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Swarm intelligence technology is a high and new technology combining unmanned
system technology, network information technology and artificial intelligence technology,
which has become a research hotspot. The characteristics of high-speed and high dynamic
flight, large airspace flight environment and multi-field coupling battlefields under strong con-
frontation bring great challenges to the cooperative operation of high-speed vehicle swarms.

Due to the high speed and high dynamic flight characteristics, as well as the large
airspace flight environment, the fluid–thermal–structural coupling effect makes it difficult
for the traditional UAV swarm technology to be directly applied to the high-speed aircraft
swarm system, which brings great challenges to its decision making and planning. There-
fore, it is urgent to study new theories and methods for the cooperative decision making
and mission planning of high-speed aircraft swarm systems.

This Special Issue, “Intelligent autonomous decision-making and cooperative control
technology of high-speed vehicle swarms”, has been launched to provide an opportunity
for researchers in the area of collaborative decision-making and mission-planning technol-
ogy for high-speed aircraft swarms to highlight recent developments made in their fields.
Eight excellent papers that cover a wide variety of characteristic analysis and parameter
optimization method for hypersonic vehicle/fully distributed control/multi-constraints
cooperative guidance method/formation control technology aspects were selected for pub-
lication in this Special Issue [1–7]. These eights papers have been summarized as follows:

• Li et al. [1] proposes a parameter-optimization method for air-breathing hypersonic
vehicle. Their method uses a neural network to model the relationship between
the aircraft parameters and optimal cruise point and can provide good guidance for
the adjustment of aircraft parameters.

• Cong et al. [2] studies a multi-constraints cooperative guidance method based on dis-
tributed MPC for multi-missiles. The method can simultaneously control multiple
missiles to perform attacks on the target with the constraints of impact time and impact
angle on the premise of meeting the requirements of miss distance.

• Liu et al. [3] proposes a novel distributed consensus method for MAS with completely
unknown system nonlinearities and time-varying control coefficients under a directed
graph. It is rigorously proved that the consensus of the MAS is achieved while
guaranteeing the prescribed tracking-error performance.

• Suo et al. [4] proposes a route-based formation switching and obstacle avoidance
method for the formation control problem of fixed-wing UAVs in distributed ad hoc
networks. The results shows that the method is helpful to deal with the communication
anomalies and flight anomalies with variable topology.

• Qin et al. [5] proposes a distributed grouping cooperative dynamic task assignment
method based on extended contract network protocol. The method can perform
reconnaissance-and-attack tasks to multi-targets in complex and uncertain combat
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scenarios, improve the adaptiveness of the swarm under the sudden circumstance,
and realize the optimization of the task execution efficiency of the UAV swarm.

• Luo et al. [6] proposes a UAV-cooperative penetration dynamic-tracking intercep-
tor method based on DDPG, which can realize the time coordination of multi-UAV
cooperative penetration.

• Zhang et al. [7] investigates the air–ground cooperative time-varying formation-
tracking control problem of a heterogeneous cluster system composed of a UGV
and a UAV. Using a linear quadratic optimal control theory, a UAV–UGV formation–
maintenance controller is designed to track the reference trajectory of the UGV based
on the UAV–UGV relative motion model.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Cooperative terminal guidance with impact angle constraint is a key technology to achieve
a saturation attack and improve combat effectiveness. The present study envisaged cooperative
terminal guidance with impact angle constraint for multiple missiles. In this pursuit, initially, the
three-dimensional cooperative terminal guidance law with multiple constraints was studied. The
impact time cooperative strategy of virtual leader missile and follower missiles was designed by
introducing virtual leader missiles. Subsequently, based on the distributed model prediction control
combined with the particle swarm optimization algorithm, a cooperative terminal guidance algorithm
was designed for multiple missiles with impact angle constraint that met the guidance accuracy.
Finally, the effectiveness of the algorithm was verified using simulation experiments.

Keywords: cooperative guidance; model prediction control; multi-missile cooperative control; multi-
constraint cooperative guidance

1. Introduction

Cooperative guidance is one of the key technologies for multiple missiles to attack
and intercept large maneuvering targets with a high accuracy [1,2]. The two major types of
cooperative guidance technology that have been extensively studied include independent
cooperative guidance and distributed cooperative guidance.

Independent cooperative guidance determines the main guidance information by
relying on only its own individual information, and there is no interaction of information
between the missiles. The attack tasks are completed independently according to the
designated guidance law and impact time before the launch. Wu S.T. et al. [3] was the
first to propose the guidance problem along with the impact time. After more than ten
years of development, many research results have emerged in this field. Based on the
combination of the optimal control and time adjustment, Ma G.X. et al. [4] designed a
cooperative guidance law with the impact time and angle constraints, and realized the
cooperative interception based on the impact angle constraints. Li G.Y. et al. [5] designed
the cooperative guidance law for multiple missiles based on the terminal sliding mode
control method and the principle of consistency. They obtained the line-of-sight (LOS)
angle rate for all the cooperative missiles converging to zero in a finite time, and it was
found that the LOS angle converged to the desired angle. Zhou J. et al. [6] proposed
a cooperative guidance law based on “leader-follower” architecture and sliding mode
control to achieve a cooperative attack with line-of-sight (LOS) angle constraints on moving
targets. Based on the impact angle, a guidance law with the impact time based on the
sliding mode control was designed [7,8]. During the flight, multiple missiles exchange
information with each other, “negotiate” together, and adjust their impact time according

Appl. Sci. 2021, 11, 10857. https://doi.org/10.3390/app112210857 https://www.mdpi.com/journal/applsci
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to a certain strategy in order to achieve simultaneous arrival and saturation attack. This
is called distributed cooperative guidance. Various studies that have been conducted on
distributed cooperative guidance includes the time cooperative guidance law based on bias
proportional guidance, the time cooperative guidance law based on the leader-follower
and the time based on switching logic. Using a weighted average consensus algorithm, a
distributed time cooperative guidance law was designed [9,10]. Wang X. et al. [11] designed
the guidance law with the impact time based on a bias proportional guidance. Assuming
that each missile had the same speed, Tekin R. et al. [12] designed a time cooperative
guidance law based on the ‘leader-follower’ model. Jeon J.S. et al. [13] considered the
integration of the time cooperative guidance and control and studied the tracking problem
of the nominal projectile distance.

The guidance law with impact time constraints is a key technology in achieving
saturation attack, break through anti-missile defense systems, and accomplishing reliable
strikes against important strategic targets. Lin D.F. et al. [14] designed a cooperative
guidance law with an impact time control and field of view constraints of the seeker for the
cooperative guidance of multiple missiles in attacking low-speed targets. Li G.Y. et al. [15]
designed the cooperative guidance law for multiple missiles to simultaneously intercept
high maneuvering targets and designed the cooperative guidance law for multiple missiles
based on the terminal sliding mode control method and the principle of consistency to
achieve the LOS angle rate of the cooperative missiles converging to zero in a finite time.
In view of the Field of View (FOV) constraints of the missiles, the terminal LOS angle
constraints [16–18] were employed in the design of the cooperative guidance law, along
with the impact time constraints.

Considering the research on the cooperative guidance algorithm, there are more
studies on the guidance law with impact angle or time constraints [19–26], and relatively
fewer studies on combining the two as terminal constraints [27–31]. Impact time constraints
are the basis of the cooperative guidance algorithm and are indispensable. Impact angle
constraints can make the missile hit the target with the best attitude in order to maximize
the effectiveness of the warhead to achieve a maximum damage. Hence, considering both
impact time and impact angle constraints in the cooperative terminal guidance algorithm
is of great significance for improving the effective damage and combat capability of the
cruise missile weapon system.

Model prediction control (MPC), also known as receding horizon control (RHC), has
an online rolling optimization at the core, which is essentially an optimal control problem
in the finite time domain. At each optimal control moment, the current optimal control
domain can be obtained, and the first part of the domain is used as the optimal control to
act on the system. The optimal control sequence is obtained after multiple sampling. MPC
is a model-based algorithm that has been widely used in industry, metallurgy, etc. [32].
In recent years, MPC has been continuously improved, and a few improved methods
have been for proposed for MPC [33–36], which achieved better application prospects and
obtained better prediction results.

In the present study, we proposed a three-dimensional cooperative terminal guidance
law that met the constraints of impact angle and impact time simultaneously, on the
premise of meeting the requirements of miss distance. First, the nonlinear motion model
of the missile and the target was established, the state quantity and the control quantity
were normalized, the concept of leader-follower missiles was introduced, and the impact
time cooperative strategy of leader and follower missiles was designed. Subsequently,
based on the model predictive control method, a three-dimensional cooperative terminal
guidance law was proposed that simultaneously controlled multiple missiles to perform
attacks on the target with the constraints of impact time and impact angle on the premise of
meeting the requirements of miss distance. Finally, by introducing one leader missile and
four follower missiles to simulate the multi-missile cooperative attack against stationary
targets, linear moving targets, and snake-shaped maneuvering targets, the effectiveness of
the multi-constraint cooperative guidance law algorithm was verified.

4



Appl. Sci. 2021, 11, 10857

2. Description of Cooperative 3D Terminal Guidance for Multiple Missiles

The relative motion relationship between the missile and the target is shown in
Figure 1. Herein, M and T represent the missile and the target, respectively. The ground
inertial coordinate system is expressed in the A-XYZ plane. This is the relative distance
between the missile and the target, is the line-of-sight elevation angle and the line-of-sight
azimuth angle, represents the trajectory inclination angle and the trajectory deflection angle
of the missile, and represents the trajectory inclination angle and the trajectory deflection
angle of the target. Unless otherwise specified, all angles were positive counterclockwise.

X

Y

Z

A

M

M

T

qθ

MV

TV
Ψ

Tθ

TΨ

Mθ

MΨ

Figure 1. Guidance geometric relationship.

According to the relative geometric relationship between the missile and the target in
Figure 1, the relative motion can be obtained as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dL
dt = d

dt (riL) = VTiT − VMiM =
.
riL + ΩL × riL

AT = AytjT + AztkT = ΩL × VT + ΩT × VT
AM = AymjM + AzmkM = ΩL × VM + ΩM × VM

ΩL =
.
ψL sin θLiL −

.
θLjL +

.
ψL cos θLkL =

.
λxiL +

.
λyjL +

.
λzkL

ΩM =
.
ψm sin θmiM −

.
θmjM +

.
ψm cos θmkM

ΩT =
.
ψt sin θtiT −

.
θtjT +

.
ψt cos θtkT

(1)

where VT and VM are the velocity vectors of the target and the missile, respectively; Azm
and Aym are the normal accelerations of the turning plane and the dive plane of the missile,
respectively; Azt and Ayt are the normal accelerations of the target turning plane and the
dive plane, respectively; ΩL is the rotation angular velocity vector of the line-of-sight
coordinate system; ΩT is the rotation angular velocity vector of the target relative to the
line of sight coordinate system; and ΩM is the rotation angular velocity vector of the missile
relative to the line of sight coordinate system.

From Equation (1), the following differential equations can be obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
r = Vm · (ρ cos θt cos ψt − cos θm cos ψm)

r
.
λy = Vm · (sin θm − ρ sin θt)

r
.
λz = Vm · (ρ cos θt sin ψt − cos θm sin ψm).

θm = Azm
Vm

+ 1
r Vm tan λy sin ψm(ρ cos θt sin ψt − cos θm sin ψm)− 1

r Vm cos ψm(ρ sin θt − sin θm)
.
ψm =

Aym
Vm cos θm

− 1
r cos θm

Vm sin θm cos ψm × tan λy(ρ cos θt sin ψt − cos θm sin ψm) . . .
− 1

r cos θm
Vm sin θm sin ψm(ρ sin θt − sin θm)− 1

r Vm(ρ cos θt sin ψt − cos θm sin ψm)
.
θt =

Azt
Vt

+ 1
r Vm sin ψt tan λy(ρ cos θt sin ψt − cos θm sin ψm)− 1

r Vm cos ψt(ρ sin θt − sin θm)

(2)

where ρ = Vt/Vm is the speed ratio of the target relative to the missile; AM and AT are the
acceleration vectors of the missile and the target, respectively; and Azmd and Aymd are the
acceleration commands for the longitudinal and lateral channels of the missile, respectively.
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3. Strategy for Timed Cooperative Guidance of Multiple Missiles

For cooperative guidance, one of the important features is the ability wherein the
multiple missiles can hit the target simultaneously. In order to achieve this goal, the present
study employed the concept of virtual leader missile. According to the selection principle,
one of the missiles was selected as the virtual leader missile, and the traditional guidance
scheme was adopted to make it fly towards the target, while the remaining missiles were
regarded as follower missiles. In the dive plane, the follower missiles used the same
guidance algorithm as the virtual leader missile. In the turning plane, the follower missiles
realized the time cooperation through lateral maneuvering (which was mainly achieved by
controlling the relative distance between the missile and the target).

3.1. Movement Law of the Virtual Leader Missile

The relative motion relationship of the leader-follower missiles can be seen form
Figure 2. Considering that Missles Leader (ML) is the leader missile, Mi is the ith follower
missile, and T is the target, the velocity of the leader missile is Vm0, the trajectory inclination
angle and the trajectory deflection angle are θ0 and ψ0, respectively; the vertical and
azimuth LOS angle are θ0L and ψ0L, respectively; the velocity of the ith follower missile
is Vmi; the trajectory inclination angle and the trajectory deflection angle are θi and ψi,
respectively; and the vertical and azimuth LOS angles are θ0i and ψ0i, respectively.

X

Y

Z

O

LM

M T

R

iR

θ
Ψ

θ

Ψ

Figure 2. Relative motion relationship of the leader-follower missiles.

In the later stage of the missile movement, the guidance of the missiles makes θ0 and
θi tend to zero. At this time, the curvature of the trajectory curve of the leader missile
and the follower missiles tends to be consistent, that is, the relationships r0/Vm0 =ri/Vmi
and ψ0 = ψi (or r0/Vm0 =ri/Vmi and ψ0 = −ψi) are satisfied, and the leader missile and
follower missiles reach and hit the target simultaneously. The important aspect is that this
strategy can make a same curvature of the leader missile and follower missiles relative to
the velocity. Under this condition, the flight of the missile consumes the same time. Hence,
the leader-follower strategy can also be suitable for different missile speeds. The leader
missile adopts an augmented proportional guidance method as:

Az0 = K01| .
r0|

·
θL0|/cos θ0 (3)

Ay0 = −K01|
·

r0|
·
θL0 sin θ0 sin ψ0

cos θ0 cos ψ0
− K02|

·
r0|

·
ψL0 cos θL0

cos ψ0
(4)

In order to quickly make the attitude angle θ0 of the leader missile tend towards zero,
a larger value of K01 needs to be chosen. The follower missiles also adopt an augmented
proportional guidance method on the pitch channel:

Azi = Ki1| .
ri|

·
θLi|/cos θi (5)

6
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In order to quickly make the attitude angle θi of the leader missile tend towards
zero, a larger value of Ki1 needs to be chosen. Next, according to the position relationship
between the leader missile and the follower missiles, the lateral acceleration Ayi of the
leader missile is designed so that ri/Vmi → r0/Vm0 and ψi → ±ψ0 are satisfied during the
guidance process.

3.2. Cooperative Strategy of Follower Missiles

The remaining time error between the leader missile and follower missiles is defined
as follows:

ξ =
r0

Vm0
− ri

Vmi
(6)

By deriving the remaining time error with respect to time, we can get:

.
ξ = cos θi cos ψi − cos θ0 cos ψ0 (7)

According to Equation (7), Ayi indirectly controls ξ by controlling ψi. Therefore, the
control system can be divided into two sub-control systems according to direct control ψi
and indirect control ξ, namely, a nonlinear slow sub-system and a nonlinear fast sub-system.
Therefore, the dynamic design method of time-scale separation is used to design the control
instructions Ayi. The desired dynamics of the slow sub-system is expressed as:

·
ξdes = −KRξ (8)

where KR is the bandwidth of the slow sub-system.

If
·
ξ =

·
ξdes is obtained through the control, considering the command value of ψi is

ψi
c, then:

cos ψi
c =

cos θ0 cos ψ0 − KRξ

cos θi
(9)

Because the value range of ψi is (−π/2, π/2), ψi
c is within the value range. Combin-

ing the above equation and the value range, the value range of KR can be obtained:

cos θ0 cos ψ0 − cos θi
ξ

≤ KR ≤ cos θ0 cos ψ0

ξ
(10)

if

KR =
cos θ0 cos ψ0 − cos θi + c1

ξ
ξ+c2

cos θi

ξ
(11)

where c1, c2 are constants and satisfy the relationship 0 < c1, c2< 1.
Herein, ψi

c can be expressed as:

ψc
i = fψ × arccos

(
cos θ0 cos ψ0 − KRξ

cos θi

)
(12)

where ψi ∈ [−π/2, 0), fψ = −1; ψi ∈ [0, π/2], fψ = 1.
Taking the derivative of Equation (12) with respect to time, we have:

.
ψ

c
i = f .

ψ
×

⎛⎜⎝ KR cos ψi − cos ψc
i sin θi

cos θi
−

KR cos θ0 cos ψ0−
.
θ0 sin θ0 cos ψ0−

.
ψ0 cos θ0 sin ψ0

cos θi

√
1−(cos ψc

i )
2

⎞⎟⎠ (13)

If ψi ∈ [−π/2, 0), f .
ψ
= −1; ψi ∈ [0, π/2], f .

ψ
= 1.

7
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In order to make ξ satisfy the relation in Equation (8), ψi should quickly converge to
near its command value ψc

i . Therefore, the following fast dynamics sub-system is designed,
and its specific expression is given as:

.
ψi,des −

.
ψc

i = −Kψ(ψi − ψc
i ) (14)

where Kψ is the bandwidth of the fast sub-system. Under the control
.
ψi =

.
ψi,des united

with Equation (4), the final designed maneuvering control command in the turning plane
can be obtained as:

Ayi =
Vmi

2

ri
sin ψi(1 − cos θi sin θi cos ψi tan θLi)− Vmi cos θi

.
ψc

i + KψVmi cos θi(ψi − ψc
i ) (15)

Equation (14) can be satisfied by maneuvering control commands on the lateral plane,
so that ψi → ψc

i is obtained; ψc
i can make the slow dynamics sub-system meet Equation (8).

Under this condition, the time cooperative control of multiple missiles can be realized.
Longitudinal control commands Az0 and Azi can make θ0 → 0 and θi → 0 , along with the
control of the yaw channel, ξ → 0 , so as to realize ψi → ψ0 (or ψi → −ψ0 ). The control
flow chart for cooperative guidance of multiple missiles can be seen form Figure 3.

⊗

Figure 3. Control flow chart for cooperative guidance of multiple missiles.

4. Cooperative Prediction Guidance Based on Distributed Model Prediction Control
(DMPC) for Multiple Missiles

4.1. Introduction to DMPC

The application of the MPC method in a multi-agent cluster system has three struc-
tures: centralized, decentralized, and distributed MPC. As shown in Figure 4, the central-
ized MPC considers the overall performance of the cluster as an optimization index. In each
sampling period, a central model predictor performs the rolling optimization on the overall
control performance index of the cluster system to obtain the control sequence set with the
best overall performance of the cluster system. Each sub-system of the decentralized and
distributed MPC has an independent model predictor, which reduces the dimensionality
of the system. It also reduces the amount of calculation for the online optimization of
each sub-controller and increases the reliability of the system. The difference between the
distributed and decentralized MPC is that there is no information interaction between the
sub-controllers of the decentralized MPC. As a result, it cannot control the problem of the
multi-agent system with coupling between the sub-systems.
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Figure 4. Classification of MPC: (a) Centralized MPC; (b) Decentralized MPC; (c) Distributed MPC.

From the above-mentioned missile motion model, the motion equation of each missile
can be expressed as:

.
zl(t) = fi(zi(t), ui(t)), t ≥ t0, zi(0) = z0 (16)

Therefore, the motion equations of its adjacent missiles can be defined as follows:

.
z−l(t) = f−i(z−i(t), u−i(t)), t ≥ t0 (17)

The prediction time domain is defined as Tp ∈ (0, ∞), s ∈ [
tc, tc + Tp

]
. The control

moment of the receding horizon control is defined as tc = t0 + δc, c ∈ {0, 1, 2, · · ·}, where
δ is the control interval and satisfies δ ∈ (

0, Tp
]
, ẑi(s; tc), ûi(s; tc) is the estimated state

sequence and control sequence, respectively, while zp
i (s; tc) and up

i (s; tc) are the predicted
state sequence and control sequence, respectively. For any time, tc, the optimal control
sequence of the ith missile can be expressed as:

u∗
i (s; tc) = argminu∗

i (s;tc)Ji(zi(s; tc), z−i(s; tc), ui(s; tc)) (18)

The cost function can be expressed as:

Ji =
∫ tc+Tp

tc
Fi

(
zp

i (s; tc), ẑ−i(s; tc), up
i (s; tc)

)
ds + Φi

(
zp

i
(
tc + Tp; tc

))
(19)

where Ji is the operation function and Φ is the final state function. The following con-
straints are satisfied:

.
zp

i (s; tc) = fi

(
zp

i (s; tc), up
i (s; tc)

)
(20)

.
ẑ−i(s; tc) = f−i(ẑ−i(s; tc), û−i(s; tc)) (21)

zp
i (s; tc), ẑ−i(s; tc) ∈ Z (22)

up
i (s; tc), û−i(s; tc) ∈ U (23)

9
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According to the definition of the motion equations of the adjacent missiles,
s ∈ [

tc, tc + Tp
]

in the prediction time domain and the estimated control sequence û−i(s; tc)
can be obtained by:

û−i(s; tc) =
{

ûj(s; tc)
}

, j ∈ Ni (24)

In the prediction time domain s ∈ [
tc, tc + Tp

]
, the estimated control sequence ûj(s; tc)

consists of two parts. In the time domain s ∈ [
tc, tc−1 + Tp

]
, the first part is the optimal

control sequence u∗
j (s; tc) of the previous prediction time domain s ∈ [

tc−1, tc−1 + Tp
]
,

while in the time domain s ∈ [
tc−1 + Tp, tc + Tp

]
, the second part is the optimal control

sequence derived from u∗
j (s; tc−1) at the time s = tc−1 + Tp. The expression of ûj(s; tc) is

as follows:

ûj(s; tc) =

{
u∗

j (s; tc−1) s ∈ [
tc, tc−1 + Tp

)
u∗

j
(
tc−1 + Tp; tc−1

)
s ∈ [

tc−1 + Tp, tc + Tp
] (25)

4.2. Algorithm for Cooperative Guidance Considering Impact Time and Angle Constraints

The framework idea of the distributed MPC is as follows: At each control moment
tc, the current missile control variable is initialized with the optimal control amount of
the previous prediction period

[
tc−1, tc−1 + Tp

]
. After that, it exchanges the information

with the adjacent missiles and receives the estimated value of the control variable at the
moment tc−1. Subsequently, it sends out the estimated value of its own control variable
at the moment tc−1 to estimate the state of the adjacent missile in the prediction period[
tc, tc + Tp

]
and evaluates the cost function Ji in the prediction period

[
tc, tc + Tp

]
and

uses the particle swarm optimization (PSO) algorithm to solve the optimal control variable
sequence in the prediction period

[
tc, tc + Tp

]
. Based on the rolling optimization idea, the

optimal control amount of the first update interval is taken to obtain the optimal control
sequence, and the missile state at [tc, tc+1] is updated to enter the next control moment tc+1.
The solution process of the estimated value is shown in Figure 5.

( )p
j c c c pu s t s t t T− ∈ +

( ) )j c c c pu s t s t t T∗
− −∈ + ( )j c p cu t T t∗

− −+

( )p
j c c c pu s t s t t T− − −∈ +

( )p
i c c c pu s t s t t T∈ +

( ) )i c c c pu s t s t t T∗
− −∈ + ( )i c p cu t T t∗

− −+

( )p
i c c c pu s t s t t T− − −∈ +

( )p
j cu s t

( )j cu s t

( )p
j cu s t −

( )p
i cu s t

( )i cu s t

( )p
i cu s t −

( ) )i c c c pu s t s t t T− ∈ +

( ) )j c c c pu s t s t t T− ∈ +

ct − ct c pt T− + c pt T+ s

Figure 5. Solution process of the predicted state value.

The basic principle of the PSO-based distributed cooperative model prediction frame-
work for multiple missiles is shown in Figure 6. The cost function of the cooperative

10
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control of missiles includes two parts, namely, the operation function, F, and the final state
function, Φ:

Ji =
∫ tc+Tp

tc
Fi

(
zp

i (s; tc), ẑ−i(s; tc), up
i (s; tc)

)
ds + Φi

(
zp

i
(
tc + Tp; tc

))
(26)

The operation function is defined as:

Fi

(
zp

i (s; tc), ẑ−i(s; tc), up
i (s; tc)

)
= α ∑

j∈Ni

‖tp
go,i(s; tc)− t̂go,j(s; tc)‖2

+ (1 − α)‖up
i (s; tc)‖2

(27)

The final state function is defined as:
Φi

(
zp

i
(
tc + Tp; tc

))
= β‖ri

(
tc + Tp; tc

)‖2
+ γ‖θ

(
tc + Tp; tc

)− θexp ect + ψ
(
tc + Tp; tc

)− ψexp ect‖ (28)

where α, β, γ are the weight constants, ‖ · · · ‖ represents the modulus of the space vector,
Ni is the set of missiles other than missile i,ri is the distance between the missile and the
target, tp

go,i is the predicted time of arrival, and t̂go,i is the estimated time of arrival, which
can be solved by the following equation:

t̂go,j(s; tc) =
r̂(s; tc)

vj
, j ∈ Ni (29)

where r̂(s; tc) is the estimated distance between the missile and the target at the moment tc,
θexpect and ψexpect represent the desired pitch angle and trajectory deflection angle that are
used to control the angle of the missile at the terminal landing point to achieve the impact
angle constraints.

 
Figure 6. PSO-DMPC model prediction framework.
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5. Verification by Simulations

Let M1, M2, M3, and M4 denote four missiles participating in cooperative operations.
The target is in the horizontal plane, and its initial position is at the origin of the coordinates.
Table 1 lists the initial parameters of the proposed virtual leader missile (denoted as M)
and follower missiles.

Table 1. Initial parameters of the virtual leader and the follower missiles.

Name Initial Position Velocity Ballistic Angle Ballistic Drift Angle

Variable x y z Vm θ ψ

Unit m m m m/s (◦) (◦)

Virtual Pilot Missile 4000 1800 3000 133 45 45

Follow
Missile

M1 −3000 1500 −3800 155 45 45
M2 −3500 1200 −2500 140 40 40
M3 3500 800 2000 125 10 30
M4 −3500 1600 2500 140 −15 20

Let us consider a case where a stationary target, a straight moving target, and a
snake-like maneuvering target is attacked (specific movement of the target is shown in
Table 2).

Table 2. Initial parameters of the virtual leader missile and follower missiles.

Type Target Motion State

Target 1 Static target
Target 2 vt = 10 m/s at = 0 m/s2 ψvt = 45

◦

Target 3 vt = 10 m/s yt = 60 sin(xt/100) K01 = Ki1 = 10

The control coefficients of the augmented proportional guidance method adopted by
the five missiles are K01 = Ki1 = 10, K02 = 5; the parameters are c1 = 0.7, c2 = 0.9; the
bandwidth of the fast dynamics sub-system is Kψ = 5; and the overload limit of the missile
is 8 g. The impact time during the attack on a fixed target is shown in Table 3. According
to the above design strategy, under the premise of adopting the augmented proportional
guidance method, the impact time of the leader missile is greater than that of each follower
missile. Therefore, the use of this scheme can provide a sufficient flight time adjustment
margin for the follower missiles.

Table 3. Impact time of APN guidance.

Target Type
Virtual Pilot Missile Follow Missile

Unit M M1 M2 M3 M4

Target 1 s 41.66 33.92 32.85 33.25 32.93
Target 2 s 39.48 41.36 36.58 33.39 36.54
Target 3 s 39.82 39.95 34.67 34.01 35.31

In the adjustable range, in order to enhance the ability of attack and damage on
moving targets in a horizontal plane, the ideal impact angles (θ∗m, ψ∗

vm) of M1, M2, M3, and
M4 are designated as (50

◦
,−20

◦
), (44

◦
,−34

◦
), (−30

◦
, 0

◦
), and (35

◦
,−20

◦
), respectively. The

ideal impact time t∗ is determined based on the flight time of the leader missile attacking
different targets. The simulation results of cooperative attack by missiles on targets 1, 2,
and 3 are shown in Figures 7–11.
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Figure 7. Flight trajectory curve of the cooperative attack on stationary target 1.

Figure 8. Flight trajectory curve of the cooperative attack on target 2.

Figure 9. Flight trajectory curve of the cooperative attack on target 3.

Figure 10. Projection of flight trajectory curve of cooperative attack on target 3 in the XOZ plane.
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Figure 11. Projection of flight trajectory curve of cooperative attack on target 3 in the XOY plane.

As shown in Figures 7–9, the cooperative strategy based on the tracking of the missile-
target distance could well constrain the missile-target distance during the flight of multiple
projectiles. As a result, the follower missiles converged to the same value as the leader
missile. The MPC-based cooperative guidance algorithm optimizes the trajectory to meet
the terminal impact angle constraints, based on the impact time of the cooperative missile
group. From Figures 10 and 11, it can be observed that the MPC-based cooperative
guidance law can make multiple missiles participating in cooperative operations hit the
target with separately specified impact angles at a specified time. The miss distance meets
the requirements and is less than that of the cooperative time guidance. Additionally,
the strike effect is more accurate. Due to the limited adjustable time and angle of the
missiles under different position conditions, the omni-directional saturation attack of the
multiple missiles can be realized through reasonable state estimation, mission planning,
and assignment of multiple terminal guidance missiles. The simulation results verified the
effectiveness of this method in attacking the stationary and maneuvering targets. From
Figures 7–10, it can be observed that the trajectory curve optimized by the MPC algorithm
is smoother and easier to implement.

By tracking the distance between the missile and the target, each follower missile
achieved a cooperative impact time with the virtual leader missile. When hitting target 1,
target 2, and target 3, the cooperative impact time of the four missiles was the same as the
impact time of the virtual lead missile, which was 41.66 s, 41.28 s, and 41.82 s, respectively.
However, the impact angle did not meet the requirements at this time, and the iterative
optimization of the guidance instructions through the MPC algorithm achieved the impact
angle constraints at the terminal. In the simulation example, the impact angle constrained
by each follower missile and the terminal impact angle are given by Figures 12–14, when
different guidance methods were used to attack an unfixed target.

 
(a) (b) 

Figure 12. Velocity-inclination change curve of each follower missile during the cooperative attack on target 1 based on the
MPC method: (a) Trajectory deflection curve; (b) Trajectory inclination curve.
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(a) (b) 

Figure 13. Velocity-inclination change curve of each follower missiles during cooperative attack on target 2 based on the
MPC method: (a) Trajectory deflection curve; (b) Trajectory inclination curve.

 
(a) (b) 

Figure 14. Velocity-inclination change curve of each follower missiles during the cooperative attack on target 3 based on the
MPC method: (a) Trajectory deflection curve; (b) Trajectory inclination curve.

Figures 12–14 show the changing curves of the impact angle when attacking a sta-
tionary target, a uniformly moving target, and a maneuvering target by the MPC method.
Using the MPC method can not only realize the cooperative time but can also satisfy the
impact angle constraints. Both the time cooperative guidance and the MPC-based guidance
can make four missiles hit the target at the same time, but the former could only constrain
the impact time of four missiles, while the latter achieved a multi-directional cooperative
attack with designated angles on the target. This verified the superior guidance perfor-
mance of the MPC-based 3D cooperative guidance law with multiple constraints. Figure 15
shows the tracking curve of the missile-target distance in the time cooperative strategy
with the designed parameters. Figure 16 shows the curve of the remaining time error with
the time obtained by the MPC method. Tracking the missile-target distance of the leader
missile achieves a cooperative impact time between the follower missiles and the leader
missile, but it does not meet the impact angle constraints. Therefore, the MPC method was
used to iteratively optimize the control commands to meet the impact angle constraints.

Figure 15. Tracking of the missile-target distance.
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Figure 16. Remaining time error of MPC.

The performance of the MPC-based 3D cooperative guidance law and time cooperative
guidance law are shown in Figures 17 and 18, respectively. It can be observed that, when
the missile flies with the time cooperative guidance law, although the impact time was
similar to the flight time of the leader missile, there was still a significant gap between the
terminal attack attitude angle and the ideal impact angle. After iterative optimization using
the MPC algorithm, both the trajectory inclination θ0L and the trajectory deflection angle
ψ0L achieved the impact angle constraints within the specified time. The MPC algorithm
is based on the principle of optimization and was designed according to performance
indicators to minimize the total energy in the guidance process under the condition of
meeting terminal constraints. In every iteration of the MPC algorithm, the deviation at the
terminal of the trajectory was evenly distributed to each step of the entire trajectory by a
controlled adjustment. Therefore, the control command exhibited a smoother transition
than the initial control command, and the amplitude was smaller, which was easier to
implement in engineering.

 
(a) (b) 

Figure 17. Comparison of the trajectory inclination curves of each follower missile between the proposed guidance scheme
and the time cooperative guidance scheme: (a) Time cooperative guidance law; (b) MPC-based cooperative guidance law.

 
(a) (b) 

Figure 18. Comparison of the trajectory deflection curves of each follower missile between the proposed guidance scheme
and the time cooperative guidance scheme: (a) Time cooperative guidance law; (b) MPC-based cooperative guidance law.
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From Figures 19 and 20, it can be observed that the time cooperative guidance strategy
required greater control capabilities, especially at the terminal. In order to achieve the
consistency requirements of the time cooperative guidance, a greater overload is required,
and the required overload exceeded that which the missile can provide. Therefore, this
method has very high requirements for the maneuverability of the missiles. In contrast
with the MPC-based cooperative strategy, the control amount can be controlled within a
certain range through the strategy of rolling optimization, and the requirements for the
maneuverability of the missile are not high. Furthermore, it can not only achieve the time
cooperation, but also achieve the requirements of impact angle at the terminal. Thus, it
proved to be a better cooperative guidance strategy.

The results demonstrated that the cooperative strategy of tracking the distance be-
tween the missile and the target based on the dynamic inverse design was very effective.
The MPC algorithm added the impact angle constraints based on the impact time con-
straints, thereby achieving good effects and a better guidance performance, along with an
easy implementation of the instructions.

 
(a) (b) 

Figure 19. Normal acceleration curves obtained by the time cooperative guidance algorithm: (a) Normal acceleration curve
of the dive plane; (b) Normal acceleration curve of turning plane.

 
(a) (b) 

Figure 20. Normal acceleration curves obtained by the MPC guidance algorithm: (a) Normal acceleration curve of the dive
plane; (b) Normal acceleration curve of turning plane.

6. Conclusions

In the present study, we proposed a three-dimensional cooperative terminal guidance
strategy for cruise missiles under multiple constraints, introduced the concept of virtual
leader missiles, and designed a cooperative strategy for the impact time of virtual leader
and follower missiles. On this basis, using the model predictive control method, a three-
dimensional cooperative guidance law was presented that could simultaneously control the
multiple missiles with impact time and impact angle constraints on the premise of meeting
the requirements of the miss distance. The algorithm implementation was carried out, and
the effectiveness of the algorithm was verified using simulation studies. The robustness of
the algorithm and the solution time of the algorithm both need further study in order to
improve the operating efficiency of the algorithm and realize real-time calculations.
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Abstract: To address the control of uncertain multi-agent systems (MAS) with completely unknown
system nonlinearities and unknown control coefficients, a global consensus method is proposed by
constructing novel filters and barrier function-based distributed controllers. The main contributions
are as follows. Firstly, a novel two-order filter is designed for each agent to produce informational
estimates from the leader, such that a connectivity matrix is not used in the controller’s design,
solving the difficultly caused by the time-varying control coefficients in a MAS with a directed
graph. Secondly, combined with the novel filters, barrier functions are used to construct the dis-
tributed controller to deal with the completely unknown system nonlinearities, resulting in the global
consensus of the MAS. Finally, it is rigorously proved that the consensus of the MAS is achieved
while guaranteeing the prescribed tracking-error performance. Two examples are given to verify the
effectiveness of the proposed method, in which the simulation results demonstrate the claims.

Keywords: distributed control; MAS; flight control

1. Introduction

The control of uncertain nonlinear systems has been researched for several decades,
such that so many remarkable results have been obtained on this topic [1–9]. However,
most of them are for SISO or MIMO systems, and their methods or techniques cannot be
directly applying to multi-agent systems, as the information of each agent or subsystems is
only available for part of others. According to the topology of information transformation
graph, the graph can be divided into undirected and directed graphs. Generally, the
consensus control of a MAS with the directed graph is more difficult than the undirected
case, since the methods for the directed case are always applicable for the undirected case,
but not vice versa.

Recently, some significant progress has been made in the control of a MAS [10–12].
For a linear MAS with undirect graphs, fully distributed adaptive consensus controller is
present in [10]. Adaptive asymptotically consensus for an uncertain MAS is achieved in [11],
and adaptive asymptotically consensus is achieved in [12] for an uncertain MAS, and so on.
However, their methods are only applicable for a MAS with an undirected graph and are in
vain for a MAS with a directed graph. For a MAS with a directed graph and constant control
coefficients, adaptive consensus for a MAS with system nonlinearities satisfying match
conditions is researched in [13] to solve the problem of actuator faults; a fully distributed
adaptive consensus control is studied for a MAS with unknown control directions in [14]
by using a Nussbaum gain technique; actuator faults in a MAS are considered in [15] with
integral chain dynamics; and prescribed performance consensus control for uncertain MAS
is investigated in [16]. Though much progress has been made [17–20], it should be noted
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that there are still some nonnegligible problems to be solved. Firstly, the existing methods
require the control coefficients to be constants, or even known, for a MAS with a directed
graph. The main difficulty is that the Laplace matrix for a directed graph is asymmetric and
thus the selections of control parameters must always resort to adaptive methods, which
falls into trouble when the control coefficients are time-varying and unknown. Secondly, to
the best of our knowledge, there is no global consensus control method for a MAS with
a directed graph and the systems functions thereof completely unknown, except for [21],
wherein the unknown system nonlinearities required to satisfy the Lipschitz conditions
and control coefficients are one. Universal approximators such as neural networks (NN) or
fuzzy logic systems (FLS) have been attempted to solve the consensus control problem of a
MAS with completely unknown system nonlinearities [22–24], however, it is well known
that these methods are semi-global in the sense that their stabilities depend on the initial
conditions of systems and the careful selection of controller parameters. Therefore, NN or
FLS-based approaches cannot guarantee the global consensus of the MAS, though they are
very favorable to solve the problem of MAS with unknown nonlinearities.

As for the global control of systems with completely unknown nonlinearities, a
pioneering work is [25], wherein a low-complexity controller is presented that cannot
only achieve global convergence of all the system signals, but which can also guarantee the
prescribed performance of tracking error and state errors. In view of the low complexity and
strong robustness of this method, much research has been carried on this method for solving
different nonlinear control problems [26–30]. By introducing a novel barrier function, a
fault-tolerant controller is designed for a class of unknown nonlinear systems in [26]. With
consideration to the constraints of system states, a barrier function-based adaptive control
method is proposed in [27]. Addressing systems with unknown control direction and
system dynamics, a Nussbaum function-based low-complexity control scheme is designed
in [28]. As regards asymptotic tracking control for systems with unknown nonlinearities,
an universal global low-complexity controller is proposed in [31]. Nevertheless, it is
worth mentioning that the global control of a MAS with unknown nonlinearities is still an
unsolved problem, since these methods are based on the condition that the desired output
for systems are known, but this knowledge cannot be obtained for some agents of a MAS.
Moreover, considering the control coefficients of each agent are time-varying functions,
these traditional methods will fall into trouble when solving for the consensus control of a
MAS with unknown dynamics.

Motived by the above discussion, we investigate the fully distributed control of a
MAS with a directed graph, time-varying control coefficients and completely unknown
system nonlinearities. The main contributions of this paper are summarized as follows.

(1) To address the time-varying control coefficients of a MAS, a two-order filter is firstly
designed for each agent to produce estimates of the signals from the leader, so that
an asymmetric Laplace matrix for a directed graph will not be used to design the
controller for each agent of the MAS, by which the difficulty of control design is
solved.

(2) To address the completely unknown system nonlinearities in MAS, barrier functions
are used to propose a fully distributed controller by combining novel filters; barrier
functions are well-suited to dealing with the effects of unknown system nonlinearities,
such that global results are achieved, for the first time, in a MAS with completely
unknown system nonlinearities in this paper.

(3) To guarantee the prescribed tracking performance by the proposed controller, such
that the consensus of the controlled MAS is rigorously proved and all the closed
signals are globally bounded.
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2. Problem Statement and Preliminaries

Consider a class of uncertain MAS as follows⎧⎨⎩
.
xi,m = gi,m(xi,m)xi,m+1 + fi,m(xi,m) + di,m(t, xi,m), m = 1, 2 . . . , n − 1
.
xi,n = gi,n(xi,n)ui + fi,n(xi,n) + di,n(t, xi,n)
yi = xi,1, f or i = 1, 2 , . . . , N

(1)

where xi,m = [xi,1, xi,2 , . . . , xi,m]
T ∈ Rm, y ∈ R, u ∈ R, are the states, the control

input and the output of the i th subsystem, respectively. The system nonlinearities
fi,m(·), gi,m(·) : Rm × R+ → R are unknown continuous functions with respect to xi,m.
di,m(t, xi,m), m = 1, 2 . . . , n represent the system uncertainties and external disturbances.

The desired trajectory for the outputs of the subsystems yd is bounded and only known
by part of the N subsystems, with

.
yd being bounded and unknown to all subsystems.

Suppose that the information transmission condition among the group of N subsys-
tems can be represented by a directed graph G � (V, E), where V = {1 , . . . , N} denotes
the set of indexes corresponding to each subsystem. The edge (i, j) ∈ E indicates that
subsystem j could obtain information from subsystem i, but not necessarily vice versa.
In this case, subsystem j is called a neighbor of subsystem i, and vice versa. Denoting
the set of neighbors for subsystem i as Ni � {j ∈ V : (j, i) ∈ E}. Self-edging (i, i) is not
allowed, thus (i, i) /∈ E and i /∈ Ni. The connectivity matrix A = [aij] ∈ RN×N of G is
defined as aij = 1 if (j, i) ∈ E and aij = 0 if (j, i) /∈ E. An in-degree matrix Δ is introduced,
such that Δ = diag(Δi) ∈ RN×N with Δi = ∑j∈Ni

aij being the i th row sum of A. Then,
the Laplacian matrix of L is defined as L = Δ − A. Defining B = diag{μ1, μ2 , . . . , μN},
where μi = 1 means the yd is accessible directly by subsystem i, and otherwise, we have
μi = 0. Throughout this paper, the following notations are used. ‖ · ‖ is the Euclidean
norm of a vector. Letting a ∈ Rn and b ∈ Rn be two vectors, then define the vector operator
.∗ as a. ∗ b = [a(1)b(1) , . . . , a(n)b(n)]T . Letting Q be a matrix, λmin(Q) then denotes the
minimum eigenvalue of Q.

Assumption 1. The directed graph G contains a spanning tree, and the desired trajectory yd is
accessible to at least one subsystem, i.e., ∑N

i=1 μi > 0.

Assumption 2. There exist unknown local Lipschitz functions bi,m(xi,m) such that, for
i = 1, 2 , . . . , N

|di,m(t, xi,m)| ≤ bi,m(xi,m), m = 1, 2 , . . . , n (2)

Assumption 3. The unknown control coefficients gi,m(xi,m) is strictly positive or negative. With-
out a loss of generality, it is assumed to be strictly positive, namely, for i = 1, 2 , . . . , N

gi,m(xi,m) > 0, m = 1, 2 , . . . , n (3)

Lemma 1. (Ref. [17]) Based on Assumption 1, the matrix (L + B) is nonsingular. Defining

θ = [θ1 , . . . , θN ]
T = (L + B)−1[1 , . . . , 1]T

P = diag{P1 , . . . , PN} = diag
{

1
θ1

, . . . , 1
θN

}
Q = P(L + B) + (L + B)T P

(4)

then θi > 0 for i = 1, 2 , . . . , N and Q is definitely positive.

Remark 1. In contrast to the methods in [13–16] for a MAS with a directed graph, the control
coefficients, gi,m(xi,m), are time-varying and unknown continuous functions in this paper, which
makes the control design much more difficult, since the matrix P in (4) is always unknown and
required to be estimated adaptively while the unknown control coefficients gi,1(xi,m) make P
inestimable. To cope with this problem, a novel two-order filter will be given for each agent (shown
later).
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Remark 2. The system nonlinearities, fi,m(xi,m) and gi,m(xi,m), are completely unknown functions
so that there is little knowledge with which to construct the controller. To deal with this problem,
neural networks and fuzzy logic systems have been used to approximate the unknown functions
caused by the system nonlinearities fi,m(xi,m) and gi,m(xi,m) in [22–24], however, only semi-global
results can be obtained by use of these approximators. To construct a distributed controller for a
MAS with these unknown system nonlinearities with global consensus is a challenging problem,
which is solved by the skillfull cooperation of novel two-order filters and barrier functions in the
following.

3. Design of Distributed Controller and Filters

In this section, a distributed asymptotic tracking controller for a multi-agent system
(1) will be designed. To facilitate the control design in distributed manner, design a filter
(qi,1, qi,2) for each agent i, with i = 1 , . . . , N.

3.1. Filters Design

Denote

zi,j =
N

∑
k=1

ai,k(qi,j − qk,j) + μi(qi,j − y(j−1)
d ), j = 1, 2 (5)

Then, design the filters as { .
qi,1 = qi,2.
qi,2 = vi

(6)

with

vi = −c1zi − c0qi,2 − c0sgn(zi)
2

∑
j=1

F̂i,j (7)

.
F̂i,j =

N

∑
k=1

ai,k(F̂k,j − F̂i,j) + μi(Fj − y(j−1)
d ), j = 1, 2 (8)

where zi = c0zi,1 + zi,2, y(0)d = yd and y(1)d =
.
yd, and c0, c1 are design parameters chosen as

c0 ≥ 1 and c1 > c0 + 1. We then have the following lemma.

Lemma 2. Consider a closed-loop system consisting of Nfilters (6) satisfying Assumption 1 with
local controller (7). The asymptotic consensus tracking of all the filter’s outputs to yd(t) is achieved,
i.e., lim

t→+∞
|qi,1 − yd(t)| = 0. Moreover, qi,1 and qi,2 are bounded.

Proof (of Lemma 2). Consider the following Lyapunov function

Vz =
1
2

zT Pz +
1

2γ

2

∑
j=1

F̃T
j PF̃j (9)

where z = [z1,z2 , . . . , zN ]
T , F̃j = F̂j − Fj, F̂j = [F̂1,j, F̂2,j , . . . , F̂N,j]

T , Fj = [F1,j, F2,j , . . . , FN,j]
T ,

and γ > 0 is a constant satisfying γ <
2λ2

min(Q)

ϕ2 with ϕ = ‖P(L + B)‖. Denote

zj = [z1,j, z2,j , . . . , zN,j]
T and qj = [q1,j, q2,j , . . . , qN,j]

T . Then, we have

.
z = (L + B)(c0q2 − c0y(1)d + v − y(2)d ) (10)

Using (9) and (10), the time derivative of Vz is
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.
Vz = zT P(L + B)(−c1z − c0

2
∑

j=1
sgn(z). ∗ Fj

+c0
2
∑

j=1
ε(z). ∗ Fj − c0y(1)d − y(2)d )

− 1
γ

2
∑

j=1
F̃T

j P(L + B)F̃j

≤ −c1zTQz − 1
γ

2
∑

j=1
F̃T

j QF̃j − c0
2
∑

j=1
zT PΔsgn(z). ∗ Fj

+c0
2
∑

j=1
zT PAsgn(z). ∗ Fj − c0

2
∑

j=1
zT PBsgn(z). ∗ Fj

− 2
∑

j=1
zT P(L + B)(c0y(1)d + y(2)d ) + c0

2
∑

j=1
‖z‖‖P(L + B)‖‖F̃j‖

(11)

where sgn(z) = [sgn(z1) , . . . , sgn(zN)]
T .

By noting

c0

2

∑
j=1

zT PΔsgn(z). ∗ Fj = c0

2

∑
j=1

Fj

N

∑
i=1

piaik|zi| (12)

c0

2

∑
j=1

zT PAsgn(z). ∗ Fj ≤ c0

2

∑
j=1

Fj

N

∑
i=1

piaik|zi| (13)

c0

2

∑
j=1

zT PBsgn(z). ∗ Fj = c0

2

∑
j=1

Fj

N

∑
i=1

μi pi|zi| (14)

∣∣∣∣∣ 2

∑
j=1

zT P(L + B)(c0y(1)d + y(2)d )

∣∣∣∣∣ ≤ c0

2

∑
j=1

Fj

N

∑
i=1

μi pi|zi| (15)

2

∑
j=1

‖z‖‖P(L + B)‖‖F̃j‖ ≤ λmin(Q)‖z‖2 +
2

∑
j=1

ϕ2

2λmin(Q)
‖F̃j‖ (16)

we have .
Vz ≤ −c2‖z‖2 − γ∗‖F̃j‖ (17)

where c2 = λmin(Q)(c1 − c0), γ∗ = λmin(Q)

(
1
γ − ϕ2

2λ2
min(Q)

)
. It is easily verified that c2 > 0

and γ∗ > 0, therefore, it follows from (17) that lim
t→+∞

‖z‖ = 0 and hence lim
t→+∞

|qi,1 − yd(t)| = 0.

From the boundedness of Vz and ‖z‖, the boundedness of qi,1 and qi,2 are easily obtained.
This completes the proof.

Remark 3. As is seen, a two-order filter is designed to produce a signal qi,1 for each agent. Actually,
qi,1 is the estimate of yd, as seen in Lemma 2, and the agents no longer require estimating the matrix
P. Cooperating these two-order filters makes the use of traditional adaptive control techniques for
MAS be easy, and thus the unknown time-varying control coefficients for a MAS with a directed
graph can be dealt with.

3.2. Design of the Distributed Controller

In this section, cooperating with the filter (6), the distributed adaptive controller is
designed. The following error variables and change of coordinates are introduced

ei,1 =
1

ki(t)

(
xi,1 − qi,1 − σ(t)(x0

i,1 − q0
i,1)
)

(18)

ei,m =
1

ki(t)

(
xi,m − αi,m−1 − σ(t)x0

i,m

)
, m = 2 , . . . , n (19)
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with

σ(t) =

{
1
t2
s
(t − ts)

2, t < ts

0, t ≥ ts
(20)

where x0
i,j = xi,j(0), j = 1 , . . . , n, and q0

i,1 = qi,1(0), and ts can be any positive constant. Let
ts = 1 in this paper.

Then, the intermediate control signals αi,m and the distributed controller ui are deter-
mined as follows

αi,m = −λi,m
ei,m

1 − e2
i,m

, m = 1 , . . . , n − 1 (21)

ui = −λi,n
ei,n

1 − e2
i,n

(22)

where λi,m, 1 ≤ i ≤ N, 1 ≤ m ≤ n are the positive design parameters. It is easy to
verify that ei,m(0) = 0 for all 1 ≤ i ≤ N, 1 ≤ m ≤ n and ei,1(t) = xi,1(t) − qi,1(t) for
t ≥ ts, 1 ≤ i ≤ N. ki(t) are the constrained functions chosen by the designer and used as
prescriptive performance functions, satisfying 0 < k ≤ ki(t) ≤ k,

∣∣∣ .
ki(t)

∣∣∣ ≤ k′ with k, k and

k′ being positive constants.

Remark 4. Function σ(t) is constructed to attenuate the influence of the initial conditions, since it
makes ei,m(0) = 0 and therefore stable results can be achieved under all initial conditions using σ(t)
for transformation (20). It should also be noted that σ(t) of (20) is continuously differentiable and
.
σ(t) does not exist in the further design of the controller, which means that the designed intermediate
control signals and actual controller are smooth.

4. Stability Analysis

In this section, we will give the main results with the designed fully distributed
controller and present the stability analysis. The main results of this article are as follows.

Theorem 1. Consider the closed-loop system consisting of N uncertain agents as (1) satisfying
Assumptions 1–3, the intermediate control signals (21) and the distributed controller (22). Then,
we have the following properties:

(1) All the signals in the closed-loop system are globally bounded
(2) Prespecified tracking performance can be guaranteed, namely,|ei,1| < 1, for i = 1, 2 , . . . , N.
(3) The output of each agent ultimately satisfies|yi − yd| ≤ ki(t).

Proof (of Theorem 1). From (18), (19) and (21), we have

xi,1 = kiei,1 + qi,1 + σ(t)(x0
i,1 − q0

i,1) (23)

xi,m = kiei,m + αi,m−1(ei,m−1) + σ(t)x0
i,m, m = 2 , . . . , n (24)

It can be observed from (23) that xi,1 is continuous function of ei,1, qi,1 and σ(t), where
qi,1 and σ(t) are bounded time-varying functions. Thus, xi,1 can be rewritten as the form
of continuous function of ei,1 and t. Similar analysis can be made for xi,m. Therefore, we
obtain

.
ei,1 = 1

ki
( fi,1(xi,1) + gi,1(xi,1)xi,2 − qi,2 − .

σ(t)(x0
i,1 − q0

i,1)−
.
kiei,1 + di,1(t, xi,1)

= hi,1(t, ei,1, ei,2, υ̂i)
(25)

.
ei,m = 1

ki
( fi,m(xi,m) + gi,m(xi,m)xi,m+1 − ∂αi,m−1

∂ei,m−1
hi,m−1(t, ei,1 , . . . , ei,m)

− .
σ(t)x0

i,m −
.
kiei,m + di,m(t, xi,m))

= hi,m(t, ei,1 , . . . , ei,m+1)

(26)
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where ei,n+1 = 0, and hi,m(·), m = 1, 2 , . . . , n are some continuous functions. Defining
ei = [ei,1 , . . . , ei,n]

T and in view of (25) and (26), we obtain

.
ei = hi(t, ei) =

⎡⎢⎢⎢⎣
hi,1(t, ei,1)
hi,2(t, ei,1, ei,2)
...
hi,n(t, ei,1 , . . . , ei,n)

⎤⎥⎥⎥⎦ (27)

Let us define the open set:

Ωe = (−1, 1)× · · · × (−1, 1)︸ ︷︷ ︸
n−times

(28)

It is easily observed that ei(0) ∈ Ωe, i = 1, 2 , . . . , N. Additionally, hi,m(·),
m = 1, 2 , . . . , n are continuous with respect to all its variables, owing to the fact that
yd,

.
yd, σ(t), qi,1, ki(t), fi,m, gi,m, αi,m are all continuous differentiable functions. Therefore, it

follows from [32] that the conditions on hi,m(·) ensure the existence and uniqueness of a
maximal solution ηi(t) on the time interval [0, tmax), namely, ei(t) ∈ Ωe for t ∈ [0, tmax),
which implies

ei,m ∈ (−1, 1), f or ∀t ∈ [0, tmax) (29)

for i = 1 , . . . , N, and m = 1 , . . . , n.
In the following, we will prove that tmax = +∞ by seeking a contradiction. Suppose

that tmax < +∞; then the related analysis is performed as follows, and all of what follows
is based on t ∈ [0, tmax).

Step 1: Consider the following positive definite functions

Vi,1 =
1
2

log
1

1 − e2
i,1

(30)

Let ξi,1 = 1
1−e2

i,1
. It follows from (21), (24), (25) and (30) that the time derivative of Vi,1

is .
Vi,1 =

ξi,1
ki
( fi,1(xi,1) + gi,1(xi,1)(αi,1 + kiei,2 + σ(t)x0

i,2)+

−qi,2 − .
σ(t)(x0

i,1 − q0
i,1)−

.
kiei,1 + di,1(t, xi,1))

≤ 1
ki

gi,1(xi,1)αi,1ξi,1 + Fi,1(t)|ξi,1|
≤ −λi,1Ei,1ξ2

i,1 + Fi,1|ξi,1|

(31)

where Fi,1 = 1
ki
(| fi,1(xi,1)|+ |gi,1(xi,1)|

∣∣∣kiei,2 + σ(t)x0
i,2

∣∣∣+ |qi,2|+
∣∣∣ .
σ(t)(x0

i,1 − q0
i,1)
∣∣∣+ ∣∣∣ .

kiei,1

∣∣∣+
bi,1(xi,1)) and Ei,1 =

gi,1(xi,1)
ki

. Note that xi,1, ei,1 and ei,2 are bounded on Ωe because (23)

and (29), respectively. Utilizing the fact that ki(t),
.
ki(t), σ(t), qi,1, qi,2 are bounded and em-

ploying the extreme value theorem, owing to the continuity of fi,1(·), gi,1(·) and bi,1(·), we
arrive at

Ei,1 ≥ c1,1 > 0 (32)

c3,1 ≥ Fi,1 ≥ c2,1 ≥ 0 (33)

where c1,1, c2,1, and c3,1 are some unknown positive constants.
Then, substituting (32) and (33) into (31) yields

.
Vi,1 ≤ −λi,1c1,1ξ2

i,1 + c3,1|ξi,1| (34)

From (34), it follows that
.

Vi,1 is negative when |ξi,1| ≤ c3,1/λi,1c1,1 and subsequently
that

|ξi,1| ≤ ξ∗i,1 =
c3,1

λi,1c1,1
(35)
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which implies

|ei,1(t)| ≤ c4,1 = 1 − 1
ξ∗2

i,1
< 1 (36)

As a result, the control signal αi,1 is bounded. Moreover, invoking (24), we also can
conclude the boundedness of xi,2. Therefore, the time derivative of αi,1 is

.
αi,1 = −λi,1

.
ξ i,1 (37)

where ∣∣∣ .
ξ i,1

∣∣∣ ≤ (1+e2
i,1)

ki(1−e2
i,1)

2 (| fi,1(xi,1)|+
∣∣∣gi,1(xi,1)(kiei,2 + ρ(t)x0

i,2 + αi,1)
∣∣∣

+|qi,2|+
∣∣∣ .
σ(t)(x0

i,1 − q0
i,1)
∣∣∣+ ∣∣∣ .

kiei,1

∣∣∣+ bi,1(xi,1))
(38)

Noting (36) and using the same analysis as (33), it also easy to conclude the bounded-
ness of

.
ξ i,1, and hence

.
αi,1.

Step j (2 ≤ j ≤ n): Consider the following positive definite functions

Vi,j =
1
2

log
1

1 − e2
i,j

(39)

Let ξi,j =
1

1−e2
i,j

. In a similar fashion to that in the former step, by noting Assumption

1, it follows from (21), (24), (26) and (39) that the time derivative of Vi,j is

.
Vi,j =

ξi,j
ki
( fi,j(xi,j) + gi,j(xi,j)(αi,j + kiei,j+1 + σ(t)x0

i,j+1)

− .
αi,j−1 − .

σ(t)x0
i,j −

.
kiei,j + di,j(t, xi,j))

≤ 1
ki

gi,j(xi,j)αi,jξi,j + Fi,j
∣∣ξi,j

∣∣
≤ −λi,jEi,jξ

2
i,j + Fi,j

∣∣ξi,j
∣∣

(40)

where Fi,j =
1
ki
(
∣∣ fi,1(xi,j)

∣∣+ ∣∣gi,1(xi,j)
∣∣∣∣∣kiei,j+1 + σ(t)x0

i,j+1

∣∣∣+ ∣∣ .
αi,j−1

∣∣+ ∣∣∣ .
σ(t)x0

i,j

∣∣∣+ ∣∣∣ .
kiei,j

∣∣∣+
bi,j(xi,j)) and Ei,j =

πg
i,j
(xi,j)

2ki
. Noting that xi,m, m = 1, 2 , . . . , j are bounded on Ωe because

the boundedness of αi,m−1, ei,j and ei,j+1 are bounded on Ωe in view of (29). Utilizing the

fact that ki(t),
.
ki(t) are bounded and employing the extreme value theorem owing to the

continuity of fi,j(·), gi,j(·) and bi,j(·), we arrive at

Ei,j ≥ c1,j > 0 (41)

c3,j ≥ Fi,j ≥ c2,j ≥ 0 (42)

with c1,j, c2,j and c3,j being some unknown positive constants.
Then, substituting (41) and (42) into (40) yields

.
Vi,j ≤ −λi,jc1,jξ

2
i,j + c3,j

∣∣ξi,j
∣∣ (43)

From (43), it follows that
.

Vi,j is negative when
∣∣ξi,j

∣∣ ≤ c3,j/λi,jc1,j and subsequently
that ∣∣ξi,j

∣∣ ≤ ξ∗i,j =
c3,j

λi,jc1,j
(44)

which implies ∣∣ei,j(t)
∣∣ ≤ c4,j = 1 − 1

ξ∗2
i,j

< 1 (45)
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As a result, the control signal αi,j is bounded. Moreover, we also can conclude the
boundedness of xi,j+1 by noting (24). Finally, the time derivative of αi,j is

.
αi,j = −λi,j

.
ξ i,j (46)

where ∣∣∣ .
ξ i,j

∣∣∣ ≤ (1+e2
i,j)

ki(1−e2
i,j)

2 (
∣∣ fi,j(xi,j)

∣∣+ ∣∣∣gi,j(xi,j)(kiei,j+1 + σ(t)x0
i,j+1 + αi,j)

∣∣∣
+
∣∣∣ .
σ(t)x0

i,j

∣∣∣+ ∣∣∣ .
kiei,j

∣∣∣+ bi,j(xi,j))
(47)

Noting (45) and using the same analysis as (42), it also easy to conclude the bounded-
ness of

.
ξ i,j and hence

.
αi,j.

Step n: Consider the following Lyapunov functions

Vi,n =
1
2

log
1

1 − e2
i,n

(48)

Let ξi,n = 1
1−e2

i,n
. Similar as the former steps, we can have

.
Vi,n ≤ −λi,nc1,nξ2

i,n + c3,n|ξi,n| (49)

where c1,n and c3,n are some unknown positive constants. It follows from (49) that
.

Vi,n is
negative when |ξi,n| ≤ c3,n/λi,nc1,n and subsequently that

|ξi,n| ≤ ξ∗i,n =
c3,n

λi,nc1,n
(50)

which implies

|ei,n(t)| ≤ c4,n = 1 − 1
ξ∗2

i,n
< 1 (51)

As a result, the control signal αi,j is bounded. Moreover, we also can conclude the
boundedness of ui. Notice that (36), (45) and (51) imply that ei(t) ∈ Ω′

e, for
∀t ∈ [0, tmax), i = 1, 2 , . . . , N, where the set Ω′

e is nonempty and compact, defined as

Ω′
e = [−c4,1, c4,1]× [−c4,2, c4,2] · · · × [−c4,n, c4,n]

Owing to (36), (45) and (51) it is straightforward to verify that Ω′
e ⊂ Ωe. Therefore,

assuming tmax < +∞ dictates the existence of a time instant t′ ∈ [0, tmax), such that
ei(t′) /∈ Ω′

e, which is a clear contradiction. Therefore, tmax = +∞. Hence, all closed-loop
signals remain bounded and moreover ei(t) ∈ Ω′

e ⊂ Ωe, f or ∀t ≥ 0. Furthermore, from
(36) we conclude that

|ei,1(t)| ≤ c4,1 < 1 (52)

Then, for all t ≥ 0. In view of Lemma 2 and (52), we have

lim
t→+∞

|yi − yd| = lim
t→+∞

|qi,1 − yd + yi − qi,1|
≤ lim

t→+∞
|qi,1 − yd|+ lim

t→+∞
|yi − qi,1|

≤ lim
t→+∞

|kiei,1(t)|
≤ ki

(53)

This completes the proof.
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5. Simulation Study

Two examples will be given to demonstrate the effectiveness of the proposed dis-
tributed adaptive controller in this section, as follows.
Example 1. Consider the following multi-agent systems⎧⎨⎩

.
xi,1 = gi,1(xi,1)xi,2 + fi,1(t, xi,1),.
xi,2 = gi,2(xi,2)ui + fi,2(t, xi,2)
yi = xi,1, f or i = 1, 2, 3, 4

with the system functions chosen as follows: f1,1 = x2
1,1, g1,1 = 1 + x2

1,1, f1,2 = x1,1x1,2, g1,2 = 1,
f2,1 = x3

2,1 + 0.2 sin t, g2,1 = 1 + 0.1 cos x2,1, f2,2 = x2,1x2,2, g2,2 = 1, f3,1 = x3,1 sin x3,1,
g3,1 = 1, f3,2 = x3,1x3,2 + 0.1 sin t, g3,2 = 1, f4,1 = x4,1 + 0.8 + 0.2 sin t, g4,1 = 1,
f4,2 = x4,1x4,2 + 0.2 cos t, g4,2 = 1. The communication topology for these subsystems are
depicted in Figure 1.

dy

 

Figure 1. Communication topology for four subsystems.

The desired trajectory for the outputs of each subsystem is yd = sin t. The initial
conditions for each subsystems are set as: x1,1(0) = 0.5, x2,1(0) = −0.5, x3,1(0) = 0,
x4,1(0) = 0.1 and x1,2(0) = x2,2(0) = x3,2(0) = x4,2(0) = 0. Then, the intermediate control
signals are designed and the distributed controllers are designed as follows

αi,1 = −λi,1
ei,1

1 − e2
i,1

, i = 1, 2, 3, 4

ui = −λi,2
ei,2

1 − e2
i,2

, i = 1, 2, 3, 4

where their control parameters and functions are selected as: λ1,1 = 5, λ2,1 = 5, λ3,1 = 5,
λ4,1 = 4, λ1,2 = 10, λ2,2 = 20, λ3,2 = 10 and λ4,2 = 10, ki(t) = 3e−0.5t + 0.01 for i = 1, 2, 3, 4.
For the filters, the parameters are chosen as: c0 = 2 and c1 = 6. Then, the simulation results
are reported as Figures 2–4.

 

Figure 2. Tracking errors xi,1 − yd for 1 ≤ i ≤ 4.
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Figure 3. Outputs xi,1 for 1 ≤ i ≤ 4 and yd.

 

Figure 4. Distributed control inputs ui for 1 ≤ i ≤ 4.

It can be observed from Figures 2–4 that under the designed distributed controllers,
the outputs of the subsystems track the desired trajectory very quick, and the tracking
performance is satisfactory.

Example 2. Consider the consensus for four high-maneuver fighters, with communication topolo-
gies as in Figure 5 and their flight control systems as follows [33].⎧⎪⎨⎪⎩

.
Xi,1 = f1(Xi,1, Xi,3) + G1(Xi,1)Xi,2.
Xi,2 = f2(Xi) + G2ui.
Xi,3 = f3(Xi)

(54)

with

f1(Xi,1, Xi,3) =

⎡⎣ qi tan θi sin φi + ri tan θi cos φi
piβi + z0Δαi + (g0/Vi)(cos θi cos φi − cos θ0)
yββi + pi(sin α0 + Δαi) + (g0/Vi) cos θi sin φi

⎤⎦

G1(Xi,1) =

⎡⎣ 1 0 0
0 1 0
0 0 − cos α0

⎤⎦
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f2(Xi) =

⎡⎣ lββi + lp pi + lqqi + lrri + (lβαβi + lrαri)Δαi − i1qiri
mαΔαi + mqqi + i2 piri − m .

α(g0/Vi)(cos θi cos φi − cos θ0)
nββi + nrri + np pi + npα piΔαi − i3 piqi + nqqi

⎤⎦
G2 = [L, M, N]T

L = [lδel , lδer , lδal , lδar , 0, 0, lδr ]
T

M = [mδel , mδer , mδal , mδar , mδle f , mδte f , mδr ]
T

N = [nδel , nδer , nδal , nδar , 0, 0, nδr ]
T

f3(Xi) = qi cos φi − ri sin φi

where Xi =
(

XT
i,1, XT

i,2

)T
=(φi, αi, βi, pi, qi, ri, θi)

T are the roll angle, attack angle, sideslip angle, roll
angular velocity, pitching angular velocity, yaw angular velocity and pitch angle of fighter i, respectively.
yi = Xi,1 = [φi, αi, βi]

T Xi,2 = [pi, qi, ri]
T Xi,3 = θi. ui = [δiel , δier, δial , δiar, δile f , δite f , δir]

T are
the left and right elevators, left and right ailerons, front and rear flaps, and rudder, respectively.
Detailed explanations for the parameters and variables of this model can be found in [26]. Suppose
that they are all flying at an altitude of 40,000 feet, at a speed of 0.6 Mach. The desired output for
these fighters is yd = [yd,1, yd,2, yd,3]

T = [20, 30, 0]T. The signal yd is only available for fighter 1.

 

Figure 5. Communication topology for four fighters.

According to Theorem 1, we design the distributed flight controller as follows

ξi,1 = G−1
1 (Xi,1)diag

{
−λi,1

ei,φ

1−e2
i,φ

,−λi,1
ei,α

1−e2
i,α

,−λi,1
ei,β

1−e2
i,β

}
ui = G+

2 diag
{
−λi,2

ei,p

1−e2
i,p

,−λi,2
ei,q

1−e2
i,q

,−λi,2
ei,r

1−e2
i,r

}
with

ei,φ = φi − qd,1, ei,α = αi − qd,2, ei,β = βi − qd,3

[ei,p, ei,q, ei,r]
T = [pi, qi, ri]

T − ξi,1

where qd,1, qd,2 and qd,3 are the signals produced by filter (6) with yd,i, i = 1, 2, 3 being the
filter inputs, respectively. λi,1 = 1 and λi,2 = 2 for i = 1, 2, 3, 4, and G+

2 represents the
pseudo-inverse for G2.

For the purposes of comparison, we use the control method of [17] under the same
conditions. Following [17], the controller for the distributed flight controller is designed as
follows

ξi,1 = G−1
1 (Xi,1)diag

{−λi,1ei,φ,−λi,1ei,α,−λi,1ei,β
}

ui = G+
2 diag

{−λi,2ei,p,−λi,2ei,q,−λi,2ei,r
}

where the variables and controller parameters are the same as in our proposed methods.
The simulation results are then reported in Figures 6–10. In Figure 6, the dotted curves
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denote the outputs of fighters under the control of the method in [17], while the solid
curves denote the outputs of fighters under the control of method in this paper. It can be
seen from Figure 6 that our control performance is better than [17] since the outputs of ours
track the desired value more accurately. Figures 7–10 show the actions of actuators of four
fighters under our method. Figure 11 show the controller performance of our method and
that from [17]. In Figure 11, the blue curves denote the control efforts E1 of the fighters with
our method, while the red curves denote the control efforts E2 of Fighters in the method
from [17], where E1 and E2 are defined as

Ek =
√

δ2
iel + δ2

ier + δ2
ial + δ2

iar + δ2
ile f + δ2

ite f + δ2
ir

k = 1, 2 and i = 1, 2, 3, 4

Figure 6. Output of four fighters.

 

Figure 7. Actuator actions of Fighter 1.

It can be seen from Figure 11 that, initially, the control efforts of our method are greater
than those in [17], and finally, there is little difference in effort between these methods,
which means that the control performance of our method is better under similar control
efforts.

It can be seen from these results that the consensus between the four fighters is
achieved and the tracking performance is very good, while fairly good control performance
is achieved.
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Figure 8. Actuator actions of Fighter 2.

 

Figure 9. Actuator actions of Fighter 3.

 

Figure 10. Actuator actions of Fighter 4.
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Figure 11. Control efforts.

6. Conclusions

A novel distributed consensus method was presented for a MAS with completely
unknown system nonlinearities and time-varying control coefficients under a directed
graph. A two-order filter for each agent was constructed, providing the desired signals
and thus avoiding estimating the unknown matrix, which is related on a Laplace matrix.
Combined with these filters, a global consensus method was proposed for a MAS with
completely unknown system nonlinearities under a directed graph for the first time. The
proposed consensus method was applied to two examples. It was shown that four high-
maneuver fighters achieved angular consensus and had very good control performances
using the proposed method. The two simulation results demonstrated the effectiveness of
the proposed method.
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Abstract: The formation control technology of the unmanned aerial vehicle (UAV) swarm is a current
research hotspot, and formation switching and formation obstacle avoidance are vital technologies.
Aiming at the problem of formation control of fixed-wing UAVs in distributed ad hoc networks,
this paper proposed a route-based formation switching and obstacle avoidance method. First, the
consistency theory was used to design the UAV swarm formation control protocol. According to
the agreement, the self-organized UAV swarm could obtain the formation waypoint according to
the current position information, and then follow the corresponding rules to design the waypoint to
fly around and arrive at the formation waypoint at the same time to achieve formation switching.
Secondly, the formation of the obstacle avoidance channel was obtained by combining the geometric
method and an intelligent path search algorithm. Then, the UAV swarm was divided into multiple
smaller formations to achieve the formation obstacle avoidance. Finally, the abnormal conditions
during the flight were handled. The simulation results showed that the formation control technology
based on distributed ad hoc network was reliable and straightforward, easy to implement, robust
in versatility, and helpful to deal with the communication anomalies and flight anomalies with
variable topology.

Keywords: fixed-wing UAV; UAV swarm formation; distributed ad hoc network; consistency theory;
formation obstacle avoidance

1. Introduction

The fixed-wing UAV swarm has essential application prospects and has become a
current research hotspot. Completing combat missions such as coordinated reconnaissance,
early warning, strike, and evaluation in the military field; and realizing disaster emergency,
geological survey, and pesticide-spraying tasks in the civilian field [1–4]. Formation control
is one of the key issues to achieve UAV swarm flight [5,6]. Its primary con-tents include
formation maintenance, formation switching, formation obstacle avoidance, and exception
handling. The distributed wireless ad hoc network [7] is the core of realizing the cluster
unmanned system [8]. The formation control based on the distributed ad hoc network can
better reflect the distributed, networked, and centerless characteristics of the cluster system,
which is the future development trend of cluster control.

The formation control technology for UAV swarm behavior has been extensively
studied. Wang [9] proposed the leader–follower method. Its basic idea is that other UAVs
follow a leader UAV as followers. Luo et al. [10] and Gu et al. [11] also adopted the leader–
follower method to design a control method for the leader and followers in the formation.
CamPa et al. [12], based on the leader–follower method, proposed a virtual leader method.
Its main idea was to treat the formation of a multi-UAV formation as a rigid virtual structure.
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When the formation moved as a whole, the UAV only needed to track the movement of
the fixed point corresponding to the rigid body. Li and Liu [13] designed a synchronized
position tracking controller to improve the effectiveness of using a virtual structure method
to maintain formation geometry. Yun and Albayrak [14] applied behavior-control methods
to study the formation of multiplatform formations, such as linear formation and circular
formation. Chen and Luh [15] applied behavior-control methods to achieve the purpose of
object transportation. Ginlietti et al. [16] used behavior methods to define the concept of
the formation geometric center. When flying in formation, each aircraft needs to maintain a
prescribed distance from the geometric center, and be able to perceive the movements of
other aircraft and reconstruct the formation, similar to the behavior of migratory birds in
nature. Joongbo et al. [17] proposed a feedback linearization method based on consistency
for multi-UAV systems to maintain a specific time-varying formation flight geometry.
Glavas et al. [18] applied the consistency research strategy to study the situation when there
were random communication noise and information packet loss constraints in the network,
and used the polygon method based on information exchange to achieve formation control.
Yasuhiro and Toru [19] studied the cooperative control problem of multi-UAV systems, and
proposed a cooperative formation control strategy with collision-avoidance capability using
decentralized model predictive control (MPC) and consensus-based control. Zhao et al. [20]
studied the problem of formation control of multiaircraft formation with time-varying
formation characteristics when there was a spanning tree in the network topology based on
the consistency theory, and obtained the stability conditions of the system. Dong et al. [21]
designed a distributed formation controller based on the consistency theory, proving that
as long as the network topology was guaranteed to have directional strong connectivity,
even if the aircraft was lost during the formation flight, the multiaircraft system could still
achieve stable formation control. Seo et al. [22] designed a consistent control protocol for the
situation in which the network topology had fixed connectivity, and studied the problem of
cooperative formation control of multiaircraft systems forming geometric formations. Tang
et al. [23] used evolutionary control theory to complete distributed collaborative control of
UAV formations. He and Lu [24] proposed a decentralized design method based on a UAV
distributed-formation maintenance controller, decomposing the UAV formation model into
decoupled parts and associated parts using robust control methods, and improved the
distributed control method of the associated system designs of the controller to control the
UAV formation flying. However, most of the research content was based on the formation
controller design coupled with the UAV’s underlying control system. It was assumed that
the UAV had a three-channel autopilot and had the ability of instantaneous response [25].
These assumptions made it difficult to apply the formation algorithm to an actual UAV
swarm control. Furthermore, the research content was insufficient in the control algorithm
of real flight environments such as network topology jump, communication delay, and
even weak communication.

Based on the consistency theory, this paper proposes a method for formation switching
and obstacle avoidance based on waypoint planning for the problem of formation control
of a fixed-wing UAV swarm in a distributed ad hoc networks. The organizational structure
of the paper is as follows. The first part gives a general description of the problem of
a fixed-wing UAV swarm formation in a distributed ad hoc network; the second part
proposes a method for switching the formation of the UAV swarm based on the consistency
theory; the third part designs a UAV swarm formation obstacle avoidance algorithm; the
fourth part deals with the problems of flight abnormality and communication abnormality
of the UAV swarm during the flight; the fifth part simulates and verifies the formation
switching of the UAV swarm, the formation obstacle avoidance, and handling of anomalies
during the flight; the sixth part analyzes and discusses the results; and finally, the seventh
part summarizes the article.
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2. Problem Formulation

This paper focuses on two critical problems of formation switching and formation
obstacle avoidance in a distributed ad hoc network for UAV swarm formation control.

Definition 1. Formation switch in distributed ad hoc network.

For n UAV, given an initial position Xi(0) of UAVi, a UAV swarm forms a com-
munication topology in the ad hoc network (as shown in Figure 1). Plan the waypoint
Pi = {Pi1, · · · , Pik, · · · } of the UAVi under the dynamic constraints of the maximum turning
angle constraint βmax and minimum route length constraint ds, so that the distance between
UAVi and other UAVs reaches the expected value ΔXjire f within the time T:∣∣∣Xj(t)− Xi(t)− ΔXjire f

∣∣∣→ 0 i = 1, 2, · · · , n (1)

Figure 1. UAV swarm formation problem.

Definition 2. Formation obstacle avoidance in distributed ad hoc network.

For n UAV, given an initial position X of UAVi, intelligently split the UAV swarm
into Nc formation; the number of UAVs in the pth subformation is Np. Plan the waypoint
Pi = {Pi1, · · · , Pik, · · · } of the UAVi under the dynamic constraints of the maximum turning
angle βmax and the minimum direct flying distance ds, so that the UAVs will not collide
through the rectangular obstacle avoidance area S containing the circular obstacle O, and
the distance between UAVi the and other UAVs will eventually reach the expected value
ΔXjiref ; namely, reconstructed into the required formation.

Where n =
Nc
∑

p=1
Np, O is a collection of obstacles, and O = {o1, o2, · · · , ooN}, oN is the

number of obstacles, each obstacle om can be described as a dyadic array < Rom, Rm >; Rom
is the center point of the mth circle; Rm is the radius of the mth circle; S is the rectangular
obstacle avoidance area described as a ternary array < So, L, W >, where So is the center
point of the rectangular obstacle avoidance area; L is the length of the rectangle; and W is
the width of the rectangle.

A reasonable formation-switching control method requires that the UAV can perform
online formation switching based on the neighboring UAV information, and can meet the
UAV dynamic constraints and can handle communication delays and flight anomalies,
eliminating track deviation. Formation obstacle avoidance requires that a UAV swarm
can effectively avoid obstacles, and can form a desired formation after the avoidance is
completed. The UAV studied in this paper was a highly dynamic fixed-wing UAV with a
uniform speed. The dynamic constraints were required to satisfy the minimum turning
radius constraints and minimum track length constraints. The research space of this paper
was the two-dimensional Euclidean horizontal plane.
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3. Waypoint-Based Formation-Switching Method

The UAV studied in this paper was a highly dynamic fixed-wing UAV. Due to its high
speed, it was difficult for the control system to update flight parameters in real time, and the
errors were relatively large. Therefore, this article mainly considered the waypoint-based
formation switching, and the online design of a small number of waypoints to complete
the flight process of the UAV swarm formation, without the need to participate and change
the design of the aircraft control system.

3.1. Consensus-Based Design for UAV Swarm Formation Control Protocol

The algebraic graph theory was used to describe the UAV swarm system and its
behavior. Assume that the ad hoc network UAV swarm system has n UAVs, and each UAV is
regarded as a node, then the communication relationship is seen as an edge. An undirected
graph G = (V, E, A) represents the UAV swarm system, where V = {s1, s2, · · · , sn} is a
collection of nodes, E =

{
(si, sj) ∈ s × s, i �= j

}
is a collection of edges, and A = [aij]n×n

represents an adjacency matrix with weights. The edge of the graph is indicated by
eij = (si, sj). For an undirected graph, UAVi and UAVj can receive the information sent by
each other, namely (si, sj) ∈ E ⇔ (sj, si) ∈ E . The adjacency matrix is defined as aii = 0,
and aij = aji ≥ 0, when eij ∈ E, aij > 0. The neighbor set of the node si is defined as
Ni =

{
si ∈ V

∣∣(si, sj) ∈ E
}

.
An undirected graph Gn was used to describe the communication topology relation-

ship in the UAV swarm. At each moment t, the communication connection between the ad
hoc network and UAV swarm forms a communication topology. For the vertex i of graph G,
let xi(t) ∈ Rq and ui(t) ∈ Rq denote the state variable and state information input variable
of the UAV swarm, respectively, at the time t. The classic first-order continuous-time
consistency protocol [26] is:

.
xi(t) = ui(t) i = 1, 2, · · · , n (2)

ui(t) = −
n

∑
j=1

aij(t)
(
xi(t)− xj(t)

)
(3)

For any UAVi, the initial state is x(0) ∈ RP, when t → ∞ , there is
∣∣xi(t)− xj(t)

∣∣→ 0 ,
which is called the state of UAV swarm system reaching consensus.

In this paper, the consensus algorithm needed to be applied to the formation switching
of the UAV swarm. The distance between UAVs needed to reach the expected value
eventually. Therefore, to improve the classic first-order consistency protocol, the first-order
consistency protocol with reference location information was proposed, and the specific
form was as follows:

.
xi(t) = ui(t) =

m
∑

j=1
(aij(t)[(Xj(t)− Xi(t))− Xjiref ])

m
∑

j=1
aij(t)

i = 1, 2, · · · , n (4)

where Xjiref is the expected formation relative distance between UAVj and UAVi.

3.2. Consensus-Based Waypoints Planning
3.2.1. Formation Waypoints

The UAV speed studied in this paper was constant, and the UAV swarm formation was
controlled based on the route. Therefore, the consistency control protocol in Equation (4)
needed to be discretized. First, the communication time of the UAV swarm was discretized,
then the position status of each UAV was updated in real time according to the difference
equation, and the discrete consistency control protocol can be given by:

Xi[k + 1] = Xi[k] + ΔXi[k] + D (5)
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ΔXi[k] =

m
∑

j=1
(aij[k]((Xj[k]− Xi[k])− Xjire f ))

m
∑

j=1
aij[k]

(6)

where k represents a communication event, which is a formation process of the UAV swarm
formation waypoint; D is the distance required to switch the formation, and is selected
according to actual needs; Xj[k] and Xi[k] are the position status of the UAVj and UAVi at
time k, also called formation waypoint; aij[k] ∈ R × R is the adjacency weight matrix of the
communication topology, and its elements are defined as:

aij =

{
1

(
vj, vi

) ∈ E
0

(
vj, vi

)
/∈ E

(7)

The undirected graph in this article did not allow self-loops, so aij = 0.
During the flight, UAVi established a communication connection with other UAVs in

the ad hoc network, forming a formation waypoint Xi[k] within each communication event
k according to Equations (5) and (6).

According to the consistency theory, it can be proved that for any UAVi with an initial
value Xi[0] ∈ RP, the time-varying communication topology union is fully connected

in a formation transformation [27], namely
Nk
∑

k=0
aij[k] > 0 (i �= j), when k → Nk , there is∣∣∣ΔXji[k]− ΔXjiref [k]

∣∣∣→ 0 ; that is, the relative distance between the UAV swarm reached the
desired value, and the formation switch was realized. If the initial state of the communica-
tion topology aij[0] was full connectivity; namely, the communication was in the normal
state, the formation fly could be achieved as the expected formation when k = 0.

3.2.2. Flying to Formation Waypoint in Consistent Time

Once the formation waypoints were obtained, only local waypoints from the current
position of the UAVi to its formation waypoint needed to be designed so that the flight time
of each UAV was equal. In this section, a distributed UAV swarm flying method based on
time consistency is proposed, and local waypoints are designed under dynamic constraints
to achieve UAV swarm formation switching when flying at a constant speed.

(1) Dynamic constraints

Maximum turning angle constraint: when the UAV turns according to the waypoint,
the turning angle β (as shown in Figure 2) needs to be lower than the maximum turning
angle βmax:

β ≤ βmax (8)

 

Figure 2. Dynamic constraints.

Minimum route length constraint [28]: assuming that the UAV was flying under the
available overload at the turn, the turning radius R was a fixed value. As shown in Figure 2,
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the turning angle of the UAV in this section of the route was β. For the UAV to make two
consecutive turns, the route of this section needed to be lower than the minimum track
length constraint ds:

ds = 2 × R × tan
β

2
(9)

(2) Waypoint design

When a UAV flew to formation waypoint, we first took the UAV that was going to fly
the longest path as the time base, and then planned for other UAVs to fly around in the
horizontal plane so that the final time to reach the formation waypoint was consistent.

The longest path Cmax is:

Cmax = max(Ci) + dy (10)

where dy is the vertical flight distance margin to ensure that the vertical distance meets
the constraint of the minimum route length ds. The turning angle of this method is a fixed
value β = 90◦, so we set dy = 2× ds = 4× R, Ci as the route distance that the UAVi needed
to fly:

Ci = Δxi + Δyi + Δti × V (11)

where Δxi and Δyi are the horizontal distance and vertical distance of UAVi from the
current position to the formation waypoint; V is the flight speed of the UAV; and Δti is
the waiting time of UAVi, which can be selected according to the actual project. If it was a
formation switch scenario, Δti = 0. If it was a formation assembly scenario, Δti was the
launch interval of UAVi from the first UAV.

The dynamic constraints of the flight plan needed to consider the maximum turning
angle constraint and the minimum route length constraint. The flight project was divided
into the following sections:

As shown in Figure 3, the flight project was composed of four right-angle turning
sections. The solid line is the planned route, which was sections 1©, 2©, 3©, 4©, and 5©. The
dashed line is the actual flight route considering the UAV turning process. The solid point
is the UAV waypoint. To make the flying distance the same, the length of the distances of
1©, 2©, 3©, 4©, and 5© were designed as:

 

Figure 3. Dynamic constraints.

⎧⎨⎩
L1x,i = L5x,i = r
L3x,i = Δxi − 4 × r
L2y,i = L4y,i =

Cmax−Δxi−Δyi
2

(12)
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where L1x,i, L3x,i, and L5x,i are the horizontal distances of UAVi in segments 1©, 3©, 5©; and
L2y,i, L4y,i are the vertical distances of UAVi in segments 2© and 4©, respectively.

The local waypoints of the UAVi could be calculated according to the starting waypoint
and the distance lengths of 1©, 2©, 3©, 4©, and 5©:⎧⎪⎪⎨⎪⎪⎩

Pi1(xi1, yi1) = Pi0(xi0 + L1x,i, yi0)
Pi2(xi2, yi2) = Pi1(xi1, yi1 + L2y,i)
Pi3(xi3, yi3) = Pi2(xi2 + L3x,i, yi2)
Pi4(xi4, yi4) = Pi3(xi3, yi3 − L4y,i)

(13)

At this point, all local route points could be obtained. The UAVs could arrive at the
formation waypoints at the same time, thus forming the expected formation.

In this section, a waypoint-based distributed ad hoc network formation-switching
control method, derived from the consistency theory, only needed to obtain the formation
waypoint from the position information of the UAVs, and then plan the local waypoint from
the current waypoint to the formation waypoint under dynamic constraints. The UAV only
needed to reach the online planned waypoint under the control of its flight control system. It
did not need to call the UAV’s control system to track flight parameters in real time, and only
required the design of four local waypoints. This method has a small amount of calculation,
is practical and straightforward, and is conducive to implementation in engineering. It can
also realize dynamic formation control of UAVs when some communication networks are
lost and the topology structure changes.

4. Waypoint-Based Formation Obstacle Avoidance Algorithm

The traditional formation obstacle avoidance method uses an artificial potential field
method for obstacle avoidance or an intelligent algorithm to search for waypoints. Still,
considering the real-time nature of obstacle avoidance and engineering applications, the
artificial potential field method needs to participate in the design of the control system.
When facing a high-dynamics UAV, it is challenging to update flight parameters in real
time, as it presents significant errors and low reliability. Using the intelligent algorithm to
plan trajectories, if high precision is required, planning the trajectory of a single UAV is still
too slow, and if there are many planned waypoints, it cannot meet the dynamic constraints
of the UAV.

In this paper, the intelligent path search algorithm was used to search for obstacle
avoidance channels through which UAVs could pass, and the UAV swarm was divided
into multiple smaller formations according to the number of UAVs that could pass through
the avoidance channel.

4.1. Consensus-Based Design for UAV Swarm Formation Control Protocol

Obstacle-avoidance principles include the A* algorithm and the smallest enclosing
convex polygon of a set of points (SECP) decision principle.

(1) A* algorithm

The A* algorithm [29,30] is the most effective direct search method for solving the
shortest path in a static road network. We only needed to search for the formation channel
between the obstacle circles, and there was no need to search for high-precision track points,
so we could use the traditional A* algorithm:

f (o) = g(o) + h(o) (14)

where f (n) is the cost estimate from the initial state to the target state via state n; g(n) is
the actual cost from the initial state to state n in the state space; and h(n) is the estimated
cost of the best path from state to the target state. The shortest path could be determined
by searching from the starting point according to the valuation function in Equation (14) to
the ending point.

43



Appl. Sci. 2022, 12, 535

(2) SECP determination method

Given a plane point set A = {(xi, yi)|xi, yi ∈ R}, we determined the smallest enclosing
convex polygon of a set of points Ai (SECP): we connected the points two by two to form a
line segment set S =

{
(Ai, Aj)

∣∣Ai, Aj ∈ A, i �= j
}

. If all the other line segments were on the
side of the line where a line segment Sconvex was located, then the line segment Sconvex where
this line (e.g., the dotted line in Figure 4) lay was a side of the required convex polygon
SECP.

Figure 4. Determination method.

4.2. Formation Obstacle Avoidance Algorithm

To obtain multiple formation passage paths, firstly, it was necessary to determine the
entry points and the exit points according to the SECP determination method; secondly,
to determine the formation obstacle avoidance path in combination with the A* search
method; and finally, to determine the obstacle avoidance waypoint of the UAV swarm. The
algorithm flow is shown in Figure 5; the specific steps were as follows:

 

Figure 5. Principle flow chart of obstacle avoidance algorithm.

Step 1. Determine entry and exit points.
As shown in Figure 6, we connected the center points of circles two by two to get

the connecting line set CirSeg ={CirSegmentk|k = 1, 2 · · · , Nk}, and obtained the entry and
exit line segments according to the SECP determination method, and further obtained the
in-point set EnPoint and the out-point set ExPoint. The specific process of the algorithm
was as follows Algorithm 1:
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Figure 6. Determination of entry and exit points.

Algorithm 1. Get the entry points and exit points

Input: O: Obstacle collection S: Obstacle avoidance area

Output: ExPoint =
{

ExitPointj

∣∣∣j = 1, 2 · · ·
}

EnPoint = {EntryPointi|i = 1, 2 · · · }
1: CirSeg← connect the two-point in Ro = {Rom|m = 1, · · · , n}
2: MidLine← connect the maximum and minimum of point Rom in y-direction
3: for k = 1 to Nk do

4: CirLinek←CirSegmentk
5: if {CirSeg − CirSegmentk} in the same side of CirLinek then

6: CirSegmentk ∈ SCEP (e.g., SCEP in Figure 6)
7: PathSegement← {CirSegmentk − CirSegmentk ∩ O}
8: if PathSegement on the left side of MidLine then

9: EnPoint← the middle point of PathSegement (e.g., A in Figure 6)
10: else ExPoint← the middle point of PathSegement (e.g., B in Figure 6)
11: end if

12: end if

13: end for

14: return EnPoint, ExPoint

Step 2. Determine formation avoidance path.
As shown in Figure 7, we combined the entry and exit points set EnPoint ExPoint

from Algorithm 1 and the processed channel segment CirSeg (e.g., M in Figure 7) to find
the obstacle avoidance path set AvoidPath with the A* method. The specific process of the
algorithm was as follows Algorithm 2:

 

Figure 7. Determination of the formation avoidance path.
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Algorithm 2. Get the avoidance path

Input: O, S, ExPoint, EnPoint
Output: AvoidPath =

{
AvoidPath(i→j),q

∣∣∣q = 1, 2, · · · , Nq
}

1: for k = 1 to Nk do

2: if CirSegmentk ∩ O then erase CirSegmentk
3: else if CirSegmentk ∩ {CirSeg − CirSegmentk} then erase CirSegmentk
4: end if

5: end for

6: use O and S initialize A* map
7: for i = 1 to Ni do

8: for j = 1 to Nj do

9: search Pathi→j from EntryPointi to ExitPointj by A* (e.g., S in Figure 7)
10: for k = 1 to Nk do

11: if Pathi→j ∩ CirSegmentk then

12: Pathsegement← {Csegmentk − Csegmentk ∩ O}
13: AvoidPath(i→j),q← the middle point of Pathsegement
14: end if

15: end for

16: end for

17: end for

18: return AvoidPath (e.g., the blue line in Figure 7)

Step 3. Determining the UAV formation obstacle avoidance waypoint.
As shown in Figure 8, we extended AvoidPath to the boundary of the obstacle avoid-

ance area (e.g., P in Figure 8), deleted the formation obstacle avoidance path that did not
meet the UAV dynamic constraints, and calculated the number of UAVs that the path of
the ith entry point could pass through:

Figure 8. Determining the UAV formation obstacle avoidance waypoint.

ni→j = min(
⌊

ω × L(i→j),q − 2 × dsa f e

d

⌋
+ 1) q = 1, 2, · · · , Nq (15)⎧⎪⎪⎨⎪⎪⎩

ni = maxni→j j = 1, 2, · · · , Nj
jmax= argmax(ni)

Npass =
Ni
∑

i=1
ni

(16)

where d is the vertical interval distance of the UAV, dsa f e is the safe distance of the UAV,
L(i→j),q is the length of the qth formation channel segment from the ith formation path to
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jth formation path, nj is the number of UAV that can be passed by the jth formation path,
ω is the scaling scale, and 0 < ω ≤ 1 is to adjust the number of UAVs through the channels.

Then, we calculated the obstacle avoidance waypoint PathPoint of UAVi based on
AvoidPath obtained from ni and Algorithm 2; the specific process was as follows
Algorithm 3:

Algorithm 3. Get fly path point

Input: O, S, X(0), AvoidPath, v
Output: PathPoint = {PathPointuavi|uavi = 1, · · · , N}
1: extent AvoidPathi→j to S ’s boundary (e.g., P in Figure 8)
2: if AvoidPathi→j do not satisfy constraints Rres and ds then erase
3: end if

4: calculate ni by Equation (15)
5: CirLinek←CirSegmentk
6: split UAV swarm into Ni sub-forms
7: PathPoint← calculate PathPointuavi based AvoidPath(i→jmax),q
8: if Npass ≤ N then

9: PathPoint←{
N − Npass

}
UAV fly around the obstacle area

10: end if

11: for uavi = 1 to N
12: Tuavi = |PathPointuavi|/v
13: end for

14: PathPoint← use formation conversion algorithm with Tuavi and PathPoint
15: return PathPoint

5. Handling Exceptions

This paper dealt with two kinds of abnormal situations: flight abnormity and com-
munication abnormalities during the formation flight of distributed ad hoc network UAV
swarm. The processing methods of each category were shown in Figure 9, and the detailed
processing methods were shown below.

Figure 9. Handling exceptions.

5.1. Flight Abnormity

For the abnormal situation in which the tracking error was too large, the above-
mentioned distributed ad hoc network online formation switch algorithm could be used
for dynamic adjustment, and had the characteristics of not being related to the initial
position of the UAV. In response to the falling of the UAV during the flight, the remaining
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UAVs switched formation online using the formation switch algorithm; that is, formation
reconstruction.

5.2. Communication Abnormalities

Communication abnormalities mainly considered three situations. First, the excessive
communication delay included two cases, which were the entire UAV swarm’s delay and
some members’ delay of the UAV swarm. Second, the communication was completely
disconnected; that is, the other UAV communication links in the UAV swarm were com-
pletely disconnected and could not be restored. Third, the communication was partially
interrupted; that is, the UAV communication link of other parts of the UAV swarm was
temporarily disconnected, and it could be restored after some time.

If the communication of some UAVs was completely disconnected, this could be
regarded as the situation of UAV formation to reconstruct the formation. If there was a delay
in communication, the offset error could be eliminated according to the online formation-
switching algorithm. If the communication of some UAVs was temporarily interrupted,
multiple iterative formation flights could be performed based on the distributed ad hoc
network online formation-switching algorithm.

6. Simulation Analysis

In this paper, 12 UAVs were used for formation assembly, switching, and formation
flight simulation under abnormal flight and communication environments, and 8 UAVs
were used for formation obstacle avoidance simulation. In the simulation experiment, the
algorithm was programmed in the C++ language, the platform tool was Microsoft Visual
Studio 2016, and the hardware environment was a PC with an inter-core i5-4210 CPU,
2.60 GHz dual-core processor, and 8 GB memory.

6.1. Formation Assembly and Formation Switching

The 12 UAVs took off in succession. After each UAV passed the assembly point A,
the formation-switching algorithm began to take over the UAV, planning the trajectory of
the UAV; the formation was assembled into an inverted V-shape; and then the formation-
switching algorithm was enabled again to change the swarm into a V-shaped formation, as
shown in Figure 10. The simulation parameters that had to be set are shown in Table 1. The
simulation results of formation assembly and formation switching in the horizontal plane
are shown in Figures 11 and 12.

Figure 10. UAV swarm formation assembly and formation switching.
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Table 1. Simulation parameters.

UAV Swarm Attributes Parameter Value

Number of UAVs n 12
Launch interval 5 s
UAV speed V 30 m/s

Maximum turning angle constraint βmax 90◦
Turning radius R 300 m

Minimum track length constraint ds 600 m
Assembly point A (0 m, 2000 m)

Communication topology Fully Connected
Assembled formation Inverted V-Shape

Switch formation V-Shape
Formation interval in x direction 100 m

Half vertex angle of V-shaped 45◦
Formation-switching distance D Adaptive (met the minimum switching distance)

Figure 11. Formation assembly and formation switching.

Figure 12. Assembly formation and switch formation.

The assembly formation was V-shaped, the formation switching was changed from
V-shaped to column formation, the vertical formation interval in the y-direction was 100 m,
and other parameters remain unchanged. The simulation is shown in Figures 13 and 14.
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Figure 13. Formation assembly and formation switching—scene 2.

Figure 14. Assembly formation and switch formation—scene 2.

It can be seen in Figures 12 and 14 that when the communication topology of UAV
swarm was fully connected, formation aggregation and formation switching could make
the distance between each UAV meet the desired requirements after a formation interval
correction; namely, the communication event was k = 0. If the communication topology
was partially interrupted, the formation interval had to be corrected again. This method
could simply and quickly converge to the final expected formation interval value. It can
be seen in Figures 11 and 13 that this formation method could quickly plan the route
to the formation waypoints under the constraints of the UAV dynamics, and has a high
engineering application value.

6.2. Formation Obstacle Avoidance

The obstacle avoidance area was rectangular, and the relevant parameters are shown
in Table 2. Eight UAVs formed a column formation to enter the obstacle avoidance area.
The obstacle information is shown in Table 3. The initial position information of UAVs
is shown in Table 4. The maximum turning angle constraint was 90◦, and the minimum
direct flight distance constraint was calculated according to Equation (9). The UAV swarm
passed through the obstacle and was reconstructed into a V-shape. Other parameters of
UAV swarm are shown in Table 1. The horizontal plane simulation results are shown
in Figure 15.
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Table 2. Obstacle avoidance area parameters.

Obstacle Avoidance Area Properties Parameter Value

Rectangle center point (7000 m, 5000 m)
Rectangular area length 10,000 m
Rectangular area width 10,000 m

Table 3. Obstacle parameters.

Obstacle Index X/m Y/m Radius/m

1 3000 7000 500
2 4000 3000 500
3 6500 5000 500
4 11,000 3000 900
5 11,000 6000 600

Table 4. Initial position of UAV.

UAV Index X/m Y/m

1 1000 3000
2 1000 6500
3 1000 3500
4 1000 6000
5 1000 4000
6 1000 5500
7 1000 4500
8 1000 5000

Figure 15. UAV formation obstacle avoidance.

We reset obstacles for simulation, and the obstacle information is shown in Table 5.
Other parameters remain unchanged; the horizontal plane simulation results are shown
in Figure 16.
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Table 5. Obstacle parameters—scene 2.

Obstacle Index X/m Y/m Radius/m

1 3000 5000 700
2 6000 14,000 1000
3 6500 5000 700
4 7000 8500 1300
5 11,000 4000 900

Figure 16. UAV formation obstacle avoidance—scene 2.

As can be seen in Figures 15 and 16, the UAV swarm could be intelligently divided
into multiple smaller formations to pass obstacles or fly around to avoid obstacles. Finally,
it could be reconstructed into the expected formation. The simulations showed that the
algorithm could quickly and flexibly plan the cooperative obstacle avoidance path and had
the ability of online formation to avoid obstacles.

6.3. Handle Exceptions
6.3.1. Flight Abnormity

Suppose the number of UAV swarm was 12, and the assembly formation was an
inverted V-shaped formation. After the formation assembly, four UAVs were randomly
dropped or lost. Then, the remaining eight UAVs were reconstructed into a column
formation. Other simulation parameters were still as shown in Table 1, and the simulation
results are shown in Figures 17 and 18:
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Figure 17. Formation reconstruction.

Figure 18. Formation reconstruction process.

It can be seen in Figures 17 and 18 that after the UAV flight abnormally fell, then the
required formation could be reconstructed according to this plan.

6.3.2. Communication Abnormity

In actual flight, the communication topology may be temporarily interrupted. At this
time, a communication event, k = 0, is insufficient to meet the expected formation, and
formation interval distance correction is required again.

In this simulation, a formation switch was performed from an inverted V-shape to
a V-shape. It was assumed that in the initial communication event, namely k = 0, the
communication failure rate reached 18%, and in the second communication event, namely
k = 1, the communication failure rate reached 9%. Other parameters were as shown in
Table 1, and the results are shown in Figures 19 and 20.
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Figure 19. Formation switch under abnormal communication.

Figure 20. Formation change process under abnormal communication.

It can be seen in Figures 19 and 20 that in the case in which some UAVs and other UAVs
were lost in the communication network, the first formation interval distance correction
could not obtain the desired formation. In the second correction, the communication
network still had local faults, but eventually formed the expected formation. So, the
formation-switching algorithm was effective in dealing with communication abnormity.

6.4. Simulation Comparison
6.4.1. Formation-Switching Method

The formation-switching control method proposed in this paper mainly dealt with the
communication abnormalities of the UAVs during the flight. Therefore, the classic consis-
tency control method [31], which could handle changes in the communication topology,
was selected to compare to illustrate the effectiveness of the algorithm.

We selected six UAVs for simulation, and used the simulation scenario in Section 6.3.2
to set the consistency control step to meet the minimum algorithm stability requirement,
which was 0.2 s. The simulation of the classical consistency control method is shown in
Figure 21, and the method proposed in this paper is shown in Figure 22.
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Figure 21. Formation switching of the classical consistency control method.

Figure 22. Formation switching.

The algorithm performance during the simulation process was recorded, as shown
in Table 6.

Table 6. Simulation comparison.

Method
Classical Consistency

Control Method
Proposed Method

Number of communication requests 200 times 2 times
Average solution time per

communication 125 ms 53 ms

Total running time of the algorithm 1521 ms 131 ms

The simulation results showed that when the step length was 0.5 s, in the case of
abnormal communication, the classic consistent formation control method needed to
communicate with neighboring UAVs 200 times before the formation could be changed
from an inverted V to a V-shape. The route-based formation-switching method proposed
in this paper only needed two communications to obtain the required formation waypoints,
which greatly reduced the pressure on the airborne communication system.
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In addition, the classic consensus algorithm obtained the coordinated route of the
UAV by controlling the deflection angle of the track. The average solution time per commu-
nication took a longer time, and required high control system performance, which could
not guarantee the real-time performance of online formation flying. The solution proposed
in this paper was time-consuming, and only required the UAV to perform direct flight
and turning maneuvers. It was easy to control during the flight and easy to implement in
engineering. However, the disadvantage was that the planned path distance was relatively
long.

6.4.2. Formation Obstacle Avoidance Method

The sparse A * algorithm [30] was selected and compared with the formation obstacle
avoidance algorithm proposed in this paper to illustrate the effectiveness of the algorithm.
The simulation scenario used scenario 2 as given in Section 6.2. The sparse A* simulation
results are shown in Figure 23.

Figure 23. The sparse A * algorithm for formation obstacle avoidance.

In order to analyze the complexity of the two algorithms, the number of UAVs in the
formation was increased successively, and the two algorithms were used to simulate the
formation obstacle avoidance simulation. The relationship between the algorithm running
time and the number of drones was obtained as shown in Figure 24.

Figure 24. The algorithm running time.
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We concluded from Figures 16 and 24 that the sparse A* algorithm was basically the
same as the obstacle avoidance path planned by the algorithm in this paper, but the running
time of the sparse A* algorithm was much longer than that of the algorithm in this paper,
and it doubled with the increase in the number of UAV formations. However, the obstacle
avoidance algorithm proposed in this paper based on geometry had a shorter running time
and did not change significantly with the increase in the number of UAVs. It could meet
online real-time trajectory planning, and has strong engineering applicability.

7. Conclusions

This paper proposed a method of fixed-wing UAV swarm formation control based
on distributed ad hoc networks. This method included the formation switching of UAVs,
formation obstacle avoidance, and handling of abnormal conditions during flight.

Simulation results showed that in formation switching, the ad hoc network, high-
dynamics, fixed-wing UAV could form formation switching only by position information.
The method was not sensitive to the initial position information of the UAV, which could
eliminate errors during flight, and handle temporarily interrupted communication topolo-
gies and UAV drop, as well as other abnormal flight situations. In formation obstacle
avoidance, the UAVs could be clustered into multiple subformations to pass through the
obstacle avoidance area, and could be reconstructed as required formation. The formation
technology was designed based on the waypoints, which was versatile, simple, and reliable,
and is easy to realize in engineering.

Compared with the classic consistent formation control algorithm and obstacle avoid-
ance algorithm, it was shown that the formation technology method proposed in this paper
had lower complexity and higher timeliness, and is suitable for online formation flying of
highly dynamic UAVs in an ad hoc network. However, the route planned by the method
did not consider optimality, and it was only suitable for high-speed and constant-speed
formation missions. For obstacle avoidance algorithms, the obstacle model is too simple,
and there may be scenarios for obstacle avoidance that are not covered by the algorithm.
Next, we will consider the optimal route planning problem and extend the algorithm to
three-dimensional flight scenes to increase its practicability.

8. Patents

Suo, W.B., Zhang, D., and Wang, M.Y. “A distributed unmanned aerial vehicle flying
around formation method based on time consistency”, C.N. Patent, 202010226440.4, issued
10 July 2020.

Zhang, D., Suo, W.B., and Wang, M.Y. “A distributed unmanned aerial vehicle dynamic
formation switching method based on waypoints”, C.N. Patent, 202010226439.1, issued 10
July 2020.
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Abstract: Aiming at the problem of UAV swarms with distributed subsets performing cooperative
reconnaissance-and-attack tasks on multi-targets in complex and uncertain combat scenarios, a
distributed grouping cooperative dynamic task assignment method is proposed based on extended
contract network protocol. The dynamic task assignment model for the UAV swarm with the topology
of distributed subsets is established considering multiple constraints such as task cooperation,
performing sequence, dynamic environment, communication topology, payload model, and UAV
capability. According to the characteristics of multi-participants and multi-tasks in the process of UAV
swarm executing tasks, the determination mechanism on cooperators and the selection mechanism of
sequential tasks are proposed, and then the contract network protocol is extended. On the basis of
the above, an event-triggered task assignment strategy for dynamic tasks is designed. The simulated
results show that the proposed method can achieve the cooperative dynamic assignment of the UAV
swarm to perform reconnaissance-and-attack tasks to multi-targets in complex and uncertain combat
scenarios, improve the adaptiveness of the swarm under the sudden circumstance, and realize the
optimization for task execution efficiency of the UAV swarm.

Keywords: swarm control; distributed swarm; dynamic task planning; task assignment; event-trigger

1. Introduction

The advances of intelligent autonomous systems have led UAV swarm technology and
its application to the current scientific research hotspot [1,2]. Cooperative task assignment
stands out as an essential component and a precondition of task accomplishment and
autonomous control of UAV swarm systems [3].

Cooperative task assignment is to assign a considerable number of different types of
subtasks and their order to each UAV in the swarm while meeting the task requirements
with UAV capabilities and the multiple constraints involved. In the past few decades,
there have been several main sorts of assignment algorithms for UAV swarm cooperative
task assignment: the heuristic algorithm and the market-based algorithm, for example [4].
Heuristic algorithms generally search a certain range of solution space in an acceptable time
by simulating natural phenomena to obtain feasible solutions to optimization problems.
Common methods include the genetic algorithm [5–8], the particle swarm optimization
algorithm [9], the ant colony algorithm [10,11], and the wolf swarm algorithm [12]. For
UAV swarms with distributed architecture, heuristic algorithms always need to obtain
global information. This process consumes lots of communication and computing resources
as well as time to achieve global consensus; it is not suitable to apply heuristic algorithms.
Compared with heuristic algorithms, market-based approaches (such as contract network
protocol), distinctively characterized by distributed computing of swarms, requires only
local information of the swarm and have the advantages of flexibility, robustness, and
high operation speed [13] and, hence, are more suitable for distributed UAV swarms.
Meanwhile, with strong scalability, market-based approaches can well handle cooperative
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task assignments with complex constraints such as limited communication [14] and time
windows [15] and have been applied to dynamic task assignments [16–18]. The algorithms
adopted are a part of the assignment approaches for the task assignment in complex and
changeable combat scenarios, which are usually modeled as constraints or objectives from
different perspectives.

The crucial topics to be investigated in this field include cooperative task assignment
with the trajectory coupled [19,20] as well as under dynamic resistant circumstances [21–23].
In [24], a scheme to assign tasks in UAV swarms based on the contract network protocol
(CNP) is presented, in which an A* algorithm is applied in flight path planning and path
length estimation with a no-fly zone and threat considered. Under this scheme, the coupling
between task assignment and flight path planning can be solved. However, their work does
not take into consideration either pop-up missions or UAV faults. A study [25] has proposed
a novel model for UAV coalition and an algorithm derived from basic geometry that
generates a path derived from the original Dubins curve for application in remote sensing
missions of fixed-wing UAVs. Another study [26] proposed an unmanned air vehicle (UAV)
swarm task and a resource dynamic assignment algorithm based on the task sequence
mechanism. By establishing a task sequence, each UAV strictly separates the necessary
task time and synchronization waiting time. For the newfound targets, each UAV quickly
determines its available time period. According to the available time and task resources, an
auction algorithm and a consensus algorithm are used to decompose the task assignment
into the initial distributed assignment phase and the swarm consensus phase to develop real-
time conflict-free task solutions for UAV swarms. However, their work does not take into
account the communication topology and time constraints. In [27], a CNP-based approach
to a multi-UAV task assignment is proposed, in which a flight path planning method based
on PH curves is combined with cooperative particle swarm optimization (PSO), cooperative
variables, and cooperative functions to achieve attack synchronization on certain targets.
Nevertheless, it does not take into account no-fly zones, threats, communication topology,
and time constraints in addition to the task reassignment in the case of UAV faults. On
the basis of this, [27,28] introduced local communication constraints with communication
distance and information hop times to determine whether other UAVs participate in the
local task assignment; however, it neglected the communication constraint caused by the
swarm specific topology, which is crucial for certain command structures so as to improve
operational effectiveness.

Compared with [21–28], the problem investigated in this paper is the dynamic task
assignment for the heterogeneous UAV swarm consisting of distributed subsets with
specific topology. In this paper, common constraints such as time windows, the UAV
capability model, as well as new constraints such as topology constraints are combined
to build the complex model of dynamic task assignment. The key contribution of this
paper is that it proposes a solution to rectify the problem of heterogeneous UAV swarm
cooperative dynamic task assignments with specific hierarchical communication topologies
and other multiple constraints. An extended-CNP-based distributed assignment approach
is proposed, along with distributed heterogeneous UAV swarm executing reconnaissance
and attack tasks as the main scenario. The swarm consists of several subsets. On the swarm
discovering new targets, it firstly assigns each target to subsets according to communication
topology, and then each subset assigns subtasks to the UAVs within the group. The modified
artificial potential field method is adopted to preplan the threat avoidance flight path, and
battlefield survivability and fuel consumption are introduced to describe the flight path’s
impact on the task assignment. Correspondingly, the consumption penalty and threat
penalty functions can be designed so as to solve the coupling between task assignment and
path planning. Meanwhile, constraints on time and cooperation are introduced to adjust
the task executing sequence.

The rest of paper is organized as follows. The description of distributed grouping
UAV swarm task assignment problem with multiple constraints is presented in Section 2.
In Section 3, combined with hierarchical communication topologies of the UAV swarm,
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the distributed assignment algorithm based on extended contract network protocol is
thoroughly addressed. In Section 4, the dynamic cooperative task assignment scheme
based on an event-trigger strategy is proposed. Section 5 demonstrates the approach’s
effectiveness, both in uncertain environments and with UAV failure, by numerical examples,
and the whole work is concluded in Section 6.

2. Problem Description

2.1. Mission Scenario Analysis

There are heterogeneous UAV swarms consisting of distributed subsets in the mis-
sion area. Each subset is composed of several reconnaissance UAVs, attack UAVs, and
reconnaissance-attack UAVs. The procedure of task assignment includes target allocation
and subtask assignment. The swarm accomplishes the initial assignment, and then the UAVs
cooperatively perform tasks. If a UAV discovers a new target, it relays the target information
to others within a limited range according to hierarchical communication topologies, which
triggers dynamic task assignment and then updates each UAV’s task sequence.

2.2. Hierarchical Communication Topology

The UAV swarm is divided into several distributed subsets. Communication exists
within each subset and among subsets, hence hierarchical communication topology is es-
tablished. In the application process, the swarm can cooperate to assign and complete tasks
through the two-layer mechanism of inter-group cooperation and intra-group coordination
based on hierarchical communication topology. The structure of the distributed subsets
adopted integrates the advantages of both centralized structure and fully distributed struc-
ture to realize “global centralization and local autonomy”, which avoids the problems of
low redundancy and the heavy central load of the fully centralized structure as well as
the disadvantages of high individual capability requirements, communication complexity,
and the command conflicts of the fully distributed structure. The structure conforms to the
actual combat scenario as well as the development status of UAV swarm technology and
will become more normalized and practical [29–32].

The algebraic graph theory is used to describe the internal interaction of the UAV
swarm system. Assume that the UAV swarm has N UAVs, and each UAV is regarded
as a node, then the communication relationship is seen as an edge. A directed graph
G = {V, E, W} which consists of the node set V = {v1,v2, . . . ,vN}, the edge set
E ⊆ {

(vi, vj) : vi, vj ∈ V, i �= j
}

and the adjacency matrix W = [wij] ∈ R
N×N , with non-

negative entries wij. The entries in W are defined with wij = 1 for (vi, vj) ∈ E and wij = 0
otherwise. In addition, wii = 0 for all i = 1, 2, · · · , N. The neighbor set of node vi is
described as Ni =

{
vj : (vi, vj) ∈ E

}
.

There is a top leader, Nm group leaders, and Nf followers in UAV swarms with
distributed subsets, as shown in Figure 1. Each subset i has Nfi followers. The top leader
is the highest leader node and leads the initial task assignment. The group leader, which
obtains information of each UAV in the subset, is the leader node of the subset, participates
in target allocation on behalf of the subset, and leads subtask assignment; the followers are
members of the subset and participate in subtask assignment and execution.

Each node is numbered in the UAV swarm, in which the top leader index is 1, the
indexes of group leaders are i = 2, . . . , Nm + 1, and the indices of followers are i = Nm + 2,
. . . , Nm + Nf + 1. The adjacency matrix W ∈ R

N×N has the following form:

W =

⎡⎣ 0 WTM 0
WMT WM0 WMF

0 WFM WF0

⎤⎦
N×N

(1)

where WMT ∈ R
Nm×1 and WTM ∈ R

1×Nm indicate the communication topology among
the top leader and group leaders, WM0 ∈ R

Nm×Nm expresses the communication topology
among group leaders, the communication topology among group leaders, and their follow-

63



Appl. Sci. 2022, 12, 2865

ers are denoted as WM0 ∈ R
Nm×Nm , while WF0 ∈ R

Nf ×Nf is denoted as the communication
topology among followers. Assuming that no direct communication exists between each
follower and the top leader, the followers of each subset only communicate within UAVs in
the subset:

WFM = diag
{

WFM1 , WFM2 , . . . , WFMNm
}

WMF = diag
{

WMF1 , WMF2 , . . . , WMFNm
}

WF0 = diag
{

WF1 , WF2 , . . . , WFNm
} (2)

where WFMi ∈ R
Nf i×1 and WMFi ∈ R

1×Nf i express the communication topology among
group leader and its followers in subset i, and WFi ∈ R

Nf i×Nf i is the topology among
followers in subset i.

 

Figure 1. The hierarchical communication topology of UAV swarms with a distributed group.

2.3. UAV and Payload Model

Denote UAV set V = {Vi| i = 1, 2, . . . , N}, in which any UAV Vi can be described as
a seven-element combination < Xi, hi, Ci, Pi, Fi, Di,max, Nvi,max >. Xi = (xi, yi, zi, vi, ϕi, ψi)
represents the kinetic parameters of UAV Vi, including position, velocity, flight path angle,
and flight heading angle; hi ∈ [0, 1] represents the survivability of UAV Vi, and hi = 0
indicates Vi is destroyed or has encountered faults and then completely loses its mission
capability; Ci = {Ci1, Ci2, . . . , CinCi} expresses indices of UAVs that communicate with
Vi; Pi =

{
Pi,scout, Pi,attack

}
is the executable task type of Vi, where Pi,scout ∈ {0, 1}, and

Pi,attack ∈ {0, 1} means reconnaissance capability and attack capability, respectively. When
the capability is available, the value is 1, otherwise 0; Fi is the fuel consumption rate per
unit air-range of Vi; Di,max is the maximum air-range; Nvi,max is the maximum number of
executable tasks of Vi.

The condition that a reconnaissance UAV discovers and confirms the threat or target is
that it is located in the detection area of the reconnaissance payload, as shown in Figure 2a.
Reference [33] gives the typical mathematic model of the detection area. The condition
that an attack UAV can strike a target is that the target is located in the available area of
the attack payload, as shown in Figure 2b. References [33,34] give the typical mathematic
model of the available area.
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Figure 2. (a) The detection area of reconnaissance payload; (b) the available area of attack payload.

2.4. Threat Model

Any threat can be described by a five-element combination < qo,i, Ro,i, Ra,i, po,i, Fo,i >,
where qo,i is the position vector of the threat Oi center, Ro.i is the no-fly zone radius of
threat Oi, and Ra.i is the impact radius of threat Oi. When a UAV flies into the no-fly zone,
it will be destroyed; when the UAV enters the impact area, it will be affected by the threat.
po,i ∈ [0, 1] expresses the estimation of threat impact. Fo,i ∈ {0, 1} indicates the detected
status flag of the target, where the value 0 means the target is undetected; otherwise, the
value is 1.

The estimation po,i(q) of the threat Oi impact on any point in space is denoted as

po,i(q) =

⎧⎪⎪⎨⎪⎪⎩
1 , 0 < ‖q − qo,i‖ < Ro,i

Ai(q, qo,i), Ro,i ≤ ‖q − qo,i‖ ≤ Ra,i

0 , ‖q − qo,i‖ > Ra,i

(3)

where Ai(q, qo,i) ∈ (0, 1), which is a function of the distance between the point and the
threat center, represents the effect evaluation within the threat range; for the convenience
of the study, Ai(q, qo,i) can be taken as a constant value. When the UAV approaches threat
Oi and enters the impact range, its survivability will decrease. We assume the survivability
of UAV Vj is hj and the survivability becomes h′ j under the impact of threat Oi, of which
the process can be expressed as

h′ j = hj · (1 − Ai) (4)

2.5. Dynamic Task Allocation Problem

We adopt a seven-element combination {V, Sg, T, O, Mt, R, C} to describe the dynamic
task assignment problem. V = {V1, V2, . . . , VN} is the set of UAVs and N represents the
number of UAVs in the swarm; Sg = {Sg1, Sg2, . . . , SgNG} is the set of subsets and NG
represents the number of UAV subsets in the swarm; T = {T1, T2, . . . , TNT} is the set of
targets, where NT is the number of targets; O = {O1, O2, . . . , ONobs} is the set of obstacles,
where Nobs is the number of obstacles; Mt = {Mt1, Mt2, . . . , Mt,Ntype} is the task type set
of each target, where Ntype is the number of the types. For the “Reconnaissance-Attack”
mission scenario, the task type set includes the reconnaissance and attack of two elements,
which can be expressed as Mt = {Scout, Attack}; R = {R1, R2, . . . , RNtype} is the set of the
maximum task values for the “Reconnaissance-Attack” mission scenario R = {RS, RA};
C is the set of multiple constraints, mainly including UAV capacity constraint, time win-
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dow constraint, sequential constraint, and cooperation constraint. These constraints are
described as follows:

Definition 1 (UAV capability constraints). The UAV capability constraints are mainly reflected
in three aspects: the maximum range, the executable task types, and the maximum number of
executable tasks.

(a) (The maximum range constraint) Assume that the initial state of UAV Vi is si0,
and the task sequence is Seqi = {si1, si2, . . . , si,Ns,i}, where Ns,i is the number of tasks to be
executed. From Section 2.3, the maximum range of UAV Vi is Di,max and the maximum
range constraint can be expressed as

Ns,i

∑
j=1

L(sij, si,j−1) ≤ Di,max (5)

where L(sij, si,j−1), which relates to task si,j−1 and task sij, represents the air-range from the
position of task si,j−1 to the position of task sij. That means the whole air-range couples
with the task sequence.

(b) (The executable task type constraint) In the process of the swarm cooperative task
execution, different sorts of UAVs perform different types of tasks. There is a mapping
between the UAV capability Pi =

{
Pi,scout, Pi,attack

}
and Mt = {Scout, Attack}, which can

be expressed as

Pi = {Pi,scout, Pi,attack} =

{ {1, ∗} → Scout
{∗, 1} → Attack

(6)

(c) (The task number constraint) The payload number and energy carried by UAVs
have limits; thus, it is necessary to restrict the maximum number of tasks performed by the
UAV. Assuming that the number of tasks assigned to UAV Vi is Nvt,i and the upper limit is
Nvi,max, the constraint is expressed as

Nvt,i ≤ Nvi,max (7)

Definition 2 (Sequence constraint). If there is a specific execution order between subtasks Taski
and Taskj, there is sequence constraint between Taski and Taskj. Reference [9] gives the concrete
model of sequence constraint.

Definition 3 (Time window constraint). The start time when task si,j in Seqi = {si1, si2, . . . ,
si,Ns,i} is performed by UAV Vi needs to be guaranteed to be in the time window tsi,j ∈ [tb,j, te,j],
where tb,j is the earliest start time and te,j is the latest one. The start time tsi,j has relations with the
last task and the preplanned flight path of the UAV. Suppose te,j−1 the time when UAV accomplishes
the last task and the preplanning air-range from si,j−1 to si,j, then the time window constraint can
be expressed as ⎧⎨⎩

tsi,j ≤ te,i

tsi,j = max
{

tb,i, te,j−1 +
Li
V

} (8)

Definition 4 (Cooperation constraint). For the process of several UAVs cooperatively performing
reconnaissance or attack task Taskj, the expected number of participants Npe,j is introduced, which
means that Taskj can be accomplished by Npe,j UAVs at most. The actual number of participants is
Np,j and has

0 ≤ Np,j ≤ Npe,j (9)
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Definition 5 (The dynamic task allocation problem). The objective is to find the best assignment.
To be more concise is to optimize the swarm’s reward Bs during the task execution, such that:

B̂s = max Bs(V, Sg, T, O, Mt, R)

= max
N
∑

i=1

Ns,i

∑
j=1

Bij(hi,est, Lij, ttaskj
)

subject to the constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ns,i

∑
j=1

L(sij, si,j−1) ≤ Di,max

Pi = {Pi,scout, Pi,attack} =

{ {1, ∗} → Scout
{∗, 1} → Attack

Nvt,i ≤ Nvi,max

tsi,j ≤ te,i

tsi,j = max
{

tb,i, te,j−1 +
Li
V

}
0 ≤ Np,j ≤ Npe,j

, ∀i ∈ V

where the value of Bij indicates the reward of UAV i performing the task j; the survivability
estimation is hi,est, which means more loss to the UAV performing the task; the air-range
performing Taskj is Lij; the start time of task j is ttaskj

.

Due to the objective function coupling with the process of contract net protocol, the
detailed expression is designed in Section 3.2, where the bidding function of the market
mechanism is introduced.

3. Task Assignment Algorithm Based on Extended CNP

This section designs a distributed dynamic task assignment algorithm based on ex-
tended contract network protocol. The core of contract net protocol (CNP) is to simulate the
“bid–win” market mechanism and realize the optimization of task assignment based on the
interaction of individuals. The classical CNP is not suitable for sequential task assignments
with multiple constraints under multiple rounds, which means that it needs extending
according to complex task constraints.

3.1. Distributed Multi-Constraint Dynamic Task Assignment Algorithm

The algorithm includes four steps: target information release, bidding scheme genera-
tion, bid winning authorization, and task execution. The process is shown in Figure 3. The
following describes the algorithm process in turn.

Step 1: Release the information of targets
Assume that the UAV detects a sudden target Tk and reports the target information to

the subset leader UAV Vi, which becomes the tendering UAV on behalf of the subset, and
sends a bidding invitation to each subset in the local communication network.

According to the hierarchical communication topology, the set of other subset lead-
ers interacting with Vi is Vp,i =

{
Vj
∣∣wij = wji = 1, j ∈ [2, 1 + Nm] ∪ j �= i

}
. Vp,i composes

the potential bidders of assignment for target Tk. Tendering UAV Vi releases tendering
information Ii to each UAV in set Vp,i, and Ii is expressed as

Ii = (Vi, Tk, {Taskk}, tnow, Hb) (10)

where Vi is the index of tendering UAV; Tk is the index of the sudden target; {Taskk} is
denoted as the subtask set of target Tk; tnow is the releasing time; Hb is the information state
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flag, of which value 0 means no relay, otherwise 1. The information structure of Taskk can
be denoted as:

Taskk =
{

Mt,k, qt,k, TimeBark, Rx,k, Npe,j, Thk

}
(11)

where Mt,k means task type; qt,k is the position coordinates; TimeBark = [tb,k, te,k] is the
time window; Rx,k is the maximum task value; Npe,j is the expected number of participants;
Thk is the negotiation threshold.

 

Figure 3. The process of task assignments based on extended CNP.

As attached information during the subtask Taskk assignment process, negotiation
threshold Thk is applied to preselect bidders from the potential bidder set

{
Vp,i

}
, reducing

the negotiation scale as well as the consumption of communication resources and improving
assignment efficiency. To adjust the threshold adaptively, the reward of subtask Taskk in
performing the subset to which UAV Vi belongs is selected as Thk. If the bidder’s bidding
value is greater than Thk, it indicates that the swarm efficiency will be optimized and
improved after Taskk is assigned to the bidder.

In the process of information release, different UAV groups with intersections of
local communication topologies may discover the same target, causing multiple bidding
UAVs to release information at the same time in their respective local communication
topologies, resulting in system conflict and resource waste. In order to avoid this problem,
it is necessary to ensure that different UAV subsets reach a consensus on tendering UAVs
and tendering information, which is realized by Algorithm 1.

In Algorithm 1, “StopCmd” means to abort the negotiation command, and the opera-
tion “.” represents the reference to elements in the information structure. For any UAV Vi in
the local communication topology, the tendering information related to subtask Taskk will
be released to its directly connected UAV if it is not empty and has not been transmitted
(Line 1–4). Meanwhile, the UAV can also receive the tendering information related to Taskk
transmitted by others directly connected with it (Line 6–11).
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Algorithm 1: Release tendering information and achieve information consensus.

1: if Ii is not empty
2: if Ii.Hb = 0
3: broadcast Ii to

{
Vp,i

}
4: endif
5: endif
6: forj = 1 to number of tendering Taskk invitation received
7: if Ii.Taskk.Thk < Ij.Taskk.Thk
8: Ii = Ij

9: broadcast StopCmd to
{

Vp,i

}
−
{

Vp,j

}
10: endif
11: endfor

If UAV Vi finds that the negotiation threshold of UAV Vj about Taskk is greater, Vi saves
the tendering information Ij and issues commands to other UAV groups interacted with Vi
but not interacted with Vj to stop the negotiation so as to make them exit the assignment
dominated by UAV Vj.

After Step 1, the tendering information released in the local communication network
achieves consensus, that is Ii = Ij.

Step 2: Generate bidding scheme
On the basis of the target information and various constraints, each potential bidder

first determines the bidding scheme for the target of the group, including whether the
subset participates in the bidding for target Tk, subtasks that can be performed and the
corresponding UAVs, and the reward for performing each subtask, and so forth.

Through the contract network in subsets, each subtask of target Tk is preassigned to
form the bidding scheme for target Tk. The specific process is as follows:

1© A subset leader UAV Vj releases subtask information to each follower UAV. In order
to improve the assignment efficiency and shorten the time, the task concurrency mechanism
is introduced to publish the information of each subtask at the same time;

2© For subtask Taskk, the follower UAV Vm judges whether it has the corresponding
type of payload, whether the number of payloads can meet the task execution requirements,
and whether it meets the time window TimeBark according to the subtask information. If
any constraint is not satisfied, UAV Vm will not bid for subtask Taskk;

3© If the above constraints are met, UAV Vm preplans the flight path of Taskk based on
the modified artificial potential field (MAP) method and substitutes the preplanned range
Lmk and survivability estimation hm,est into the individual bidding function to calculate the
bidding value Bmk;

4© Compare the bidding value Bmk with the subtask negotiation threshold Thk. If
Bmk < Thk, it means that the system efficiency has not been improved when UAV Vm is
used to perform subtask Taskk, and Vm actively abandons pre-assignment bidding for Taskk;
otherwise, Vm participates in the bidding;

5© Each follower UAV respectively performs steps 2©– 4© to complete the pre-assignment
of each subtask. The subset leader UAV Vj generates the subset’s bidding scheme for target
Tk according to the pre-assignment results.

The above is the basic process of bidding scheme generation. Due to the existence of
multi-UAV cooperatively performing subtasks and the introduction of the task concurrency
mechanism, the generation of the bidding scheme needs to solve a “multi-participants–
multi-tasks” assignment optimization subproblem.

In order to solve the subproblem, an assignment mechanism based on the contract
network within subsets is constructed. For the subtasks that need to be executed by multiple
UAVs, a cooperator determination mechanism is introduced to complete the task allocation;
for the sequential subtasks with time windows, a sequential task selection mechanism is
introduced. Details are as follows:

(1) The determination mechanism on cooperators
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The process of the determination mechanism on cooperators is shown in Figure 4. To
simplify the assignment process, give the tenderee the initiative, expand the set of bidders,
and provide more feasible pre-assignment schemes, the tenderee bidding mechanism is
introduced, that is, when the subtask tenderee (subset leader UAV Vj) meets conditions
such as capability constraints and time constraints, it can participate in bidding.

 

N N

N - 

Figure 4. The determination mechanism on cooperators.

If Vj meets the constraints for performing Taskk and decides to bid with the bidding
value Bjk, then Th is chosen as Bjk. UAV Vj sends Taskk information and negotiation
threshold Bjk to each follower UAV. The bidding value of follower UAV Vm for Taskk is Bmk.
If Bmk > Bjk, Vm decides to bid and feedback Bmk to Vj. At the time, the set of all bidders
participating in the Taskk assignment is

Vb,k =
{

Vm

∣∣∣wjm = wmj = 1, j �= m ; Bmk > Bjk

}
∪ {Vj

}
If tenderee Vj does not participate in the bidding, i.e., Bjk = ∅,

Vb,k =
{

Vm
∣∣wjm = wmj = 1, j �= m ; Bmk > 0

}
To sum up, after preselection of negotiation threshold, all bidders participating in the

assignment for Taskk can be represented as

Vb,k =

⎧⎨⎩
{

Vm
∣∣wjm = wmj = 1, j �= m; Bmk > 0

}
, Bjk = ∅{

Vm

∣∣∣wjm = wmj = 1, j �= m; Bmk > Bjk

}
∪ {Vj

}
, Bjk �= ∅

(12)

Consider the cooperative constraints of subtask Taskk, assume Taskk requires the
participation of Np,k UAVs, and quickly sort the bidding value set

{
Bjk

}
. The greedy

algorithm is used to select the Np,k largest bidding values in the set to form the winning
bidding value set (reward set) Bk

Bk =
{

B(1),k, B(2),k, . . . , B(Np,k),k

}
(13)
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where B(x),k represents the x-th order element of {Bmk} in descending order. The winner
set Winnerk is correspondingly:

Winnerk = Index(B(1),k, B(2),k, . . . , B(Np,k),k) (14)

(2) Sequential task selection mechanism
Take the sequential task assignment process of a single follower UAV as an example.

After receiving the task information, the bidder determines the executable tasks according
to the negotiation threshold, UAV capability constraints, and the execution sequence and
combines them to generate an alternative sequence without a time window conflict. Based
on the bid winning situation, the optimal sequence is selected as the final signing one. The
operation process is shown in Figure 5.
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Figure 5. The process of task assignment based on extended CNP.

Assume that the concurrent task set Tasknew =
{

Tasknew
1 , . . . , Tasknew

Ntask
}

is received by
the follower UAV Vm. The set of tasks that Vm can execute and determine to participate in
bidding is expressed as

Taska,m =
{

Taska,m
k

∣∣k = 1, 2, . . . , Na,m
} ⊆ Tasknew (15)

where Na,m is the element number of Taska,m. Denote Combn(Na,m, Nvm,n) as the combina-
tion which consists of random Nvm,n elements from set {1, 2, . . . , Na,m}, where Nvm,n ≤ Na,m.

Definition 6 (Task Sequence Alternative). If ∀k ∈ Combn(Na,m, Nvm,n),∀k ∈ Combn(Na,m, Nvm,n)−
{k}, there is TimeBark ∩ TimeBark = ∅. Then, Combn(Na,m, Nvm,n) is called a sequence alterna-
tive. TimeBark is the time window of subtask Taska,m

k . The corresponding task sequence alternative
is defined as

Seqm
n =

{
Taska,m

k

∣∣k ∈ Combn(Na,m, Nvm,n)
}

, n ≤ Nsm, Seqm
n ⊆ Taska,m (16)
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where Nsj is the number of task sequence alternatives.

After the bidding is completed, the set of losing bidding tasks is denoted by Taskde,m.
After the sequences containing losing bidding tasks are eliminated, the set composed of the
remaining sequence alternatives is

SeqSetm =
{

Seqm
n

∣∣∣n ≤ Nsm; ∀Taska,m
k ∈ Seqm

n , Taska,m
k /∈ Taskde,m

}
(17)

Assuming that the bidding value of Vm for any subtask Taska,m
k in Seqm

n is Bmk, where
Seqm

n ∈ SeqSetm, the sum of bidding value for each task in Seqm
n is

Bm,n = ∑
k

Bm,k, k ∈ Combn(Na,m, Nvm,n) (18)

and the final signing sequence of follower UAV Vm is

Seqwin,m = Seqm
nbest

, nbest = argmax
n

(Bm,n) (19)

Through the above mechanism, the subtask pre-assignment scheme of the subset in
which Vj is located is generated, that is, the bidding scheme of the subset

BidSchj =
{

Seqwin,m
∣∣∣m ∈ Gj

}
(20)

After that, UAV Vj calculates the bidding function of the subset according to the
bidding scheme and bids to the tenderee Vi.

Step 3: Determine the winners
After the bidding scheme generation and bidding application in Step 2, the tendering

UAV Vi selects the scheme of which the efficiency is greatest according to the bidding value
of each group so as to determine which subset executes subtasks of target Tk.

The set of bidding values of subsets is
{

Bg,jk

}
. Apply the greedy algorithm and select

the greatest value and corresponding subset as the winning value (reward) Bg,k and the
winner Winnerg,k. The process can be expressed mathematically as

Bg,k = max{Bg,jk , Winnerg,k = argmax
j

(Bg,jk) (21)

After determining the winner, UAV Vi authorizes the subset Winnerg,k to perform each
subtask of target Tk.

Step 4: Perform the tasks
The winner subset formally authorizes each follower UAV in the subset to perform the

subtasks, and the pre-assignment scheme in Step 2 becomes the formal assignment scheme.
Follower UAV Vm will add the signing subtask sequence Seqwin,m to its task sequence to be
executed, that is:

Am = Am ⊕ Seqwin,m (22)

where Am is the task sequence to be executed, ⊕ expresses the operation that it adds the
sequence Seqwin,m to the sequence Am. Each UAV performs each task according to sequence
Am and the preplanning flight path in the specific time window.

The pseudo-code of the whole algorithm 2 process described above is as follows:
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Algorithm 2: The extended Contract Network Protocol.

Input: Task assignment combination {V, Sg, T, O, Mt, R, C}; Topology G0; time tnow
Output: Task execution sequence set {Am}
1: /* Step 1: Release the information of targets */
2: for i from the first index of leader UAVs to the last one
3. if Vi is a target tenderee UAV
4: {Vp,i} = detTargetPotentialBidders(G0,C) /* determine the set of potential bidder subsets. */
5: for k = 1 to number of targets
6: if Tk is tendered by leader UAV i
7: {Taskk} = generateSubtasks(Tk) /* Tenderee UAV i generates subtask information. */
8: end if
9: end for
10: Ii = releaseTargetInfo ({Tk}, {Taskk}, tnow, {Vp,i}} /* Tenderee UAV i releases target information. */
11: end if
12: end for
13: /* Step 2: Generate bidding scheme */

14: for j from the first index of leader UAVs to the last one
15: for i from the first index of tenderee leader UAVs to the last one
16: if Vj belongs to {Vp,i}
17: Receive Ii and broadcast it to Vj ‘s followers
18: end if
19: end for
20: for m from the first index of followers of Vj to the last one
21: {Taska,m} = checkTaskConstaints({Ii.Taskk}) /* Select the executable subtasks from {Taskk} */
22: {Seqm

n } = combineTasks({Taska,m }) /* Generate the set of alternative sequence */
23: {Bm,n} = biddingFuncCal({SeqSetm}) /* Calculate the bidding function of each sequence */
24: Seqwin,m = Seqm

nbest
, nbest = argmax

n
(Bm,n) /* Determine the sequence to execute */

25: end for
26: Bg,jk = ∑

m
max(Bm,n)

27: end for
28: /* Step 3: Determine the winners */

29: for i = 1 to number of tenderee leader UAV i
30: for k = 1 to number of targets tendered by leader UAV i
31: Bg,k = max{Bg,jk}, Winnerg,k = argmax

j

(
Bg,jk

)
/* Determine winner of tendering for Target k */

32: end for
33: end for
34: /* Step 4: Perform the tasks */

35: for n = 1 to number of subsets
36: for m = 1 to number of follower UAV m of Subset n
37: Am = Am ⊕ Seqwin,m /* Add the signing subtask sequence to task execution sequence Am. */
38: end for
39: end for

Analyze the worst time complexity of the algorithm and take the case of task assign-
ment by the top leader as an example:

The time complexity of the top leader issuing NT targets with subtasks bidding
information to NG subset leaders is O(NTNG), the complexity of the initial evaluation
of 4 types of constraints presented in Section 2.5 by NG subset leaders is 4O(NTNG), the
complexity of the bidding of potential bidder subsets {Vp,i} is O(K), where K is the number
of elements in {Vp,i}; after K potential bidder subsets are determined, each potential bidder
subset needs to pre-assign the subtasks and generate the bidding scheme of the subset.

Assume that each target has Nt subtasks, each subtask needs the most Np participants
and each subset consists of (Nf + 1) UAVs. Each subset will generate the target scheme
based on the CNP within the subset. The time complexity of the subset leaders issuing Nt
subtasks to their Nf followers is O(NTNtNf). The sequential task selection is an arrangement–
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combination problem, of which the time complexity is NT•O(Nt
3), and the time complexity

of bidding to the subset leader in each subset is O(NTNtNf). Subset-leader-selecting cooper-
ators can be regarded as a sorting problem, and the quick sort algorithm can be adopted
so that the time complexity is NTNt•O(Nplog2Np). Therefore, the time complexity of the
subtask pre-assignment is 2O(NTNtNf) + NT•O(Nt

3) + NTNt•O(Nplog2Np).
After the bidding schemes of each subset are generated, the bidding winner subset

will be determined. It is a quick sort process, so the time complexity is NT•O(NGlog2NG).
To conclude, the whole worst time complexity is 2O(NTNtNf) + NT•O(Nt

3) + NTNt•O(Nplog2Np)
+ NT•O(NGlog2NG). It indicates that the algorithm is a polynomial one.

3.2. Bidding Function Design

As the core of extended CNP, the bidding function, which needs to be designed on
the basis of the concrete task assignment problem in CNP, is a sort of objective function.
According to the method process described above, the whole task assignment is divided
into the target assignment and the subtask assignment. Both the target assignment and the
subtask assignment are based on the extended CNP. Hence, the bidding function of each
subset is designed for the target assignment, while the individual bidding function within
the group is designed for the subtask assignment.

3.2.1. Individual Bidding Function

The individual bidding function Bij consists of value function Reij and penalty function
Peij. Based on the analysis for the UAV swarm task assignment model in Section 2, the
individual bidding function mainly relates to: 1© the maximum task values, which is
denoted in Section 2.5; 2© the flight path; 3© the time windows and start time of each
subtask.

Since the UAV task assignment couples with path planning, the bidding function
needs to be designed in combination with the UAV flight path. By analyzing the scenario, it
can be seen that the impact of the flight path on task assignment is mainly reflected in UAV
survivability estimation hi,est and air-range Lij (fuel consumption), as shown in Figure 6.
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Figure 6. The coupling of the UAV mission assignment and path planning.

Supposing that UAV Vi participates in the bidding process of subtask Taskj with
time window ttaskj

∈ [ts,j, te,j], where ttaskj
is the start time of task execution, of which the
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mathematical expression is given in Section 2.5, ts,j is the earliest start time, and te,j is the
latest one.

To evaluate the impact of threats {Ok | k = 1, 2, . . . , Nobs} on UAV Vi performing tasks,
it introduces the survivability estimation of Vi, which can be expressed as

hi,est = hi

Napp

∏
k=1

(1 − Ak,app) (23)

where hi is the current survivability of Vi, Ak,app is the impact of threats Ok,app ∈ {Ok}
approached by Vi, Ak,app ∈ (0, 1), and Napp is the number of threats approached.

(1) Value function Reij
In the actual scenario, the value of UAVs performing any task is generally related to

the start time when the UAV performs the task. The nearer the start time ttaskj
to the time

window TimeBark, the greater the value for UAV Vi to perform the task; otherwise, the
smaller the value; hence, the item related to the start time ttaskj

is introduced. The value
function of Vi performing Taskj is designed as

Reij(hi,est, ttaskj
) = hi,est · Rx,j · e

−λ
ttaskj

−ts,j
te,j−ttaskj (24)

where Rx,j is the maximum value of Taskj; λ is the attenuation factor of the start time
ttaskj

on the task value. Apparently, Reij is a monotonic increasing function of battle-
field survivability hi,est and decreases monotonically with the start time ttaskj

. When
hi,est : 1 → 0, ttaskj

: ts,j → te,j , there is Reij: Rx,j → 0 .
(2) Penalty function Peij
The penalty function is composed of the consumption penalty and the threat penalty.

Assuming that the per-unit fuel consumption of UAV Vi is Fi, the air-range performing
Taskj is Lij, the estimation of survivability is hi,est, and the penalty function is designed as

Peij(hi,est, Lij) =
1

hi,est
· FiLij (25)

Obviously, Reij is a monotonic function of battlefield survivability hi,est. When
hi,est : 1 → 0+ , there is Peij: FiLij → +∞ .

The penalty indicates the coupling impact of flight path planning on task assignment.
On one hand, the fuel consumption of performing subtask Taskj is directly related to the
preplanned air-range Lij; on the other hand, the more threats approached by UAV Vi during
the task execution, the lower the survivability estimation hi,est, which means more loss
when the UAV performs the task.

Combining the value function and the penalty function, the individual bidding func-
tion Bij of UAV Vi for Taskj is denoted by

Bij(hi,est, Lij, ttaskj
) = Reij − Peij = hi,est · Rx,j · e

−λ
ttaskj

−ts,j
te,j−ttaskj − 1

hi,est
· FiLij (26)

where a greater value of Bij indicates the reward of performing the task. Bij monotonically
increases with hi,est and decreases with Lij and ttaskj

, which agrees with the actual scenario,
which suggests that Bij has practical significance.

3.2.2. Bidding Function of Each Subset

The bidding function of subsets is based on the individual function. For target Tj,
supposing that the bidding value set is {B1, B2} after the subtask assignment in subset Gi,
B1, B2 respectively express the bidding value of subset Gi performing the reconnaissance
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subtask and the attack one. The bidding function of subsets is defined as the sum of
elements in {B1, B2}, which is

Bg,ij = ∑ B1 + ∑ B2 (27)

4. Dynamic Assignment Strategy Based on Event Triggering

4.1. Event Trigger Conditions for Dynamic Tasks

Due to the incomplete perception of the situation at the beginning and the occurrence
of emergencies during the task execution, the initial assignment scheme needs to be ad-
justed. Therefore, the event trigger conditions are introduced to judge whether or not to
carry out the dynamic task assignment. Event trigger conditions are the key to realizing dy-
namic task assignments, which need to be selected in combination with different scenarios.
The dynamic task assignment process based on event triggering can be expressed as:

E : if g(s(t), st,j(t)) ≥ 0, then Targetj ← TargetIn f o∗j , Taskj,k ← TaskIn f o∗j,k(k = 1, 2, . . . , Nf )

where g(s(t), st,j(t)) ≥ 0 is the triggering condition, s(t) is the state of UAV (such as the
position), st,j(t) is the status of target Tj. Targetj ← TargetIn f o∗j expresses the update of
the set of targets, and Taskj,k ← TaskIn f o∗j,k expresses the update of the set of subtasks.

(1) The unknown targets appear
The initial target assignment is based on the initial situation awareness information,

which can only cover the known targets but is not guaranteed to cover all the targets in the
mission area. After the reconnaissance UAV or reconnaissance-attack UAV Vi flies near the
unknown target Tj during task execution, it will detect the target and obtains the target
information TargetIn f onew,j and then updates the target set and the subtask set. Event
trigger conditions can be described as

g(s(t), st,j(t)) = DA(ri, rnt,j, Rdetect,i)

where DA(ri, rnt,j, Rdetect,i) is defined as the reconnaissance payload constraint, which is
the constraint on the relative position and angle relations between UAV Vi and target
Tj. The details are in reference [34]. When target Tj is located in the detect area of the
reconnaissance-attack UAV or reconnaissance UAV, DA(ri, rnt,j, Rdetect,i) ≥ 0; ri is the
position vector of UAV Vi; rnt,j is the position vector of target Tj; Rdetect,i is the detection
range of UAV Vi. The event-triggering process can be expressed as

E1 : if DA(ri, rnt,j, Rdetect,i) ≥ 0, then TargetNtarget+j ← TargetIn f onew,j,

TaskNtarget+j,k ← TaskIn f oNew,j,k

(
k = 1, 2, . . . Nnewtask,j

)
where TargetNtarget+j ← TargetIn f onew,j indicates the update of target set, Ntarget is the
number of targets; TaskNtarget+j,k ← TaskIn f oNew,j,k indicates the update of subtask set,
Nnewtask,j is the number of subtasks of Tj.

(2) The UAV encounters faults and cannot perform tasks
During task execution, UAVs may encounter non-cooperative behaviors such as

collision and attack and lose mission capability. Its tasks that have not been executed will
be reassigned. Event triggering conditions can be described as

g(s(t), st,j(t)) = hi,b − hi

where hi is the survivability of Vi; hi,b is the minimum survivability of Vi with normal
capability and is selected according to the concrete scenario. The event-triggering process
can be expressed as

E2 : if hi,b − hi ≥ 0, then Taskj,k ← TaskIn f oi,j,k
(
k = 1, 2, . . . , Ni,j

)
where Taskj,k ← TaskIn f oi,j,k is the reassignment for the subtasks that Vi is to perform.
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4.2. The Basic Process of Dynamic Task Assignment

Before describing the basic process of cooperative dynamic task assignment, the
following assumptions are given for the scenario:

1. Based on the early situation awareness, several targets and pieces of threat informa-
tion have been obtained, including target location, number of UAVs required to perform
each subtask, threat location, and impact range;

2. Due to incomplete situational awareness, there are unknown targets and threats.
After the UAV detects an unknown target or threat, it broadcasts the threat information,
transmits the target information to the group leader, and triggers the assignment process.

Based on the scenario and assumptions above, the basic process of cooperative dy-
namic task assignment is shown in Figure 7. The concrete steps are as follows:

1. Assign the known targets. The top leader assumes the role of the tenderee, dominates
the initial assignment, and releases the target information to each group leader based
on the inter-group contract network.

2. Each group leader that has direct communication with the top leader receives the
target information, releases the subtask information to their followers, and determines
the group’s bidding scheme, which is obtained by subtasks pre-assignment based on
the group’s internal contract network.

3. The top leader selects the group with the largest bidding value as the bid winner
according to the bidding schemes of the group submitted by the group leaders and
assigns the target to the group.

4. According to the assigned target, each subset performs tasks according to the corre-
sponding subtask assignment scheme.

5. If a UAV fails to perform tasks due to sudden failure, the tasks shall be assigned to
other UAVs in this subset first; if no UAV in the subset can continue to perform, the
group leader will release the tasks to other subsets, and then others will determine
the pre-assignment scheme based on the contract network within the group. The
tendering group shall determine the assistance according to each bidding scheme.

6. If a UAV (including the group leader) detects a sudden target, it shall be reported
to the group leader. After receiving the target information, the leader of this subset
will release the target to other subsets. Each subset determines the pre-assignment
scheme based on the contract network within the group, carries out the bidding
based on the inter-group contract network, and, finally, completes the target and
subtask assignment.

7. Repeat steps 4–6 until there is no dynamic change.

Figure 7. The procedure for cooperative dynamic task assignment.
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5. Numerical Simulation

It is assumed that the swarm consists of 1 top leader and 2 subsets, with a total of 11
UAVs, including 2 reconnaissance-attack UAVs, 4 reconnaissance UAVs, and 4 attack UAVs.
Among them, reconnaissance-attack UAVs are the group leaders. Consider the UAV swarm
communication topology G0, as shown in Figure 8.

Figure 8. The communication topology G0 of the UAV swarm.

Each UAV can perform no more than two subtasks, and each subtask is performed
jointly by, at most, two UAVs. For flight path preplanning, the UAV kinematics model
in reference [35] and the modified artificial potential field method [36–38] are used to
realize the air-range estimation considering threat avoidance. The capability parameters of
each UAV under the scenario are shown in Table 1, and the parameters of reconnaissance
payload and attack payload are shown in Tables 2 and 3, respectively.

Table 1. The table of capability parameters of UAVs.

UAV
Initial

Position (m)

The Maximum
Air-Range (m)

Fuel Consumption
Rate (m−1)

Velocity
(m/s)

The Maximum
Number of Tasks

Mission Capability

Reconnaissance Attack

V1 (2500,20,200) 10,000 0.01 120 2
√

V2 (0,20,200) 10,000 0.03 80 2
√ √

V3 (5000,20,200) 10,000 0.03 80 2
√ √

V4 (500,20,200) 10,000 0.01 120 2
√

V5 (1000,20,200) 10,000 0.01 120 2
√

V6 (1500,20,200) 10,000 0.02 100 2
√

V7 (2000,20,200) 10,000 0.02 100 2
√

V8 (4500,20,200) 10,000 0.01 120 2
√

V9 (4000,20,200) 10,000 0.01 120 2
√

V10 (3500,20,200) 10,000 0.02 100 2
√

V11 (3000,20,200) 10,000 0.02 100 2
√

Table 2. The parameter table of UAV reconnaissance payload.

Flight Height
H/m

Operating Distance
Rs,max/m

Azimuth Search Angle
ϕmax/◦

Pitch Search Angle
φmax/◦

Mounting Angle
α/◦

200 500 45 30 30

Table 3. The parameter table of UAV attack load.

Flight Velocity
V/m

The Minimum
Launch Distance

Ra,min/m

The Maximum
off-Boresight

Angle ϕa,max/
◦

The Maximum
Operating Range of

Guidance Equipment
dmax/m

Maximum Horizontal
Detection Angle

of Guidance
Equipment ± φa,max/◦

Aiming Time of
Guidance

Equipmentta/s

100 80 60 30 ±60 0.2

The feasible area of UAV reconnaissance and attack for a target on the ground, based
on the above parameter configuration, is shown in Figure 9.
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(a) (b) 

Figure 9. The feasible area of payload: (a) the available detection area; (b) the available attack zone.

Consider a 5 × 5 km mission scenario. The information of known targets and the time
window constraints of subtasks randomly generated is shown in Table 4.

Table 4. The table of information on known targets.

Target Coordinate (m)
Task Type Time Window of S Time Window of A

Reconnaissance S Attack A Latest (s) Earliest (s) Latest (s) Earliest (s)

T1 (538.4, 3516.3, 0)
√ √

73.7 93.7 98.7 123.7
T2 (1497.9, 3788.2, 0)

√ √
117.5 137.5 142.5 167.5

T3 (2396.8, 4602.3, 0)
√ √

150.3 170.3 175.3 200.3
T4 (4005.0, 4287.9, 0)

√ √
193.8 213.8 218.8 243.8

T5 (3359.0, 4171.4, 0)
√ √

249.6 269.6 274.6 299.6
T6 (1949.3, 3865.2, 0)

√ √
167.0 187.0 192.0 217.0

5.1. The Initial Task Assignment for Known Targets

Assume that the UAV swarm performs the reconnaissance-and-attack tasks at six
enemy targets. The location of each UAV, threat, and target is shown in Figure 10.

Figure 10. The initial setting of the situation between both sides.
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Purple threats represent known threats, and blue threats represent unknown ones, all
of which the coordinates are randomly generated. The targets are marked with “T”; Each
UAV is marked with “V”, where “S” represents the reconnaissance UAV, “A” represents
the attack UAV, and “SA” represents the reconnaissance–attack UAV.

In the simulation, the maximum value of the reconnaissance subtask is set at 100, the
maximum value of the attack subtask is set at 150, and the attenuation factor λ is set at 0.9.

Adopting the designed UAV swarm cooperative dynamic task assignment approach,
the sequential task assignment results for known targets are shown in Table 5. The task
execution plan of each UAV is expressed in the format of (Target, Subtask type, Start time
(s), Winning bidding value).

Table 5. The task assignment of the UAV swarm.

UAV Air-Range Estimation (m) The Number of Tasks The Execution Planning

V1 0 0 None
V2 3524.00 1 (T1, A, 98.7, 79.52)
V3 0 0 None
V4 3486.00 1 (T1, S, 73.7, 65.14)
V5 4230.00 2 (T2, S, 117.5, 62.14)→(T6, S, 167.0, 59.20)
V6 3756.52 1 (T2, A, 142.5, 74.87)
V7 3837.18 1 (T6, A, 192.0, 73.23)
V8 4298.74 1 (T5, S, 249.6, 57.04)
V9 6475.10 2 (T3, S, 150.3, 51.47)→(T4, S, 193.8, 57.34)
V10 4477.55 1 (T4, A, 218.8, 60.51)
V11 5702.98 2 (T3, A, 175.3, 56.75)→(T5, A, 274.6, 66.90)

According to the known threat information and the unknown threat information
detected by reconnaissance UAV during mission execution, the modified artificial potential
field method is adopted to avoid local optimization, and the preplanning flight path
considering threat avoidance during mission execution can be realized. Combined with
the UAV swarm task assignment results, the preplanned path, and the task sequence, the
swarm task execution diagram can be obtained, as shown in Figure 11.

 
(a) (b) 

Figure 11. (a) The execution sequence of the UAV swarm; (b) the diagram of the UAV swarm
performing tasks.

As can be seen in Figure 11, the cooperative task assignment approaches can realize
the “reconnaissance–attack” coverage of known targets under the consideration of flight
path planning coupling and task time window constraints.
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5.2. Dynamic TASK Assignment for Sudden Targets

Considering two unknown targets, T7 and T8, the swarm discovers targets through
cooperative detection and then assigns tasks. The information of T7 and T8 is shown in
Table 6, and the initial operational situation is shown in Figure 12.

Table 6. The table of information on unknown targets.

Target Coordinates (m)
Task Type

Reconnaissance S Attack A

T7 (3467.7, 2897.7, 0)
√ √

T8 (1307.7, 3057.7, 0)
√ √

Figure 12. The initial setting of the situation between both sides. (Considering unknowned targets).

The time when unknown targets are discovered by the UAVs and the corresponding
subsets that discover the targets are shown in Table 7. The generated subtask time window
constraints are shown in Table 7 as well. The sequential task assignment results for the
unknown targets are shown in Table 8.

Table 7. Information of unknown targets and corresponding subtasks.

Target
The Time It Is

Discovered
Discoverer

Subset to Which the
Discoverer Belongs

Time Window of S Time Window of A

Latest (s) Earliest (s) Latest (s) Earliest (s)

T7 237.9 V8 (S) 2 271.0 291.0 291.0 316.0
T8 109.1 V5 (S) 1 155.8 175.8 175.8 200.8

The swarm realizes the coverage of sudden targets through the distributed cooperative
dynamic task allocation mechanism after the reconnaissance UAV V8, belonging to Subset
1, and the reconnaissance UAV V5, belonging to Subset 2, detect sudden targets T7 and T8,
respectively, during task execution.

The concrete analysis is as follows: The reconnaissance UAV V4 and attack UAV V6,
belonging to Subset 1, is assigned to perform the subtasks of sudden target T8 successively
in the corresponding time window. The reconnaissance UAV V8 and reconnaissance-attack
UAV V3, belonging to Subset 2, successively perform the subtasks of sudden target T7 in
the corresponding time window so as to realize the “reconnaissance–strike” coverage of
each sudden target.
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Table 8. The task assignment of the UAV swarm.

UAV Air-range Estimation (m) The Number of Tasks The Execution Planning

V1 0 0 None
V2 3524.00 1 (T1, A, 98.7, 79.52)
V3 3262.79 1 (T7, A, 291.0, 84.77)
V4 4366.55 2 (T1, S, 73.7, 65.14)→(T8, S, 155.8, 32.90)
V5 4230.00 2 (T2, S, 117.5, 62.14)→(T6, S, 167.0, 59.20)
V6 4502.80 2 (T2, A, 142.5, 74.87)→(T8, A, 175.8, 135.13)
V7 3837.18 1 (T6, A, 192.0, 73.23)
V8 5747.08 2 (T5, S, 249.6, 57.04)→(T7, S, 271.0, 27.42)
V9 6475.10 2 (T3, S, 150.3, 51.47)→(T4, S, 193.8, 57.34)
V10 4477.55 1 (T4, A, 218.8, 60.51)
V11 5702.98 2 (T3, A, 175.3, 56.75)→(T5, A, 274.6, 66.90)

We combine the assignment results with the preplanning flight path and task execution
sequence based on the artificial potential field method. The diagrams of UAV swarm task
execution and the execution sequence under sudden targets are shown in Figure 13.

 
(a) (b) 

Figure 13. (a) The execution sequence of the UAV swarm; (b) the diagram of the UAV swarm
performing tasks. (Considering unknowned targets).

Figure 13 indicates that through the dynamic task assignment approach based on
the extended CNP, the swarm can mobilize the UAVs with task capability and the best
execution effect obtained after bidding negotiation to complete tasks for each sudden target
according to the time window.

5.3. Reassignment for Subtasks of Failed UAV

During the simulation, the reconnaissance UAV V5, belonging to Subset 1, fails and
loses the capability to perform tasks. The failure time is 97.5 s.

According to the assignment results in Section 5.1, the reconnaissance UAV V5 prepares
to perform the reconnaissance subtask. The fault of V5 triggers dynamic task assignment,
and the tasks (T2, s, 117.5, 62.14)→(T6, s, 167.0, 59.20) of V5 become dynamic tasks. The
bidding values of each group of potential bidders (including V2, V4, V3, and V8) are shown
in Table 9. The reassignment results of failed UAV subtasks obtained by the designed
assignment approach are shown in Table 10.
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Table 9. The bidding values of potential bidders for dynamic subtasks.

Bidding Value of Subtask
Subset 1 Subset 2

V2 V4 V3 V8

T2 (S) 10.72 30.88 −106.49 −48.62
T6 (S) −6.74 21.83 −2.77 52.89

Table 10. Task assignment under the circumstance of UAV breakdown.

Subtask Bidding Winner Winning Bidding Value Start Time (s)

T2 (S) V4 (Subset 1) 30.88 117.5 s
T6 (S) V8 (Subset 2) 52.89 167.0 s

The task assignment results in Table 9 show that UAV V4 of Subset 1 and UAV V8 of
Subset 2 replace UAV V5 and continue to perform the tasks, respectively.

Combined with the assignment results, the diagrams of UAV swarm task execution
and the execution sequence under UAV V5 failure are shown in Figure 14.

 
(a) (b) 
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Figure 14. (a) The execution sequence of the UAV swarm; (b) the diagram of the swarm performing
tasks under V5 failure.

The explanation of the assignment result is as follows: after the reconnaissance, UAV
V5 loses its mission capability, and its subtasks shall be preferentially executed by other
reconnaissance UAVs or reconnaissance UAVs (i.e., V2 and V4) in Subset 1. It can be seen
from Figure 14a that after the initial assignment in Section 4.1, the number of tasks that
can be performed by UAV V4 is 1. Therefore, through the contract network within the
group, it can undertake one reconnaissance subtask of V5. At this time, V2 is executing
the attack subtask T1(a) according to the initial allocation results. During this execution,
it crosses several threat areas, resulting in low survivability estimation, and the bidding
value is negative, which is not suitable to continue to perform the subtask. Therefore, the
leader UAV V2 of Subset 1 releases the information to Subset 2 for assistance through the
contract network among the groups. Subset 2 conducts bidding negotiation through the
contract network within the group and finally assigns UAV V8 to assist Subset 1 to take
over reconnaissance subtask T6 (s).

5.4. The Analysis of the Real-Time Performance of the Assignment Approach

All the simulation experiments have been implemented on a personal PC; the pa-
rameters are Intel Core i5-5350U CPU @ 1.80 GHz 8 GB RAM, and the programming
environment is MATLAB 2018b.
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5.4.1. Real-Time Performance with Different Problem Scales

The real-time performance of the assignment approach is mainly influenced by three
factors: 1© the number of subsets of the UAV swarm; 2© the number of UAVs in each subset;
3© the number of targets.

To illustrate the impact of the factors above, the variable-controlling method is adopted.
The details of simulation cases to be compared are in Table 11. Correspondingly, the
comparison of assignment times in different cases is shown in Figure 15.

Table 11. The simulation cases to be compared.

Case
Number of

Subsets
Number of UAVs

of Each Subset
Number of

Targets
The Size of the

UAV Swarm

(a) 5, 10, 15, 20, 25 10 10 50, 100, 150, 200, 250

(b) 5 20, 40, 60, 80, 100 10 100, 200, 300, 400,
500

(c) 5 10 5, 10, 15, 20, 25 50

(a) (b) 
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Figure 15. Assignment time varies with (a) the number of subsets, (b) the number of UAVs of each
subset, and (c) the number of targets.

According to the comparison among the simulation, on one hand, due to the slowly
increasing tendency of the assignment time in Figure 15a,b, it can be concluded that the
real-time performance of the proposed approach has low sensitivity with the size of the
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UAV swarm. On the other hand, comparing (a) with (b), the task assignment time is more
sensitive with the number of subsets than with the number of UAVs of each subset.

Moreover, according to Figure 15c, the task assignment time is sensitive to the number
of targets, which indicates that the performance of the approach may become worse with
the number of targets increasing.

5.4.2. Algorithm Comparison

In order to verify the effectiveness of the distributed approach based on contract
network protocol (CNP) in solving the UAV swarm task assignment problem, it is compared
with the centralized task assignment approach used in reference [10]. Scenarios are designed
with different sizes of UAV swarm performing multiple task assignments. From the
simulation results, both the centralized approach (ACO) and the distributed approach
(CNP) are able to obtain the solution to the UAV swarm task assignment problem. However,
the distributed approach (CNP) has an obvious advantage in terms of solution efficiency.
The solution time for different sized assignment problems is shown in Table 12.

Table 12. The real-time performance between the proposed approach and ACO in reference [10].

The Size of the
UAV Swarm

The Number of
Targets

The Total Solving Time
of the CNP-Based

Approach/(Seconds)

The Total Solving
Time of ACO

(50 Iterations)/(Seconds)

50 10 1.66 41.5
100 10 1.70 59.8
150 10 1.85 74.9
200 10 1.93 96.2
250 10 1.98 112.5
150 15 2.03 88.2
150 20 3.50 124.1
150 25 5.30 179.0

Remark: Generally, a global optimal solution to such problems can rarely be obtained. Therefore,
feasible solutions to the task assignment problem obtained in the solving process are considered
in general.

As a heuristic algorithm, ACO searches in the solution space, learns from the results of
each iteration, and finally converges to a feasible solution, which means that ACO requires
a lot of computational resources and a much longer time. Simulation results show that this
problem becomes more pronounced when the problem size (e.g., size of the UAV swarm,
the number of targets) increases.

In contrast to heuristic algorithms such as ACO, CNP merely performs the optimiza-
tion by bidding on each subset of UAVs as well as UAV individuals without the iterative
process of searching for feasible solutions in a large solution space.

The results illustrate that, as a distributed assignment approach, the proposed method
in this paper has advantages in real-time performance compared with the ACO proposed
in reference [10], which proves the effectiveness of the method to some extent.

6. Conclusions

Aiming at the problem of the cooperative reconnaissance–attack task assignment of
UAV swarms in complex environments, this paper proposes a distributed grouping cooper-
ative dynamic task assignment approach by considering multiple constraints, realizes the
effective assignment of cooperative reconnaissance–attack tasks to multiple targets, and
optimizes the combat effectiveness of the swarm. The main conclusions include:

(1) The proposed extended CNP algorithm, which is based on the determination
mechanism of cooperators and the selection mechanism of sequential tasks, with the
bidding function considering the constraints of sequence, flight path, and threat; it can
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realize the reasonable assignment of reconnaissance and attack tasks on multiple targets
under multiple constraints and the optimization of UAV swarm task execution efficiency.

(2) The proposed dynamic task assignment strategy based on the event-trigger mecha-
nism constructs the overall architecture of cooperative dynamic task assignment for the
distributed grouping of the UAV swarm and improves the adaptability of the swarm to the
dynamic environment and sudden targets during task execution.

(3) Three typical simulation scenarios are designed. The simulation results show that
the task assignment approach in this paper can solve the problem of cooperative sequential
dynamic task assignment when the UAV swarm with subsets performs reconnaissance–
attack tasks in a complex environment with incomplete situational awareness and sudden
targets and realize reconnaissance and attack coverage on each target. Moreover, the real-
time performance of the assignment approach has been analyzed, which indicates that the
proposed approach has low sensitivity to the size of the UAV swarm.
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Abstract: The multi-UAV system has stronger robustness and better stability in combat. Therefore,
the collaborative penetration of UAVs has been extensively studied in recent years. Compared with
general static combat scenes, the dynamic tracking and interception of equipment penetration are
more difficult to achieve. To realize the coordinated penetration of the dynamic-tracking interceptor
by the multi-UAV system, the intelligent UAV model is established by using the deep deterministic
policy-gradient algorithm, and the reward function is constructed using the cooperative parameters
of multiple UAVs to guide the UAV to proceed with collaborative penetration. The simulation
experiment proved that the UAV finally evaded the dynamic-tracking interceptor, and multiple UAVs
reached the target at the same time, realizing the time coordination of the multi-UAV system.

Keywords: multi-UAV; deep deterministic policy gradient; cooperative penetration; dynamic-
tracking-interceptor component

1. Introduction

Compared with traditional manned aerial vehicles, unmanned aerial vehicles (UAVs)
can be autonomously controlled or remotely controlled, which have the advantages of
low requirements on the combat environment and strong battlefield survivability, and
they can be used to perform a variety of complex tasks [1,2]. Therefore, UAVs have been
widely studied and applied [3]. With the continuous application of UAVs in the military
field, the system composed of a single UAV has gradually revealed the problems of poor
flexibility and low stability [4,5]. The cooperative combat method of using a multi-UAV
system composed of multiple UAVs has become a new main research direction [6,7]. Under
the conditions of the modernized and networked battlefield, the air cluster composed of
multiple UAVs has the air power to continuously launch the required strikes, forcing the
enemy to spend more resources and deal with more fighters, thereby enhancing the overall
capability and overall performance of military combat confrontation.

Multi-UAV-cooperative penetration is one of the key issues to achieve multi-UAV-
cooperative combat. Multiple UAVs start from the same location or different locations, and
finally arrive at the same place. At present, UAVs’ penetration-trajectory-planning methods
mainly include the A* algorithm [8], the artificial potential field method [9,10], and the RRT
algorithm [11]. Most of the application scenarios of these methods are environments with
static no-fly zones and rarely consider dynamic threats. The A* algorithm is a typical grid
method. This type of method rasterizes the map for planning, but the size of the grid will
have a greater impact on the result and is difficult to determine. Based on the artificial
potential field law, it is easy to fall into the local optimum, leading to the unreachable
target. When there is a dynamic-tracking interceptor in the environment, the environment
information becomes complicated, and real-time planning requirements are put forward
for UAVs. Therefore, traditional algorithms cannot meet the requirements.
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Multi-UAV-cooperative penetration generally requires that multiple UAVs achieve
time coordination to penetrate defenses according to different trajectories and finally
reach the target area at the same time or according to a certain time sequence. When the
UAVs depart from different locations, it will greatly increase the difficulty of collabora-
tion. The multi-UAV-coordination algorithm can be improved based on the traditional
single-UAV-penetration algorithm adapted to the multi-UAV environment. Chen uses the
optimal-control method to improve the artificial potential-field method to achieve multi-
UAV coordination [11,12], and Kothari improves the RRT algorithm to achieve multi-UAV
coordination [13]. At the same time, there are a large number of methods for cooperative
control of UAVs based on the graph theory [3]. Li proposed a multi-UAV-collaboration
method based on the graph theory [14]. Ruan proposed a multi-UAV-coordination method
based on multi objective optimization [15]. The above methods all realize the coordination
of multiple UAVs, but their algorithms lack the research on dynamic environments and
cannot adapt to the complex and dynamic battlefield environment. Aimed at the environ-
ment with dynamic threats, this paper proposes a method based on deep reinforcement
learning to achieve multi-UAV-cooperative penetration.

Reinforcement learning is an important branch of machine learning. Its main feature
is to evaluate the action policy of the agent based on the final rewards and through the
interaction and trial and error between the agent and the environment. Reinforcement
learning is a far-sighted machine-learning method that considers long-term rewards [16,17].
It is often used to solve sequential decision-making problems. Reinforcement learning
can not only be applied in a static environment but also when the parameters of the
environment are constantly changing, and the agent can also be applied in a dynamic
environment [16–18]. The research of reinforcement learning is mostly concentrated in the
field of a single agent, but there is also a large body of research on reinforcement-learning
algorithms for multiagent systems. There is also much research on applying reinforcement
learning to UAVs. Pham successfully applied deep reinforcement learning to UAVs to
realize autonomous navigation of UAVs [19]. Wang also studied the autonomous navigation
of UAVs in large, unknown, and complex environments based on deep reinforcement
learning [20]. Wang applied reinforcement learning to the target search and tracking
of UAVs [21]. Based on deep reinforcement learning, Yang studied the task scheduling
problem of UAV clusters and solved the application problem of reinforcement learning in
multi-UAV systems [22]. Through the investigation of relevant literature, it can be found
that the application of deep reinforcement learning to multi-UAV systems is a feasible
method, which can be used to achieve complex multi-UAV-system tasks and has great
research potential.

The main work of this paper uses the multi-UAV-cooperative penetration dynamic-
tracking interceptor as the scenario. Based on the deep reinforcement-learning DDPG
algorithm, we establish the intelligent UAV model and realize the multi-UAV-cooperative
penetration dynamic-tracking interceptor by designing the reward function related to
coordination and penetration. The simulation experiment results show that the trained
multi-UAV system can achieve cooperative attack tasks from different initial locations,
which proves the application potential of artificial intelligence methods, such as reinforce-
ment learning in the implementation of coordinated tasks in UAV clusters.

2. Problem Statement

2.1. Motion Scene

This paper solves the problem of multi-UAV-cooperative penetration of dynamic
interceptors. We assume multiple UAVs are respectively numbered as L = {1, 2, . . . , n}.
The scene is set as a two-dimensional engagement plane. Figure 1 is the schematic diagram
of the motion scene of the multi-UAVs.
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Figure 1. The motion scene of the multi-UAVs.

Based on reinforcement learning algorithms, the following are the requirements:

• The UAV is not intercepted by interceptors when it is moving;
• Multi-UAVs finally reach the target area at the same time.

2.2. UAV Movement Model

First, a two-dimensional movement model of the UAV is established. Figure 2 is the
schematic diagram of the movement of the UAV. It is assumed that the linear velocity of
the UAV is constant, and the angular velocity, ω, is a continuously variable value. It is
assumed that the angle between the movement direction of the UAV and the x-axis is the
azimuth angle, θ.

Figure 2. Schematic diagram of UAV movement.

The movement of the UAV is divided into x and y directions. First, the current azimuth
angle is obtained by integrating the angular velocity of the UAV, and then the velocity
is decomposed on the coordinate axis by the azimuth angle, θ, and finally, the position
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information of the UAV is obtained through integration. The mathematical model is
shown in (1): ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ = θ0 +
∫ t

0 ωdt
vx = v sin θ
vy = v cos θ

x = x0 +
∫ t

0 vxdt
y = y0 +

∫ t
0 vydt

(1)

2.3. Dynamic-Interceptor Design

Compared with the static environment, the position of the dynamic-interceptor
changes in real time in the environment, so the UAV is required to be able to perform
real-time planning. In this paper, the dynamic interceptor is defined as a tracking inter-
ceptor according to the proportional-guided pursuit law. Compared with most common
dynamic interceptors with simple motion rules, such as interceptors that cycle in a uniform
linear motion or circular motion, the tracking interceptor has stronger uncertainty, and it is
difficult to evade by predicting the motion. The movement requirements of the multi-UAV
system are much higher. In this paper, it is assumed that the linear velocity of the tracking
interceptor is constant, and the angular velocity is calculated by proportional guidance.
The schematic diagram of its movement is shown in Figure 3.

Figure 3. Schematic diagram of interceptor’s movement.

The basic principle of the proportional-guidance method is to make the interceptor’s
rotational angular velocity proportional to the line-of-sight angular velocity. Next, the
proportional-guidance mathematical model of the interceptor is introduced.

Assuming that the position of the interceptor is xb, yb, the speed is vxb , vyb , the position
of the UAV is x, y, and the speed is vx, vy, and the relative position and speed of the
interceptor to the UAV are shown in (2):⎧⎪⎪⎨⎪⎪⎩

xr = xb − x
yr = yb − x

vxr = vxb − vx
vyr = vyb − vy

(2)

The interceptor’s line of sight angle to the UAV can be obtained as:

q = arctan
(

xr

yr

)
(3)
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To obtain the line-of-sight angular velocity, (3) is derived, as shown in (4):

.
q =

vyr xr − vxr yr

x2
r + y2

r
(4)

The rotational angular velocity of the dynamic-tracking interceptor can be obtained
by (5):

ωb = K
.
q (5)

K is the proportional guidance coefficient, taking K = 2.
Based on the angular velocity of rotation calculated by the proportional guidance, the

interceptor performs a two-dimensional movement according to the angular velocity of the
rotation obtained by the proportional guidance. The movement model is similar to that of
a UAV: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θb = θb0 +
∫ t

0 ωbdt
vbx = vb sin θb
vby = vb cos θb

xb = xb0 +
∫ t

0 vbxdt
yb = yb0 +

∫ t
0 vbydt

(6)

3. Deep Deterministic Policy-Gradient Algorithm

The DDPG algorithm is a branch of reinforcement learning [5]. The basic process of
reinforcement-learning training is that the agent performs an action based on the current
observation state. This action acts on the agent’s training environment and returns a
reward and a new state observation. The goal of training is to maximize the final reward.
Reinforcement learning does not need to give any artificial strategies and guidance during
training but only needs to give the reward function when the environment is in various
states. This is also the only part of training that can be adjusted artificially. Figure 4 shows
the basic process of reinforcement learning.

Figure 4. The basic process of reinforcement learning.

The DDPG algorithm is an actor-critic framework algorithm that solves the problem of
applying reinforcement learning in continuous space. There are two networks in the DDPG
algorithm, namely, the state-action value function network Q(s, a

∣∣θQ) using θQ parameters
and the policy network μ(s|θμ) using θμ parameters. At the same time, two concepts are
introduced, target network and experience replay. When the value function network is
updated, the current value function is used to fit the future state-action value function. If
both state-action value functions use the same network, it is difficult to fit during training.
Therefore, the concept of the target network is introduced. The target network is used as
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the future state-action value function, which is the same as the state-action value function
network to be updated, except that it is not updated in real time but is updated according
to the state-action value function network when the state-action value function network is
updated to a certain extent. The policy network also adopts the same training method in
DDPG. The experience replay is a function of storing state transfer (st, at, rt, st+1), and it
will be stored in the experience replay pool every time the agent performs an action that
causes the state to transfer. When the value function is updated, it will not be updated
directly according to the action of the current policy, but the state transition value will
be extracted from the experience playback pool for updating. The advantage of such an
update is that the training and learning of the network is more efficient.

Before training, the value function network, Q(s, a
∣∣θQ) , and the policy network,

μ(s|θμ), are first randomly initialized, and then the target network, Q′ and μ′, are initialized.
It is also necessary to initialize an action random noise, N , which is conducive to the agent’s
exploration. During training, the agent selects and executes actions, at = μ(st | θμ) +Nt,
based on the current policy network and action noise and receives rewards, rt, and new
state observations, st+1, based on environment feedback. The state transition (st, at, rt, st+1)
is stored in the experience replay pool. After that, N state transitions (si, ai, ri, si+1) are
randomly selected to update the value function network. The principle of updating the
value function network is to minimize the loss function. The mathematical expression of
the loss function is as follows:

L =
1
N ∑

i

(
yi − Q

(
si, ai | θQ

))2
(7)

where yi = ri + γQ′
(

si+1, μ′
(

si+1 | θμ′) | θQ′)
, yi is only related to θQ.

Assuming the objective function of training is the following:

J(θμ) = Eθμ

[
r1 + γr2 + γ2r3 + . . . γNrN

]
(8)

where γ is the discount factor. The policy network is updated according to the gradient of
the objective function, and its mathematical expression is as follows:

∇θμ J ≈ 1
N ∑

i
∇aQ

(
s, a | θQ

)∣∣∣∣∣
s=si ,a=μ(si)

∇θμ μ(s | θμ)

∣∣∣∣∣∣
si

(9)

After training and finally updating the target network, the mathematical expression is
as follows: {

θQ′ ← τθQ + (1 − τ)θQ′

θμ′ ← τθμ + (1 − τ)θμ′ (10)

To extend DDPG to a multi-UAV system, multiple actors and a critic must exist in the
system. During each training, the value function network evaluates the policies of all UAVs
in the environment, and the UAVs update their respective policy networks based on the
evaluation and independently choose to execute actions. Figure 5 shows the structure of
the multi-UAV DDPG algorithm.
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Figure 5. Multi-UAV DDPG algorithm.

The algorithm design also needs to construct the UAV’s action space, state space, re-
ward function, and termination conditions. In this paper, all UAVs are tested and simulated
using small UAV models for the purpose of preliminary verification of the algorithm.

3.1. Action-Space Design

It can be seen from the motion model of the UAV that the action the UAV can perform
is to change the angular velocity so the action space of multiple UAVs is designed as
A = {ω1, ω2, . . . , ωn}, which is the collection of the angular velocity of multiple UAVs.

3.2. State-Space Design

To realize the coordinated penetration of UAVs, the design of the state space should
include the UAVs’ positions, xi, yi, speed, vxi , vyi , and the central position of the target area,
xt, yt. At the same time, it is necessary to introduce the state observation of the interceptor
position, xb, yb. Therefore, the state space is set to S =

{
xi, yi, vxi , vyi , xt, yt, xb, yb

}
, i ∈ L.

3.3. Termination Conditions Design

The termination conditions are divided into four items, namely, out of bounds, colli-
sion, timeout, and successful arrival.

a) Out of bounds: When the movement of the UAV exceeds the environmental boundary,
it will be regarded as a mission failure; an end signal and a failure signal will be given.

b) Collision: When the UAV is captured by the interceptor, that is, the distance between

the two, db =
√
(x − xb)

2 + (y − yb)
2 ≤ dcollision , it is regarded as a mission failure;

an end signal and a failure signal are given.
c) Timeout: When the training time exceeds the maximum exercise time, the task will

be regarded as a failure; an end signal and a failure signal will be given.
d) Successful arrival: When the UAV successfully reaches the target area, the mission is

successful; an end signal and a success signal are given.

When any UAV in the environment finishes training, all UAVs finish training and give
a failure or success signal according to the distance from the target point.

3.4. Reward-Function Design

The sparse reward problem is a common problem when designing the reward function.
This problem will affect the training process of the UAV, prolong the training time of the
UAV and even fail to achieve the training goal. To better achieve collaborative tasks and
solve the problem of sparse reward, the reward-function design is divided into four parts,
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namely, the distance-reward function, Rd, which is related to the distance between the UAV
and the target, the cooperative reward, Rco, which is used to constrain the position of the
UAV, the mission success reward, Rs, and the mission failure reward, R f ail . The reward
function is linearized to improve the efficiency of UAV cluster training. One of the UAVs is
an example to introduce the design of the reward function.

Assume di =
√
(xi − xt)

2 + (yi − yt)
2, i ∈ L represents the distance between one UAV

and the target area, dtarget, representing the distance between the UAV’s initial location and
the target area.

The distance reward, Rd, is related to the distance from the UAV to the target area. The
closer the distance, the greater the distance-reward value. This type of reward is the key
reward on whether the UAV can reach the target area. The specific form is shown in (11):

Rd = 0.6 − di/dtarget (11)

The cooperative reward is related to the cooperative parameters in the UAV cluster.
Here, the difference between the farthest and closest distance between the UAV and the
target area is selected as the coordination parameter. Its specific expression is shown in (12).
When there are two UAVs in the cluster, the distribution diagram is shown in Figure 6.

Rco = Rd ×
(
1 − (dmax − dmin)/dtarget

)
(12)

where dmax = {d1, d2, . . . , dn}max, dmin = {d1, d2, . . . , dn}min, respectively, represent the
maximum and minimum distances between the UAV and the target area in the environment.
It can be seen from the mathematical expression and distribution diagram that there are two
major distribution trends for synergistic rewards. When the maximum-distance difference
of the UAV cluster is smaller, its value is larger, which will lead the UAVs to move towards
time coordination. When the UAV is closer to the target area, its value is larger, and the
UAV will be guided to reach the target area.

Figure 6. Co-reward distribution.

When the UAV receives the success signal and finally reaches the target area, the
mission is successful, and it will give a success reward. The success reward is also related to
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the farthest distance between the UAV cluster and the target point. The closer the distance,
the greater the success reward, as shown in (13).

R f ail = −1000 (13)

When the final mission of the UAV fails, that is, when it is intercepted by an interceptor
and fails to reach the target area, it will give a negative reward of failure, as shown in (14).

Rs = 250+2500/dmax (14)

By linearly superimposing the above multiple reward functions, the final reward
function can be obtained. The reward function, R, of the UAV is shown in (15).

R = β1Rd + β2Rco + β3Rs + β4R f ail (15)

where β1 + β2 + β3 + β4 = 1.

4. Experimental-Simulation Analysis

4.1. Simulation-Scene Settings

Based on environment modeling, a simulation experiment of multi-UAV-cooperative
penetration was carried out. To simplify the training, the scene and the speed of the UAV
are all set to smaller values. The number of UAVs in the cluster is set to two. In the
environment, there are as many dynamic interceptors as there are UAVs. Each dynamic
interceptor is responsible for the tracking of an unmanned aerial vehicle, that is, each
interceptor calculates the angular velocity of the proportional guidance rotation for an
unmanned aerial vehicle. The initial positions of the two interceptors are at the center of the
target point, and the radius of the target area is set to 60 m. Table 1 shows the simulation
parameters during training.

Table 1. Simulation Parameters.

Parameters Value

UAV

Linear velocity v 20 m/s

Angular velocity ω −0.5 rad/s ∼ 0.5 rad/s

Initial azimuth θ π
4

Initial position (x, y) xA, yA = [50 m, 50 m]
xB, yB = [50 m, 500 m]

Interceptor

Linear velocity v 22 m/s

Initial azimuth ω 5π
4

Angular velocity θ −0.5 rad/s∼ 0.5 rad/s

Initial position (x, y) Same as target

Target Position (x, y) xt, yt = [850 m, 850 m]

Simulation step dt 1 s

During the training process, the learning rate of the actor network and the critic
network are set to α1= 0.0001,α2 = 0.001, the discount factor is set to γ = 0.9, and the
action noise is set to 0.3.

4.2. Simulation Results and Analysis

After 10,000 trainings, the simulation results are shown in Figure 7.
Two UAVs can pass enough to bypass the dynamic interceptor and finally reach the

target area at the same time, and the time to reach the target area will not exceed the
simulation step (1 s).
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Figures 8 and 9 shows the angular velocity change curves of UAVs and interceptors
and the line-of-sight change curves of the interceptors.

Figure 7. Experiment Result.

Figure 8. The parameter change curve of UAV A and Interceptor A during training.
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Figure 9. The parameter change curve of UAV B and Interceptor B during training.

It can be seen from the figure that the UAVs carried out a wide-angle exercise, the
interceptor’s line of sight to the UAVs continued to increase, and the interception failed.

Figure 10 shows the distance curve between the two UAVs and the interceptor. The
black line at the bottom of the figure represents the distance captured by the interceptor.

Figure 10. The distance between the UAV and the interceptor.

It can be seen from the figure that the minimum distance between the two UAVs and
the interceptors is above the black line, that is, they are not captured by the interceptors.

Figure 11 is the distance between the two UAVs and the target point. In the figure,
there is a certain gap between the initial distance between the two UAVs and the target
area, which is about 10 m.
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Figure 11. The distance curve between the UAV and the target.

It can be seen from the figure that the final distance difference between the two UAVs
and the target point is almost zero. At the beginning of the movement, the distance between
the two UAVs and the target point is about 3 m. UAV A will deliberately go around to
ensure that it is moving. Finally, the target point can be reached at the same time.

The simulation experiment shows that the DDPG algorithm can complete the coop-
erative penetration of the dynamic-tracking interceptor through the training of the UAV
cluster, which meets the high-performance requirements of the multi-UAV system and is a
method with huge application potential.

5. Conclusions

Based on the deep reinforcement-learning DDPG algorithm, this paper studies the
UAV-cooperative penetration. Based on the mission scenario model, the UAV’s action
space, state space, termination conditions, and reward functions are designed. Through
the training of the UAV, the coordinated penetration of multiple aircraft was realized. The
main conclusions of this paper are as follows:

The collaborative method based on the DDPG algorithm designed in this paper
can achieve coordinated penetration between UAVs. After UAVs are trained, they can
coordinate to evade interceptors without being intercepted by them. Compared with
traditional algorithms, the UAV’s penetration performance is stronger, the applicable
environment is more complex, and it has great application prospects.

The reinforcement learning collaboration method in this paper realizes the time collab-
oration between UAVs on the premise of exchanging state information between multiple
aircrafts, and the movement of UAVs finally reaches the target area at the same time from
different initial locations, achieving time coordination. However, this paper doesn’t con-
sider factors such as communication delays or failures between UAVs, which causes the
UAV to receive the wrong information. This problem may be solved by predicting UAVs’
states and information fusion. Further research can be carried out in the follow-up work.

This paper only considers the movement of the engagement plane. In the follow-up
work, the movement can be expanded to three dimensions, and multi-UAV-cooperative
penetration in a 3D environment will put forward higher requirements on the algorithm.
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Abstract: This paper investigates the air–ground cooperative time-varying formation-tracking control
problem of a heterogeneous cluster system composed of an unmanned ground vehicle (UGV) and
an unmanned aerial vehicle (UAV). Initially, the structure of the UAV–UGV formation-control system
is analyzed from the perspective of a cooperative combat system. Next, based on the motion
relationship between the UAV–UGV in a relative coordinate system, the relative motion model
between them is established, which can clearly reveal the physical meaning of the relative motion
process in the UAV–UGV system. Then, under the premise that the control system of the UAG is
closed-loop stable, the motion state of the UGV is modeled as an input perturbation. Finally, using a
linear quadratic optimal control theory, a UAV–UGV formation-maintenance controller is designed
to track the reference trajectory of the UGV based on the UAV–UGV relative motion model. The
simulation results demonstrate that the proposed controller can overcome input perturbations, model-
constant perturbations, and linearization biases. Moreover, it can achieve fast and stable adjustment
and maintenance control of the desired UAV–UGV formation proposed by the cooperative combat
mission planning system.

Keywords: UAV–UGV; cooperative engagement; optimal control; time-varying output formation;
formation keeping

1. Introduction

In the wake of rapid development of information technology (IT), artificial intelligence
(AI), and unmanned equipment, as well as their common application in the military field,
the traditional combat style, in which each platform uses its own sensors and weapon sys-
tems to detect, track, and strike targets individually, can no longer meet the needs of digital
warfare. As an emerging combat style, cooperative operations can organically link various
geographically dispersed sensors, command and control systems, and weapons systems
into a cross-platform information network. In this manner, it is possible to connect and
share battlefield information, obtain real-time situational awareness of the battlefield, and
improve the integrated combat effectiveness. Cooperative combat has received increasing
academic attention in recent years. However, current research on cooperative operations
mainly focuses on multi-missile cooperative guidance [1–3], formation control [4–6], forma-
tion design [7–9], path planning [10–12], and multitarget assignment [13–15]. Research on
air–ground cooperative operations is currently lacking.

Unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) are the two
most representative objects in a cluster system. Although UAVs can quickly reconnoiter
a wide area, they are limited by endurance and flight altitude, which prevents them from
carrying out their given tasks in special environments. For UGVs, they are able to approach
targets at a close range and have a high endurance, but are slower and have a limited
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field of view. The advantages and disadvantages of UAVs and UGVs are summarized
in Table 1. For a UAV–UGV cooperative formation, they can make full use of the advan-
tages of spatial distribution, parallel execution of tasks, functional distribution, and fault
tolerance, so that they can complement each other to compensate for the shortcomings
of a single type of object and effectively improve the outcome of cooperative operations.
For example, in the reconnaissance of complex terrain conditions, combat reconnaissance
vehicles are often unable to detect effectively owing to obstacle blockages in the surround-
ing environment, and may even suffer communication losses between multiple vehicles.
Introducing multiple UAVs to allow for formation control to achieve companion-flight
cooperative reconnaissance can provide a large range of environmental information for
the overall reconnaissance decisions of ground vehicles. Additionally, UAVs can be used
as a communication relay in the case of ground communication obstacles to realize the
complementary advantages and cooperation of the cluster system [16,17].

Table 1. Advantages and disadvantages of UAVs and UGVs.

Type of UAV Advantages Disadvantages

UAV

Small fixed-wing UAV
Fast velocity

Wide field-of-view
Excellent communication

Low load capacity
Low observation accuracy

Small rotary-wing UAV Vertical takeoff landing
Good reconnaissance Low load capacity

UGV High load capacity
Precise observation of ground targets

Small field-of-view
Low velocity

Weak communication

Based on this demand for engineering applications, many scholars have conducted
research on the air–ground cooperative control between UAVs and UGVs. As an emerging
research field, its theoretical knowledge and technical aspects involve the intersection of
several disciplines and technical fields, such as embedded systems, aerodynamics, and
control theory, which includes path tracking, formation clustering, automatic landing,
and other research fields characterized by many research contents and difficulties [18,19].
This highlights that many problems need to be solved and explored in this area. In
particular, the heterogeneity of UAVs and UGVs, for example, having different working
fields, different physical models, and different technical indicators [20–22], poses new
challenges to cooperative control between UAVs and UGVs [23,24].

Hence, this study investigates the air–ground cooperative time-varying formation-
keeping control problem of a heterogeneous cluster system composed of a UGV and a
UAV in the scenario of air–ground cooperative combat, which enables the UAV to track the
motion trajectory of the UGV.

2. Related Work

Grocholsky et al. [25] proposed the use of an air–ground cooperative model to address
the shortcomings of a single platform, e.g., the low accuracy of UAVs when locating
ground targets and the narrow view of UGVs when observing distant obstacles. They
designed a cooperative control framework and algorithm to search for and locate targets
in a specified area, providing ideas for cooperative air–ground platforms to search for
targets. Manyam et al. [26] considered the problem of communication constraints between
two UAVs that cooperate to complete a mission. To address this issue, they proposed
using UAVs to collect information and developed a branch-and-cut algorithm to solve
the path-planning problem of UGVs and UAVs, offering a new idea for the cooperative
path planning of UGVs and UAVs under communication constraints. In addition, they
presented a cooperative reconnaissance and data-collection method for UGVs and UAVs.
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To address the problem that the line of sight of a ground vehicle’s sensors is limited by
the geometry of the environment, Peterson et al. [27] presented a method to capture aerial
images of the mission area using multi-rotors, construct a terrain map, and then navigate
the ground robot to the destination. This method provides a theoretical and practical
basis for the application of air–ground cooperative systems for cooperative navigation in
outdoor environments.

However, the aforementioned studies on air–ground cooperation focus mostly on
image transmission, map construction, and target localization, and do not consider the
impact of UAV–UGV formation on the overall quality of cooperative operations. In fact,
when UGVs and UAVs perform cooperative combat missions, formation adjustments
are required, including initial formation generation, formation maintenance, contraction,
expansion, and reconfiguration. Therefore, research on the formation control of UGVs
and UAVs is of great significance, and can even affect whether a combat mission can be
successfully completed.

UAVs and UGVs have completely different physical structures, and their established
kinematic and dynamic models are entirely different. Moreover, UAVs perform three-
dimensional movements in air, whereas UGVs perform two-dimensional movements on
the ground. As a result, studying the time-varying formation-tracking control of heteroge-
neous cluster systems is a key problem to solve in cross-media heterogeneous collaboration,
including air–ground collaboration, which has great theoretical research value and engineer-
ing significance.

Currently, common formation-control strategies include behavior-, virtual structure-,
and consistency-based methods [28–30]. However, behavior-based formation methods rely
on qualitative behavior rules, making it difficult to establish a quantitative model of the
entire system. Consequently, such a method cannot guarantee the stability of the formation
movement of an entire system. Virtual structure-based methods require centralized control
by a central node, and cannot be implemented in a distributed manner. In addition, most
existing methods can only achieve time-invariant formation configurations, whereas in
practical applications, heterogeneous cluster systems must be able to dynamically adjust
their formations in real time to cope with complex external environments and changes
in tasks.

In the past, scholars have mainly used two methods to establish the relative motion
models of UGVs and UAVs. One method is to directly analyze the geometric relationship
of the motion of a single vehicle in a two-dimensional plane and establish a relative-motion
model in a two-dimensional plane. The other is to derive the difference between the
different vehicle positions in an inertial coordinate system and then obtain an expression of
the relative motion state in the inertial space. This description cannot directly reflect the
motion characteristics of UGVs and UAVs in a relative coordinate system, and their relative
motion processes are insufficiently clear.

Based on the above research background, this study investigates the UAV–UGV
formation-maintenance control problem for cooperative combat mission requirements.
First, from the perspective of a UAV–UGV cooperative combat system, the architecture
of the control system and the relationship between the sub-modules are analyzed. Sub-
sequently, a relative motion model between the UGV and the UAV is established. The
optimal UAV–UGV cooperative formation-maintenance control is then realized based on
the proportional-integral (PI) optimal control theory. The main contributions of this study
are as follows:

(1) By directly studying the motion relationship between a UGV and a UAV in a rela-
tive coordinate system, their relative equations of motion are established in three-
dimensional space. It is possible to directly obtain the motion of the UGV and UAV in
a relative three-dimensional coordinate system, thus clarifying the physical meaning
of the relative motion between the two.

(2) The PI optimal control theory is used to design an optimal formation-maintenance
controller that can overcome the constant relative-motion perturbations, as well as the
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nonlinear-model linearization bias. This controller can potentially achieve fast and
stable optimal control of UAV–UGV formation.

3. Relative Kinematic-Equation Building for UAV–UGV Formations

In this study, we investigate the UAV–UGV formation-maintenance control problem
for cooperative combat mission requirements. Considering the actual motion state of
a UGV as the input perturbation of the formation-maintenance controller, we assume that
the control system of the UAV is closed-loop stable, i.e., the directions of the UAV velocity
command, trajectory-inclination command, and trajectory-declination command can be
stably followed. The three channels were set in the following first-order system [31]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

V̇f = − 1
τv f

(
Vf − Vf c

)
θ̇ f = − 1

τθ f

(
θ f − θ f c

)
ψ̇v f = − 1

τψv f

(
ψv f − ψv f c

) (1)

where τv f denotes the inertia time constant of the velocity control channel of the UAV, τθ f
denotes the inertia time constant of the track-inclination control channel of the UAV, τψv f

denotes the inertia time constant of the track-declination control channel of the UAV, Vf is
the actual velocity magnitude of the UAV, θ f is the actual inclination angle of the UAV, ψv f
is the actual declination angle of the UAV, Vf c is the commanded velocity magnitude of
the UAV, θ f c is the commanded inclination angle of the UAV, and ψv f c is the commanded
declination angle of the UAV.

To study the relative motion between the UGV and UAV, the following coordinate
systems are first defined:

(1) Inertial coordinate system O1X1Y1Z1: The origin O1 is located at a fixed point on
the ground, the O1X1 axis points to the target, the O1Y1 axis is vertically upward, and the
O1Z1 axis forms a right-handed coordinate system with the first two axes.

(2) Relative coordinate system OrXrYrZr: The origin Or is located at the center of mass
of the UGV, the OrXr axis points in the direction of the UGV velocity, the OrYr axis is in
the vertical plane perpendicular to the OrXr axis, and the OrZr axis forms a right-handed
coordinate system with the first two axes.

(3) Vehicle-body coordinate system O2X2Y2Z2: The origin O2 is located at the center
of mass of the UAV, the O2X2 axis points in the direction of the UAV velocity, the O2Y2
axis is in the vertical plane perpendicular to the O2X2 axis, and the O2Z2 axis forms a
right-handed coordinate system with the first two axes.

In the relative coordinate system, according to Coriolis theory, the motions of the UGV
and UAV are related as follows:

dr
dt

= V f r − V lr = V r + ω × r (2)

where r is the relative radius vector between the UGV and UAV; V f r and V lr are the
velocity vectors of the UAV and UGV in the relative coordinate system, respectively; V r
is the derivative of the radius vector r in the relative coordinate system; ω is the angular
velocity of rotation of the relative coordinate system in the inertial coordinate system.

To obtain the absolute velocity of the UGV and UAV in the relative coordinate system,
the following transformation can be performed:{

V f t = Φr
1Φl

2V f 2
V lr = V l2

(3)

where Φr
1 is the conversion matrix from the inertial to the relative coordinate system; Φl

2
is the conversion matrix from the UAV body coordinate system to the inertial coordinate
system; V f 2 is the velocity vector under the UAV body coordinate system; V l2 is the velocity
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vector under the UGV body coordinate system. The values of each of these variables are
as follows:

Φr
1 =

⎡⎣ cos θl cos ψvl sin θl − cos θl sin ψvl
− sin θl cos ψvl cos θl sin θl sin ψvl .

sin ψvl 0 cos ψvl

⎤⎦ (4)

Φl
2 =

⎡⎣ cos θ f cos ψv f − sin θ f cos ψv f sin ψv f
sin θ f cos θ f 0

− cos θ f sin ψv f sin θ f sin ψv f cos ψv f

⎤⎦ (5)

V l2 =

⎡⎣ Vl
0
0

⎤⎦ (6)

V f 2 =

⎡⎣ Vf
0
0

⎤⎦ (7)

where Vl denotes the velocity magnitude of the UGV in the inertial coordinate system; θl
denotes the inclination angle of the UGV; ψvl denotes the deflection angle of the UGV; Vf is
the velocity magnitude of the UAV in the inertial coordinate system; θ f is the inclination
angle of the UAV trajectory; ψv f is the deflection angle of the UAV trajectory. The relative
velocities of the UGV and UAV in the relative coordinate system are expressed as follows:

V r =

⎡⎣ ẋ
ẏ
ż

⎤⎦ (8)

where x, y, and z are the components of the position vector r of the UAV along each axis in
the relative coordinate system. The angular velocity of rotation ω in the relative coordinate
system with respect to the inertial space can be expressed as follows:

ω =

⎡⎣ ψ̇vl sin θl
ψ̇vl cos θl

θ̇l

⎤⎦ (9)

Then, based on Equation (2), the following equation can be obtained:

V f r =
(

V f r − V lr

)
− ω × r (10)

The relative motion relationship between the UAV and UGV in the three-dimensional
plane can be obtained by combining Equations (2), (8), and (10).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = Vf cos θ f cos θl cos ψe + Vf sin θ f sin θl − Vl + yθ̇l − zψ̇vl cos θl

ẏ = −Vf cos θ f sin θl cos ψe + Vf sin θ f sin θl − xθ̇l + zψ̇vl sin θl

ż = Vf cos θ f sin ψe − yψ̇vl sin θl + xψ̇vl cos θl

ψe = ψvl − ψv f

(11)

4. Optimal Control Modeling for the UAV–UGV Formation-Maintenance Controller

The design goal of the UAV–UGV formation-maintenance controller is to produce
flight commands Vf c, θ f c, ψv f for the UAV, to keep it at the desired relative distance from
the UGV.
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4.1. Linearization of the Relative Equations of Motion

During the UAV–UGV formation-maintenance process, assuming that θ f , θl , and
ψe = ψvl − ψv f can be considered as small quantities, while considering the state of the
UGV as an input quantity, Equation (11) is converted to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = Vf + Vf θ f θl − Vl + yθ̇l − zψ̇vl

ẏ = −Vf θl + Vf θ f − xθ̇l + zψ̇vlθl

ż = Vf ψe − yψ̇vlθl + xψ̇vl

ψe = ψvl − ψv f

(12)

Using the small-perturbation linearization method, Equation (12) can be linearized as⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = θ̇ly − ψ̇vlz +

(
1 + θ f 0θl

)
Vf + Vf 0θlθ f − Vl

ẏ = −θ̇l x + ψ̇vlθlz +
(

θ f 0 − θl

)
Vf + Vf 0θ f

ż = ψ̇vl x − ψ̇vlθly +
(

ψvl − ψv f 0

)
Vf − Vf 0ψv f

(13)

where v f 0, θ f 0, and ψv f 0 are the state equilibrium points selected during linearization.
Describing Equation (13) as a state-space form (SSF) yields{

Ẋ = AX + BU + B̃W
Y = CX

(14)

where

A =

⎡⎣ 0 θ̇L −ψ̇vl
−θ̇l 0 θLψ̇vl
ψ̇vl −θLψ̇vl 0

⎤⎦ (15)

B =

⎡⎣ 1 + θ f 0θl Vf 0θl 0
θ f 0 − θl Vf 0 0

ψvl − ψv f 0 0 −Vf 0

⎤⎦ (16)

C =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (17)

B̃ =

⎡⎣ 1
0
0

⎤⎦ (18)

where X =
[

x y z
]T denotes the state variable; U =

[
Vf θ f ψv f

]T denotes
the control variable of the formation controller, which is the motion state of the UAV;
Y =

[
x y z

]T denotes the output variable; the perturbation variable is the velocity
W = V l of the UGV.

4.2. Optimal Formation-Maintenance Controller Design

According to the state-space equations of the system, the controller design problem
for UAV–UGV formations is a non-zero set-point output-regulation problem with constant
or slow-varying perturbations. Two steps can be taken to solve this problem: the first step
is to design an optimal output regulation controller that can solve constant or slow varying
perturbations. The second step is to design an optimal controller to solve the non-zero
set-point problem so that the UAV–UGV formation can be stably maintained at the desired
formation position.
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4.2.1. PI Optimal Formation-Maintenance Controller Design

The perturbed system of type shown in Equation (14), with constant or slowly varying
values, can be overcome using a PI type of control, similar to that in classical control theory.
This section analyzes the problem of designing PI optimal controllers with zero values as
the output regulation set points.

First, the system perturbation is transformed into a perturbation of the control input,
at which point, system (14) becomes

Ẋ = AX + B(U + W̃) (19)

where W̃ denotes the transformed form of the original system perturbation. The following
equation can be obtained from system (14):

W̃ = B−1B̃W (20)

Next, we design the PI optimal controller of the perturbed system (19), which can be
augmented as {

Ẋ1 = A1X1 + B1U1
Y1 = C1X1

(21)

where

X1 =

[
X

U + W̃

]
(22)

A1 =

[
A B
0 0

]
(23)

B1 =

[
0

I

]
(24)

C1 =
[

I 0
]

(25)

For the augmented system (21), the quadratic performance index is given as

J =
∫ t f

t0

[
XT

1 Q1X1 + UT
1 R1U1

]
dt (26)

where Q1 is the state-regulation power-coefficient matrix of the augmented system and
R1 is the control energy power coefficient matrix of the augmented system. When the
system (21) is controllable, according to optimal control theory, the minimum optimal
control to achieve the quadratic performance index (26) is

U∗
1 = −R−1

1 BT
1 PX1 (27)

Let us further analyze the quadratic performance index (26). Based on the composition
of the state variable X1, Q1 can be decomposed as follows:

Q1 =

[
Q 0

0 R

]
(28)

Then, we can have

XT
1 Q1X1 = XTQX + (U + W̃)T R(U + W̃) (29)

where Q is the state-regulation power-coefficient matrix of the original system (14) and R
is its control energy power coefficient matrix.

According to system (14), we can have

XTQX = XTCTQYCX = YTQYY (30)
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where QY is the output regulation power-coefficient matrix of the original system.
The optimal quadratic state-regulation performance index described in Equation (26)

becomes the optimal quadratic output-regulation problem.

J =
∫ t f

t0

[
YTQYY + (U + W̃)T R(U + W̃) + UT

1 R1U1

]
dt (31)

Assuming that the perturbation W̃ is a slow variable, it follows that

˙̃W = 0 (32)

Then, we have
U1 = ˙̃U (33)

Thus, the quadratic optimal output performance index of the system (21) can be
described as

J =
∫ t f

t0

[
YTQYY + (Ũ + W̃)T R(Ũ + W̃) + ˙̃UT R1

˙̃U
]
dt (34)

For the optimal control quantity (27), the following equation can be obtained by
combining it with (33):

U∗
1 = ˙̃U∗ = −R−1

1 BT
1 PX1 (35)

where P is the minimum solution of the Riccati optimal control equation for achieving the
performance index in Equation (26). Then, Equation (35) can be further expanded as

˙̃U∗ = −R−1
1

[
0

I

][
P11 P12
P21 P22

][
X

Ũ∗
+ W̃

]
= −R−1

1 P21X − R−1
1 P22

(
Ũ∗

+ W̃
) (36)

The above equation is an indicator of the minimum optimal control amount required
to achieve the zero-valued set point in Equation (26).

4.2.2. Design of Non-Zero Set-Point OPTIMAL Controllers

To maintain the output quantity Y =
[

x y z
]T at a non-zero set point, the state

and control input of the system at the steady state must also be non-zero. The optimal
control input based on Equation (35) should take the following form.

˙̃U∗ = −R−1
1 BT

1 PX1 + U ′
0 = −KX1 + U ′

0 (37)

where U ′
0 is the additional control quantity that stabilizes the non-zero set point. The

output equation of the augmented system is

Y = C1X1 (38)

From the expanded state X1, the augmented system is

X1 =

⎡⎢⎢⎢⎢⎢⎢⎣

x
y
z

Vf + W̃(1)
W̃(2)
W̃(3)

⎤⎥⎥⎥⎥⎥⎥⎦ (39)
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To ensure that the output of the augmented system is consistent with the output of the
original system, the output matrix of the augmented system is set to

C1 =

⎡⎣ 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎦ (40)

By substituting the control quantity (37) into the augmented system (21), we obtain

Ẋ1 = (A1 − B1K)X1 + B1U ′
0 (41)

Because the closed-loop system (41) is asymptotically stable, the following condition
should exist at steady state:

lim
t→∞

Ẋ1(t) = 0 (42)

This leads to the following asymptotically stable form.

0 = (A1 − B1K)X10 + B1U ′
0 (43)

where X10 is the steady-state value of state X1.
If all eigenvalues of matrix (A1 − B1K) are in the left half-complex plane, then

(A1 − B1K) is a non-singular matrix, and the following equation can be obtained by com-
bining with Equation (43).

X10 = −(A1 − B1K)−1B1U ′
0 (44)

Then, based on Equation (38), the relationship between the non-zero set point Y∗
10 and

the steady-state value X10 of state X1 is obtained as

Y∗
10 = C1X10 (45)

Finally,

˙̃U∗ = −R−1
1 BT

1 PX1 +

[
C1

(
−B1R−1

1 BT
1 P − A1

)−1
B1

]−1
Y∗

10 (46)

can be used to achieve optimal control of the relative motion system between the UGV and
the UAV, as described in Equation (14); thus, maintaining the UAV–UGV formation in the
desired state.

5. Simulation Analysis

In this section, we describe the numerical simulations performed for the UAV–UGV
formation-maintenance control system consisting of a UGV with a given motion state,
a UAV with a first-order stability control system, and an optimal maintenance controller.
The inertial time constants of the three channels of the UGV and UAV are assumed to be
τv f = 3 s, τθ f = 1 s, and τψv f = 1 s. The initial positions of the UAV and UGV in the inertial
coordinate system are chosen as (−5, 20, 10) m and (0, 0, 0) m, respectively. It is assumed
that the UAV–UGV formation moves for 150 s, and the simulation step size is taken to
be 0.01 s. Under the action of Equation (43), the entire motion of the UAV is adjusted
and maintained from the initial position to the desired position at (−5, 20, 10) m. In all
simulations, the required control system power coefficient matrix in Equation (34) appears
as the matrices shown in Equation (47). Considering the feasible motion envelope of the
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UAV, limits are set for the control amount of the formation controller and commanded
motion state of the UAV, as shown in Equation (52).

Qy =

⎡⎣ 4 0 0
0 6 0
0 0 6

⎤⎦, R =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦, R1 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (47)

To verify the effectiveness of the proposed UGV–UAV formation-maintenance con-
troller, we set two cases in which the UGV adopts different motion modes. The motion of the
UGV is set as in Equations (48) to (51). The simulation results are shown in Figures 1 and 2.

case 1:

Vl(t) =

⎧⎪⎪⎨⎪⎪⎩
2 + sin(0.1t) m/s, 0 ≤ t < 50 s

2 m/s, 50 ≤ t < 100 s

2 + sin(0.1t) m/s, 100 ≤ t < 150 s.

(48)

{
θl(t) = 0 rad

ψvl(t) = 0.5 cos(0.1t + 0.7728) rad
(49)

case 2:

Vl(t) =

⎧⎪⎪⎨⎪⎪⎩
1.5 m/s, 0 ≤ t < 50 s

2 + sin(0.1t) m/s, 50 ≤ t < 100 s

1.5 m/s, 100 ≤ t < 150 s

(50)

{
θl(t) = 0 rad

ψvl(t) = 0.2 sin(0.15t + 0.5523) rad
(51)

⎧⎪⎪⎨⎪⎪⎩
1 m/s � Vf c � 3 m/s

−15◦ � θ f c � 25◦

−80◦ � ψv f c � 80◦
(52)

It can be seen from Figures 1 and 2 that under the control command in Equation (46),
the UGV can guide the UAV to fly at a fixed altitude in accordance with the specified
motion, which results in the maintenance of a fixed formation in the three-dimensional
plane. In addition, the velocity and declination angle commands of the UVA vary slightly
and reasonably without the jitter vibration phenomenon, which satisfies the constraints of
the laws of physics. Moreover, the motion of the UGV perturbs the UAV–UGV formation-
maintenance control. As the UGV changes its motion form at 50 and 100 s, the motion
trajectory of the UAV fluctuates at the corresponding moments. Nevertheless, it can be
quickly stabilized at the desired motion state using a formation-maintenance controller.
In case 1, the maximum values of the motion state errors of the UAV in the Xr, Yr, and
Zr directions are 1.2 m , 0 m, and 1.8 m, respectively. In Case 2, the maximum values of
the motion state errors of the UAV in the Xr, Yr, and Zr directions are 0.6 m, 0 m, and
0.6 m, respectively.
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Figure 1. Simulation results of case 1. (a) Three-dimensional motion trajectory of UGV and UAV;
(b) velocity of UAV; (c) deflection angle of UAV; (d) motion trajectory in Xr-axis direction; (e) motion
trajectory in Yr-axis direction; (f) motion trajectory in Zr-axis direction.
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Figure 2. Simulation results of case 2. (a) Three-dimensional motion trajectory of UGV and UAV;
(b) velocity of UAV; (c) deflection angle of UAV; (d) motion trajectory in Xr-axis direction; (e) motion
trajectory in Yr-axis direction; (f) motion trajectory in Zr-axis direction.

6. Conclusions

This study analyzed the structure of the UAV–UGV formation motion control system
and the relationship between the subsystems. A UAV–UGV formation–maintenance con-
troller was designed based on the optimal control theory. In addition, simulations were
performed for the UAV–UGV formation-maintenance control system, including a UGV
with a given motion state, a UAV with a first-order stability-control system, and an optimal
maintenance controller. The following conclusions were drawn.
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(1) The physical significance of the UAV–UGV relative-motion model, based directly on
the UAV motion relationship in the relative coordinate system, was clear.

(2) The optimal UAV–UGV formation-maintenance controller designed in this study had
quadratic optimal properties for the UAV–UGV relative-motion state, as well as the
formation-control energy. The controller could overcome the constant perturbation
of the UAV–UGV relative motion caused by the velocity of the UGV. The optimal
UAV–UGV formation-maintenance controller could overcome the given motion state
of the UGV as an input perturbation, while the UGV performed a prolonged motion.

(3) Within the flight envelope of the UAV–UGV formation, the optimal UAV–UGV
formation-maintenance controller was able to overcome the errors introduced by
the linearization of a nonlinear model.
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Abstract: There is an optimal cruise point with the lowest fuel consumption when a hypersonic
vehicle performs steady-state cruise. The optimal cruise point is composed of the optimal cruise
altitude and the optimal cruise Mach number, and its position is closely related to the aircraft
parameters. This article aims to explore the relationship between the optimal cruise point and relevant
aircraft parameters and establish a model to describe it, then an aircraft parameter optimization
method of adjusting the optimal cruise point to the target position is explored with validation by
numerical simulation. Firstly, a parameterized model of a hypersonic vehicle is obtained as a basis,
then the optimal cruise point is obtained by the optimization method, and the influence of a single
aircraft parameter on the optimal point is investigated. In order to model the relationship between
the aircraft parameters and the optimal cruise point, a neural network is employed. Finally, the model
is used to optimize the aircraft parameters under multiple constraints. The results show that, after
aircraft parameters optimization, the optimal cruise point is located at the predetermined position
and the fuel consumption is lower, which provides a new perspective for the design of aircraft.

Keywords: hypersonic vehicle; steady-state cruise; aircraft parameter; neural network

1. Introduction

An air-breathing hypersonic vehicle generally refers to an aircraft powered by air-
breathing engines and flying at a Mach number above 5 [1]. It has a series of advantages,
such as high altitude, fast speed, and strong penetrability, which has a far-reaching impact
on the future development of the aerospace field [2,3]. Therefore, the research of hypersonic
technology has received extensive attention from researchers all over the world.

In the cruise phase of a hypersonic vehicle, steady-state cruise refers to the cruise
mode whose altitude and speed remain constant [4]. Steady-state cruise is simple and
direct and has high stability for a hypersonic vehicle [5]. In order to save fuel and increase
the range of the aircraft, the fuel consumption averaged by the range is an important
indicator that many studies of trajectory optimization focus on. Research has shown that,
when the aircraft performs steady-state cruise at different altitudes or Mach numbers, the
fuel consumption is different [6–9]. Under a determined aircraft model, there is an optimal
steady-state cruise point composed of the optimal cruise Mach number and the optimal
cruise altitude. When the aircraft performs steady-state cruise at the Mach number and
altitude of the optimal point, the fuel consumption averaged by the range is lowest [10]. To
obtain the optimal cruise point, a great deal of research is carried out.

Based on a parametric model of HL-20, a hypersonic vehicle widely used in trajec-
tory optimization research, Liu et al. [11] developed a two-level optimization algorithm
combining particle swarm optimization and sequential quadratic programming to solve
the optimal steady-state cruise point; Gao et al. [12] employed the fmincon function in
MATLAB to determine the position of the optimal cruise point. In [13], it was pointed out
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that a higher altitude was beneficial to reduce drag, but, at the same time, it would reduce
the specific impulse. Therefore, the optimal cruise point was a combined result of these
two aspects.

Most of this research is based on the HL-20 aircraft model. However, the parametric
model of HL-20 is an ideal model whose specific impulse is independent from the equiva-
lence ratio, while it has been found that the specific impulse should be negatively correlated
with the equivalent ratio in the ramjet engine [14]. As a hypersonic vehicle enters the stage
of engineering practice, to better develop the hypersonic vehicle, it is significant to clarify
the cruise characteristics based on a more practical aircraft model.

In addition, for different aircraft models, the positions of the optimal cruise points
are also different, which reveals the position of the optimal cruise point is closely related
to the aircraft parameters. Even though some methods have been developed to solve the
optimal cruise point, there is little research about how the aircraft parameters influence
the optimal cruise point. In the aircraft design process, when the aircraft parameters are
determined, there is a corresponding optimal steady-state cruise point. However, if the
subjectively desired cruise Mach number and altitude deviate from the objective Mach
number and altitude of the optimal cruise point, the fuel consumption cannot be reduced
fully. Then, the optimal cruise point can be taken into account in the aircraft design to guide
the optimization of the aircraft parameters. The optimal cruise point can be changed after
aircraft parameters optimization and then coincide with the subjective desired cruise point,
which is of great benefit to save fuel. Therefore, exploring the influence law of aircraft
parameters on the optimal cruise point and carrying out the research on aircraft parameter
optimization is of great significance to provide a new perspective for aircraft design.

Regarding the analysis and optimization of aircraft parameters, a great deal of research
has been carried out. In the early days, researchers focused on analyzing a single aircraft
parameter to investigate its impact on the range, lift-to-drag ratio, and other aspects of
performance [15]. The control variable method was widely adopted, especially in the
research about range. To study the relationship between the range of a hypersonic vehicle
and the aircraft parameters, the Bruguet formula was employed [16,17], and some methods,
such as the cell mapping method in [18], were applied as well. Moreover, the aerodynamic
layout of the hypersonic vehicle was analyzed to clarify the influence on the lift-drag ratio
and other indicators [19,20].

However, due to the strong interaction between the aircraft parameters, the hypersonic
vehicle is a complex system. The analysis and optimization of the aircraft parameters cannot
focus only on a single factor. The coupling relationship between various parameters also
needs to be taken into consideration. Therefore, in recent years, surrogate model technology
has been widely employed in the analysis of aircraft parameters. The relationship between
the aircraft parameters and performance indicators can be described by a surrogate model,
and then parameter optimization can be carried out based on the surrogate model [21].
Currently, to establish a surrogate model, polynomial regression, the Kriging model, radial
basis function, and a neural network can be employed [22]. In addition, many statistical
methods have been introduced into the research based on the surrogate model. In the
analysis of the aircraft parameters, the sensitivity analysis method [23] and correlation
analysis method were widely used to dig out important parameters whose influence
was most obvious [24,25]. The orthogonal test and some novel methods, such as the
technology identification, evaluation and selection method in [26] and hybrid algorithm
in [27], were employed to explore an optimal design space and parameter estimation in
aircraft parameters analysis as well.

Based on the surrogate model, optimization methods have been widely employed
in the parameter optimization research [28]. There are various parameter optimization
methods, which can be mainly divided into gradient-based methods and the intelligent
method. With the development of computing science, the intelligent method increasingly
plays an important role. A genetic algorithm (GA), particle swarm optimization (PSO),
differential evolution (DE) algorithm, and so on have been widely developed [29]. For
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an optimization problem with high dimensions, the PSO algorithm is demonstrated to be
suitable and is also easy to program, so a great deal of research has adopted it [30,31].

In this paper, in order to describe the influence of aircraft parameters on the optimal
cruise point, a sensitivity analysis and surrogate model technology with the optimization
method is employed. Firstly, based on a parametric hypersonic vehicle model, the position
of the optimal cruise point is quickly solved by the PSO algorithm. On this basis, the
influence law of a single aircraft parameter on the optimal cruise point is explored, and a
model about the relationship between the aircraft parameters and optimal cruise point is
established by neural network. Based on the model, the aircraft parameters are optimized
under various constraints to adjust the optimal cruise point to the given position. The
aircraft parameters optimization method proposed reveals how the aircraft parameters
should be adjusted, which is able to provide guidance in the design of a hypersonic vehicle.

2. Models

2.1. Dynamic Equations

For simplicity, it is considered that Earth is a homogeneous sphere with a radius
of 6378 km. The Coriolis inertial force is ignored, and the gravitational acceleration is
regarded as a constant at 9.8 m/s2. The force analysis of aircraft is shown in Figure 1, where
T is the thrust vector generated by the aircraft engine, R is the aerodynamic force vector
that contains lift and drag, and G is the gravity vector.

 

G

L

D

T xv

yv

r

R

Figure 1. Force analysis diagram of aircraft.

The dynamic equation of the aircraft mass center in a form of vectors is as follows:

m
d2→r
dt2 =

→
T +

→
R +

→
G (1)

In the velocity coordinate system, Equation (1) can be decomposed into{
m dv

dt = T cos α − D − G sin γ

m(v · dγ
dt − v2 cos γ

r ) = T sin α + L − G cos γ
(2)

where v denotes the flight velocity, γ is the elevation angle of trajectory, α is the angle of
attack, and m is the mass of the aircraft. Due to{

h = r − Re
v = Ma · c

(3)
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where h denotes the flying height (km) and Ma is Mach number, then the dynamic equation
of the cruise phase is [6]:⎧⎪⎨⎪⎩

dh
dt = Ma · c · sin γ
dMa

dt = T cos α−D−mg sin γ
m·c

dγ
dt = T sin α+L

mMa·c + cos γ( Ma·c
Re+h − g

Ma·c )
(4)

Based on the dynamic equation, the trajectory can be solved by numerical method.
Before that, the magnitude of lift, drag, and thrust need to be determined.

2.2. Aerodynamic Force Calculation

The magnitude of lift and drag is calculated by lift coefficient and drag coefficient,
which are denoted by CL and CD, respectively, as follows:

L = CL · 1
2 ρ(Ma · c)2 · S

D = CD · 1
2 ρ(Ma · c)2 · S

(5)

where ρ is the atmospheric density and S is the reference area of the aircraft. The lift coeffi-
cient and drag coefficient under different angles of attack, rudder angles, and incoming
Mach numbers are obtained by CFD simulation. Then, in the process of trimming angle
of attack, the rudder angle is adjusted to make the pitching moment equal to 0, and the
lift coefficient and drag coefficient at this moment are regarded as the data under this
angle of attack in steady state [32]. Subsequently, the lift coefficient and drag coefficient
are parameterized by polynomial fitting. The fitting polynomials are as follows, and the
values of coefficients are given in Tables 1 and 2.

CL =
i+j≤3

∑
i=0,j=0

Aij · Mai · αj

CD =
i≤3,i+j≤4

∑
i=0,j=0

Bij · Mai · αj

(6)

Table 1. Fitting coefficients of CL.

j
i

0 1 2 3

0 −0.3103 0.2198 −0.0491 0.0032
1 0.1002 0.00015 −0.00069
2 0.0032 −0.00024
3 0.0000456

Table 2. Fitting coefficients of CD.

j
i

0 1 2 3

0 0.5957 −0.1855 0.0282 −0.0015
1 −0.0470 0.0314 −0.0066 0.00044
2 −0.00086 0.00086 −0.000064
3 0.00013 −0.000023
4 0.00000255

Figure 2 shows the comparison between the original data and the fitted results. It can
be seen that, with the increase of angle of attack, the lift coefficient and drag coefficient
increase, and, with the increase of Mach number, both of them decrease slowly.
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Figure 2. The change of CL and CD with angle of attack and Mach number.

The atmospheric parameters change a lot at different altitudes, which has a significant
impact on the calculation of aerodynamic forces. In this paper, the American Standard At-
mospheric Parameters Model is employed. Firstly, a gravity potential height is defined [33]:

H =
h

1 + h/Re
(7)

where Re denotes the radius of Earth. When the altitude is within 20 to 32 km, the
atmospheric density and temperature are calculated by the following formula:

W = 1 + H−124.9021
221.552

ρ
ρ0

= 2.5158 × 10−2W−34.1629

T = 221.552W (K)

(8)

where ρ0 = 1.225 kg/m3.
The sound velocity calculation formula is:

c =
√

1.4 × 287 × T (9)

According to the formulas above, the lift and drag of aircraft can be calculated.

2.3. Thrust Calculation

The thrust of a hypersonic vehicle is generated by the ramjet. Air flow is captured
by the inlet, then mixed with fuel, and burns to generate thrust. The air mass flow rate
captured by the engine inlet, denoted by

.
minlet, is evaluated:

.
minlet = ϕinlet · ρ · Ma · c · A (10)

where A denotes the inlet area and ϕinlet is the inlet flow capture coefficient, which reflects
the ability to capture air flow under different Mach numbers and angles of attack.

The calculation of ϕinlet is shown in Equation (11), and the values of coefficients are
given in Table 3.

ϕinlet = K1 · α2 + K2 · Ma2 + K3 · α + K4 · Ma + K5 · Ma · α + K6 (11)

Table 3. Fitting coefficients of ϕinlet.

K1 K2 K3 K4 K5 K6

0.0001135 −0.002 −0.01232 0.033 0.00553 0.0815

Since the kind of fuel in the scramjet is fixed, there is a relationship between the fuel
mass flow rate and the air mass flow rate in complete combustion, which is displayed in
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Equation (12), where k is a proportion coefficient with a value at 0.07 and
.

m f st denotes the
fuel mass flow rate required for complete combustion.

.
m f st = k · .

minlet (12)

The ratio of current fuel mass flow rate to the fuel mass flow rate required for complete
combustion is called the equivalence ratio, which is denoted by Φ [34]:

Φ =

.
m f uel

.
m f st

(13)

When Φ = 1, it indicates that current amount of air flow can be completely consumed;
when Φ < 1, it indicates that the current combustion in the engine is in an oxygen enriched
state. However, when Φ < 0.45, it leads to insufficient fuel, and the engine cannot work
normally. Therefore, the range of Φ is between 0.45 and 1.

Combining Equations (12) and (13), the fuel mass flow rate is:

.
m f uel = Φ · k · .

minlet (14)

Then, the thrust is:

T =
.

m f uel · Isp = Φ · k · .
minlet · Isp (15)

where Isp denotes the specific impulse, a parameter related to equivalence ratio and
Mach number:

Isp = f (Φ) · g(Ma) (16)

f (Φ) and g(Ma) are shown in Equation (17), and the values of coefficients are given in
Table 4.

f (Φ) = (1 + 1−Φ
2 )

g(Ma) =
4
∑

i=1
Ci · Mai (17)

Table 4. Fitting coefficients of g(Ma).

C4 C3 C2 C1

62.50 −933.84 3391.2 2024.4

f (Φ) reflects the influence of equivalence ratio on specific impulse. If the equivalence
ratio is lower, fuel is more likely to burn completely due to more adequate oxygen; thus,
larger thrust can be generated by a unit mass of fuel, and the specific impulse is larger as
a result. Compared with the HL-20 aircraft model, whose impulse is independent from
equivalence ratio [4,6], this model is closer to the actual situation.

g(Ma) reflects the influence of Mach number on the specific impulse. When Mach
number increases, specific impulse will decrease.

Figure 3 shows the comparison between the parametric thrust model and the original
data at an angle of attack of 5◦. It can be seen that the parametric model can accurately
reflect the trend of thrust with Mach number and equivalence ratio: with the increase of
Mach number, the thrust increases gradually; when the equivalence ratio increases, more
fuel is burned and more thrust is generated.
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Figure 3. Comparison between the parametric model and original data.

2.4. Fuel Consumption Calculation

To evaluate the flight cost during steady-state cruise, the fuel consumption averaged
by range is employed as an indicator. If the fuel consumption averaged by range is smaller,
the range is larger using the same mass of fuel. The time derivative of range is [35]:

dr
dt

= Ma · c · cos γ (
Re

Re + h
) (18)

Combined with Equations (10) and (14), the derivative of fuel consumption to range
can be obtained as follows:

dm
dr

=
Φ · k · ϕinlet · ρ · A

cos γ
(1 +

h
Re

) (19)

Due to the Mach number and altitude remaining unchanged during the steady-state
cruise and the fuel consumption per second being rather small compared with the total
aircraft mass, it is considered that all the parameters in Equation (19) remain basically
unchanged [11]; thus, the fuel consumption averaged by range can be calculated by
Equation (19) directly.

So far, the parametric aircraft model is established. Given the angle of attack, Mach
number, and equivalence ratio, the aerodynamic force and thrust can be calculated, then the
cruise trajectory can be obtained by the dynamic equation. Finally, the fuel consumption
averaged by the range can be solved.

In the dynamic equation and parametric aircraft model, the relevant aircraft parame-
ters include lift coefficient, drag coefficient, inlet area, specific impulse, aircraft mass, and
reference area. In this paper, these six aircraft parameters are regarded as the parameter
group that is mainly focused on.

3. Solution of Optimal Cruise Point

Previous studies have found that, when the aircraft is cruising at different Mach
numbers and altitudes, its fuel consumption averaged by the range is different, and there is
a certain value of altitude and Mach number to minimize the fuel consumption. According
to the aircraft model in this paper, the steady-state cruise characteristics at different Mach
numbers and altitudes are analyzed.

3.1. Steady-State Cruise Parameter Solution

In steady-state cruise, the elevation angle of trajectory is constant at 0, and the altitude
and Mach number remain unchanged; thus, Equation (4) is simplified into:⎧⎨⎩

dMa
dt = T cos α−D−mg sin γ

m·c = 0
dγ
dt = T sin α+L

m·Ma·c + cos γ ( Ma·c
Re+h − g

Ma·c ) = 0
(20)
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Lift and drag are related to altitude, Mach number, and angle of attack, while thrust is
related to altitude, Mach number, angle of attack, and equivalence ratio. In short, there are
two equations with four unknowns. From Equation (20), it can be obtained that{

T cos α − D − mg sin γ = 0

T sin α + L + cos γ · m·(Ma·c)2

Re+h − mg cos γ = 0
(21)

If the upper equation in Equation (21) is multiplied by tanγ, T can be eliminated:

D tan α + L − mg + m
(Ma · c)2

(Re + h)
= 0 (22)

Then, substitute Equation (5) into Equation (22) and it can be obtained that

CD · 1
2

ρ(Ma · c)2 · S · tan α + CL · 1
2

ρ(Ma · c)2 · S − mg + m
(Ma · c)2

(Re + h)
= 0 (23)

If the value of h and Ma are given, ρ and c can be obtained. Due to the fact that CL
and CD are related to Ma and α, Equation (23) is an equation only related to α, which can
be solved by the method of bisection. After the value of α is obtained, there is only one
unknown left. Then, the equivalent ratio can be solved by Equation (21) so as to solve the
fuel consumption.

The fuel consumption averaged by the range is solved in the range of Mach 4 to 7
and 20 km to 29 km by the traversing method at a Mach number interval of 0.1 and an
altitude interval of 200 m. The contour of fuel consumption at different altitudes and Mach
numbers is displayed in Figure 4. Since the equivalence ratio ranges from 0.45 to 1, there
are boundaries in the contour caused by the constraints of the equivalence ratio, which
means there is no solution of Equation (21) and steady-state cruise cannot be achieved in
the region outside the boundaries. The distribution of fuel consumption is similar to a
basin. If the Mach number or altitude is too high or too low, the fuel consumption will
increase up to 1.2 kg/km, while the minimum is only about 0.4 kg/km. The group of
the Mach number and altitude with the minimum fuel consumption is called the optimal
steady-state cruise point and is denoted by (Maopt, hopt), which is in the range of Mach 4.5
to 5.5 and 24 km to 26 km.

Figure 4. Contour of fuel consumption averaged by range.

3.2. Fast Solution of Optimal Cruise Point

Although a rough position of the optimal cruise point can be obtained by the traversing
method, it is time-consuming and accuracy is limited. In order to determine the position of
the optimal cruise quickly and accurately, the optimization algorithm is employed.

According to the analysis, there are actually only two variables when solving steady-
state cruise. Given the cruise Mach number and altitude, the other trajectory parameters
can be calculated. Therefore, the solution of the optimal cruise point can be regarded
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as an optimization problem with two variables in which the fuel consumption is the
optimization objective and the cruise Mach number and altitude are the optimization
variables. Therefore, the mathematical expression of the optimization problem is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minJ = Φ·k·ϕinlet ·ρ·A
cos γ (1 + h

Re
)

s.t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

22 ≤ h ≤ 28

4 ≤ Ma ≤ 7
T cos α−D−mg sin γ

m·c = 0
T sin α+L

mMa·c + cos γ( Ma·c
Re+h − g

Ma·c ) = 0

(24)

The particle swarm optimization (PSO) algorithm is used to solve the optimization
problem. The optimization algorithm process is displayed in Figure 5, and the details are
as follows:

Step 1: randomly generate an initial particle swarm, and each particle is two-dimensional
and represents a group of Mach number and altitude;
Step 2: calculate the steady-state cruise trajectory parameters at the Mach number and
altitude represented by a particle;
Step 3: calculate the fuel consumption averaged by range at the altitude and Mach number
represented by a particle as the fitness function value;
Step 4: update the velocity and position of particles according to the fitness function value
to obtain a new iteration of particle swarm;
Step 5: repeat Steps 2 to 5 until the termination conditions are satisfied.

 

Figure 5. Optimization process.

Based on the optimization process, the optimal cruise point can be obtained. The
size of the particle swarm is 10, and the maximum number of iterations is 30. Figure 6
shows the change of the fitness function value. The algorithm converges after 10 iterations.
Finally, the altitude of the optimal cruise point is 24.95 km, and the Mach number is 4.95.
Figure 7 displays the position of the optimal cruise point in the fuel consumption contour.
The angle of attack corresponding to the optimal cruise point is 9.47◦, and the equivalence
ratio is 0.556. The minimal fuel consumption averaged by the range is 0.396 kg/km.

fit
ne

ss

Iteration

Figure 6. The change of fitness function value during optimization.
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Figure 7. The location of optimal cruise point in the contour of fuel consumption.

Therefore, if the aircraft parameters are determined, the position of the optimal
cruise point can be obtained quickly and accurately by this PSO algorithm. On this basis,
the aircraft parameters can be adjusted and corresponding optimal cruise points can be
obtained, then the influence of the aircraft parameters on the optimal cruise point can
be explored.

4. Analysis and Modeling of Aircraft Parameters

According to previous analysis, for a determined parametric aircraft model, there is
a corresponding optimal steady-state cruise point, and the position of the optimal cruise
point is determined by the aircraft parameters. How the aircraft parameters affect the
position of the optimal cruise point is also a problem worthy of exploration, which has
guiding significance for the design of aircraft.

4.1. Analysis of Single Aircraft Parameter

The aircraft parameters group studied in this paper includes lift coefficient, drag coef-
ficient, inlet area, specific impulse, aircraft mass, and reference area. These six parameters
can be divided into three aspects, as shown in Figure 8: aerodynamic shape (lift coefficient
and drag coefficient), propulsion system (inlet area and specific impulse), and structural
design (aircraft mass and reference area).

CL CD A Isp m S

Figure 8. Considered parameters in this paper.

The values of these six aircraft parameters are adjusted to explore their influence
on the optimal cruise point denoted by (Maopt, hopt). The ratio between the value after
adjustment and the original value is denoted by XL, XD, XA, XI, Xm, and XS, respectively.

Within the range of 0.8 to 1.5, the influence of a single factor in (XL, XD, XA, XI, Xm, XS)
is investigated. Only one variable is changed at a time, and the rest remain at 1. After the
aircraft parameters are adjusted, the corresponding optimal cruise points are obtained by
the PSO algorithm in Figure 5.

Figure 9 shows the influence of different factors. From Figure 9a, Maopt has a positive
correlation with XA and XI, and the effects of XA and XI on Maopt are very similar, which
indicates that, if the magnitude of thrust determined by XA and XI is larger, Maopt will
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increase as well. Further, Maopt has a negative correlation with XD and XS, and the effects
of XD and XS on Maopt are also similar, which indicates that, if the magnitude of drag
determined by XD and XS is larger, Maopt is lower. Differently, XL and Xm have little effect
on Maopt.
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Figure 9. Influence of different factors on the optimal cruise point: (a) Influence on Maopt;
(b) Influence on hopt.

It can be seen from Figure 9b that hopt is sensitive to all the factors. In detail, hopt is
positively correlated with XL, XA, XI, and XS, and the effects of XA and XI on hopt are very
similar, which indicates that the magnitude of thrust determined by XA and XI also has a
great impact on hopt, while hopt has a negative correlation with XD and Xm.

A multiple regression analysis is employed to quantify the influence of the six factors
on the optimal cruise point, and the regression coefficient is normalized as an index of
sensitivity. Figure 10 shows the sensitivity percentages of the different factors, where
a negative sign indicates a negative correlation between the factor and the dependent
variable. It can be seen that XA and XI have the largest impact on the optimal cruise
Mach number, accounting for nearly 30%, followed by XD and XS, which are negatively
correlated, while the sensitivity of XL and Xm is almost 0; XA, XI and Xm have the greatest
influence on the optimal cruise altitude, accounting for about 20%, where the influence of
Xm is negative.

 
(a) (b) 

XSXmXIXAXDXL

−

XSXmXIXAXDXL

−

Figure 10. Sensitivity of different factors on the optimal cruise point: (a) Sensitivity on Maopt;
(b) Sensitivity on hopt.

Based on the conclusions above, the inlet area, specific impulse, and drag coefficient
have the largest impact on the optimal steady-state cruise Mach number. If the optimal
cruise Mach number needs to be enhanced, the inlet area and specific impulse should be
larger or the drag of aircraft should be reduced. Due to the inlet area, the specific impulse
and aircraft mass have the largest impact on the optimal cruise altitude. To improve the
optimal cruise altitude, the most effective way is to increase the inlet area and specific
impulse, or reduce the weight of the aircraft.
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Figure 11 shows the influence of the six factors on fuel consumption averaged by the
range. It can be seen that XD, Xm, and XS are positively correlated with fuel consumption,
while XL, XA, and XI are negatively correlated with it. Therefore, in order to reduce the
fuel consumption, the lift coefficient and specific impulse as well as the inlet area should be
increased, where the effect of increasing specific impulse is the best; in addition, the mass
and drag coefficient, as well as the reference area of the aircraft, should be reduced, where
the effect of drag coefficient reduction is the best.
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Figure 11. Influence of different influence factors on the fuel consumption.

However, compared with the altitude and fuel consumption of the optimal cruise
point, the change range of the Mach number is the smallest, which means that it is difficult
to greatly change the optimal cruise Mach number by adjusting the aircraft parameters in
the current range.

4.2. Modeling of Aircraft Parameters

Through the analysis of a single factor, the influence of different aircraft parameters on
the optimal cruise point is clarified. However, due to the complex interaction among these
parameters, the influence of a single factor has limited ability to guide aircraft design, and
it is necessary to consider simultaneous changes of different aircraft parameters. Therefore,
it is of significance to establish a mathematical model that can comprehensively describe
the relationship between the aircraft parameters and optimal cruise point.

A neural network (NN) is a complex network system that simulates the human brain.
It consists of a large number of simple neurons connected with each other [36–38]. A
feed forward neural network (FFNN) is a kind of neural network. In recent years, it has
been widely used in data predicting and so on [39]. In this paper, due to there being six
parameters, it is difficult to model the influence law by polynomial fit explicitly. Therefore,
FFNN is employed to establish a mathematical model of (Maopt, hopt) and (XL, XD, XA, XI,
Xm, XS); the model has six inputs and two outputs.

Firstly, 500 sample points are generated for the six inputs from the Optimal Latin
Hypercube Distribution [40] in a range of 0.8 to 1.5, and the values of (Maopt, hopt) for the
500 samples are obtained by the PSO for the optimal cruise point in Figure 5. Furthermore,
400 of the samples are used as the training set, 75 as the validation set, and the other 25
as the test set. The logsig function is employed in the hidden layer, and the output layer
transfer function is Purelin Linear. The L-M method is employed as the learning method.
The structure of the FFNN is displayed in Figure 12.

The regression results after training are illustrated in Figure 13. It can be seen that
the target value and output results are basically on the same line, and the value of the
regression coefficient is close to 1, which shows a good training effect.

The model estimated values and accurate values of the 25 points in the test set are
compared in Figure 14. It can be seen that the estimated values are within the deviation
range of 3% of the accurate value, indicating that the trained neural network model can
accurately describe the relationship between (Maopt, hopt) and (XL, XD, XA, XI, Xm, XS).
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Based on this model, given the value of the six factors, the values of (Maopt, hopt) can be
quickly obtained.
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Figure 12. The structure of FFNN.

Figure 13. Regression results of FFNN after training.

  
(a) (b) 

M
a o

pt

±

h o
pt

 

±

Figure 14. Comparison between estimated value and accurate value: (a) Estimated value and accurate value of Maopt;
(b) Estimated value and accurate value of hopt.
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5. Aircraft Parameter Optimization Method

After the model is obtained, given the value of (XL, XD, XA, XI, Xm, XS), (Maopt, hopt)
can be obtained quickly. Therefore, if various parameters change simultaneously, the
reaction of the optimal cruise point can be studied. By this way, if the subjective desired
cruise point does not coincide with the actual optimal cruise point, the optimal cruise point
can be adjusted to the target position by optimizing the aircraft parameters.

However, due to the interaction between the aircraft parameters, the coupling rela-
tionship between the aircraft parameters needs to be considered when optimization is
carried out.

Since there is a complex coupling relationship between the aircraft parameters, take
the following constraints as examples to illustrate the optimization method of the aircraft
parameters based on the neural network model:

(1) The maximum increment of the lift coefficient is 5%, and the drag coefficient will
also increase at the same time, and the minimal increment is 1/2 of that of the lift
coefficient;

(2) The maximum increment of the inlet area is 30%; meanwhile, the aircraft mass and
reference area will also increase, and the minimal increments are 1/3 and 1/4 of that
of the inlet area, respectively;

(3) The maximum increment of the specific impulse is 10%.

These constraints can be adjusted according to the actual situation. Now that it is
difficult to adjust the optimal cruise Mach number greatly, the optimal cruise altitude is
mainly focused. The target of the optimal cruise point is set at (Ma5, 26 km).

However, if the aircraft parameters can be changed at the same time, to adjust the
optimal cruise altitude to the desired value, there is more than one plan since six relevant
aircraft parameters are considered. The fuel consumption after aircraft parameters opti-
mization is different by various adjustment plans. Therefore, in this paper, the plan with
the minimum fuel consumption after adjustment is explored. Since there may be more
than one solution, under the condition that the optimal cruise point after adjustment is
located at (Ma5, 26 km), reducing the fuel consumption is also an objective. The condition
that the optimal cruise point is located at (Ma5, 26 km) is reflected in the fitness function in
the form of the penalty function, so the fitness function is written as:

f itness = Fh + FM +
T̃

gĨsp M̃a · c · cos γ
(1 +

h̃
Re

) (25)

where “~” indicates that the parameter after adjustment, and the penalty functions Fh and
FM are regarding altitude and Mach number, respectively.

Fh =

{
λ1 · |h̃opt−26|

26 , i f |h̃opt−26|
26 > ε

0, else

FM =

{
λ2 · |M̃aopt−5|

5 , i f |M̃aopt−5|
5 > ε

0, else

(26)

λ1 and λ2 are both large numbers, and ε is a small tolerance.
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Therefore, the aircraft parameter optimization problem can be expressed mathemati-
cally as:

minimize f itness = Fh + FM + T̃
gĨsp M̃a·c·cos γ

(1 + h̃
Re
)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XL ≤ 1.05

XD ≥ 1 + 1
2 (XL − 1)

XA ≤ 1.3

Xm ≥ 1 + 1
3 (XA − 1)

XS ≥ 1 + 1
4 (XA − 1)

XI ≤ 1.1

(27)

The particle swarm optimization algorithm is employed, whose process is outlined in
Figure 5. Each particle in the algorithm represents a group of (XL, XD, XA, XI, Xm, XS), and
the objective is to minimize the fitness of the particles. The optimal solution should be a
group of (XL, XD, XA, XI, Xm, XS), with the lowest fitness computed by (25).

The results are displayed in Table 5. The lift coefficient needs to increase by 5%,
while the drag coefficient will increase by 2.5% as a result; the inlet area should increase
by 25.93%, while the mass will increase by 8.64%, and the reference area will increase
by 12.91%; the specific impulse needs to increase by 10%. It can be seen that the variation
of the lift coefficient and impulse reach their boundaries, while the variation of the inlet
area and reference area are within the feasible range. If the constraints are different, the
optimization results will change as well. After the aircraft parameters are adjusted, the
optimal steady-state cruise point estimated by the neural network model is located at
(Ma4.99, 25.95 km).

Table 5. Optimized results of aircraft parameters.

XD XI XL Xm XS XA

1.025 1.1 1.05 1.0864 1.1291 1.2593

Under the optimized aircraft parameters, the position of the accurate optimal cruise
point and contour of fuel consumption are displayed in Figure 15. It can be seen that
the actual optimal cruise point after adjustment is located at (Ma4.99, 25.92 km), which
basically meets the goal of adjusting the optimal cruise point from (Ma4.95, 24.95 km) to
(Ma5, 26 km). In addition, the adjustment adopts a plan with the lowest fuel consumption
at 0.3642 kg/km with the constraints satisfied. Therefore, the method of optimizing
the aircraft parameters based on the neural network model has been demonstrated to
be effective.

h

Ma

Figure 15. Optimal point and contour of fuel consumption after adjustment.
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So far, not only the optimal cruise point is adjusted to the target position but also the
fuel consumption after adjustment is the lowest. However, it is difficult to greatly adjust
the optimal cruise Mach number under the current constraints. If the technical bottleneck
of the ramjet can be broken through and an engine with a larger size and significantly
increased specific impulse can be obtained, it will be of great benefit to adjust the optimal
cruise Mach number in a large range.

6. Conclusions

There is an optimal cruise point for hypersonic vehicles when performing steady-state
cruise, and, at this point, the fuel consumption is the lowest. The position of the optimal
cruise point is closely related to the aircraft parameters. In this paper, to clarify the influence
of the aircraft parameters on the optimal cruise point, the optimal cruise point under a basic
parametric aircraft model was firstly solved by an optimization algorithm, and then the
influence of different parameters was investigated with modeling by a neural network. In
order to make the aircraft cruise at the desired Mach number and altitude with the lowest
fuel consumption, an aircraft parameter optimization method whose aim was to adjust
the optimal cruise point to a given position was explored with numerical vindication. The
main conclusions of this paper are as follows:

(1) The influence of aircraft parameters on the optimal cruise point is clarified. The
optimal cruise Mach number is mainly related to the specific impulse and inlet area,
and the optimal cruise altitude is mainly related to the specific impulse, inlet area,
and aircraft mass.

(2) The neural network model established in this paper can accurately describe the
influence of the aircraft parameters on the position of the optimal cruise point.

(3) The aircraft parameter optimization method is effective to adjust the optimal cruise
point to a desired position, and the adjustment plan is also optimal in minimizing the
fuel consumption, which provides a new perspective for the design of aircraft.

The parameter analysis and optimization method can be applied in other aircraft
models, and the constraints of the aircraft parameters can be changed according to the
actual situation as well, which can reveal how the aircraft parameters should be adjusted
and thus provide guidance in the design of aircraft.
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