to calculate the total distance for path planning needs to be adjusted.Anualmente, os danos causados pelas aves em pomares criam perdas monetárias significativas aos agricultores. A aplicação de métodos tradicionais de dispersão de aves, como canhões repelentes de aves e redes nas árvores, torna-se ineficiente a longo prazo, sendo ainda de alta manutenção e de mobilidade reduzida. Devido à sua versatilidade, os Veículos Aéreos Não Tripulados (VANT) podem ser benéficos para resolver este problema. No entanto, devido à baixa capacidade das suas baterias, que se traduz num baixo tempo de voo, é necessário otimizar o planeamento dos caminhos. Nesta dissertação, é apresentado um algoritmo de otimização para planeamento de caminhos para VANT baseado no Particle Swarm Optimization (PSO). Para se iniciarem os primeiros testes do algoritmo proposto, a técnica utilizada foi a supracitada devido à necessidade de um algoritmo de otimização fácil de implementar. O algoritmo PSO é simples e possuí poucos parâmetros de controlo, mantendo um bom desempenho. Este algoritmo de otimização de planeamento de caminhos propõe-se a gerir a distância e o tempo de voo do drone, aplicando técnicas de otimização e de aleatoriedade para superar a sua desvantagem relativamente aos sistemas tradicionais. O desempenho do algoritmo de planeamento de caminhos foi testado em três casos de estudo: dois deles em simulação para testar a variação de cada parâmetro e outro em campo para testar a capacidade da bateria. Todos os casos foram testados nas três situações possíveis: mesma taxa de incidência, taxas diferentes e taxas diferentes sem danos de aves. Os resultados apresentados pelo algoritmo proposto demonstram um erro médio muto reduzido na distância total para o planeamento de caminhos obtido e baixo tempo de execução. Porém, é necessário destacar que o algoritmo pode ter dificuldade em encontrar uma solução adequada se houver uma má relação entre a distância total para o planeamento de caminhos e os pontos de interesse. Os testes de campo também foram essenciais para entender o comportamento do algoritmo na prática, mostrando que há menos energia consumida com menos pontos de interesse, sendo que este parâmetro não se correlaciona com o tempo de voo. Além disso, não há associação entre a velocidade horizontal máxima e o tempo da missão, o que significa que a função de cálculo da distância total para o planeamento de caminhos requer ser ajustada

    A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling

    Get PDF
    Bird damage to fruit crops causes significant monetary losses to farmers annually. The application of traditional bird repelling methods such as bird cannons and tree netting become inefficient in the long run, requiring high maintenance and reducing mobility. Due to their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low battery capacity that equals low flight duration, it is necessary to evolve path planning optimization. A novel path planning optimization algorithm of UAVs based on Particle Swarm Optimization (PSO) is presented in this paper. This path planning optimization algorithm aims to manage the drone’s distance and flight time, applying optimization and randomness techniques to overcome the disadvantages of the traditional systems. The proposed algorithm’s performance was tested in three study cases: two of them in simulation to test the variation of each parameter and one in the field to test the influence on battery management and height influence. All cases were tested in the three possible situations: same incidence rate, different rates, and different rates with no bird damage to fruit crops. The field tests were also essential to understand the algorithm’s behavior of the path planning algorithm in the UAV, showing that there is less efficiency with fewer points of interest, but this does not correlate with the flight time. In addition, there is no association between the maximum horizontal speed and the flight time, which means that the function to calculate the total distance for path planning needs to be adjusted. Thus, the proposed algorithm presents promising results with an outstanding reduced average error in the total distance for the path planning obtained and low execution time, being suited for this and other applications.This research work is within the activities of PrunusBot project—Autonomous controlled spraying aerial robotic system and fruit production forecast, Operation No. PDR2020-101-031358 (leader), Consortium No. 340, Initiative No. 140, promoted by PDR2020 and co-financed by the EAFRD and the European Union under the Portugal 2020 program.info:eu-repo/semantics/publishedVersio

    Robust nonlinear trajectory controllers for a single-rotor UAV with particle swarm optimization tuning

    Get PDF
    This paper presents the utilization of robust nonlinear control schemes for a single-rotor unmanned aerial vehicle (SR-UAV) mathematical model. The nonlinear dynamics of the vehicle are modeled according to the translational and rotational motions. The general structure is based on a translation controller connected in cascade with a P-PI attitude controller. Three different control approaches (classical PID, Super Twisting, and Adaptive Sliding Mode) are compared for the translation control. The parameters of such controllers are hard to tune by using a trial-and-error procedure, so we use an automated tuning procedure based on the Particle Swarm Optimization (PSO) method. The controllers were simulated in scenarios with wind gust disturbances, and a performance comparison was made between the different controllers with and without optimized gains. The results show a significant improvement in the performance of the PSO-tuned controllers.Peer ReviewedPostprint (published version

    Improved GWO Algorithm for UAV Path Planning on Crop Pest Monitoring

    Get PDF
    Agricultural information monitoring is the monitoring of the agricultural production process, and its task is to monitor the growth process of major crops systematically. When assessing the pest situation of crops in this process, the traditional satellite monitoring method has the defects of poor real-time and high operating cost, whereas the pest monitoring through Unmanned Aerial Vehicles (UAVs) effectively solves the above problems, so this method is widely used. An important key issue involved in monitoring technology is path planning. In this paper, we proposed an Improved Grey Wolf Optimization algorithm, IGWO, to realize the flight path planning of UAV in crop pest monitoring. A map environment model is simulated, and information traversal is performed, then the search of feasible paths for UAV flight is carried out by the Grey Wolf Optimization algorithm (GWO). However, the algorithm search process has the defect of falling into local optimum which leading to path planning failure. To avoid such a situation, we introduced the probabilistic leap mechanism of the Simulated Annealing algorithm (SA). Besides, the convergence factor is modified with an exponential decay mode for improving the convergence rate of the algorithm. Compared with the GWO algorithm, IGWO has the 8.3%, 16.7%, 28.6% and 39.6% lower total cost of path distance on map models with precision of 15, 20, 25 and 30 respectively, and also has better path planning results in contrast to other swarm intelligence algorithms

    Hybrid Route Optimisation for Maximum Air to Ground Channel Quality

    Full text link
    [EN] The urban air mobility market is expected to grow constantly due to the increased interest in new forms of transportation. Managing aerial vehicles fleets, dependent on rising technologies such as artificial intelligence and automated ground control stations, will require a solid and uninterrupted connection to complete their trajectories. A path planner based on evolutionary algorithms to find the most suitable route has been previously proposed by the authors. Herein, we propose using particle swarm and hybrid optimisation algorithms instead of evolutionary algorithms in this work. The goal of speeding the route planning process and reducing computational costs is achieved using particle swarm and direct search algorithms. This improved path planner efficiently explores the search space and proposes a trajectory according to its predetermined goals: maximum air-to-ground quality, availability, and flight time. The proposal is tested in different situations, including diverse terrain conditions for various channel behaviours and no-fly zones.This study was funded by Airbus Defence and Space gmbh. Universitat Politecnica de Valencia will cover publication costs.Expósito-García, A.; Esteban González, H.; Schupke, D. (2022). Hybrid Route Optimisation for Maximum Air to Ground Channel Quality. Journal of Intelligent & Robotic Systems. 105(2):1-16. https://doi.org/10.1007/s10846-022-01590-81161052Analytical Graphics, Inc. www.stk.com. Accessed: 2021-02-23DCSR algorithm implementation by Matlab. https://cutt.ly/HY45SP8. Accessed: 2021-12-18Genetic algorithm implementation by Matlab. https://cutt.ly/OY47O56. Accessed: 2021-12-18Google Maps, Aerial view of the Alicante area. https://cutt.ly/DjnLvqA. Accessed: 2021-02-23Google Maps, Aerial view of the Alps area. https://cutt.ly/KjnLWuw. Accessed: 2021-02-23Google Maps, Aerial view of the Munich area. https://cutt.ly/1jnLnyu. Accessed: 2021-02-23Nelder-mead algorithm implementation by Matlab. https://cutt.ly/DY45Wxl. Accessed: 2021-12-18Particle swarm implementation by Matlab. https://cutt.ly/PY47TPC. Accessed: 2021-12-18Ali, S.F., Nguyen, L.: UAS C2 data link performance for safe automatic flight guidance and control operation. In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings. https://doi.org/10.1109/DASC.2016.7778017(2016)Besada-Portas, E., De La Torre, L., De La Cruz, J.M., De Andrés-Toro, B.: Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans. Robot. 26(4), 619–634 (2010). https://doi.org/10.1109/TRO.2010.2048610Chaimatanan, S., Delahaye, D., Mongeau, M.: A hybrid metaheuristic optimization algorithm for strategic planning of 4d aircraft trajectories at the continental scale. IEEE Comput. Intell. Mag. 9(4), 46–61 (2014)Cotton, W.B., Wing, D.J.: Airborne trajectory management for urban air mobility. In: 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-3674 (2018)de la Cruz, J.M., Besada-Portas, E., Torre-Cubillo, L., Andres-Toro, B., Lopez-Orozco, J.A.: Evolutionary path planner for UAVs in realistic environments. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO ’08. https://doi.org/10.1145/1389095.1389383, p 1477 (2008)Dandanov, N., Al-Shatri, H., Klein, A., Poulkov, V.: Dynamic self-optimization of the antenna tilt for best trade-off between coverage and capacity in mobile networks. Wirel. Pers. Commun. 92(1), 251–278 (2017)Di Caprio, D., Ebrahimnejad, A., Alrezaamiri, H., Santos-Arteaga, F.J.: A novel ant colony algorithm for solving shortest path problems with fuzzy arc weights. Alexandria Engineering Journal (2021)Dong, X., He, S., Stojanovic, V.: Robust fault detection filter design for a class of discrete-time conic-type non-linear markov jump systems with jump fault signals. IET Control Theory Applic. 14(14), 1912–1919 (2020)Elouadih, A., Oulad-Said, A., Hassani, M.M.: Design and Simulation of a PIFA Antenna for the Use in 4G Mobile Telecommunications Networks. International Journal of Communications, Network and System Sciences. https://doi.org/10.4236/ijcns.2013.67035 (2013)Exposito, A., Schupke, D., Esteban, H.: Route optimisation for maximum air to ground channel quality. IEEE Access 8, 203619–203630 (2020). https://doi.org/10.1109/ACCESS.2020.3037075Fadlullah, Z.M., Takaishi, D., Nishiyama, H., Kato, N., Miura, R.: A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks. IEEE Network. https://doi.org/10.1109/MNET.2016.7389838 (2016)Fang, H., Zhu, G., Stojanovic, V., Nie, R., He, S., Luan, X., Liu, F.: Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics. Int. J. Robust Nonlinear Control 31(6), 2126–2140 (2021)Greenberg, E., Levy, P.: Channel characteristics of UAV to ground links over multipath urban environments. In: 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2017. https://doi.org/10.1109/COMCAS.2017.8244753 (2017)Grøtli, E.I., Johansen, T.A.: Path planning for UAVs under communication constraints using SPLAT! and MILP. Journal of Intelligent and Robotic Systems, Theory and Applications. https://doi.org/10.1007/s10846-011-9619-8(2012)Haas, E.: Aeronautical channel modeling. IEEE Trans. Veh. Technol. 51(2), 254–264 (2002). https://doi.org/10.1109/25.994803, http://ieeexplore.ieee.org/document/994803/Hayat, S., Yanmaz, E., Brown, T., Bettstetter, C.: Multi-objective UAV path planning for search and rescue, 5569–5574. https://doi.org/10.1109/ICRA.2017.7989656 (2017)Ingber, L.: Adaptive simulated annealing (asa): Lessons learned arXiv preprint cs/0001018 (2000)Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Kumar, S., Tejani, G.G., Pholdee, N., Bureerat, S., Jangir, P.: Multi-objective teaching-learning-based optimization for structure optimization. Smart Science, 1–12 (2021)Kurban, R., Durmus, A., Karakose, E.: A comparison of novel metaheuristic algorithms on color aerial image multilevel thresholding. Eng. Appl. Artif. Intel. 105, 104410 (2021)Kurban, T., Civicioglu, P., Kurban, R., Besdok, E.: Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding. Appl. Soft Comput. 23, 128–143 (2014)Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions. SIAM J. Optim. 9, 112–147 (1998). https://doi.org/10.1137/S1052623496303470Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)Matolak, D.W., Sun, R.: Air-ground channel characterization for unmanned aircraft systems: The Hilly suburban environment. In: 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). https://doi.org/10.1109/VTCFall.2014.6965861, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6965861, pp 1–5. IEEE (2014)Matolak, D.W., Sun, R.: Air-ground channel characterization for unmanned aircraft systems - part III: The suburban and near-urban environments. IEEE Trans. Veh. Technol. 66(8), 6607–6618 (2017). https://doi.org/10.1109/TVT.2017.2659651Matolak, D.W., Sun, R., Jamal, H., Rayess, W.: L- and C-band airframe shadowing measurements and statistics for a medium-sized aircraft. In: 2017 11th European Conference on Antennas and Propagation (EUCAP 2017), pp. 1429–1433. https://doi.org/10.23919/EuCAP.2017.7928054 (2017)Meyer, D., Wypych, T., Petrovic, V., Strawson, J., Kamat, S., Kuester, F.: An air traffic control simulator for test and development of airspace management schemes. In: 2018 IEEE Aerospace Conference, pp. 1–8. https://doi.org/10.1109/AERO.2018.8396575 (2018)Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011). https://doi.org/10.1016/j.swevo.2011.10.001, http://www.sciencedirect.com/science/article/pii/S2210650211000538Morro, J.V., Esteban, H., Soto, P., Boria, V.E., Bachiller, C., Cogollos, S., Gimeno, B.: Automated design of waveguide filters using aggressive space mapping with a segmentation strategy and hybrid optimization techniques. In: IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 2, pp. 1215–1218 (2003)Nedic, N., Prsic, D., Dubonjic, L., Stojanovic, V., Djordjevic, V.: Optimal cascade hydraulic control for a parallel robot platform by pso. Int. J. Adv. Manuf. Technol. 72(5), 1085–1098 (2014)Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B., Krieger, G., Zink, M., Moreira, A.: Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogram. Remote Sens. 132, 119–139 (2017). https://doi.org/10.1016/j.isprsjprs.2017.08.008, https://linkinghub.elsevier.com/retrieve/pii/S092427161730093XSahingoz, O.K.: Generation of bezier curve-based flyable trajectories for multi-UAV systems with parallel genetic algorithm. J. Intell. Robot. Syst. Theory Applic. 74 (1-2), 499–511 (2014). https://doi.org/10.1007/s10846-013-9968-6Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Vukadinovic, V., Andre, T., Bettstetter, C., Rinner, B., Khan, A., Hellwagner, H.: An autonomous multi-UAV system for search and rescue. In: DroNet 2015 - Proceedings of the 2015 Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use. https://doi.org/10.1145/2750675.2750683 (2015)Schneckenburger, N., Matolak, D., Jost, T., Fiebig, U.c., del Galdo, G., Jamal, H., Sun, R.: A geometrical-statistical model for the air-ground channel. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). https://doi.org/10.1109/DASC.2017.8102054, http://ieeexplore.ieee.org/document/8102054/, pp 1–6. IEEE (2017)Sha, J., Xu, M.: Applying hybrid genetic algorithm to constrained trajectory optimization. In: Proceedings of 2011 International Conference on Electronic Mechanical Engineering and Information Technology, vol. 7, pp. 3792–3795 (2011)Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.: Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. https://doi.org/10.1109/ACCESS.2019.2909530 (2019)ShangGuan, W., Yan, X., Cai, B., Wang, J.: Multiobjective optimization for train speed trajectory in ctcs high-speed railway with hybrid evolutionary algorithm. IEEE Trans. Intell. Transp. Syst. 16(4), 2215–2225 (2015)Singh, S., Mittal, N., Thakur, D., Singh, H., Oliva, D., Demin, A.: Nature and biologically inspired image segmentation techniques. Archives of Computational Methods in Engineering, 1–28 (2021)Sun, R., Matolak, D.W.: Air-ground channel characterization for unmanned aircraft systems part II: Hilly and mountainous settings. IEEE Trans. Veh. Technol. 66(3), 1913–1925 (2017). https://doi.org/10.1109/TVT.2016.2585504Sun, R., Matolak, D.W., Rayess, W.: Air-ground channel characterization for unmanned aircraft systems-part IV: Airframe shadowing. IEEE Trans. Veh. Technol. 66(9), 7643–7652 (2017). https://doi.org/10.1109/TVT.2017.2677884Szczerba, R.J.: Threat netting for real-time, intelligent route planners. In: 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251), pp. 377–382 (1999)Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wireless Commun. 17(3), 2109–2121 (2018). https://doi.org/10.1109/TWC.2017.2789293, 1705.02723, http://ieeexplore.ieee.org/document/8247211/Xie, P., Petovello, M.G.: Measuring GNSS Multipath Distributions in Urban Canyon Environments. IEEE Trans. Instrum. Meas. 64(2), 366–377 (2015)Xin, X., Tu, Y., Stojanovic, V., Wang, H., Shi, K., He, S., Pan, T.: Online reinforcement learning multiplayer non-zero sum games of continuous-time markov jump linear systems. Appl. Math. Comput. 126537, 412 (2022)Zeng, Y., Zhang, R., Lim, T.J.: Throughput maximization for mobile relaying systems. 2016 IEEE Globecom Workshops. GC Wkshps 2016 - Proceedings 64(12), 4983–4996 (2016). https://doi.org/10.1109/GLOCOMW.2016.7849066Zhang, G., Wu, Q., Cui, M., Zhang, R.: Securing UAV communications via trajectory optimization. 2017 IEEE Global Communications Conference GLOBECOM 2017 - Proceedings 2018-Janua, pp. 1–6. https://doi.org/10.1109/GLOCOM.2017.8254971 (2018

    Energy-Efficient UAVs Deployment for QoS-Guaranteed VoWiFi Service

    Get PDF
    This paper formulates a new problem for the optimal placement of Unmanned Aerial Vehicles (UAVs) geared towards wireless coverage provision for Voice over WiFi (VoWiFi) service to a set of ground users confined in an open area. Our objective function is constrained by coverage and by VoIP speech quality and minimizes the ratio between the number of UAVs deployed and energy efficiency in UAVs, hence providing the layout that requires fewer UAVs per hour of service. Solutions provide the number and position of UAVs to be deployed, and are found using well-known heuristic search methods such as genetic algorithms (used for the initial deployment of UAVs), or particle swarm optimization (used for the periodical update of the positions). We examine two communication services: (a) one bidirectional VoWiFi channel per user; (b) single broadcast VoWiFi channel for announcements. For these services, we study the results obtained for an increasing number of users confined in a small area of 100 m2 as well as in a large area of 10,000 m2. Results show that the drone turnover rate is related to both users’ sparsity and the number of users served by each UAV. For the unicast service, the ratio of UAVs per hour of service tends to increase with user sparsity and the power of radio communication represents 14–16% of the total UAV energy consumption depending on ground user density. In large areas, solutions tend to locate UAVs at higher altitudes seeking increased coverage, which increases energy consumption due to hovering. However, in the VoWiFi broadcast communication service, the traffic is scarce, and solutions are mostly constrained only by coverage. This results in fewer UAVs deployed, less total power consumption (between 20% and 75%), and less sensitivity to the number of served users.Junta de Andalucía Beca 2020/00000172Unión Europea FEDER 2014-202

    A Co-optimal Coverage Path Planning Method for Aerial Scanning of Complex Structures

    Get PDF
    The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to safety and inspection requirements. The result is a highly parallelizable algorithm that produces more efficient paths where quality of the useful image data is improved. The path optimization algorithm utilizes a particle swarm optimization (PSO) framework which iteratively optimizes the coverage paths without needing to discretize the motion space or simplify the sensing models as is done in similar methods. The core of the method consists of a cost function that measures both the quality and efficiency of a coverage inspection path, and a greedy heuristic for the optimization enhancement by aggressively exploring the viewpoints search spaces. To assess the proposed method, a coverage path quality evaluation method is also presented in this research, which can be utilized as the benchmark for assessing other CPP methods for structural inspection purpose. The effectiveness of the proposed method is demonstrated by comparing the quality and efficiency of the proposed approach with the state-of-art through both synthetic and real-world scenes. The experiments show that our method enables significant performance improvement in coverage inspection quality while preserving the path efficiency on different test geometries

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences
    • …
    corecore