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Abstract  

The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure 
has been growing rapidly. However, computationally efficient solvers that find optimal flight paths 
while ensuring high-quality data acquisition of the complete 3D structure remains a difficult 
problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing 
computational complexity of the algorithm — but these objectives are not co-optimized 
holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that 
simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing 
computational complexity of the solver all while adhering to safety and inspection requirements. 
The result is a highly parallelizable algorithm that produces more efficient paths where quality of 
the useful image data is improved. The path optimization algorithm utilizes a particle swarm 
optimization (PSO) framework which iteratively optimizes the coverage paths without needing to 
discretize the motion space or simplify the sensing models as is done in similar methods. The core 
of the method consists of a cost function that measures both the quality and efficiency of a 
coverage inspection path, and a greedy heuristic for the optimization enhancement by aggressively 
exploring the viewpoints search spaces. To assess the proposed method, a coverage path quality 
evaluation method is also presented in this research, which can be utilized as the benchmark for 
assessing other CPP methods for structural inspection purpose. The effectiveness of the proposed 
method is demonstrated by comparing the quality and efficiency of the proposed approach with 
the state-of-art through both synthetic and real-world scenes. The experiments show that our 
method enables significant performance improvement in coverage inspection quality while 
preserving the path efficiency on different test geometries. 

 

Keywords—Coverage Path Planning, Unmanned Aerial Vehicle, Particle Swarm Optimization, 
Viewpoint Quality 

 

Nomenclature 

Notation Definition 

Ω The triangular mesh model  

ℳ The number of triangular surface planes on the model 

Ω𝑖 The 𝑖th surface of model 

𝒸𝑖 The centroid at the 𝑖th surface plane 

𝓃𝑖 The normal vector of 𝑖th surface plane 

𝓆𝑖 The camera view at 𝑖th model surface 

FOV Camera field of view 

DOV Camera depth of view 

𝒟𝑟 Maximal distance with minimal acceptable spatial resolution, defined by 
camera intrinsic parameters and inspection requirements  

(𝒟𝑚𝑖𝑛, 𝒟𝑚𝑎𝑥) Acceptable distance between camera to target surface, determined by DOV and 
safety concerns 



𝜂𝑚𝑎𝑥 Maximal observation angle between camera ray and the surface normal, 
determined by FOV and inspection requirements 

(𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥) Acceptable pitch rotation range of onboard gimbal system 

𝒫 The population of particles 

𝒩 The number of particles in population 

𝒢 The number of iterations 

𝓅𝑗  The 𝑗th particle in population with each particle denoted as a collection of 
camera views and an associated shortest path index 

𝜏 The shortest path index vector 

𝒬 The metric evaluates the quality of inspection 

𝛦 The metric evaluates the path efficiency 

1. INTRODUCTION 

Designing paths for a UAV to explore a structure or environment while avoiding obstacles is called 
coverage path planning (CPP) (Galceran & Carreras, 2013). Over the last decade, different CPP 
methods have been developed for performing a variety of real-world inspection applications 
including structural health monitoring (Bircher et al., 2016), augmented reality (Papachristos & 
Alexis, 2016), robot manipulation (Krainin, Curless, & Fox, 2011), and stereo reconstruction (Jing, 
Polden, Lin, & Shimada, 2016). Visual structural inspections typically require high-quality images 
where hairline cracks can be detected. The majority of existing CPP optimization approaches focus 
on minimizing path distance while ensuring coverage and flight safety (Englot & Hover, 2010; 
Englot & Hover, 2012a). Few studies were found to incorporate inspection images’ quality into 
the path optimization. Without the consideration of coverage-image quality, these methods may 
result in collecting a set of suboptimal images that fail to capture enough structural defects features 
for image analysis. Additionally, CPP problems are computationally complex since they 
encompass the classical art gallery problem (AGP) (O'rourke, 1987) and the traveling salesman 
problem (TSP) (Flood, 1956), making the problem intrinsically non-deterministic polynomial time 
hard (NP-hard). Existing algorithms either discretize the motion spaces of the UAVs or restrict the 
degrees of freedom (DoF) of onboard sensors in the continuous space. These strategies allow the 
problem to be formulated into a convex optimization schema – greatly simplifying the solution. 
However, without incorporating the full sensing capability and the UAV movability into the path 
generation, these simplified models may fail to provide the full coverage or the global optimal 
when the inspecting structure geometry is complex. 

To address these issues, we propose a new CPP approach, a co-optimal coverage path planner 
(CCPP), for aerial structural inspection. We present a relationship between the inspection quality 
and the operational cost of a coverage path and generate flight trajectories that balance image 
quality and path distance simultaneously. We achieve this through a novel cost function that 
measures both the quality and the efficiency of inspection with the concerns of task urgency. We 
wrap the CPP problem into a particle swarm optimization (PSO) framework that incorporates the 
full sensing models (e.g., camera field of view, 6d camera pose) and the physical constraints (e.g., 
site obstacles) into the 3D path generation without the need to convexify and discretize the model. 
The proposed PSO framework embeds a greedy heuristic to enhance the convergence speed as 
well as supporting the particles escape from the local optima. An evaluation method focused on 



the coverage inspection quality is presented that can be utilized as the benchmark for evaluation 
of other CPP methods where the inspection quality matters. The effectiveness of the proposed 
method is evaluated by comparing the proposed method with the state-of-art through multiple test 
cases. We also evaluate performance under different parameter configurations to explore the 
limitations of our proposed algorithm. 

Our contributions in this paper are: 

• Creation of a computationally efficient PSO co-optimization framework to compute the 
coverage path for the purpose of inspecting a scene/structure with arbitrary 3D topography 
using a camera-equipped multicopter UAV. 

• Development of a novel cost metric that measures the quality-efficiency of a coverage 
inspection path, incorporation of this new metric into our co-optimization framework. 

• Design of a set of metrics and benchmark method for evaluating the quality of the coverage 
path and a thorough evaluation of the proposed method through multiple test cases under 
various configuration parameters. 

The paper is organized as follows. Section 2 presents work related to coverage path planning and 
the background of the PSO for path optimization. Section 3 introduces the principle steps of the 
proposed method. Section 4 presents the benchmark method for the coverage path assessment as 
well as the thorough evaluation of the proposed method. Section 5 summarizes our contributions 
and discusses future work. 

2. BACKGROUND 

In this section we first provide a brief summary of work related to coverage inspection planning, 
then discuss the theoretical background of the particle swarm optimization (PSO) as well as 
challenges applying it to robotic path optimization. 

2.1 Coverage Inspection Planning 

For purposes of structural inspection, current CPP methods can be classified as offline model-
based or online sensor-based depending on whether the environment is given as prior information. 
Assuming the 3D geometry of the scene is known, model-based CPP uses geometrical information 
to design the optimal trajectory that covers the regions of interest within the scene for complete 
surface inspection. The sensor-based CPP, on the other hand, only relies on onboard sensors to 
explore the environment and greedily cover the scene based on an incrementally built map 
(Almadhoun, Taha, Seneviratne, Dias, & Cai, 2016). Because 3D geometries of civil structures are 
often known in advance (e.g. BIM, 3D CAD) we only focus on these in this paper.  

In 2D planar workspaces, the majority of CPP methods utilize cell decomposition, such as the 
cellular decomposition (Acar, Choset, Rizzi, Atkar, & Hull, 2002; Choset & Pignon, 1998), or the 
grid-based method (Gonzalez, Alvarez, Diaz, Parra, & Bustacara, 2005; Zelinsky, Jarvis, Byrne, 
& Yuta, 1993) to formulate the free motion spaces. Then, chosen path such as the naïve zigzag 
path, the heuristic topological-based path (Lin & Goodrich, 2014; Wong & MacDonald, 2003), or 
the randomized approximate path (Danner & Kavraki, 2000)  were executed within the free spaces 
to provide the full sweep of the plane. For 3D workspace coverage, there are a variety of modular 
(i.e., 2.5D) approaches that divide the 3D workspace into many 2D components and solve each 
component with 2D CPP methods. For example, Atkar, Choset, Rizzi, and Acar (2001) combined 
3D topological segmentation with continuous back-and-forth patterns for uniform vehicle parts 
spraying. Cheng, Keller, and Kumar (2008) performed UAV-based urban inspection through a 



spiral trajectory with minimized coverage time and consideration of aerodynamics. Mansouri, 
Kanellakis, Wuthier, Fresk, and Nikolakopoulos (2016) fused a slicing algorithm with the modular 
approach and extended the coverage planning into a multi-agent schema for cooperative, aerial 
coverage inspection. In (Galceran et al., 2015), a 2.5D coverage algorithm was implemented with 
a real-time re-planning ability to enable autonomous underwater vehicle (AUV) bathymetric 
mapping in an uncertain environment. While these approaches have the advantage of fast 
computation and easy implementation, these regular 2D branch-and-bound and state-space based 
methods  become computationally intractable in very large search areas. 

Approximate algorithms were widely employed for 3D coverage problems because of their 
efficiency and the completeness. In Englot and Hover (2012b), a sampling-based CPP method was 
developed for inspecting 3D complex structures. The method asymptotically computed the optimal 
coverage path by iteratively solving two subproblems: (1) a coverage sampling problem (CSP) and 
(2) a multi-goal planning problem (MPP). Combined with SLAM-based navigation and control, 
this method has been used to perform ship hull inspection using a hovering autonomous 
underwater vehicle (HAUV) (Hover et al., 2012). To incorporate the differential constraints into 
the path generation, Papadopoulos, Kurniawati, and Patrikalakis (2013) proposed a random 
inspection tree algorithm (RITA) for non-holonomic robot inspection and planning in cluttered 
environments. Contrary to handling each subproblem individually, the algorithm simultaneously 
deals with the views and paths that guarantee global optimality of the designated paths. Ellefsen, 
Lepikson, and Albiez (2016) enabled the capability to move while sensing for sampling-based 
coverage inspection by simultaneously feeding the views and paths into an evolutionary 
optimization framework. The method also accepts imperfect coverage when the cost of 100% 
covering is sufficiently high. Recently, Bircher, Alexis, Burri, Oettershagen, et al. (2015) provided 
a new coverage path planning algorithm called structural inspection planner (SIP), with a novel 
view sampling strategy for aerial coverage inspection. Unlike other coverage planning methods 
that formulated the view planning into a submodular function, SIP samples the feasible camera 
views within a set of pre-defined search spaces based on the geometry of the model, and iteratively 
resamples these views through optimization. Our method is inspired by the viewpoint sampling 
strategy in SIP, however, our method provides for an additional degree-of-freedom for the onboard 
camera (i.e., gimbal pitch) which more efficiently provides full coverage inspection for complex 
structures. Moreover, the objective of our method is to compute a quality-efficiency co-optimal 
coverage path rather than only minimizing the flight distance as in SIP. Below we use the SIP 
algorithm to compare with and evaluate our co-optimization algorithm. 

2.2 Particle Swarm Optimization  

Particle swarm optimization (PSO) is a population-based stochastic optimization approach within 
the domain of swarm intelligence (Kennedy, 2011). The algorithm was developed by Kennedy and 
Eberhart in 1995, inspired by the social foraging behavior of some animals such as bird flocking 
and fish schooling. Comparing to the classic optimization method that requires a specific data 
structure, PSO is an evolutionary algorithm and can work with a wide range of optimization 
schemes. Compared to other evolutionary algorithms (e.g., genetic algorithm), PSO is fast and 
easy to implement. PSO starts by randomly distributing a certain number of individuals, called 
particles, in a multi-dimensional search space. Each particle in the search space is representative 
of a candidate solution in the problem space where the performance of each particle is evaluated 
by a fitness function. At each iteration, PSO adjusts the particles velocities and positions based on 
the local best position of each particle’s own records and the global best position of the population. 
The update function (Shi & Eberhart, 1998) of the particles’ velocities and positions is: 

 



𝓋𝑖 ← 𝛼𝓋𝑖 + 𝜒𝑖(0, 𝛽) (ℒ𝑖 − 𝓍𝑖) + 𝜒𝑖(0, 𝛽) (𝒢 − 𝓍𝑖), (1) 

𝓍𝑖 ← 𝓍𝑖 + 𝓋𝑖 , (2) 

 
where 𝓍𝑖 is the 𝑖th particle’s position, 𝓋𝑖 is the velocity, ℒ𝑖 is the best position of particle 𝑖, and 𝒢 
is the best position in the population (𝒫). 𝛼 is an inertia weight that controls the search behavior 
of particles in the search space. 𝜒(∙) is a random number generator that preserves the particles’ 
random motion capability to avoid premature convergence (Karatzas & Shreve, 1998). 𝛽 is the 
acceleration coefficient that controls the speed of the particle moves towards the local/global best 
position. Over a number of iterations, particles gradually move towards better positions in the 
search space where the fitness value converges to one optimum, or several optima in the problem 
space. These steps are repeated until the termination condition is met, and the improved function 
results are obtained.  

While there is research employing PSO in UAV inspection path planning (Foo, Knutzon, 
Kalivarapu, Oliver, & Winer, 2009; Phung, Quach, Dinh, & Ha, 2017), the motions of particles 
are confined to the discrete, two-dimensional search space. Computing the optimal coverage path 
directly in the 3D continuous space remains challenging because particles may get “stuck” in local 
optima without enforcing discretization or assuming a particular function shape (e.g., convex). The 
optimization framework proposed in this study overcomes this problem by (1) revising the particle 
update mechanism, and (2) introducing a greedy heuristic to enhance the particles exploration in 
the high dimensional search spaces. We describe this methodology next.  

3. PROPOSED METHODOLOGY 

The objective of our proposed co-optimal coverage path planning (CCPP) method (Figure 1) is to 
generate an aerial inspection path that co-optimizes visual coverage of an arbitrary 3D structure 
and the quality of inspection imagery. We assume the geometrical model of the scene at the region 
of interest (ROI) is given either through scanning (e.g., structure-from-motion), or modeled (e.g., 
building information modeling). The provided model is cleaned and coarsened in a pre-processing 
step to convert the model into a uniformly distributed surface mesh similar to related methods 
(Valette, Chassery, & Prost, 2008).  

First our method finds the feasible paths that provide complete visual coverage of the scene. 
Specifically, for each path, we create a viewpoint configuration space at every mesh surface based 
on the camera and UAV constraints. We then iteratively sample one admissible camera view 
within each space. At last, the sampled views are connected through a shortest path. 

Next, we feed a collection of the sampled paths into a PSO-based optimization framework for 
continuous path optimization. At the core of this method is the development of an objective 
function that integrates the quality and efficiency of a coverage path. We also provide a coefficient 
that allows users to control the optimized path based on the urgency of the task – prioritizing speed 
over quality. A greedy heuristic is embedded in this framework to efficiently increase the 
convergence speed as well as the overall optimization results.  

Once the optimal path is found, the final step is to transfer the calculated path into a flight trajectory. 
In this study, we employ two path refinement steps: 1) using the rapidly exploring random tree 
(RRT) (LaValle, 1998) to avoid obstacles between two adjacent viewpoints, 2) applying the global 
B-spline curve interpolation (De Boor, De Boor, Mathématicien, De Boor, & De Boor, 1978) to 
smooth the path. Generally we have found that we prefer closeness to smoothness in the parameter 
configuration to guarantee that the trajectory reaches every designated viewpoint. The produced 



trajectory can then be safely executed for visual quality-based inspections of arbitrary 3D 
structures by a multicopter UAV. 

 

 

Figure 1 General workflow of the proposed method (detailed steps are presented in the dashed 
table, ∗ denotes the steps that can support parallel computing) 

 

3.1 Feasible Path Generation 

Here we introduce the viewpoint configuration space of each mesh surface, then discuss the 
strategy to find the admissible views and the feasible path. 

3.1.1 Viewpoint Configuration Space 

We pair each mesh surface (i.e., a triangular plane connected with other planes on the surface mesh 
with their common edges and corners) with a camera view that provides complete model coverage. 
The configuration space of each viewpoint is adapted from (Bircher et al., 2016) wherein a 
gimballed camera is used to satisfy remote sensing requirements. Specifically, the configuration 
space is defined by the required distance for acceptable spatial resolution (𝒟𝑟), the camera depth 
of view (DOV), safety concerns (𝒟𝑚𝑖𝑛, 𝒟𝑚𝑎𝑥) , the camera field of view (FOV), inspection 
requirement (𝜂𝑚𝑎𝑥), and the gimbal motions (𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥). Mathematically, we let 𝓆 be the set of 
admissible views that fully cover a triangular mesh model, Ω, and 𝓆𝑖  denotes a viewpoint that 
observes the 𝑖th model surface Ω𝑖 (𝑖 = 1, … , ℳ) where ℳ is the number of mesh surfaces. Thus, 
the configuration space of 𝓆𝑖 is presented as: 

 

𝒹(𝓆𝑖, 𝒸𝑖) ≤ 𝒟𝑟 , 

𝒹̇(𝓆𝑖, Ω𝑖) ∈ [𝒟𝑚𝑖𝑛, 𝒟𝑚𝑎𝑥], 

𝜑(𝓆𝑖, Ω𝑖) ≤
𝜋

2
− 𝜂𝑚𝑎𝑥 , 

(3) 



𝜃(𝓆𝑖, 𝒸𝑖) ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥], 
 

 

where 𝒹(∙) denotes the Euclidean distance between two points, 𝒹̇(∙) is the orthogonal distance 
from a point to a surface, and 𝒸 is the centroid of a triangular surface. 𝜑(∙) measures the incidence 
angle between the camera and the surface plane. The viewpoint orientation is computed as a ray 
casting from the camera principle point to the centroid of the triangular plane. This setup is 
intuitive for visual inspection applications where the target of inspection is often located at the 
center of the image. In addition, because the surfaces are uniformly distributed, our method 
encourages the model to be evenly inspected, thereby avoiding some points being over-observed 
and others being missed. These constraints formulate the viewpoint configuration space at each 
mesh surface (as shown in Fig. 2 (a)). 

The viewpoint orientation is also restricted by the rotation range of the onboard gimbal system. 
Most existing aerial surveillance systems (Cheng et al., 2008; Geng et al., 2014) limit gimbal yaw, 
and therefore we likewise assume gimbal yaw between [−𝜋, 𝜋] and use the cone-shape camera 
model to simulate the camera FOV. Because this camera model is invariant to camera roll motions 
we lock the gimbal roll movement to 0 for computational simplicity, removing one degree-of-
freedom without impacting flexibility. As a result, the camera orientations are only restricted by 
the gimbal pitch motions (as shown in Fig. 2 (b)).  

    

 

Figure 2 (a) 2D view of the configuration space (shaded region); (b) The camera ray and the 
gimbal pitch limits 

 

3.1.2 Views and Path Generation 

After the configuration spaces are determined, quasi-random sampling is employed to sample the 
admissible views at each surface. OBBTree (Gottschalk, Lin, & Manocha, 1996) is utilized at each 
sampled view to detect collisions and to perform the visibility test  by casting a ray from the view 
to the surface centroid. The sampled views are then connected via a shortest path. In this study, we 
employ the LKH-TSP (Helsgaun, 2000) as the shortest path solver for the feasible path generation. 
Compared to other symmetric TSP solvers, LKH employs the k-opt heuristic that finds the shortest 
path by incrementally swapping the k (e.g. 2 or 3) pairs of sub-tours in the path. This strategy 



showed good trade-off between accuracy and efficiency for finding shortest paths. Such efficiency 
allows us to iteratively compute the shortest path, making our method computationally tractable 
even for large-scale scenes.  

3.2 Cost Evaluation 

We now introduce our objective function that evaluates feasible paths and guides path optimization. 
First we define the score for each viewpoint, then integrate it over the views to calculate the cost 
of the path. We define the score of each view as the weighted sum of two objectives: the inspection 
quality and the inspection efficiency. We utilize the weighted sum because the goal of this study is 
to efficiently design a single executable coverage path (i.e., a prior articulation of preference) 
rather than yielding a complete Pareto optimal set of a multi-objective problem (MOP) (i.e., a 
posterior articulation of preference). Eq. 4 and 5 present the proposed cost function of a path and 
each view within the path: 

 

ℱ =
∑ ℱ𝑖

ℳ
𝑖=1

ℳ
, 

(4) 

 

ℱ𝑖 = (1 − ε)𝒬𝑖 + ε𝛦𝑖 , 
 

(5) 
 

where ℱ𝑖  is the score of the 𝑖 th camera view and ℱ  is the cost of a coverage path. 𝒬  and 𝛦 
respectively represents the metrics utilized for measuring the inspection quality and the inspection 
efficiency contributed by each designated view. ε  (ε ∈ [0,1])  is a user selected input weight 
coefficient that trades quality for efficiency to speed up performance. In order for the weight to 
reflect the prior articulation of preference more accurately, function transformation is performed 
before the weighted summation so that either objective does not naturally dominate the other. We 
now discuss the details of each objective. 

3.2.1 Inspection Quality 

For image-based aerial inspection, images taken with an onboard camera at some locations are 
more informative than the others due to lighting, glare, white balance, incidence angle, etc. (Ham, 
Han, Lin, & Golparvar-Fard, 2016). Only one camera view is allowed for each surface plane so it 
is imperative to identify which viewpoint provides the most information. We develop a confidence 
measure, inspired by (Shen, Zhang, & Fels, 2007), to measure the view quality based on two terms: 
(1) the view-to-surface distortion and (2) the view-to-surface resolution.  

View-to-surface distortion denotes the level of distorted effects of the captured images. We use 
the view angle between the ray shooting from camera center and the norm at the triangular planar 
centroid to demonstrate the distortion (as shown in Fig. 4 (a)). The closer the view angle is to the 
norm, the less distortion is capture in the image. As a result, we measure the view-to-surface 
distortion as 𝜂/𝜂𝑚𝑎𝑥  where 𝜂  is the computed observation angle, and 𝜂𝑚𝑎𝑥  is the maximal 
acceptable observation angle. 



   

Figure 3 (a) View-to-surface distortion at viewpoint 𝓆𝑖: measured as the ratio between 𝜂 and 
𝜂𝑚𝑎𝑥; (b) Viewpoint distance at viewpoint 𝓆𝑖: measured as the normalized difference between 

the radius (𝑟) of the projected viewpoint (𝓆̂𝑖) and the longest medium ℓ𝑖∙𝑚𝑎𝑥 at surface plane Ω𝑖. 
 

View-to-surface resolution defines how clearly the camera sees the features on the target surface. 
Images captured too far from the object have insufficient spatial resolution, while images captured 
too close may not cover the entire surface plane and fail to guarantee the complete coverage. This 
is handled by finding the optimal camera position where the projected image best fits the surface 
plane. As shown in Fig. 4 (b), the optimal view-to-surface resolution is identified when the radius 
of the projected cone-shape camera model approaches the longest medium (i.e., the longest 
distance from the centroid to the triangle corner) of the triangular surface. In this model, the longest 
medium is chosen so that a larger penalty is given to viewpoints that do not fully cover the plane.  

Based on the above definitions, we formulate inspection quality of each camera in Eq. 6 below: 

 

𝒬𝑖 = 𝑠𝑖 ∩ 𝛿 (
𝜂𝑖

𝜂𝑚𝑎𝑥
, 1 − |

𝓇𝑖 − ℓ𝑖∙𝑚𝑎𝑥

𝓇𝑚𝑎𝑥 − ℓ𝑖∙𝑚𝑎𝑥
|), 

(6) 

 

where ℓ𝑖∙𝑚𝑎𝑥 is the medium with the maximum distance at Ω𝑖, 𝓇𝑖 is radius of the projected image 
plane at the transformed camera view, 𝓆̂𝑖 , from 𝓆𝑖 , and 𝑟𝑚𝑎𝑥  is the maximal projected radius 
defined by the camera’s intrinsic parameter and the upper bound of the search space (Eq. 3). 𝑠𝑖 is 
a binary term that measures if Ω𝑖 is fully visible from 𝓆𝑖, and 𝛿(∙) fuses the two terms. In this 
study, we use the mean as the default function for the integration. 

3.2.2 Inspection Efficiency 

Inspection efficiency measures the traveling cost of the designated path. For a coverage path, the 
distance of the entire path is equal to the sum of the distance at each view segment. Thus, we 
compute the path efficiency at view 𝓆𝑖  as the average of the connecting distance from the 
preceding view to the current view and from the current view to the successive view: 

 

𝑒𝑖 = 𝒞 ∙
𝒹(𝓆𝑖−1,  𝓆𝑖) + 𝒹(𝓆𝑖,  𝓆𝑖+1)

2
, 

(7) 

 



where 𝒞 is a scaling vector. By assigning different values to 𝒞, 𝑒 can be used to measure other 
inflight costs such as energy consumption, time-of-travel, risk level, etc. Note that 𝑒𝑖  is an 
unbounded distance function that has to be normalized in order to be aggregated with the 
normalized quality metric. Thus, we provide the function-transformation that rescales the distance 
function 𝑒 and generates the proposed efficiency metric (as shown in Eq. 8): 

 

𝐸𝑖 =
𝑒𝑖 − 𝛾𝑒𝑖

∗

(1 − 𝛾)𝑒𝑖
∗
, 

(8) 

 

where 𝑒𝑖
∗ is the base distance at view 𝓆𝑖. We use the distance computed at the initial iteration (i.e., 

random sampling) to produce the base cost of each view segment. γ is a reduction factor that 
measures the magnitude of distance reduction. Based on the empirical analysis, γ in most cases is 
within the range of [0.2, 0.4]. In the following studies, we let γ = 0.2 for all test cases. 

3.3 Path Optimization 

After feasible paths are generated and the path evaluation method is provided, the next step is to 
optimize the paths. To inspire our design, imagine there exists one optimal path, where each 
camera pose along the path is admissible within the viewpoint configuration space. If we know the 
camera pose at each configuration space, we can find the corresponding path. Thus, we can convert 
the problem of finding the optimal path to compute the optimal camera poses. Because the camera 
configuration spaces are known (Section 3.1), we can sample a set of admissible camera views to 
explore the search space, and greedily compute the best camera pose within each space using PSO 
(Trelea, 2003). However, those camera views may not lead to the optimal path because the path is 
also determined by the spatial relationship between the camera poses. Our PSO-based optimization 
framework overcomes this limitation by both optimizing the camera views and the path. In the 
following paragraphs, we discuss the proposed optimization framework in detail. 

We start by defining each particle 𝓅 as a feasible coverage path (as presented in Eq. 9) which is 
composed of a set of admissible views and a shortest path index: 

 

𝓅 = {𝓆𝑖 , 𝜏| 𝑖 = 1,2,3, … , ℳ}, (9) 
 

where 𝜏 is the shortest path of the view set 𝓆. We repeat the sampling-based strategy to compute 
a population of particles. Theoretically, the shortest path should be computed for each particle. 
However, assuming the particles, which are guided by the cost function, would gradually converge 
to the optimal path, the TSP results would also converge. Thus, we could just compute a TSP for 
one particle at each iteration. To avoid the TSP getting trapped by a ‘bad’ particle, we randomly 
select the particle at each iteration. The computed TSP result is then utilized to evaluate all particles 
in the population: 

 

𝒫 = {𝓅𝑗 , 𝜏𝜌| 𝑗 = 1,2,3, … , 𝒩}, (10) 

 

where 𝒫 is a population of particles, 𝜏𝜌 is the shortest path index of the randomly selected seed 

with 𝜌 = 𝑟𝑎𝑛𝑑(1, 𝒩) . The strategy significantly reduces the processing workload as the 



computational complexity of the proposed method is dominated by the TSP (detailed in Section 
4.4.3).  

 

We now revise the existing PSO update mechanism (as in Eq. 1 and Eq. 2) so that it can handle a 
list of camera views (shown in Eq. 11 and Eq. 12): 

 

𝓋𝑖𝑘 ← 𝛼𝓋𝑖𝑘 + 𝜒𝑖𝑘(0, 𝛽) (ℒ𝑖𝑘 − 𝓆𝑖𝑘) + 𝜒𝑖𝑘(0, 𝛽) (𝒢 − 𝓆𝑖𝑘) (11) 

𝓆𝑖 ← 𝑝𝑜𝑠𝑒(𝓆𝑖 , 𝓋𝑖),   (12) 

 

where 𝑘 = 1,2,3 denotes the translations (i.e., 𝑥, 𝑦, 𝑧) of each view in the world coordinate, and 
the 𝑝𝑜𝑠𝑒(∙) computes the new 6d pose (i.e., roll, pitch, yaw) based on the existing viewpoint 
position and the updated velocity. Note that each newly updated viewpoint pose must still stay 
within the configuration space to guarantee its validity. Views outside of the feasible spaces are 
rejected. For particles representing rejected views, we re-compute the update function such that a 
fresh view is generated. However, this method become ineffective as the optimization converges 
where the camera search spaces become small. To overcome this problem, a decaying function is 
developed to support the adaptive viewpoints update: 

 

𝓋𝑖 ← (𝜀𝜇)𝓋𝑖, (13) 

 

where 𝜀  is the decay coefficient, and 𝜇  is the number of attempts to update each view. We 
empirically set 𝜀 equals to 0.5 and let 𝜇 ≤ 6 to limit the number of attempts. Compared to linear 
decay, this exponential function takes fewer attempts and performs better by continuously 
exploiting the search spaces. 

 

3.4 Greedy Heuristic 

As presented in Eq. 1, each particle is updated through its own best record so far and the global 
best record in the population. This mechanism assumes the particles are sufficient to visit the entire 
search space, and the true optimal solution can be visited by at least one particle through iterations 
(Trelea, 2003). However, in the proposed framework, each particle denotes a coverage path that 
encapsulates a set of 6d camera poses with the motion of each camera restricted in specific 3d 
configuration spaces. The current PSO update mechanism is insufficient to explore those search 
spaces thoroughly, resulting in premature convergence. We seek a method to overcome this 
limitation. 

Inspired by the crossover technique in the evolutionary algorithm, we introduce an effective and 
efficient greedy heuristic to avoid particles getting trapped in local optima. The basic idea is that 
we can enhance the particles exploration capability by recursively updating the global best particle 
with the suboptimal views. The pseudocode of the proposed heuristic is presented in Algorithm 1. 
Specifically, for each mesh surface Ω𝑖, we find the camera view that has the minimal cost 𝓆̃𝑖 in 
the population, and store the poses of the connected views 〈𝓆𝑖−1, 𝓆𝑖+1〉 . Then, we re-compute the 



new costs of the view that links the stored connecting views, select the view 𝓆̃𝑖
′
 with the minimum 

cost and utilize it to update the views in the global best particle. We iterate this two-step process 
through all mesh surfaces to update the global best particle 𝒢. The updated 𝒢 is then utilized to 
support the new particle generation in the next iteration. Fig. 4 shows a graphic illustration of the 
proposed heuristic  

Algorithm 1 Pseudocode of the greedy heuristic 

Require: 𝒫 

Ensure: 𝒢 ≠ ∅ 

1: for 𝑖 = 1 to ℳ do: 

2:     find 𝓆̃𝑖 = argmin
𝑗

ℱ𝑖 

3:     store 〈𝓆𝑖−1, 𝓆𝑖+1〉 that connects 𝓆̃𝑖 

4:     compute the new cost at 𝑖 using 〈𝓆𝑖−1, 𝓆𝑖+1〉 as ℱ𝑖
′ 

5:     find 𝓆̃𝑖
′ = argmin

𝑗
ℱ𝑖

′ 

6:     if 𝓆̃𝑖
′ < 𝓆̃𝑖 do 

7:         𝒢(𝑖) = 𝓆̃𝑖
′
 

8:     end if 

9: end for 

 

Compared to exhaustive searching (i.e., iteratively finding the minimal cost view at each index) 
requiring 𝒪(ℳ𝒩3)  complexity to compute the best view combinations through the entire 
population, the proposed greedy heuristic is a two-step linear search, which only takes 𝒪(ℳ𝒩), 
making the optimization tractable even for large-scale scenes. 

  

Figure 4 An example of the proposed greedy heuristic: (a) Before the update mechanism, the 
global best particle 𝒢 (blue solid line) is selected from the whole population and is stuck in the 



local optima (dashed line); (b-d) iteratively updates 𝒢 by updating the camera view through the 
two-step greedy heuristic; (d) The resulting 𝒢 is much closer to the true optimal solution 

compared to the 𝒢 chosen from the population. 

4. SIMULATION AND EVALUATION 

4.1 Experimental Setup 

We test the proposed CCPP against the state-of-art SIP (Bircher, Alexis, Burri, Oettershagen, et 
al., 2015) on three different target geometries: (1) a 2D-planar scene: the solarPlant, (2) a simple, 
small-scale 3D object: the hoaHakanaia status, and (3) a geometrically complicated, large-scale 
3D target: the church. The first two models are downloaded from the SIP open-source dataset 
(Bircher, Alexis, Burri, Kamel, et al., 2015) without post-processing. The third model is 
reconstructed through a set of aerial images we crop to the interested structure (i.e., church) and 
downsample the model to contain 200 triangles based on the required level of details (LoD) for 
aerial inspection. These three geometric models were chosen to evaluate the method on objects 
with different geometries. For UAV safety, we set the minimal height for all three models as 3 
meters above ground. Table 1 shows the graphic and parameters of the selected models. 

Table 1 Selected test models and the parameters 
 

 

Model 

 

 
  

Name solarPlant hoaHakanaia church 

Triangular Planes 278 225 200 

Dimensions 86.7 × 56.3 × 2.4 8.4 × 5.2 × 19.5 63.7 × 62.4 × 19.4 

Geometry 2D planar 3D small 3D large 

 

Due to the different constraints used in designing the camera search spaces (i.e., camera direction 
and gimbal control), the optimal solution of these two methods (i.e., SIP and CCPP) may require 
distinct search spaces. There is a need to provide the uniform configuration spaces so that both 
methods can provide the optimal solution. Thus, we use the default parameters as in (Bircher, 
Alexis, Burri, Kamel, et al., 2015) but amplify the safe distance and minimal observation angle 
such that both methods have sufficient space for the optimal path generation. The details of 
parameters used in the comparison study are presented in Table 2~4. 

Table 2 Parameters for the generation of the configuration space of solarPlant (distance unit in 
meters) 

Method [𝒟𝑚𝑖𝑛, 𝒟𝑚𝑎𝑥] 𝜂𝑚𝑎𝑥 FOV 𝒟𝑟   [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] 

SIP 
[5, 10] 60° [120°, 90°] 

\ −25° 

CCPP 15 [−90°, 30°] 

 



Table 3 Parameters for the generation of the configuration space of hoaHakanaia (distance unit 
in meters) 

Method [𝒟𝑚𝑖𝑛, 𝒟𝑚𝑎𝑥] 𝜂𝑚𝑎𝑥 FOV 𝒟𝑟   [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] 

SIP 
[4, 12] 65° [108°, 92°] 

\ −25° 

CCPP 20 [−90°, 30°] 

 
Table 4 Parameters for the generation of the configuration space of church (distance unit in 
meters) 

Method [𝒟𝑚𝑖𝑛, 𝒟𝑚𝑎𝑥] 𝜂𝑚𝑎𝑥 FOV 𝒟𝑟 [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] 

SIP 
[6, 35] 70° [108°, 92°] 

\ −25° 

CCPP 35 [−90°, 30°] 

 

4.2 Evaluation Methodology 

To have a comprehensive evaluation of the proposed method, we individually compare the 
efficiency and the quality of the generated paths. For the efficiency evaluation, we use the 
Euclidean distance as the primary indicator to compute the efficiency of the designated paths (i.e., 
𝒞 is the unit vector). Because SIP doesn’t employ the motion dynamics for multicopter UAVs we 
bypass the flight controller implementation and assume perfect motion by the UAV in the 
comparison study. 

For the quality evaluation, our goal is to evaluate how good the designated cameras observe the 
models. We first evaluate the quality of the designed views observed at each point (𝓀) on the 
model surface, then compute the mean quality over all surface points (𝒦) to evaluate the camera 
set. We employ the anisotropic model developed in (Wang, Qi, Shi, & Wang, 2013) that jointly 
consider the occlusion, focus, resolution and geometrical distortion aspects as the strategy for our 
quality evaluation. However, this model is sensitive to camera intrinsic and extrinsic parameters 
which is not effective at evaluating the inspection quality when different camera models or 
inspecting criteria is utilized. Thus, we revise this model to represent our proposed scenarios more 
closely. Specifically, we convert each measurement into the normalized forms before the product 
summation. As shown in Eq. 14, the quality 𝒽 of a coverage path 𝓆 is the average quality of all 
surface points contributed by each camera in the path. Unlike (Wang et al., 2013) that recommends 
computing the quality of each surface point as the sum of all visible cameras, our metric only 
selects the single best camera from the path because coverage inspection prefers a single best view 
instead of a set of mediocre views. The metrics are: 

𝒽(𝓆) =
1

𝒦
∑ max

𝒾
[𝓌𝑜(𝓆𝒾, 𝓀)𝓌𝑟(𝓆𝒾, 𝓀)𝓌𝑔(𝓆𝒾, 𝓀)]

𝓀∈𝒦
 (14) 

𝓌𝑜(𝓆𝒾, 𝓀) = {
1,        𝑖𝑓 𝑣𝑖𝑠𝑖𝑏𝑙𝑒   
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝓌𝑟(𝓆𝒾, 𝓀) = exp (−
1

𝜎𝑟
∙ (

𝒹̇(𝓆𝒾, 𝓀) − 𝜌

𝒟𝑚𝑎𝑥
)

2

) 

 



𝓌𝑔(𝓆𝒾, 𝓀) = exp (−
1

𝜎𝑔
∙ (

𝜂(𝓆𝒾, 𝓀)

𝜂𝑚𝑎𝑥
)

3

), 

 

where 𝓀 is a sampled point on the model surface, 𝓌𝑜(∙), 𝓌𝑟(∙), 𝓌𝑔(∙) are the revised occlusion, 

resolution and distortion component. Specifically, 𝓌𝑜(𝓅𝒾, 𝓀) measures the visibility of a surface 
point 𝓀 from a camera 𝓅𝒾. 𝓌𝑜 = 1  when 𝓀 is within the camera frustum and there is no occlusion. 
𝓌𝑟(𝓅𝒾, 𝓀) is determined by the normalized orthogonal distance between the camera and the point, 
and 𝓌𝑔(𝓅𝒾, 𝓀) indicates the normalized observation angle. 𝜎𝑟 and 𝜎𝑔 are the decay coefficients 

for the effects of resolution and distortion. We empirically set 𝜎𝑟 = 0.15 and 𝜎𝑔 = 0.2 through all 

the experiments in this study.  

Because the surface model is uniformly distributed we provide the uniform sampling at each 
surface plane to achieve the model surface sampling. For each camera view, a camera frustum is 
created to simulate the ‘snapshot’ at each designated view. The width and length of the frustum is 
defined based on the camera FOV. We set the far plane of the frustum as 𝒟𝑟, and the near plane 
as a small number 𝜌 (𝜌 ≈ 0.1). Fig. 5 is a visualization of the observation quality of the church 
model contributed by a single camera view. The color bar illustrates the quality of each surface 
point. Based on the evaluation strategy, the quality of inspection of each coverage path can be 
assessed both quantitatively (through the metric) and qualitatively (through the color-coded model). 

 

 

Figure 5 Visualization of the quality of each sampled point on the model when a single camera 
exists. The color bar colorizes the value of 𝒽 at each point. When 𝒽 is close to 1, the points 

become white; while when 𝒽 is close to 0, the points become black. Surface points not visible by 
the camera are gray. 

4.3 Results 

The comparison results for the three test scenes are shown in Figs. 6 to 8. The left column of the 
figures shows the designated views and paths using the SIP (Figs. 6.a, 7.a, and 8.a) and the 
proposed CCPP (Figs. 6.b-f, 7.b-f, and 8.b-f) under different 𝜀 (i.e., the user selected tradeoff 



parameter), while the right column shows the color-coded quality inspection results. For all the 
three cases, we observe that while SIP still provides the shortest distance, it also produces the worst 
inspection quality results compared to the CCPP under all conditions. This result shows that CCPP 
is able to provide a baseline quality for coverage inspection with a small sacrifice in efficiency. 
From the color-coded point cloud model, we observe that the boundary of the inspection geometry 
(i.e., boundary of solarPlant, bottom of hoaHakanaia and church), and the geometric concavities 
regions (i.e., middle of hoaHakanaia and inner corners of church) are easily missed by the SIP. 
With high 𝜀 favoring efficiency over quality, CCPP still shows significant quality improvement at 
each region, although they are more weakly observed due to the choice of 𝜀 (Figs. 6.b, 7.b, and 
8.b). As 𝜀 decreases, the inspection parameters are more heavily weighted in the optimization 
resulting in an increase in observation quality (Figs. 6.e, 7.e, and 8.e). When 𝜀 = 0 (Figs. 6.f, 7.f, 
and 8.f), only inspection quality is considered in the optimization and the cameras are converged 
at the orthogonal direction at each surface plane maximizing the quality of the inspection. We 
observe that compared to the solarPlant and the hoaHakanaia model where the inspection quality 
is ~1.0 (orthogonal view and closed distance), the observation quality of the church can only reach 
0.89. We believe this is caused by the geometrical complexity of the model and the required safety 
constraints.  

 



 

Figure 6 Comparing paths (ℯ) and qualities (𝒽) of solarPlant: (a): SIP; (b)-(f): CCPP with 
decreasing 𝜀 

 



 

Figure 7 Comparing paths (ℯ) and qualities (𝒽) of hoaHakanaia: (a): SIP; (b)-(f): CCPP with 
decreasing 𝜀 

 



 

Figure 8 Comparing paths (ℯ) and qualities (𝒽) of the church model: (a): SIP; (b)-(f): CCPP 
with decreasing 𝜀 

  

We further explore the relationship between the inspection quality and efficiency with varying 
user input parameter, 𝜀,  by performing multiple task runs. As shown in Fig. 9, the quality and the 
efficiency of CCPP decrease/increase as 𝜀 increases. We use the rescaled SIP dashed lines as both 
the lower quality bound and the upper efficiency bound for illustration purposes. We observe that 
the efficiency and quality are not linearly reflected by the changes in 𝜀  and present different 
patterns with different target geometries. This may be caused by the fact that the weighted sum is 
a only linear approximation of the multi-objective problem, and each user-defined weight is an 



approximated preference of the relative magnitude of each objective function, not the function 
value (Marler & Arora, 2010). Finding optimal weights will be an important part of future work 
as we seek to fully automate the path planning process. 

 

 

Figure 9 Efficiency vs. quality evaluation under different values of 𝜀  (a): solarPlant; (b) 
hoaHakanaia; (c) church. 

 

Finally, we convert the co-optimal paths into flight trajectories by imposing a path refinement 
algorithm. Figure 10 shows the computed quality-efficiency balanced trajectory (𝜀 = 0.5) of the 
three test scenes in the virtual environment. This trajectory can be tightly followed by a multicopter 
UAV with an appropriate autopilot control system (Mellinger, Michael, & Kumar, 2012). 

 

 

Figure 10 Optimal flight trajectory (blue) of the three scenes: (a) solarPlant, (b) hoaHakanaia, (c) 
church. The designed viewpoints are shown as large dots (in green) and the interpolated 

waypoints of the smoothed path are shown as the small dots (in green). The red dots denote the 
take-off and landing positions of the UAV. 

4.4 Evaluation 



In this section, a thorough evaluation of the proposed method is provided. First, we evaluate the 
convergence of the optimization framework for the three test cases and analyze the effects of the 
PSO parameters as well as the greedy heuristic on the optimization results. Second, we study the 
effects of the gimbal parameters on the optimization results. Finally, the runtime efficiency of the 
proposed method is discussed.   

4.4.1 Optimization Performance 

Table 5 presents the comparison of the optimization performance between the two methods. To 
make both methods comparable, we first set 𝜀 = 1.0 in the CCPP such that the distance is the only 
objective of optimization and does not consider inspection quality at all. We observe that due to 
the different camera search space, our method imposes longer distance at both the initial and last 
iteration compared to the SIP. We use the convergence rate (i.e., optimized distance divided by the 
initial distance) as the indicator to measure the optimization performance that minimizes such 
effect. The results showed that while SIP slightly outperforms the CCPP all three cases, the rates 
of convergence are comparable, especially for the solarPlant and the church cases, which validates 
the effectiveness of the proposed optimization framework.  

Table 5 Comparison of the optimization performance in distance between SIP and CCPP 
 Initial Distance Optimized Distance Convergence Rate 

Model SIP CCPP SIP CCPP SIP CCPP 

solarPlant 1031.77 1108.42 447.01 484.70 0.43 0.44 

hoaHakanaia 482.06 706.49 227.02 376.97 0.47 0.53 

church 1190.54 1780.46 423.84 641.32 0.36 0.36 

 

In Fig. 11, we evaluate the effects of the proposed greedy heuristic on all the three test cases. The 
result verifies our assumption that the particles are easily trapped in local optima without the 
proposed heuristic. In Fig. 12, we further assess the performance of the CCPP under different PSO 
population size and iteration numbers. The results show that both population size and iteration 
number provide positive effects on the optimization results, though their effects vary depending 
on the geometry being inspected. Generally, we obtain strong results with a population size and 
iteration number both set at 30.  



 

 

Figure 11 Comparison of the optimizations with and without using the greedy heuristic: (a) 
solarPlant; (b) hoaHakanaia; (c) church 

 

 

Figure 12 Comparison of the optimizations under varying PSO population size and iteration 
numbers: (a) solarPlant; (b) hoaHakanaia; (c) church 

 

4.4.2 Effects of Gimbal Parameter 

We now evaluate the effects of gimbal pitch angles on the optimization results. For the three test 
cases, Figs. 13 to15 respectively, show the histograms of the gimbal pitch angles extracted from 
the optimal paths and the histogram of the transformed surface normal at the geometrical models. 
The results illustrate that the pitch rotation angles vary significantly based on the model geometry. 
For example, solarPlant is a planar target tilted at approximate 45 degrees above the ground, thus 
all the cameras in the optimal paths are pointed downwards to the scene (between [−60, −30]). 
The hoaHakanaia statue, on the other hand, is a cylinder structure so most of the views are 
formulated in a horizontal direction (between [−30, 30]). The church model is geometrically more 
complicated as it contains both horizontal (e.g., flat roofs), vertical (e.g., walls) and oblique 
surfaces (e.g., gable roofs), and therefore a wider range of pitch rotations is required for full surface 
coverage (between [−90, 5]). Such observations show the importance of incorporating the gimbal 
rotation as another degree of freedom in order to improve the aerial inspection quality. Comparing 
the results under different values of 𝜀, we also observed that the pitch angles of the optimal path 
gradually converged to the surface normal of the model geometry when 𝜀 decreases. We note that 
other than the solarPlant, the quality-optimal histograms of the hoaHakanaia and the church do not 
exactly fit the histogram of the model surface. This is caused by the camera poses being restricted 
by other parameters that formulated the viewpoint configuration space. While this could 



potentially be a limiting factor our results validate the overall methodology of our algorithm and 
the importance of considering quality. We project that future work incorporating the additional 
freedom of rotation in the gimbal could overcome the few limitations we encountered. 

 

 

Figure 13 Histograms of gimbal pitch angles (in degrees) of the optimal path under different 
values of 𝜀 and the transformed model surfaces normal of solarPlant 



 

Figure 14 Histograms of gimbal pitch angles (in degrees) of the optimal path under different values 
of 𝜀 and the transformed model surfaces normal of hoaHakanaia 

 

Figure 15 Histograms of gimbal pitch angles (in degrees) of the optimal path under different values 
of 𝜀 and the model surfaces normal of church 
 

4.4.3 Runtime Efficiency 

Finally, we approximate the computational efficiency of the proposed method by evaluating 
runtime of our algorithm on the three test scenes. The method is implemented with python 3.7 and 
the parallel computing is enabled in the OpenMP style (Chapman, Jost, & Van Der Pas, 2008). We 
performed the experiments on a PC workstation with the Intel CPU E5-2630, 64GB (DDR4 2133 



MHZ) memory, running Ubuntu Linux 18.04. Although computational runtime is highly 
dependent on operating system, software implementation, computer hardware architectures, and 
many other sources of uncertainty, we hope this gives a sense of how our algorithm could perform. 
Table 6 shows the average of the total computational duration (in minutes) as well as the detailed 
time spent at each step (in seconds) in one iteration. For this test we disabled the path refinement 
step as the computation is performed only when needed. For all test cases, the computations take 
no more than 6 minutes demonstrating that our algorithm is easily computed offline, while onboard 
(the UAV) computation is likely currently infeasible. This is likely an acceptable tradeoff since 
detailed paths in UAV planning are often computed offline, prior to launch, relying on efficient 
trajectory generation algorithms to translate high-level paths into controller-followable commands 
(Hoffmann, Waslander, & Tomlin, 2008). The table also illustrates that the geometrically 
complicated models (i.e., church) may take longer to find admissible views, while the total 
duration of computation is mostly affected by effort to find the shortest path which is highly 
correlated to the size of the inspection target (i.e. ℳ).  

Table 6 Computational duration of the three test cases 

Model 
View 

sampling 
(s) 

At each iteration (s) 
Total 
(min) Cost 

evaluation 
Shortest 

path 
Greedy 

heuristic 
Particles 
update 

solarPlant 7.36 0.43 9.55 0.11 2.98 5.35 

hoaHakanaia 9.28 0.40 5.41 0.09 2.12 4.32 

church 11.22 0.34 4.62 0.08 1.66 2.48 

 

Lastly, we provide a more detailed evaluation on the relationship between the computational 
duration and the model size, as well as the effects of a potential parallel computing implementation. 
We resample the church model to contain an arbitrary, user-defined number of triangular surfaces. 
Fig. 16 shows the optimization time of the church model with model sizes (ℳ) varying from 100 
to 800 under three conditions: optimization with sequential computing, optimization with parallel 
computing and solving a pure TSP using the shortest path solver. The results show that for all the 
tests, the computation takes less than 10 minutes when the model size is less than 400, while it 
goes up dramatically with model sizes larger than 500. For all the steps in the optimization, the 
TSP (shown in red) consumes the majority of computing resources compared to other steps, and 
increases significantly with increased model size. Although these results are highly dependent on 
the specs of the executing computer and the software implementation, they provide insight into 
what parts of the algorithm should be focused on for speed up. Compared to the sequential 
computing (in green), the parallel computing (in blue) can reduce the total computational time, 
especially when model sizes increase. However, the increased efficiency is minor as the TSP solver 
𝒪(ℳ2.2) runtime grows exponentially with model size compared to other steps 𝒪(ℳ) in the 
proposed method. This increased computation can be potentially mitigated by reducing the number 
of times needed to compute the shortest paths in the optimization, or incorporating multi-agent 
UAV inspection scenarios, which could be considered in the future works. 



 

 

Figure 16 The relationship between the computation duration and the size (ℳ) of the church 
model with sequential (one thread) and parallel computing (12 threads) 

5. CONCLUSIONS 

In this study, we have proposed a new and efficient flight path planning method for camera-based 
aerial inspections of complex 3D structures. The method poses the coverage path planning into a 
particle swarm optimization (PSO) based framework that has the capability to co-optimize 
inspection efficiency and quality while still considering traditional vehicle constraints in path 
planning of UAVs. A benchmark method, composed of a quality evaluation metric and a simulated 
pin-hole camera model, is proposed to assess the inspection performance of the designed paths. 
The proposed method is assessed by comparing inspection paths against state-of-the-art CPP 
algorithms in three geometrically different scenes. The results show that our method provides 
greatly improved inspection quality, comparable path efficiency, and more flexible options 
compared to algorithms that only consider path length. To further investigate the method’s 
performance, the optimization convergence, the effects of the gimbal system, as well as the runtime 
efficiency of the proposed method are thoroughly evaluated. 

Future work should include the extension of the method to aerial photogrammetry applications. 
Because complexity grows exponentially with problem size, further work toward parallelizing the 
algorithm could increase the algorithm’s efficiency, ideally leading to online computation on size-
weight, and power (SWaP) constrained vehicles that increasingly leverage GPUs to perform 
onboard machine learning. The primary benefit of our algorithm is the flexibility it allows in 
designing functions that co-optimize performance. Work incorporating  UAV energy consumption, 
predicted wind, and efficiency of required flight maneuvers into the strategy would likely yield 
even better results.  
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