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Resumo 

Anualmente, os danos causados pelas aves em pomares criam perdas monetárias 

significativas aos agricultores. A aplicação de métodos tradicionais de dispersão de aves, 

como canhões repelentes de aves e redes nas árvores, torna-se ineficiente a longo prazo, 

sendo ainda de alta manutenção e de mobilidade reduzida. Devido à sua versatilidade, os 

Veículos Aéreos Não Tripulados (VANT) podem ser benéficos para resolver este problema. 

No entanto, devido à baixa capacidade das suas baterias, que se traduz num baixo tempo de 

voo, é necessário otimizar o planeamento dos caminhos.  

Nesta dissertação, é apresentado um algoritmo de otimização para planeamento de 

caminhos para VANT baseado no Particle Swarm Optimization (PSO). Para se iniciarem os 

primeiros testes do algoritmo proposto, a técnica utilizada foi a supracitada devido à 

necessidade de um algoritmo de otimização fácil de implementar. O algoritmo PSO é 

simples e possuí poucos parâmetros de controlo, mantendo um bom desempenho. Este 

algoritmo de otimização de planeamento de caminhos propõe-se a gerir a distância e o 

tempo de voo do drone, aplicando técnicas de otimização e de aleatoriedade para superar a 

sua desvantagem relativamente aos sistemas tradicionais. O desempenho do algoritmo de 

planeamento de caminhos foi testado em três casos de estudo: dois deles em simulação para 

testar a variação de cada parâmetro e outro em campo para testar a capacidade da bateria. 

Todos os casos foram testados nas três situações possíveis: mesma taxa de incidência, taxas 

diferentes e taxas diferentes sem danos de aves.  

Os resultados apresentados pelo algoritmo proposto demonstram um erro médio muto 

reduzido na distância total para o planeamento de caminhos obtido e baixo tempo de 

execução. Porém, é necessário destacar que o algoritmo pode ter dificuldade em encontrar 

uma solução adequada se houver uma má relação entre a distância total para o planeamento 

de caminhos e os pontos de interesse. Os testes de campo também foram essenciais para 

entender o comportamento do algoritmo na prática, mostrando que há menos energia 

consumida com menos pontos de interesse, sendo que este parâmetro não se correlaciona 

com o tempo de voo. Além disso, não há associação entre a velocidade horizontal máxima e 

o tempo da missão, o que significa que a função de cálculo da distância total para o 

planeamento de caminhos requer ser ajustada. 
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Danos a Pássaros; Agricultura de Precisão; Veículos Aéreos Não Tripulados; Planeamento 

de Caminho; Meta-heurística; Algoritmo de Otimização para Planeamento de Caminhos  
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Abstract 

Bird damage to fruit crops causes significant monetary losses to farmers annually. The 

application of traditional bird repelling methods such as bird cannons and tree netting 

became inefficient in the long run, keeping high maintenance and reduced mobility. Due to 

their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. 

However, due to their low battery capacity that equals low flight duration, it is necessary to 

evolve path planning optimization.  

A path planning optimization algorithm of UAVs based on Particle Swarm Optimization 

(PSO) is presented in this dissertation. This technique was used due to the need for an easy 

implementation optimization algorithm to start the initial tests. The PSO algorithm is 

simple and has few control parameters while maintaining a good performance. This path 

planning optimization algorithm aims to manage the drone's distance and flight time, 

applying optimization and randomness techniques to overcome the disadvantages of the 

traditional systems. The proposed algorithm's performance was tested in three study cases: 

two of them in simulation to test the variation of each parameter and one in the field to test 

the influence on battery management and height influence. All cases were tested in the three 

possible situations: same incidence rate, different rates, and different rates with no bird 

damage to fruit crops.  

The proposed algorithm presents promising results with an outstanding reduced average 

error in the total distance for the path planning obtained and low execution time. However, 

it is necessary to point out that the path planning optimization algorithm may have difficulty 

finding a suitable solution if there is a bad ratio between the total distance for path planning 

and points of interest. The field tests were also essential to understand the algorithm's 

behavior of the path planning algorithm in the UAV, showing that there is less energy 

discharged with fewer points of interest, but that do not correlates with the flight time. Also, 

there is no association between the maximum horizontal speed and the flight time, which 

means that the function to calculate the total distance for path planning needs to be 

adjusted. 

 

Keywords 
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1. Introduction 

 

1.1. Contextualization 

Agriculture is not only a source of food but also a source of vast employment and rural 

development. However, the contribution of agriculture to national economies has decreased 

over the years, as countries have moved upward to upper-income classes. Still, 26.5% of the 

world's total employment is in this sector. Increased productivity contributes to lowering 

food prices, which will benefit the consumers, particularly the low income since food 

expenses represent a large share of their total budget. Hence, its development and growth 

have always been and will remain one of the topmost priority agendas of policymakers [1], 

companies, and researchers. 

Precision Agriculture is an old concept being mentioned in 1999 as applying technologies 

and principles to manage spatial and temporal variability associated with all aspects of 

agricultural production to improve crop performance and environmental quality [2]. In 

essence, this concept represents the importance of introducing new technologies and 

techniques to optimize the farming process, increase quality, and reduce production prices 

for both growers and consumers. Among these new technologies, Unmanned Aerial 

Vehicles (UAVs), commonly known as drones, have been increasingly used in agricultural 

activities. UAVs are unmanned aircrafts that are already being applied in agriculture and 

used to overcome traditional systems' failures. Several parameters characterize its types, 

such as the structure, method to depart and land, and the number of motors. Horizontal 

Take-Off and Landing, multirotor, helicopter, and Vertical Take-Off and Landing (VTOL) 

are the main configurations. Its basic architecture consists of a frame, brush-less motors, 

Electronic Speed Control (ESC) modules, control board, Inertial Navigation System (INS), 

and a transmitter/receiver module [3]. Depending on its function, these may include cargo 

compartments, actuators, and sensors such as Light Detection and Ranging (LiDAR) 

modules and multispectral cameras. The possibility of systematic data collection, mapping 

field variability, and better decisions lead farmers and companies to invest in UAVs for 

agriculture. These are used in early soil analysis to acquire image-based data helpful in 

irrigation and ground-level management by determining the strength of nutrients. Appling 

hyperspectral, multispectral, thermal, or LiDAR sensors mounted to the UAVs, farmers can 

identify which parts of crops need improvements and react appropriately on time [4]. 

Another good example is the commercially available DJI AGRAS T20 shown in Figure 1. 

This UAV system can autonomously spread seeds, fertilizer, and other solid materials, using 
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a 360º digital radar to avoid obstacles and a P4 multispectral camera, gathering precise 

plant-level data, which improves general efficiency in all processes [5].  

 
Figure 1 – DJI AGRAS T20 [5]. 

 
Bird damage to fruit and other horticultural crops is a well-documented agricultural 

problem [6]-[7], due to being costly and persistent to farmers worldwide. Flocks destroy 

trees and feed on fruits and grains. In addition to consumption, diseases can appear, leading 

to decreased product quality and quantity [8]. Bird damage to orchards is a long-term 

problem. In 1974, Clark [9] addressed the issue, making an overview of the control 

techniques commonly used back then in California for each bird. With the advancement of 

technology, new techniques have emerged to reduce the environmental impact, such as 

chemical pollutants and lethal systems. Bird cannons usually use propane to randomly 

imitate a loud sound like an explosion, consisting of a support, control system, feeding 

cylinder, and a cone to disperse the sound, making this heavy, low mobility, and predictable. 

These systems are the most popular of numerous mechanical, visual, and auditory methods 

used for scaring birds away from crop fields [10]. Another popular method is speakers who 

use various species-specific distress signals and predator calls to send a danger alert to birds 

in the area. Despite its small size, this method presents low mobility because it is necessary 

to move it not to become predictable. An alternative to these active and mechanical methods 

are cultural methods such as protecting crops with netting, but this only works on a small 

scale and may divert birds to crops with no netting present or planting and harvest date 

manipulation but is not always possible and required knowledge of bird movement [11]. 

The central region of the Portugal countryside has good climatic and edaphic conditions for 

fruit species production, mainly Prunus fruit, specifically cherry and peach trees, with Beira 

Interior being the leading grower of this type of fruit in the Country [12]. In this area, flocks 

of birds, such as shown in Figure 2, find in these orchards' food and shelter, destroying fruits 

and trees, creating a financial and management problem since these are intelligent animals 

that can detect patterns, are highly mobile and persist after a food source is discovered [13]. 
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Affecting producers worldwide, in the U.S.A., farmers lose tens of millions of dollars each 

year through direct losses and often ineffective efforts to deter birds [14]. 

 
 

Figure 2 – Flock of birds in Soalheira, Fundão, Portugal. 

 
Due to this current problem for national and international farmers', modern technologies 

emerge to minimize it. Drones merged with repelling systems become tools to solve bird 

damage to orchards problem. Wang et al. [15] studied the impact of these technologies using 

bird taxidermy and loud distress calls in ravens, starlings, and cockatoos. The results 

strongly indicated that the UAV is an effective bird deterrent for the target species and 

showed that several of these systems may be needed in larger fields and may need to be 

operated frequently if the birds return after short periods. Once it is confirmed that this 

technology is a solution to the problem, it is necessary to highlight its flaws to increase its 

efficiency. Thus, creating an unpredictable autonomous algorithm that controls the drone 

according to the movement of the birds should be the main focus of future works.  

 

1.2. Objectives and Contribution of the Dissertation  

As stated above, farmers use different methods to deal with the challenge of bird damage to 

fruit crops. The most used in Beira Interior region in cherry and peach production is timed 

bird cannons, loudspeakers with sounds of predators, netting, and planting and harvesting 

manipulation. These techniques present the same problems: low mobility, predictability, 

and high maintenance, becoming inefficient in the long run. UAVs or drones can fly without 

pilots' onboard presence [16] and can be autonomous via an onboard electronic flight 

controller and a path map or remote-controlled from the ground.  This technology is already 

widely used in agriculture in different applications due to its high mobility, task versatility, 

low maintenance, and cost. All the advantages of this technology fill the disadvantages of 
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traditional systems, so drones with repelling systems attached start to emerge as good 

solutions against bird damage to fruit crops. Although these problems have been solved, 

new ones arise, such as short flight time. These aircraft can be controlled through flight 

optimization using trajectory planning and expanding batteries' capacity, representing one 

of the heaviest parts of the UAVs. Increasing its capacity also increases volume and weight, 

making the drone heavier and less efficient, and in most off-the-shelf products, it is not 

possible to modify them. So, it is necessary to optimize the path to ensure the most energy-

efficient flight accordingly to the final objective. 

This dissertation presents a novel path planning optimization algorithm for UAVs to help 

bird damage in agriculture, using metaheuristic optimization techniques and flight 

planning based on points of interest to focus the path to the most affected areas and random 

waypoints to avoid patterns. Different scenarios are tested in simulation and field, studying 

variables such as processing time, number of iterations, and energy consumption. This 

study focuses on energy efficiency and flight time optimization, which can be an asset in 

autonomous bird repelling UAVs, besides many other applications. 

 

1.3. Overview and Organization of the Dissertation 

Chapter 1 describes an overall overview of some essential concepts such as precision 

agriculture. Then, the bird damage to fruit crops problem was contextualized and explained 

how UAVs are used in agriculture and how they can help the study case. Finally, the 

dissertation's objectives and contribution are addressed, stating the need for a novel path 

planning optimization algorithm for UAVs, which is applied mainly to autonomous bird 

repelling systems, but it may include many other applications. 

Chapter 2 describes the State of the Art of some tools and techniques necessary to develop 

the path planning optimization algorithm. Initially, were shown the most used and essential 

autopilots and Ground Control Station (GCS). Then it was explained what optimization 

algorithms are and some real-world applications, following by defining the concept of UAV 

path planning and some examples of optimization techniques in this field. In the end, a 

summary of the entire State of the Art is made. 

Chapter 3 describes in detail all the UAV components built to test the novel path planning 

optimization algorithm, including its configuration and calibration, and GCS used in this 

study is also explored. After that, the mathematical methods and techniques used in the new 

algorithm are explained in detail.   

Chapter 4 describes the path planning optimization algorithm and explains each of the four 

main steps: Parameter Setting, Minimization Between Points of Interest (PoIs), 

Maximization of Random Waypoints, and Creation of Pre-Planned Mission File.  
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Chapter 5 includes the analysis and discussion of the three case study, the first two in 

simulation and the last in the field with the test UAV. All cases were tested in three possible 

situations: same incidence rate, different rates, and different rates with no bird damage. The 

study cases were used to understand the path planning optimization algorithm performance 

and the effect of each parameter variation.  

In Chapter 6 a global conclusion is made where all the work developed is presented. Then, 

a specific conclusion is presented, where the conclusions regarding the performance of the 

algorithm are presented. In the end, some indications of future work to be developed are 

made. 
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2. State of the Art 

 

2.1. Autopilots and Ground Control Stations  

Fully Autonomous Aerial Systems (FAAS) are an emerging workload wherein UAVs execute 

dynamic missions defined wholly by software. End users do not support pilot FAAS, nor do 

they define preset waypoints. Instead, they provide goals, constraints, and software that 

execute missions. Like edge-driven video analytics, FAAS processes images in real-time and 

leverages Artificial Intelligence (AI) for scene analysis. However, FAAS also controls aircraft 

flight, making flight paths dynamic [17]. Semi-autonomous systems can sense their 

environment and perform their tasks autonomously, but they may also be supervised by 

humans [18].  

As previously mentioned in Section 1.1, conventional UAVs contain a flight controller 

system mechanically connected to the respective cockpit controls to define the aircraft 

direction, speed, and altitude assisted by an INS and external sensors. The manual control 

can be replaced or assisted by autopilot systems. These are crucial and provide semi-

autonomous navigation and assist the remote piloting of the aircraft when required. Semi-

automated piloting is possible using a remote control. The operator also can use a computer, 

tablet, or mobile phone to provide Global Navigation Satellite System (GNSS) waypoints 

that can be saved in the autopilot to navigate. Open hardware autopilots provide complete 

information about the electronic components of which they are composed and the code 

running on the system. On the other hand, the information provided by the closed hardware 

autopilots depends on the manufacturer's strategy and typically is not open to users [19]. 

There are few examples of autopilot boards at the academics and research level, but these 

controllers are not reliable, neither easy to buy nor make. However, some companies 

produce readily available, reliable, cheaper, and simple-to-use boards. Table 1 to Table 2 

shows some of the most commercially available of both open and closed hardware used [20], 

[21], [30]–[39], [22], [40]–[44], [23]–[29]. Each board is different in weight, dimensions, 

processor, internal sensors, and interfaces and has its advantages and disadvantages, 

depending on the application.  The same table shows that most controllers use the STM32 

processor family with Advanced Reduced Instruction Set Computer Machine (ARM) 

architecture and 32-bits. Due to the global characteristics of the processors, information, 

and most run software’s such as PX4, an open-source flight control software for drones and 

other unmanned vehicles [45], known for its ecosystem and hardware compatibility. 

Another type of processor widely use is the Raspberry Pi (RPi) with a shield to accommodate 

external sensors and additional input and output. These processors run some versions of 
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Linux and usually are popular due to being easy to program.  The Intel Aero is another 

example of a Linux base autopilot developed by Intel and was discontinued in February of 

2019 [46]. Both the Erle-Brain 2 and the Emlid Edge are also discontinued controllers, but 

they are still widely used. There are several software options for Ground Control Stations 

(GCS), and this controls the autonomous flights, the visualization of the flight map, make 

video streaming in real-time, among others. Mission Planner [47] is widely used due to 

having the full feature and lots of information. This open-source system is compatible with 

Windows and macOS, and some of its features are: point-and-click waypoint, using Google 

Maps/Bing/Open Street maps/Custom WMS; Select mission commands from drop-down 

menus; Download mission log files and analyze them; Configure autopilot settings; 

Interface with a PC flight simulator to create a full software-in-the-loop (SITL) UAV 

simulator; Run its own SITL simulation of many frame types for all the ArduPilot vehicles. 

Another popular GCS is the APM Planner 2.0 [48], because of its open-source system and 

compatibility with macOS and Linux. It has a smaller user base and a reduced feature set 

than the previous platforms, which can be advantageous for new users. QGroundControl 

works with MAVLink [49], a very lightweight messaging protocol for communicating with 

drones, capable of autopilots, including ArduPilot [50]. It is unique among the GCS 

offerings as it runs on all platform’s desktop and mobile [51]. The last platform will be Litchi, 

a closed software available on Windows, macOS, Android, and iOS, known for being the 

most trusted autonomous flight app for DJI drones [52]. Other similar softwares are Drone 

Harmony [53], Rainbow [54], Red Waypoint [55], among others. 

It is essential to highlight that autopilot hardware and software have much information and 

are available, reliable, easy to use, and have many open and closed sources depending on 

the applications and price.
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Table 1 - AutoPilot Hardware - Open hardware. 
AutoPilot Hardware Processor Internal Sensors Interfaces 

Beagle Bone Blue 
 

Weight: 36g 
Dimensions:175mm x 

112mm x 40mm 

• AM335x 1GHz ARM® Cortex-
A8 processor; 

• 512MB Random Access 
Memory (RAM); 

• Integrated power management; 

• 2×32-bit 200-MHz 
programmable real-time units; 

• NEON floating-point 
accelerator; 

• ARM Cortex-M3; 

• Programmed with Debian 
Linux. 

• Nine axis INS (accelerometer / 
gyroscope / magnetometer); 

• Barometer; 

• Thermometer. 

• Wireless: 802.11 bgn; 

• Bluetooth 4.1; 

• 8 x 6V servo output 

• 4x bidirectional direct current (DC) motor 
output; 

• 4x quadrature encoder input; 

• 11 x user programmable light-emitting diode 
(LED); 

• 2 x user programmable buttons; 

• 4x universal asynchronous receiver-
transmitter (UART);  

• 12x Pulse-Width Modulation (PWM)/Timers; 

• Liquid crystal display (LCD); 
• MMC1; 

• 2x Serial Peripheral Interface (SPI); 

• 2x Inter-Integrated Circuit (I2C); 

• Analog to Digital Converter (ADC); 

• 2x Controller Area Network (CAN Bus); 

• Universal Serial Bus (USB) client for power & 
communications, USB host. 

CUAV Nora 
 

Weight: 75g 
Dimensions: 

46mm x 64mm x 22mm 

• 32-bit STM32H743 main 
processor; 

• 480Mhz; 

• 1MB RAM;  
• 2MB Flash. 

• InvenSense ICM20689 
(accelerometer / gyroscope); 

• InvenSense ICM20649 
(accelerometer / gyroscope); 

• Bosch BMI088 (accelerometer 
/ gyroscope); 

• 2x MS5611 (barometer); 

• RM3100 (Industrial grade 
magnetometer). 

• 14x PWM servo outputs; 
• Analog/ PWM RSSI input; 

• 2x Global Positioning System (GPS) ports;  

• 4x I2C buses; 

• 2x CAN Bus ports; 

• 2x Power ports; 

• 2x ADC input ports; 

• 2x USB ports.  

OpenPilot CC3D Revolution 
(Revo) 

 
Weight: 9g 

Dimensions: 
36 x 36mm 

• STM32F405RGT6 ARM 
Cortex-M4; 

• 168 Mhz; 

• 1 MB Flash. 

• InvenSense MPU6000 IMS 
(accelerometer / gyroscope); 

• Honeywell HMC5883L 
(compass); 

• MS5611 (barometer). 

• 8x PWM outputs; 

• RC input; 

• ADC; 

• GPS; 

• Telemetry; 
• USB port; 

• Serial Wire Debug port; 

• HopeRF RFM22B 100mW 433MHz; 
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Table 1 - AutoPilot Hardware - Open hardware (cont). 

AutoPilot Hardware Processor Internal Sensors Interfaces 

Hex/ProfiCNC Cube Black 
 

Weight: 75g 
Dimensions: 

95mm x 45mm x 32mm 

• 32-bit ARM Cortex M4 core; 

• 168 Mh; 

• 256 KB RAM; 

• 2 MB Flash; 

• 32-bit failsafe co-processor; 
• PX4 FMUv3 generation. 

• 3x IMS (accelerometers / 
gyroscopes /compass); 

• InvenSense MPU9250, 
ICM20948 and/or ICM20648 
(accelerometer / gyroscope); 

• ST Micro L3GD20+LSM303D 
or InvenSense ICM2076xx 
(accelerometer / gyroscope); 

• 2x MS5611 (barometers). 

• 14x PWM servo outputs; 

• SBus servo output; 

• RC inputs Chaotic PPM (CPPM), Spektrum 
SBus; 

• Analogue / PWM RSSI input; 

• 5x general purpose serial ports; 

• 2x I2C ports; 
• SPI port; 

• 2x CAN Bus interface; 

• 3x Analogue inputs (3.3V and 6.6V); 

• High-powered piezo buzzer driver. 

• High-power RGB LED; 

• Safety switch / LED; 

• Optional carrier board for Intel Edison. 

F4BY FMU 
 

Dimensions: 
50mm x 50mm 

• 32-bit ARM Cortex M4 core 
with STM32 F407. 

• MPU6000 (accelerometer / 
gyroscope); 

• MEAS 5611 (barometer); 

• HMC 5983 (compass). 

• 5x UART serial ports; 
• 1x inverter for frsky telemertry; 

• 12x PWM outputs; 

• Spektrum input; 

• Futaba SBUS input support; 

• PPM; 

• RSSI input; 
• I2C; 

• SPI;   

• CAN; 

• USB; 

• 3.3V and 6.6V ADC inputs. 

Drotek Pixhawk3 Pro 
 

Weight: 45g 
Dimensions: 

71mm x 49mm x 23 mm 

• 32-bit STM32F469 main 
processor;  

• 384KB RAM; 

• 2MB Flash; 
• PX4 FMUv4-PRO generation. 

• ICM-20608-G (accelerometer 
/ gyroscope); 

• MPU-9250 (accelerometer / 
gyroscope/ magnetometer); 

• LIS3MDL (compass). 

• 6-14x PWM servo outputs; 

• RC inputs, Spektrum / DSM and SBus; 

• Analog / PWM RSSI input; 
• SBus servo output; 

• 6x general purpose serial ports; 

• 2x I2C ports; 

• 2x SPI ports; 

• 2x CAN Bus interfaces; 

• 2x Analog inputs for voltage and current; 
• High-power red, green and bue (RGB) LED; 

• Safety switch / LED. 
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Table 1 - AutoPilot Hardware - Open hardware (cont). 

AutoPilot Hardware Processor Internal Sensors Interfaces 

mRo Pixracer 
 

Weight: 10.54g 
Dimensions: 

36mm x 36mm 

• STM32F427VIT6 rev.3; 
• Ferroelectric RAM (FRAM) - 

FM25V02-G; 

• PX4 FMUv4 generation. 

• Invensense MPU9250 
(accelerometer / gyroscope / 
magnetometer); 

• Invensense ICM-20608 
(accelerometer / gyroscope); 

• MS5611 (barometer); 

• Honeywell HMC5983 
(magnetometer). 

• Wifi: ESP-01 802.11bgn Flashed with 
MavESP8266; 

• Micro Secure Digital (SD) card reader; 

• Micro USB; 

• RGB LED; 

• GPS (serial + I2C); 

• TELEM1/TELEM2; 
• Wifi serial; 

• FrSky Telemetry serial; 

• Debug connector (serial + SWD); 

• GPS+I2C; 

• RC-In; 

• PPM-In; 

• RSSI;  
• SBus-In; 

• Spektrum-In; 

• UART; 

• FRSky-In; 

• FRSky-Out; 

• CAN; 
• ESP8266; 

• 6x servos output; 

• Joint Test Action Group; 

• Safety switch/LED. 

• High-powered piezo buzzer driver; 

Erle-Brain 2 
 

Weight: 100g 
Dimensions: 96mm x 70mm 

x 25mm 

• Quad-core ARM Cortex-A7  
Central Processing Unit (CPU); 

• 900MHz; 

• VideoCore IV 3D graphics core; 

• 1GB RAM. 

• Gravity sensor; 

• Gyroscope; 

• Digital compass; 

• Pressure sensor;  
• Temperature sensor; 

• 5MP Camera. 

• 12x PWM Output; 

• PPM input; 

• I2C; 
• UART; 

• Ethernet; 

• ADC 

• 4x USB; 

• MicroUSB Power; 

• High-Definition Multimedia Interface 
(HDMI); 

• Audio Jack; 

• SD Card slot. 



 12 

Table 1 - AutoPilot Hardware - Open hardware (cont). 

AutoPilot Hardware Processor Internal Sensors Interfaces 

Holybro Durandal 
 

Weight: 64g 
Dimensions: 

80mm x 45mm x 20.5mm 

• 32-bit STM32H743 main 
processor; 

• 400Mhz; 
• 1MB RAM; 

• 2MB Flash; 

• 32-bit co-processor. 

• InvenSense ICM20689 
(accelerometer / gyroscope); 

• Bosch BMI088 (accelerometer 
/ gyroscope); 

• MS5611 (barometer); 

• IST8310 (magnetometer). 

• USB-C and JST_GH USB ports; 

• 16 PWM outputs; 

• Dual power module inputs; 

• SBus servo output; 

• RC inputs for CPPM and SBus; 

• DSM input port; 

• Analogue / PWM RSSI input; 

• 5x general purpose serial ports plus debug 
port; 

• 3x I2C ports; 

• 4x SPI buses; 

• 2x CAN Bus ports; 

• 2x analog inputs; 

• Safety switch/LED. 

CUAV V5 Plus 
 

Weight: 90g 
Dimensions: 85.5mm x 

42mm x 33mm 

• 32-bit ARM Cortex M7 core; 

• 216 Mhz; 

• 512 KB RAM; 

• 2 MB Flash; 

• 32-bit IOMCU co-processor; 

• PX4 FMUv5 generation. 

• InvenSense ICM20689 
(accelerometer / gyroscope); 

• InvenSense ICM20602 
(accelerometer / gyroscope); 

• Bosch BMI055 (accelerometer 
/ gyroscope); 

• MS5611 (barometer); 
• IST8310 (magnetometer). 

• 8 – 14x PWM servos outputs; 
• 3x PWM/Capture inputs on FMU; 

• SBus servo output; 

• Pulse-position modulation (PPM) connector; 

• SBUS/ Received Signal Strength Indication 
(RSSI) connector supports all radio control 
(RC) protocols; 

• Analog / PWM RSSI input; 

• 5x general purpose serial ports; 

• 4x I2C ports; 

• 4x SPI bus; 

• 2x CAN Bus ports; 
• 2x Analog battery monitor ports. 
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Table 2 - AutoPilot Hardware - Closed hardware. 

AutoPilot Hardware Processor Internal Sensors Interfaces 

Emlid Edge 
 

Weight 59g 
Dimensions: 

97mm x 46mm x 15mm 

• ARM Cortex-A53 64-bit quad-
core CPU; 

• ARM Cortex-M3 co-processor; 

• 1GB RAM. 

• 2x InvenSense ICM20602 
(IMS); 

• MS5611 (barometer); 

• 2x IsenTek IST8310 
(compasses); 

• uBlox NEO-M8N. 

• 1x PPM; 

• 1xSBUS input; 

• 12x PWM servo outputs; 

• 2x CAN; 

• 2x USB; 

• 1x Serial+I2C; 

• 1x Serial+ADC; 

• 5.180 ~ 5.825 Ghz datalink at up to 27 dBm; 

• Power monitor up to 12S, 200A; 

FlyWoo F745 AIO BL_32 
 

Weight:8.5 g 
Dimensions: 

33.5mm x 333.5mm 

• STM32F745VG ARM; 

• 216 MHz; 
• 1MB Flash. 

• InvenSense MPU6000 IMS 
(accelerometer / gyroscope); 

• BMP280 (barometer); 

• Voltage and current sensor. 

• 7x UART; 

• 10x PWM outputs; 

• I2C; 
• USB port; 

• Camera input/output; 

• Built-in on-screen display (OSD); 
NAVIO2 

 
Weight: 23g (shield) + 54g 

(RPi2) 
Dimensions: 

55x65mm (shield only) 

• 1.2GHz 64-bit quad-core 
ARMv8 CPU (RPi3); 

• 1GB RAM. 

• MPU9250 9DOF (IMS); 

• LSM9DS1 9DOF (IMS); 

• MS5611 (Barometer); 

• U-blox M8N; 

• Glonass/GPS/Beidou; 

• UART; 

• I2C; 

• ADC; 

• PPM/SBus input; 

• 14x PWM servo outputs. 

Intel Aero 
 

Weight: 30g (without 
heatsink, 60g (with 

heatsink) 
Dimensions: 

88mm x 63mm x 20mm 

• Intel® Atom™ x7-Z8700 
Processor - 2.4 GHz burst, quad 
core, 2M cache, 64 bit - 4GB 
RAM LPDDR3-1600 - 32GB 
eMMC; 

• Linux 4.4.3-yocto-standard 
Operating System (OS) 
powered with Yocto Project* 2.1 
(Krogoth). 

• Bosch BMI160 6-axis (IMS); 

• Bosch BMC150 6-axis 
(compass); 

• MS5611 (barometer). 

• 2x I2C; 
• UART; 

• SPI; 

• CAN; 

• 5x analog inputs; 

• 25x programmable general-purpose 
input/output (GPIO) pins; 

• Wi-Fi (802.11ac); 

• Micro HDMI 1.4b; 

• USB 3.0; 
• Camera Serial Interface - 2; 

• MicroSD memory card slot; 
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Table 2 - AutoPilot Hardware - Closed hardware (cont.). 

AutoPilot Hardware Processor Internal Sensors Interfaces 

Mateksys F405-SE 
 

Weight: 10g 
Dimensions: 

46mm x 36mm 

• STM32F405RGT6 ARM; 

• 168MHz. 

• InvenSense MPU6000 IMS 
(accelerometer / gyroscope); 

• DPS310 (barometer); 

• Voltage and current sensor. 

• 6x UARTS; 

• 10x PWM outputs; 

• RC input PWM/PPM, SBUS; 

• 2x I2C port. 

• USB port; 

• Built-in OSD; 

• 3x ADC; 

• Micro SD slot. 

Parrot Bebop 
 

Weight: 400g (with hull) 
Dimensions: 

 33x38x3.6cm (with hull) 

• Parrot P7 dual-core CPU Cortex 
9  

• Quad-core Graphic Processor 
Unit (GPU); 

• 8GB flash; 

• Linux (Busybox). 

• MPU6050 (accelerometer / 
gyroscope); 

• AKM 8963 (compass); 

• MS5607 (barometer); 

• Furuno GN-87F GPS; 

• Sonar; 

• Optical flow; 
• High Definition (HD) camera; 

• UART serial ports; 

• USB; 

• Built-in Wifi. 

RadioLink MiniPix 
 
 

Weight: 12g 
Dimensions:  

39 mm x 39 mm x 12 mm 

• STM32F405VGT6 ARM. 

• InvenSense MPU6500 
(accelerometer / gyroscope); 

• QMC5883L (compass); 

• LPS22HB (barometer). 

• RC input (PWM/PPM, SBUS); 

• 3x UART; 

• I2C; 

• 2 x ADC for voltage and current sensor; 

• ADC; 

• MicroSD card slot; 
• Micro USB connector; 

• Buzzer; 

• Safety switch connector; 

• Power module. 

QioTek Zealot F427 
 
 

Weight: 65g 
Dimensions: 

42mm x 65mm x 25mm 

• STM32F427VIT6; 

• 16KB FRAM - FM25V01. 

• ICM20689, ICM20602, and 
BMI088 (accelerometer / 
gyroscope); 

• MS5611 and DPS3018 
(barometers); 

• IST8310 or QMC5883L 
(Compass). 

• 14x PWM Outputs; 

• 4x relay outputs; 

• MicroSD card reader; 

• Micro USB or remote USB via a JST_GH 
connect; 

• Built-in RGB LED; 
• External buzzer interface 

• 2x 6.6V tolerant ADC inputs; 

• 5x UART; 

• Safety switch connector. 
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2.2. Optimization Algorithms 

Optimization techniques, or algorithms, are used to find the solution to the problem 

specified in Equation (1). The procedure consists of finding the combination of design 

variable values that results in the best objective function value while satisfying all the 

equality, inequality, and side constraints.  

 
Minimize: 𝑓(𝑥)  

Subject to: 𝑔𝑗(𝑥) ≤ 0 𝑗 = 1, 𝑚 

 ℎ𝑘(𝑥) = 0 𝑘 = 1, 𝑝 

 𝑥𝑖𝐿 ≤  𝑥𝑖 ≤ 𝑥𝑖𝑈  𝑖 = 1, 𝑛 
 

(1) 

 

Equation (1) expresses the standard form for a single-objective, non-linear, constrained 

optimization problem, where 𝑓(𝑥) is the object or goal function, 𝑔𝑗(𝑥) is an inequality 

constraint, ℎ𝑥(𝑥) an equality constraint function and 𝑥 represents the n design variables 

that are modified to obtain the optimum solution. The upper 𝑥𝑖𝑈 and lower 𝑥𝑖𝐿  bounds 

define the searchable design space, referred to as the side constraints [56]. Real-world 

optimization problems are often very challenging. As a result, many problems must be 

solved by trial and error using various optimization techniques. In addition, new algorithms 

are developed to eventually cope with these challenging optimization problems. Nature has 

motivated many researchers in different ways and thus is a rich source of inspiration. 

Nature-Inspired algorithms, such as particle swarm optimization (PSO), cuckoo search, and 

firefly algorithm, have gained popularity due to their high efficiency [57] and are all based 

on the principle of biology, physics, ethology, or swarm intelligence. Currently, Nature-

Inspired optimization methods are applied in most areas, and their development and review 

are continuous. 

Hajihassani et al. [58] performed a comprehensive review of PSO application in 

Geotechnical Engineering, presenting real examples as slope stability analysis, pile and 

foundation design, rock and soil mechanics, and tunneling and underground space 

technology, among others. In their study, the authors conclude that complex and not well-

understood problems are the common obstacles in geotechnical engineering, where finding 

the optimum solution is difficult and even impossible in some cases. Consequently, based 

on the available literature, PSO has been extensively used in the field as a powerful 

optimization technique to find the optimum solution. The simplicity of the operations and 

reasonability of the results have paved the way to use PSO in various areas of geotechnical 

engineering. The PSO is an optimization algorithm that employs a swarm of particles to 
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traverse a multidimensional search space to seek out optima. Each particle is a potential 

solution and is influenced by the experiences of its neighbors as well as itself [59].   

The Grey Wolf Optimizer (GWO) [60] is a technique inspired by the hunting method of the 

grey wolf (Canis Lupus). This animal is at the top of its food chain and usually lives in packs 

ranging from 5 to 12 elements having a strict social hierarchy. The mathematical models are 

based on the social hierarchy (α, β, δ, ω), tracking, encircling, and attacking prey. In GWO, 

α, β, and δ lead ω wolves toward the areas of the search space that are promising for finding 

the optimal solution. This behavior may lead to entrapment in a locally optimal solution. 

Another side-effect is the reduction of the diversity of the population and causes GWO to 

fall into the local optimum. Mohammad et al. [61] proposed an improved GWO for solving 

engineering problems to overcome these issues. The improvements include a new search 

strategy associated with selecting and updating steps. This improved technique was tested 

in benchmark functions and experimental environments. In the end, the authors show the 

applicability of the new algorithm for solving four engineering problems, including pressure 

vessel design, the welded beam design, and the optimal power flow problems for the 

Institute of Electrical and Electronics Engineers (IEEE) 30-bus and IEEE 118-bus systems. 

Benkercha et al. [62] proposed a modified flower algorithm (FA) for extraction of the 

photovoltaic (PV) module parameters with maximum power point (MPP) estimation. The 

FA [63] is a metaheuristic algorithm that imitates the behavior of a plant's pollination. This 

process has four main rules which can aid to describe the flower algorithm, being global 

pollination (first rule), local pollination (second rule), flower constancy factor which can be 

expressed by a reproduction probability while this latter is proportional to the similarity 

among two working flowers (third rule), switching factor that allows passing from the local 

pollination to the global pollination or vice versa (fourth rule). The modified algorithm has 

the fundamental rules of the FA expect the fourth rule is modified in such a way that the 

switching probability is changed at each iteration. The main idea in this algorithm is to 

change the value of the switching probability to increase the accuracy of the solution so that 

the solution found will be close to the global solution. In addition, the probability becomes 

variable in this new algorithm at each iteration. The authors also simulated and 

experimented with the new technique for both single diode and double diode models, 

comparing it with three other optimization algorithms and concluded that the new 

technique has better optimization performance (accuracy, fast convergence, minimum 

iterations, and lower error than the other algorithms, therefore the identified parameters 

by the modified FA are more accurate than the one obtained from other algorithms. In 

predicting current, voltage, and power at the MPP, the parameters for the single diode 

model show the effectiveness of prediction in both features' days, and a high matching 

between the measured MPP values and the predicted one is achieved. 
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Typically, in practical design optimization of truss structures, the aim is to find a minimum 

cost or weight design by selecting cross-sectional areas of structural members from a table 

of available sections. The final design satisfies strength and serviceability requirements 

determined by technical. Hasançebi et al. [64] proposed a bat-inspired algorithm for 

structural optimization. Bat-inspired (BI) algorithm derived from the echolocation behavior 

of bats. Echolocation is an advanced hearing-based navigation system used by bats and 

some other animals to detect objects in their surroundings by emitting a sound to the 

environment. After testing the presented technique in four truss structure examples, the 

results demonstrate the algorithm's efficiency, which found the best-known design for the 

first two test problems and converged to improved designs in the last two test problems. 

The results also show that the BI algorithm also has a good convergence speed compared to 

most other metaheuristic techniques.  

There are many optimization algorithms, and the ones presented above are just a few 

examples. Due to the need and this being a very researched area, new techniques Nature-

inspired will continue to emerge to perform mathematical benchmarks and real-life 

applications. 

 

2.3. UAV Path Planning Algorithms 

Path planning is one of the most critical problems explored in UAVs to find an optimal path 

between source and destination. The path determination should be free from all collisions 

from the surrounding obstacles. To have low computational cost and time for optimal path 

planning is the primary objective of these techniques. The path generated should be optimal 

to consume minimum energy, take less time, and reduce collision between the UAVs. On 

the other hand, it needs to satisfy the robustness and completeness criterion during path 

planning techniques. The significant challenges for optimal path planning of UAVs are path 

length, optimality, completeness, cost, time and energy efficiency, robustness, and collision 

avoidance [65].  

In 2018, Zhao et al. [66] surveyed computational-intelligence-based UAV path planning. 

Computational intelligence (CI) is a set of nature-inspired computational methodologies 

and approaches that can address complex real-world problems for which mathematical or 

traditional modeling is not practical. In their study, 231 articles were collected and classified 

in three orthogonal dimensions, being classification from the aspect of algorithms, 

classification from the aspect of the time domain, and classification from the aspect of the 

space domain. Based on the aspect of algorithms, the authors presented Figure 3. This pie 

chart shows the percentages of various CI algorithms used for UAV path planning from 

2008 to 2017 through the authors’ research. The genetic algorithm (GA) was the most 

common, accounting for 21%. Ant colony optimization (ACO) and artificial neural networks 
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(ANN), as two of the most famous intelligence algorithms, occupying the second and third 

positions with 16% and 15%, respectively, followed by learning-based methods (LB), PSO, 

and fuzzy logic algorithms (FL). 

 

 
Figure 3 – Classification of CI methods in UAV path planning by algorithm [66]. 

 

From time-domain classification, the algorithms are divided into two categories online or 

offline. An online method is a method that can plan the UAV paths in real-time. In other 

words, the UAV can identify changes in the environment and react to them. In contrast, an 

offline method performs path planning based on offline information instead of real-time 

information. In all articles studied, only 29.9% of methods are online, and most methods 

focus on offline algorithms and their improvements, accounting for approximately 70.1% of 

methods. According to their research, for offline path planning, most studies focus on 

minimizing the length of a path with obstacle or threat constraints in the environment. The 

optimization problem is multi-modal because there can be multiple sets of paths with 

varying costs for every set of obstacles or threats. Thus, CI methods such as GA or PSO 

would be highly suitable for optimizing the generated paths. Researchers have shown that 

CI methods have obtained high-quality solutions because they are computationally efficient 

on a wide variety of multi-modal unconstrained problems. Online path planning is a 

dynamic multi-objective optimization problem.  The most popular online path planning 

algorithms are based on GA and FL. In the last classification, the algorithms are divided into 

2D and 3D environments. Traditional path planning methods has usually been described 

by a 2D scene. 55.8% of articles studied explore 2D path planning methods, while 44.2% of 

articles explore 3D methods. In a 2D scene, it is supposed that the UAV flies by maintaining 

its height or manual adjustment. From the optimization point of view, there are no standard 

solutions in a 2D path planning problem. Fortunately, CI algorithms reduce the 
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requirements of computing the gradients of cost functions and constraint functions, 

enabling the problem to be solved and optimized. Path planning algorithms for 3D 

environments are urgently needed due to an increasing range of fields, such as 

transportation, detection, navigation, and operations. One classical problem is modeling 

the environment while considering the kinematic constraints to plan a collision-free path. 

Thus, a comprehensive analysis of the most optimization methods for UAV path planning 

and the different aspect of its applications was presented, given a complete guideline that 

can help related researchers. 

Tseng et al. [67] developed flight planning with recharging optimization for battery-

operated autonomous UAVs. This is an example of path planning applied to a specific area. 

They start to conduct an empirical study to model the energy consumption of drones, 

considering various flight scenarios. Then, a joint problem of flight mission planning and 

recharging optimization for drones was studied, using the calibrated power consumption 

model of a drone, to complete a tour mission for a set of sites of interest in the shortest time, 

considering uncertainty in dynamic environments, such as wind conditions. They also 

presented and implemented algorithms for solving flight mission planning and recharging 

optimization in a drone management system, supporting real-time flight path tracking and 

re-computation in dynamic environments. At the end, the authors evaluated the results for 

the algorithms using data from empirical studies and proposed a robotic charging station 

prototype that can recharge drones autonomously. In conclusion, the authors highlight the 

importance of automated drone management systems for practical applications of drones, 

and future work should incorporate a variety of additional features, such as restrictions of 

no-fly zones and attitude, and wind speed forecast.  

Li et al. [68] present another example applied to precision agriculture, using a hybrid PSO 

algorithm to optimize flight paths in a UAV group. Farmers need to spray daily different 

orchard blocks. Using a single drone becomes an impossible task due to endurance and 

battery change. The authors developed a hybrid optimization algorithm that combined PSO 

with the variable neighborhood descent technique as the local search to overcome this 

problem. The focus of this article is to obtain the optimal paths for the group of UAVs so 

that the flight time of a mission is minimized. After presenting the structure and 

architecture of the proposed algorithm, the authors show the simulation results made in 

two agriculture regions of Shaanxi, for both approach A (minimizing the total flight 

distance) and approach B (optimize the flight paths of the whole UAVs group with minimum 

make-span) with two and three groups of drones. In all path planning simulations, the total 

path length was longer in approach B than in approach A, yet the time was always shorter 

in approach B. Therefore, the authors conclude that the proposed hybrid algorithm can 
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effectively shorten the UAV group’s flight time, enabling multiple agricultural UAVs to be 

better applied in precision agriculture.  

 

2.4. Final Remarks 

FAAS is an emerging area based on complex control systems, sensors, and computer vision 

that can complete an objective without human interventions. This technology is still not 

commercially available nor fully implemented due to regulation and safety reasons. On the 

other hand, autopilot controllers and waypoints software are well established as semi-

autonomous systems. Nowadays, there are commercially available hardware and software 

that is easy to use for both open and closed systems, with a lot of information, and reliable. 

Optimization is a commonly encountered mathematical problem in all engineering 

disciplines and means finding the best possible solution. Optimization algorithms can be 

either deterministic or stochastic. Former methods to solve optimization problems require 

enormous computational efforts, which tend to fail as the problem size increases. This is the 

motivation for employing bio-inspired stochastic optimization algorithms as 

computationally efficient alternatives to the deterministic approach. Meta-heuristics are 

based on the iterative improvement of either a population of solutions or a single solution 

and mainly employ randomization and local search to solve a given optimization problem 

[69]. Optimization problems are wide-ranging and numerous. Hence, methods for solving 

these problems ought to be an active research topic. The emergence and evolution of new 

and old optimization techniques improve benchmarks, dynamic optimization problems, 

and real-world applications [70].  

The main objective in UAV path planning is to find the solution route between source and 

destination based on a goal (cost, time, distance, among others). Using an optimization 

algorithm, it is possible to calculate the best flight path for UAVs applying a suitable cost 

function to the problem, with less time and computer power than traditional systems.  
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3. Materials and Methods  

 

3.1. Materials  

3.1.1. UAV  

Multirotor drones being low cost, with good maneuverability and VTOL capability, are 

suitable for precision agriculture remote sensing tasks [71]. The UAV frame used in this 

study was a multirotor with four motors (quadcopter), equipped with self-tightening 

propellers that make it very simple to assemble and disassemble in the field and for 

transportation. This configuration is also one of the most used in agriculture nowadays and 

can lift its weight and equipment to repel birds without compromising flight time. However, 

because of the short flight endurance from lithium polymer (Li-Po) batteries, UAVs have a 

smaller field area coverage per flight than airplanes [71]. This work used four Li-Po batteries 

in series with the capacity of 5000 mAh. Due to this study being of path planning is not 

essential to have the best UAV/battery weight ratio, but this requirement is advised in a 

real-life application. Figure 4 shows the multirotor used in this study during a test flight. 

 

 
Figure 4 – Multirotor used in this study. 

 

The optimization algorithm presented in this study generalizes to any UAV configuration 

and flight time capabilities. Thus, the essential component to consider is the flight controller 

that needs to have an autopilot compatible with the chosen GCS, suitable internal sensors, 

and the necessary input/output accordingly to the UAV configuration. In this case, was 

chosen Hex Cube Black [72], previously known as Pixhawk 2.1, which was already 
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characterized in the last chapter. This autopilot is flexible, intended primarily for 

manufacturers of commercial systems. It is based on the Pixhawk-project FMUv3 open 

hardware design and runs PX4 on the NuttX OS [73]. The Hex Cube Black is reliable and 

has a premium built quality with much information. As a GPS receiver, the HERE+ [74] was 

chosen due to quality construction, compatibility, and information. Another essential 

component is the power brick that comes with the flight controller that provides power to 

all the UAV components and measures current consumption and battery voltage. Thus, it 

makes it possible to test the path planning optimization algorithm in real-world scenarios.  

It is also important to mention that during the construction of this system, it was necessary 

to use computer-aided design (CAD) techniques and 3D printing via fused deposition 

modeling (FDM) to accommodate all the electronics into the frame. The components 

manufactured through FDM were made in Acrylonitrile Butadiene Styrene (ABS) because 

it is resistant to temperature changes and impact. ABS is the most utilized material after 

Polylactic Acid (PLA), and in addition to the features highlighted above, it also has good 

mechanical properties, low price, and long-life services [75]. One example is shown in 

Figure 5 with both the CAD design (left) and the 3D printed component (right) developed 

to secure the GPS antenna into the quadcopter frame. 

To activate the flight plan, the RadioKing TX18S was used, a 2.4 GHz, 16 channel (CH) 

multi-protocol radio frequency (RF) system transistor with the open-source firmware 

OpenTX [76] for radio transmitters. A multi-protocol radio was chosen because it can 

communicate with the FrSky X8R, which is the receiver that the UAV of this study was built 

with but is also compatible with several telemetry receivers for future work. However, those 

components are not the most important for this research work, so it is only necessary to 

ensure the compatibility transmitter/receiver and an OpenTX model with all the 

configurations for a safe flight. It is essential to mention that sometimes accidents related 

  

Figure 5 – CAD design (left) and 3D printed component (right) developed to secure the GPS antenna into 
the quadcopter frame. 
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to the arm and disarm of the drone happen unintentionally. For that reason, a sequence of 

switches was programmed in the radio transmitter instead of the pre-defined throttle stick, 

possible through the logical functions in OpenTX and changing the pre-defined parameters 

in the GCS.  

 

3.1.2. Ground Control Station 

GCS has several different functions that vary from software to software, as mentioned in 

Section 2.1. In this study, Mission Planner was used to updating firmware, initial 

configuration, advance parameter configuration, and flight planning. Although this 

software is easy to use in most of its features, it presents some complexity in others due to 

being very complete. Particularly in the visualization and analysis of flight logs, 

APMPlanner2 was used, which has a more straightforward and equally complete graphical 

interface environment. 

During the UAV setup start, the autopilot board was connected to the computer via a USB 

port to load the firmware that matched the chosen frame. Mission Planner has all the 

versions classified as: stable (passed all stages and it is good to use), beta (prior stable that 

may have some bugs), and latest (passed development team and all automated tests and are 

ready to be tested by users). To ensure a safe flight and easy configuration, a stable version 

was selected. In this case, it was chosen ArduCopter V4.0.7 Quad, being the newest stable 

version. Then the setup itself starts, and it was in this step, the UAV is configured and 

calibrated, ensuring a precise and safe flight. The setup menu of Mission Planner as three 

main sections of settings: mandatory hardware, optional hardware and advanced. The 

mandatory hardware allows the user to calibrate sensors like the accelerometer and 

compass, with a set of drone moves and the radio, moving the sticks and switches of each 

channel to their minimum and maximum. Apart from the sensor calibration, it also lets the 

user define flight and failsafe modes. Three flight modes were selected: loiter, holds altitude 

and position; auto, executes pre-defined mission; and return to launch (RTL), returns above 

takeoff location and lands. Failsafe modes ensure a safe flight if anything happens and are 

triggered when the values are lower than those defined and activate a flight configuration 

like landing or RTL. For this case, a low battery, controlled by the voltage measurement in 

the power brick and radio failsafe, previously called throttle failsafe, was chosen because it 

uses the throttle channel to signal the loss of contact. Other parameters can be adjusted in 

mandatory hardware, but they weren’t used like servo output calibration, automatic 

dependent surveillance-broadcast, and ECS calibration. Important to mention that 

although the last parameter is crucial for an efficient flight, the systems used are blocked 

and do not allow calibration, thus having been manually adjusted the PWM channel in the 
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radio transmitter. Except for the battery monitor calibration found in the second setup 

section, changes were not made in the two other sections. To calibrate the power brick in 

the battery monitor set, two known measures provided by a power supply were applied. The 

tools and connections used in this system calibration are represented in Figure 6. First, the 

propellers were removed, and the system was connected to the computer. Next, the UAV 

was powered by the power supply with a constant voltage of 16.80 V, measured with an 

accuracy of equal or less to 0.1% plus two digits. In the end, the drone was armed and 

activated with full throttle, and the current consumption was measured in the power supply 

also with an accuracy of equal or less to 0.1% plus three digits. Both measures were inserted 

in the GC software, and the values were loaded to serve as references. 

 

 
Figure 6 – Tools and connections used to calibrate the power brick. 

 

An essential function from Mission Planner for this work is mission planning. Together with 

the autopilot, the software allows the UAV to flight through a waypoint map file without 

human intervention. After setting the home location where the vehicle is armed, the user 

can point and click a list of waypoints and create a mission. The generated mission can be 

written into the autopilot, but it can also be read from it. Each mission can be saved as 

mission plain-text file format that a text editor can read, and the files can also be loaded into 

the GCS software. Important to mention that not all software’s share the same file 

configuration. So, it is not always possible to make a waypoint file in one software and read 

it in another. In the planning section of Mission Planner, it is possible to visualize a map 
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with the waypoints created and their configurations and the default parameters that can be 

changed.  Whenever a point is created, the software shows a bar with its parameters that 

can be modified manually. The most important for this case are command (landing, delay, 

RTL), delay, latitude and longitude coordinates, and altitude. Figure 7 shows an example of 

a pre-planned mission on Mission Planner, and it is possible to visualize the previously 

described functions. 

 

 
Figure 7 – Example of a mission plan in Mission Planner. 

 

Through the menus available in the software's graphical interface environment, it is easy to 

ensure that all the general parameters are set, but sometimes it is necessary to change 

specific values, and for that, Mission Planner provides a complete list. Outside this method, 

command-line interface configuration or Python programming language scripts with pre-

developed libraries are available. 

 

3.2. Methods  

3.2.1 Particle Swarm Optimization  

Initially proposed in 1995 by Kennedy et al. [77] , PSO is a method for optimizing continuous 

nonlinear functions. This evolutionary computation technique was developed to simulate a 

simplified social system and has been used for approaches across a wide range of 

applications or specific requirements.  

The optimization algorithm is initialized with a population (swarm) defined as 𝑛 of random 

solutions called particles, that have the dimension of the problem defined as 𝑑𝑖𝑚. Each 

position 𝑥𝑖𝑗 of the 𝑗th dimension of the 𝑖th particle keeps track of its best solution in the 

problem space (fitness) and the corresponding coordinates, this value is called 𝑝𝑏𝑒𝑠𝑡. The 
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overall fitness of the swarm is also tracked, and it is called 𝑔𝑏𝑒𝑠𝑡. Every iteration defined as 

𝑖𝑡 changes the velocity 𝑣𝑖𝑗  of each particle toward its 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 locations. Velocity is 

weighted by two different random numbers in the interval [0, 1] defined as 𝑟1and 𝑟2 and two 

constants named 𝑐1 and 𝑐2. The random numbers control the acceleration, and the 

constants control the stochastic acceleration terms towards 𝑝𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡  [78]. In the 

original form proposed by Kennedy et al. [77], both 𝑐1 and 𝑐2 are set to two, making the 

search to cover the region centered in 𝑝𝑏𝑒𝑠𝑡and  𝑔𝑏𝑒𝑠𝑡. These values can be changed to achieve 

better performance, and over the year, new common values appear [79]. Equations 2 and 3 

show how the velocity and position of each particle is updated.  

 

𝑣𝑖𝑗
𝑖𝑡+1= 𝑣𝑖𝑗

𝑖𝑡 +  𝑐1 ∙ 𝑟1 ∙ (𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗
𝑖𝑡) +  𝑐2 ∙ 𝑟2 ∙ (𝑔𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗

𝑖𝑡) (2) 

  

𝑥𝑖𝑗
𝑖𝑡+1 =  𝑥𝑖𝑗

𝑖𝑡 +  𝑣𝑖𝑗
𝑖𝑡+1 (3) 

 
Since the initial version of PSO was not very effective in the optimization problem, a 

modified PSO algorithm [80] appeared soon after the initial algorithm was proposed. 

Inertia weight was introduced to the velocity update formula, and the new velocity update 

formula became Equation 4. Although this modified algorithm has almost the same 

complexity as the initial version, it has dramatically improved the algorithm performance. 

Therefore, it has achieved extensive applications. Generally, the modified algorithm is 

called the canonical PSO algorithm, and the initial version is called the original PSO 

algorithm [81]. 

 

𝑣𝑖𝑗
𝑖𝑡+1 =  𝑤 ∙ 𝑣𝑖𝑗

𝑖𝑡 +  𝑐1 ∙ 𝑟1 ∙ (𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 −  𝑥𝑖𝑗
𝑖𝑡) + 𝑐2 ∙ 𝑟2 ∙ (𝑔𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗

𝑖𝑡) (4) 

  

After the new particle position is calculated, it is tested to ensure constriction. If it is not 

within limits, it will have to be modified through a condition. Figure 8 shows the pseudocode 

of the PSO algorithm with the same conditions as the new algorithm proposed in this 

dissertation. The pseudocode uses the maximum number of iterations 𝑖𝑡𝑚𝑎𝑥   as the final 

condition and constricts the generation of a new random particle. 
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Initialize the swarm with 𝑛 and 𝑑𝑖𝑚 

Initialize 𝑐1, 𝑐2, 𝑤, 𝑖𝑡𝑚𝑎𝑥 

while it less or equal  𝑖𝑡𝑚𝑎𝑥: 

 for each particle  

  Calculate the fitness of each particle 

  Update the 𝑝𝑏𝑒𝑠𝑡and  𝑔𝑏𝑒𝑠𝑡 

 end for  

 for each particle  

  r1 = rand 

  r2 = rand 

  Equations 4   

  Equations 3 

  if particle < lower bound or particle > upper bound 

   Random new particle  

  end if 

 end for 

 it = it +1 

end while  

Figure 8 – Pseudo code of PSO algorithm. 
 

PSO advantages can be summarized as follows: It does not require the differential of the 

optimized function, derivative and continuous; its convergence rate is fast, and the 

algorithm is simple and easy to execute through programming. The same also has some 

disadvantages as it probably falls into the local extreme and cannot get a correct result; does 

not sufficiently use the information obtained in the calculation procedure. During each 

iteration, instead, it only uses the information of the swarm optima and individual optima; 

though PSO algorithm provides the possibility of global search, it cannot guarantee 

convergence to the global optima; and is a meta-heuristic bionic optimization algorithm, 

furthermore, there is no rigorous theory foundation so far. It is designed only by simplifying 

and simulating some swarms' search phenomenon, but neither explains why this algorithm 

is effective from the principle nor specifies its applicable range. Therefore, the PSO 

algorithm is generally suitable for a class of optimization problems that are high 

dimensional and do not require very accurate solutions [81]. 

3.2.2 Haversine Formula 

Several methods have been tested to measure the distance between two geographic 

coordinates, including the Google Maps Platform APIs [82], Haversine Formula [83], 

Spherical Law of Cosines [84], and Equi-rectangular Approximation [85]. The first 

approach uses Google resources but proved to be very time-consuming, dependent on an 

internet connection, and just works on road routes. The other three formulas all had the 

same results and, although they are less accurate than the first method, the error is 

proportional to the distance, which is not relevant for the study case. Thus, Haversine 

Formula was chosen due to simplicity, precision, and previous work already developed [83], 

[86].  

The Haversine Formula is an essential equation in navigation, giving great-circle distances 

between two points on a sphere from their longitudes and latitudes [87]. It is necessary to 
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know the geographic coordinates of each point to apply this method. The latitude and 

longitude of each point is represented as 𝑙𝑎𝑡1, 𝑙𝑎𝑡2, and 𝑙𝑜𝑛1, 𝑙𝑜𝑛2, respectively, and the 

earth's radius is defined as 𝑟 in Equations 5 and 6, representing the Haversine Formula. The 

distance between the two points is defined as 𝑑 in Equation 6. 

𝑐 = √sin
2 (

lat1-lat2

2
) + cos(lat1) ∙ cos(lat2) ∙ (

lon1-lon2

2
) 

(5) 

  

𝑑 = 2 ∙ 𝑟 ∙ arcsin (𝑐) (6) 

 

3.2.3 Generate Random Geographic Coordinates within a Circle 

To generate a random point (𝑥, 𝑦) over a disk with radius R, Equations 7 and 8 are used: 

𝑥 = 𝑟 ∙ cos θ (7) 

  

𝑦 = 𝑟 ∙ 𝑠𝑖𝑛 θ (8) 

 

𝑟 ∈ [0, 𝑅], and is a random value calculated through Equation 9: 

𝑟 = 𝑅 ∙ √𝑟𝑎𝑛𝑑𝑜𝑚() (9) 

 

And θ another random value, where θ ∈ [0, 2𝜋] and it is calculated by Equation 10: 

θ = 2 ∙ 𝜋 ∙ 𝑟𝑎𝑛𝑑𝑜𝑚() (10) 

 

Figure 9 shows the unit disk and two thousand random points generated with Equations 7 

and 8. This graph demonstrates that all points are evenly distributed, with no disk area 

being underloaded.  

 



 29 

Figure 9 – Two thousand random points in the unit disk. 
 

Lastly, it is necessary to convert the coordinates of the points to geographical coordinates 

(latitude and longitude). One-degree latitude corresponds to approximately 111.2 km, and 

one-degree longitude corresponds to approximately 111.2 km at the equator but 0 km at the 

poles. To generate random geographic coordinates within a circle, Equation 11 to 13 where 

used.  

𝑂𝑛𝑒𝐷𝑒𝑔𝑟𝑒𝑒 =  
𝐸𝑎𝑟𝑡ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 ∙ 2𝜋

360
 (11) 

  

𝑅𝑎𝑛𝑑𝑜𝑚𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =
𝑙𝑎𝑡𝐶𝑒𝑛𝑡𝑒𝑟 + 𝑥

𝑂𝑛𝑒𝐷𝑒𝑔𝑟𝑒𝑒
 (12) 

  

𝑅𝑎𝑛𝑑𝑜𝑚𝐿ongitude =
𝑙𝑜𝑛𝐶𝑒𝑛𝑡𝑒𝑟 + 𝑦

𝑂𝑛𝑒𝐷𝑒𝑔𝑟𝑒𝑒 ∗ cos (
𝑙𝑎𝑡𝐶𝑒𝑛𝑡𝑒𝑟 ∙ 𝜋

180 )
 (13) 

 

 
𝐸𝑎𝑟𝑡ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 is given in meters, and 𝑙𝑎𝑡𝐶𝑒𝑛𝑡𝑒𝑟 and lonCenter are the latitude and longitude 

of the center of the circle, respectively. 

 

3.3 Final Remarks  

A UAV capable of flying semi-autonomously was built to test the novel optimization 

algorithm. The configuration of this system is not important for the problem studied, as it 

is only necessary to ensure that it can fly with the dispersion system without significantly 

damaging the flight time. Thus, a quadcopter was chosen, equipped with Hex Cube Black 

autopilot, and a Here+ as a GPS module. A GCS software was used to upload firmware, 

initial configuration, modifying advanced parameters, pre-planned flights, and review data 

logs. Because Mission Planner is complete, intuitive, and full of information, it was used as 

GCS for this study except to read and analyze data logs where APMPlanner2 was used due 

to its simplicity. This chapter also presented the mathematical methods and techniques 

used in the novel path planning optimization algorithm. PSO is a population-based meta-

heuristic search algorithm that has been widely applied to a variety of problems [88]. The 

Haversine formula is used to calculate the geographical distance on earth between two 

coordinates [89]. In the end, is shown a method to generate random geographical 

coordinates within a circle with disk point picking.  





 31 

4. Novel Path Planning Algorithm 

 

4.1. Global Architecture 

Before developing the proposed optimization algorithm, it was necessary to study the 

general problem and the tools needed to solve it. Birds damage trees and eat fruits to 

producers around the world, causing quantity and quality to decrease. Traditional repelling 

systems work in the short term, but because they possess low mobility and as birds can 

easily detect patterns, they became ineffective.  UAVs have already proven to be essential 

tools to solve this problem, bridging traditional systems disadvantages. However, because 

drones have limited flight time, optimizing the path according to the bird's pattern is 

necessary.  

After analyzing the problem, the algorithm was developed in Python programming 

language, in version 3.8, due to its versatility and pre-existing libraries in all areas of the 

algorithm, such as Graphical User Interface (GUI), math functions, and file manipulation. 

The fields were divided into plots assigned by the producer or detection sensors positioned 

along the field. These segments will be mentioned as points of interest (PoI) and have 

different damage proportions and will be divided accordingly. In this way, and since the 

problem needs consistent application of the repelling systems, the optimization algorithm 

needs to minimize the flight distance between sections and maximize it according to the 

percentage of damage in each plot. Yet, birds can detect patterns and learn how to avoid 

them, so is also required different numbers of random waypoints according to the area. As 

already mentioned, Mission Planner was chosen as pre-planning software, so it is essential 

to generate a compatible file of waypoints with various parameters, being the most 

important for this work the coordinated geographical system (latitude and longitude), 

height above takeoff and command. Figure 10 represents the four main steps of the novel 

path planning optimization algorithm, and they will be further explained in the following 

sections. 

 

Figure 10 – Path planning optimization algorithm main steps. 
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4.2. Parameter Setting  

This path planning optimization algorithm can be applied to any UAV, orchard, and farmer, 

so it was essential to develop a GUI to import the specific parameters. The graphical 

interface was built around PySimpleGUI, a friendly pythonic interface library that runs on 

Windows, Linux, and macOS. The GUI was built to be visually simple and easy to use and 

can be divided into two main windows. It is possible to insert the file name (mission plain-

text file format generated) along with the destination path on the first page. A button was 

also developed to browse folders on the computer so the user can choose quickly. 

Additionally, it is further possible to enter the number of PoIs, the speed of the autonomous 

mission in cm/s, and the drone's flight time in minutes. The speed matches the parameter 

WPNAV_SPEED on Mission Planner, where the unit is cm/s. If the user does not want to 

modify it, a check button to activate the default velocity of 500 cm/s was built. These 

parameters are used to calculate the total distance for path planning. The user can also add 

the radius of the randomly generated waypoints around the PoIs (random waypoints 

radius), the final error in the total distance for path planning in percentage, and the height 

at which the drone will fly. All these parameters, except for the final error, are in meters. 

When everything is complete, it is possible to continue to the next page or exit. Figure 11 

represents the first window of the path planning optimization algorithm GUI developed. 

 

 
Figure 11 – First window of the path planning optimization algorithm GUI. 

 
The second window is used to insert geographical coordinates of take-off, landing, and PoIs, 

with the percentage of bird damage incidence at each point. All coordinates need to be 
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described in latitude and longitude, respectively, and a point instead of a coma must be 

used. In some cases, the take-off and landing points are the same, so a check button has 

been included not to enter twice the same values. To insert a new PoI, the user writes each 

value and clicks the Ok button, and the values will appear below. If the user mistake entering 

some value, the Clean button undo action and allows writing again. The incidence rate is 

the bird damage rate at each PoI, which can be assigned the same value to all points through 

the Check button, causing the same number of random waypoints to be generated, or a 

value can be entered, distributing the points according to the damage. These values can be 

entered into an input if the check button is disabled, and it will explain how the scale works. 

At the bottom, this page contains three buttons where the user can go back to the previous 

page, start the optimization algorithm, or exit. Figure 12 represents the second window of 

the path planning optimization algorithm GUI developed. 

 

 
Figure 12 – Second window of the path planning optimization algorithm GUI. 

 

4.3. Minimization Between PoIs 

Depending on the type of field and the position of the PoI, the UAV must fly according to 

the needs. It is crucial that the algorithm receives the data and establishes the shortest path 

to save the battery for the areas next to the PoI. The PSO to minimization is used to calculate 

the fastest route or the minimum distance. Each particle contains a permute sequence of 

PoIs, and the objective function is the sum of the distances, using Haversine Formula, 

between the points, the take-off, and landing. In the end, this function will send the 

minimum distance and the order sequence of PoIs that the drone needs to fly. If a farmer 

inserts the value zero in the incidence rate, in other words, without any bird damage, the 

algorithm will eliminate it from that flight. Figure 13 represents the importance of 

minimizing the path between PoIs with two cases through an example. One with 
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optimization represented as a) and the other a random order without optimization 

represented as b). The path of the first case scenario has a total distance of 216.3 m, while 

the path of the second case scenario has 268.3 m, which represents a reduction of 52 m. 

 

 
Figure 13 – Example of the importance of minimizing the path between PoIs: a) With optimization function 

b) Without optimization function. 

 

4.4. Maximization of Random Waypoints  

After planning the order of the PoIs, the proposed algorithm will calculate the distance 

available to the random waypoints subtracting the minimum path between PoIs from the 

total distance for path planning. To calculate the number of points, the maximum number 

of points one meter apart is calculated with the remaining distance. Then, the ratio between 

the total number and the incidence rate is made to find the individual number for each PoI. 

If the farmer uses bird detection sensors, it can indicate the percentage of detections per 

PoI. Otherwise, the incidence rate must be inserted manually, as mentioned above, through 
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the parameters. These values can be entered into an input if the Check button is disabled 

and is assigned from zero (there is no damage and the PoI does not need points) to five 

(severe damage, the maximum number of points need to be generated). This scale ensures 

differentiation in the number of random waypoints between PoIs. Still, if the farmer needs 

more diversity, he can introduce any maximum value because the incidence rate is 

calculated by dividing the value by the sum of the total values assigned, obtaining a unit 

scale. Then, random waypoints around the PoI will be generated based on the method 

explained in Subsection 3.2.3, where the radius of the circle is the random waypoints radius 

parameter inserted by the user in the GUI. After each waypoint is generated PSO will be 

applied again but in this case for maximization. Each particle corresponds to a sequence of 

random waypoints and for the objective function the Haversine Formula is used again 

where the distance from the first and last points are tested with the position of the PoI itself. 

In the end, the sum of all distances is performed and compared with the total distance for 

path planning. If this value is within the acceptable interval with the final error defined by 

the user, a mission plain-text file format file will be generated with all geographical 

coordinates. Otherwise, the algorithm will compare whether the difference is greater or less 

than the final error and will adjust the total number of waypoints based on this factor, 

generating new waypoints, and rerun the PSO maximization. 

 

4.5. Creation of Pre-Planned Mission File 

In the end, the Python programming languages file handling functions are used to write all 

waypoints parameters. If there is a file in the predefined folder with the same name inserted 

on the parameter settings, the path planning optimization algorithm will open it and writing 

over; otherwise, it creates a new file. The Plain-text file format is a standard applied in many 

GCS and developer APIs for storing mission information. The data included: mission plans, 

geofence definitions, rally points, parameters, logs, among others. The first line contains 

the file format and version information, while subsequent the line(s) are mission items in 

each column [90]. Table 3 lists the columns and their parameters. The spaces between the 

fields above are <tab> or 8 spaces (\t Python programming languages). 
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Table 3 - Mission plain-text file format column parameters. 

Column Representation 

1 <INDEX> 

2 <CURRENT WP> 

3 <COORD FRAME> 

4 <COMMAND> 

5 <PARAM1> 

6 <PARAM2> 

7 <PARAM3> 

8 <PARAM4> 

9 <PARAM5/X/LATITUDE> 

10 <PARAM6/Y/LONGITUDE> 

11 <PARAM7/Z/ALTITUDE> 

12 <AUTOCONTINUE> 

  

4.6. Final Remarks 

As mentioned in previous chapters, although optimization algorithms for path planning are 

not new, their use in UAVs to control bird damage to fruit crops problems in orchards is. So 

far, this is the only known algorithm with this objective. Despite the path planning 

optimization algorithm for semi-autonomous UAVs in bird repellent systems based on PSO 

is presented in more detail in this dissertation and with the newest features, some work is 

available in Mesquita and Gaspar [91], and some simulation results were presented. The 

original algorithm has some disadvantages compared to the final version presented in this 

dissertation since parameters were inserted on the command line, and the processing time 

was longer because the disk point picking technique was not used, among others. Since then, 

it has been improved to obtain better results, become faster, and be more user-friendly. The 

latest version can be accessed on GitHub with the flowing link:  

https://github.com/RJMesquita/Path-Planning-Optimization-Algorithm-for-Semi-

Autonomous-UAV-in-Bird-Repellent-Systems.git. The path planning optimization 

algorithm has the advantages of its graphical interface that facilitates its use for producers, 

scalability being built by functions, compatibility with Mission Planner, and other used GCS. 

Notwithstanding having the objective of optimizing paths for bird damage to fruit crops, 

being one of its main features, the random generation of waypoints can be applied to 

optimize flights with PoIs in general.  
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5. Analysis and Discussion of Results  

 

5.1. Introduction  

Three case studies were developed to study the novel path planning optimization algorithm 

(two in simulation and one in the field). Case study #1 uses several PoIs with a low radius, 

and Case study #2 has fewer PoIs, with a high random waypoint's radius to serve as a 

comparison. Both simulations are used to understand better the algorithm's performance 

and the influence of each parameter. The Case study #3 is developed in the field to analyze 

the real-world application and the impact on drone battery savings and height influence. A 

peach orchard in Orjais, Covilhã, in Portugal, marked in red line in Figure 14, was used as a 

search field in both simulation and real-world tests.  

 

 
Figure 14 – Search study field. 

 
During simulations, all values chosen are real-life representations of each parameter, and 

during their individual study, the limits and average values were used. The parameter 

variations were tested in the three possible scenarios: same incidence rate, different rates, 

and different rates with no bird damage. Because it is a simulation, random vectors of 

damage were generated. In Scenario 1, the same number of waypoints were assigned to each 

PoI. In Scenario 2, a random vector of numbers of incidence rate, on a scale between one 

and five. In Scenario 3, within the same vector as Scenario 2, some PoIs became zero 
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because they did not have bird incidence. Due to the heuristic nature of the PSO, all cases 

run thirty-five times, and the total distance for path planning obtained by the optimization 

algorithm in meters, the total number of waypoints, the number of iterations that the code 

had to re-run to find a solution within the acceptance range, and the execution time in 

seconds, were collected, and the average, maximum and minimum values were calculated. 

In all cases, the PyCharm Community Edition as an interpreter on Windows 10 of 64 bits 

were used to run the proposed algorithm, on a computer with an Intel Core i7-6700HQ CPU 

and 16 GB RAM. Table 4 shows the initial configuration parameters used in each PSO, 

assigned through the study of convergence curves to provide the best overall performance 

to the path planning optimization algorithm.  

Table 4 – PSO initial configuration parameters. 

Parameter Minimization Maximization 

𝑐1 2 2 

𝑐2 2 2 

𝑤 Random Inertia Weight Random Inertia Weight 

Number of Particles 5 5 

Initial Velocity Random Random 

𝑖𝑡𝑚𝑎𝑥 50 200 

 
It is noteworthy the same value for 𝑐1 and 𝑐2, giving equal weight to the experience of the 

individual and the group, the low number of particles so that the algorithm process faster, 

and different values in the maximum number of iterations due to the complexity of each 

problem. The Random Inertia Weight, shown in Equation 14, was selected due to being the 

best for efficiency [92].  

  

𝑤 = 0.5 +  
𝑟𝑎𝑛𝑑𝑜𝑚()

2
 (14) 

  

5.2. Case study #1 

The goal of the first study case was to understand the performance of the algorithm with 

multiple PoI and low maximum random waypoints radius, varying each parameter (total 

distance for path planning, final error, and take-off and landing position). To cover the 

entire field of study, thirty-nine PoIs were chosen with random waypoints radius of twenty 

meters. Figure 15 shows the PoIs (green dots) used with the corresponding radius from 

which the random waypoint will be generated (white circle). 
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Figure 15 – PoIs of the Case study #1. 

 
As mentioned above, in all simulations, the three possible cases were performed with the 

same incidence rate vectors represented in Table 5. 

 
Table 5 – Incidence rate vectors for Case study #1. 

Scenario Incidence rate vector 

Scenario 1 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

Scenario 2 [3,4,1,2,4,4,2,1,5,2,3,2,4,5,5,3,1,1,2,4,2,4,3,1,2,5,2,5,1,5,2,4,2,1,3,1,2,4,3] 

Scenario 3 [0,4,1,2,4,4,2,0,5,2,3,2,4,5,5,0,0,1,2,4,2,4,0,1,2,5,2,5,1,0,2,4,2,0,3,0,2,4,3] 

  

The first parameter tested was the total distance for path planning. The values were 

calculated through the mission speed and the flight time. Since Li-Po batteries last an 

average between 20 to 30 minutes [71], with the Mission Planner's default speed of 500 

cm/s, the average values for the total distance for path planning were between 6,000 and 

9,000 meters. Since the total distance for the path planning to be varied, the final error was 

constant at 5% of the total distance for path planning, and the same take-off and landing 

waypoint was used, positioned on the center of the field. Table 6 shows the results obtained 

in the variation of total distances for path planning. Regarding the total distance for path 

planning, there is nothing to point out. All scenarios for both distances presented identical 

results, with Scenario 2 having reached an average error in total distance for path planning 

obtained from both cases of less than 1% of the original value, this being the best result. 

Fewer points were obtained in the total number of waypoints for the 6,000 meters distance, 

which is expected as this value is related to the minimum distance between PoIs and the 

total distance for path planning. Notice that at both distances for Scenario 1, the total 

number of waypoints did not change in all simulations. It is also essential to highlight the 

number of iterations in Scenario 1 of the total distance for path planning of 6,000 meters in 

which it was difficult for the algorithm to find a good distance value, having to rerun an 
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average of 13 times, having a maximum of 96 iterations, much higher than the value 

presented in the other scenarios. This occurred because the algorithm has an equal number 

of waypoints across all PoIs with a lower total distance. Concerning the execution time, it 

can be observed that the greater the total distance, the longer the time will be, as it takes 

longer to process more waypoints. In Scenario 3 of the total distance for path planning of 

9,000 meters, the time is much longer than the other two scenarios. Since there are fewer 

PoIs, the algorithm must calculate more points within the remaining points of interest. 

 
Table 6 – Results from the variation of total distances for path planning. 

 Average Maximum Minimum 

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters] 

 Total Distance for Path Planning: 9,000 meters 
Scenario 1 8,890.980 9,225.393 8,580.921 
Scenario 2 8,932.331 9,320.805 8,567.005 
Scenario 3 8,849.140 9,117.971 8,558.183 

 Total Distance for Path Planning: 6.000 meters 
Scenario 1 6,185.257 6,296.571 5,898.484 
Scenario 2 5,951.177 6,298.591 5,741.981 
Scenario 3 5,936.690 6,295.887 5,702.002 

Total Number of Waypoints 

 Total Distance for Path Planning: 9,000 meters 
Scenario 1 236 236 236 
Scenario 2 233 255 210 
Scenario 3 253 264 248 

 Total Distance for Path Planning: 6,000 meters 
Scenario 1 119 119 119 
Scenario 2 110 125 100 
Scenario 3 133 156 120 

Number of Iterations 

 Total Distance for Path Planning: 9,000 meters 
Scenario 1 4 8 4 
Scenario 2 7 8 6 
Scenario 3 7 11 7 

 Total Distance for Path Planning: 6,000 meters 
Scenario 1 13 96 2 
Scenario 2 2 3 2 
Scenario 3 5 9 4 

Execution Time [seconds] 

 Total Distance for Path Planning: 9,000 meters 
Scenario 1 10.562 32.767 9.021 
Scenario 2 16.590 21.884 11.637 
Scenario 3 28.853 54.526 24.333 

 Total Distance for Path Planning: 6,000 meters 
Scenario 1 8.681 53.904 1.625 
Scenario 2 1.823 2.960 1.293 
Scenario 3 5.226 11.940 3.407 

    
 

Then the final error was tested, and the results are shown in Table 7. In the beginning, the 

values of 10% and 1% of the total distance for path planning were used. After performing 

some tests with the final error at 1%, it was noticed that the optimization algorithm was very 

slow and quickly blocked in the random waypoints function, needing improvement in future 

works. Not becoming a valid comparison, the final error was increased until obtaining 
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comparable results, reaching a value of 3%. Since it is the final error to be varied, the total 

distance for path planning was constant at 7,500 meters, and the same take-off and landing 

position was used, positioned on the center of the field. Related to the total distance for path 

planning obtained by the optimization algorithm, although a final error of 10% was used, 

the average values in the three scenarios have a maximum less than 7%. When the final error 

is 3%, all scenarios present in average final errors values of less than 1% of the original total 

distance for path planning. The variation of the final error did not affect the total number 

of waypoints, being that for both cases and all scenarios, the values were identical. As 

expected, between the two cases, there was a significant discrepancy in the number of 

iterations and, consequently, the execution time, since the smaller the error, the longer it 

takes for the optimization algorithm to find a value of the total distance for the path 

planning within the acceptance range. Note that with a final error of 10%, the optimization 

algorithm was faster in the scenarios in the order of 3-2-1 and that in the other case, the 

opposite occurred because there is a greater total distance for path planning and needs to 

be divided by more PoIs, generating more random waypoints per PoI. In conclusion, the 

optimization algorithm with a final error of 3% becomes impractical for scenarios 1 and 2. 

 
Table 7 – Results from the variation of final error. 

 Average Maximum Minimum 

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters] 

 Final error: 10% of the total distance for path planning 
Scenario 1 7,136.907 7,945.977 6,757.306 
Scenario 2 7,099.347 7,753.496 6,751.171 
Scenario 3 7,014.388 7,611.317 6,752.426 

 Final error: 3% of the total distance for path planning 
Scenario 1 7,528.572 7,721.526 7,275.601 
Scenario 2 7,556.262 7,724.228 7,284.137 
Scenario 3 7,506.082 7,723.167 7,290.456 

Total Number of Waypoints 

 Final error: 10% of the total distance for path planning 
Scenario 1 163 197 119 
Scenario 2 159 190 145 
Scenario 3 178 196 156 

 Final error: 3% of the total distance for path planning 
Scenario 1 184 197 158 
Scenario 2 179 190 151 
Scenario 3 199 212 172 

Number of Iterations 

 Final error: 10% of the total distance for path planning 
Scenario 1 3 4 2 
Scenario 2 5 6 4 
Scenario 3 5 6 4 

 Final error: 3% of the total distance for path planning 
Scenario 1 72 737 3 
Scenario 2 45 270 5 
Scenario 3 6 12 5 

 
  



 42 

Table 7 – Results from the variation of final error (cont). 

Execution Time [seconds] 

 Final error: 10% of the total distance for path planning 
Scenario 1 3.924 6.604 1.797 
Scenario 2 6.067 9.444 4.113 
Scenario 3 9.718 13.002 5.782 

 Final error: 3% of the total distance for path planning 
Scenario 1 203.933 3452.745 3.377 
Scenario 2 83.237 514.559 5.633 
Scenario 3 15.678 31.765 12.022 

    
 

The last parameter varied, ending Case study #1, was the take-off and landing position. 

Table 8 shows the results obtained. Two cases were used to test this parameter. One with 

the same take-off and landing position placed in the center of the field and the other with 

different take-off and landing position located at opposite sites in the field. Since the take-

off and landing position was varied, both the total distance for path planning and the final 

error were kept constant at 7,500 meters and 5%, respectively. During the test of this 

parameter, all values remained identical for the two cases in all situations, except for the 

total distance for path planning in different take-off and landing positions, having presented 

a more significant discrepancy to the original value. Since the maximum and minimum 

values were identical for all scenarios in both cases, it is possible to indicate that there was 

only a higher variation in the simulation values. 

 
Table 8 – Results from the variation of take-off and landing position. 

 Average Maximum Minimum 

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters] 

 Same take-off and landing position 
Scenario 1 7,508.493 7,872.638 7,131.713 
Scenario 2 7,551.033 7,866.488 7,138.796 
Scenario 3 7,473.269 7,785.815 7,128.395 

 Different take-off and landing position 
Scenario 1 7,219.699 7,871.990 7,125.665 
Scenario 2 7,524.375 7,868.870 7,141.019 
Scenario 3 7,399.987 7,786.099 7,142.777 

Total Number of Waypoints 

 Same take-off and landing position 
Scenario 1 178 197 158 
Scenario 2 179 190 145 
Scenario 3 198 212 172 

 Different take-off and landing position 
Scenario 1 177 197 158 
Scenario 2 174 190 151 
Scenario 3 194 212 172 

Number of Iterations 

 Same take-off and landing position 
Scenario 1 6 22 3 
Scenario 2 7 15 4 
Scenario 3 6 8 5 

 Different take-off and landing position 
Scenario 1 7 27 3 
Scenario 2 7 26 5 
Scenario 3 6 6 5 



 43 

Table 8 – Results from the variation of take-off and landing position. (cont) 
 Average Maximum Minimum 

Execution Time [seconds] 

 Same take-off and landing position 
Scenario 1 10.889 53.069 3.325 
Scenario 2 10.995 28.920 4.323 
Scenario 3 14.064 18.804 9.316 

 Different take-off and landing position 
Scenario 1 12.168 60.809 3.200 
Scenario 2 11.673 49.451 5.683 
Scenario 3 14.098 19.210 9.860 

 

5.3. Case study #2 

After understanding the performance of the optimization algorithm with the variation of 

each parameter in the first case study, it was developed a second case to acknowledge the 

difference in the execution of the algorithm with different numbers of PoIs and random 

waypoint radius. In contrast to the previous case, fewer PoIs were selected with a higher 

radius of random waypoints to cover the entire field. To cover the entire field of study, ten 

PoIs were chosen with random waypoints radius of fifty meters. Figure 16 shows the PoIs 

(green dots) used with the corresponding radius from which the random waypoint will be 

generated (white circle). 

 

 
Figure 15 – PoIs of the Case study #2. 

 
In this case study, the performance of the optimization algorithm of the PoIs presented in 

Figure 15, named hereafter as the case with lower PoIs, and was compared with the PoIs in 

Figure 16, referred henceforth as the case with higher PoIs. As mentioned above, in all 

simulations, the three possible cases were performed with the same incidence rate vectors 

represented in Table 9. 
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Table 9 – Incidence rate vectors for Case study #2. 

Scenario Incidence rate vector 

Scenario 1 [1,1,1,1,1,1,1,1,1,1] 

Scenario 2 [3,4,1,2,4,4,2,1,5,2] 

Scenario 3 [0,4,1,2,4,4,2,0,5,2] 

 
The average parameters tested in the previous case for both PoIs schemes were kept, along 

with the test variables (total distance for path planning obtained by the optimization 

algorithm, total number of waypoints, number of iterations, and execution time). The values 

corresponding to the parameters were: 7,500 meters for the total distance for path planning, 

final error of 5%, and the same take-off and landing point. Table 10 shows the results 

obtained with the PoIs of both cases. The total distance for path planning obtained by the 

optimization algorithm shows similar values on average, with the case with lower PoIs 

presenting better results, being each one below 1% of the original value. The case with higher 

PoIs has more total number of waypoints in all scenarios because the random waypoints are 

closer to the PoI, so there is less flight distance between the random waypoints. Thus, the 

path planning optimization algorithm can generate more points. The variables most 

negatively affected by the reduction in the number of PoIs and consequent increase in the 

radius of the random waypoint are the number of iterations and the execution time. Clearly, 

in this case, the optimization algorithm becomes impracticable due to being very slow. One 

thing to note is the low number of iterations per second of execution compared to the Case 

study #1 situation with a final error of 3%. The execution time is identical, but there is more 

number of iterations. This can be explained because the algorithm takes longer to reduce 

the total number of waypoints until it has a viable value. 

 
Table 10 – Results from Case study #2. 

 Average Maximum Minimum 

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters] 

 Higher Number PoIs 
Scenario 1 7,498.936 7,874.698 7,140.985 
Scenario 2 7,599.392 7,873.370 7,146.384 
Scenario 3 7,419.634 7,840.074 7,125.564 

 Lower Number PoIs 
Scenario 1 7,556.118 7,873.750 7,161.054 
Scenario 2 7,511.199 7,846.897 7,130.927 
Scenario 3 7,563.032 7,851.434 7,128.681 

Total Number of Waypoints 

 Higher Number PoIs 
Scenario 1 180 197 158 
Scenario 2 179 190 145 
Scenario 3 198 212 172 

 Lower Number PoIs 
Scenario 1 126 132 122 
Scenario 2 126 134 138 
Scenario 3 129 138 118 
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Table 10 – Results from Case study #2 (cont.). 
 Average Maximum Minimum 

Number of Iterations 

 Higher Number PoIs 
Scenario 1 6 18 3 
Scenario 2 7 21 4 
Scenario 3 6 6 5 

 Lower Number PoIs 
Scenario 1 21 24 20 
Scenario 2 16 18 14 
Scenario 3 25 27 24 

Execution Time [seconds] 

 Higher Number PoIs 
Scenario 1 11.570 37.737 3.448 
Scenario 2 10.222 34.172 4.059 
Scenario 3 12.806 16.423 9.468 

 Lower Number PoIs 
Scenario 1 209.111 232.803 197.770 
Scenario 2 175.687 200.649 146.040 
Scenario 3 408.003 443.052 371.005 

 

5.4. Case study #3  

Case study #3 was developed to understand the influence of the path planning optimization 

algorithm and the drone’s flight height (wind influence) on the battery life and 

corresponding flight time. Two cases were then developed, one at the height of 10 meters, 

near the treetops, and the other at 20 meters. The preliminary tests of this case study were 

performed in a peach tree field in Orjais, Portugal. 

The variables selected to study the influence of the path planning optimization algorithm 

were: the voltage difference between the initial and final voltage, measured through the 

voltage sensor of the power brick, the capacity discharged from the batteries, calculated 

through the battery’s charger (Ultramat AC/DC EQ) in mAh, and the flight time in seconds 

obtained from the flight records. Field tests with a new PoI scheme were performed in a 

cornfield in Macieira, Lousada, Portugal. Following the exact measurements used in the 

peach tree field, eight PoIs were then used to ensure equality, with a random waypoint 

radius of twenty meters. A short path was created so that the environment was as controlled 

as possible, always keeping the drone in line of sight for security. Figure 17 shows the PoIs 

(green dots) used with the corresponding radius from which the random waypoint will be 

generated (white circle).  
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Figure 17 – PoIs of the Case study #3. 

 

The field tests for all cases were also performed in the three possible cases with the same 

incidence rate vectors represented in Table 11. 

 

Table 11 – Incidence rate vectors for Case study #3. 

Scenario Incidence rate vector 

Scenario 1 [1,1,1,1,1,1,1,1] 

Scenario 2 [3,4,1,2,4,4,2,1] 

Scenario 3 [0,4,1,2,4,5,2,0] 

 

For both cases, the values corresponding to the parameters were: 1,500 meters for the total 

distance for path planning, final error of 5%, and the same take-off and landing point. It is 

also important to mention that the Mission Planner default speeds were all kept. In order 

to obtain statistical data, four flights were performed per scenario. To achieve a more 

accurate measurement, the same battery should have been used during all flights, but this 

is not practical, so four batteries of the same brand with the same configuration were used. 

It must be highlighted that no battery was repeated per scenario and that the flights were 

carried out over three days at different times sequentially to ensure data reliability. Table 

12 shows the results in the field obtained from the quadcopter studied. After analyzing the 

results obtained, it is possible to indicate that scenario 3 in both cases presents lower voltage 

difference and capacity discharged from the batteries, although this does not directly 

transpose into more flight time. This result arises from the fewer corrections between PoIs 

made by the UAV. Another consideration is that although the optimization algorithm does 

not use height as a parameter in path planning, the results show more flight time for 10 

meters because the cornfield was covered with trees that protected the drone at lower 
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altitudes. It is also important to indicate that there is no direct connection between the 

discharged capacity of the batteries and the flight time. One would expect less flying time to 

discharge less battery capacity, but since drones depend on factors such as wind, this doesn't 

always happen. It is also possible to establish that there is no relationship between the 

mission velocity and the flight time, considering that for 1,500 meters, an expected 5 minute 

mission should be obtained, and the time varies between 7 to 14 minutes approximately. 

 
Table 12 – Results from Case study #3. 

 Average Maximum Minimum 

Voltage Difference [V] 

 Height: 10 meters 
Scenario 1 1.17 1.23 1.12 
Scenario 2 1.23 1.25 1.20 
Scenario 3 1.09 1.15 1.02 

 Height: 20 meters 
Scenario 1 1.22 1.29 1.18 
Scenario 2 1.25 1.32 1.16 
Scenario 3 1.08 1.19 0.89 

Capacity Discharged from the Batteries [mAh] 

 Height: 10 meters 
Scenario 1 1,662 1,790 1,499 
Scenario 2 1,804 1,834 1,743 
Scenario 3 1,569 1,636 1,491 

 Height: 20 meters 
Scenario 1 1,763 1,872 1,626 
Scenario 2 1,837 1,985 1,642 
Scenario 3 1,497 1,684 1,127 

Flight Time [seconds] 

 Height: 10 meters 
Scenario 1 599 643 571 
Scenario 2 724 820 674 
Scenario 3 588 676 540 

 Height: 20 meters 
Scenario 1 612 701 437 
Scenario 2 742 810 621 
Scenario 3 722 839 652 

 

5.5. Final Remarks 

In Orjais, Covilhã, Portugal, a peach orchard was selected as a search field to test the novel 

path planning optimization algorithm. Three study cases, two in simulation and one in the 

field, were developed to understand the performance of the optimization algorithm, the 

parameter variation, and the influence on battery management. All parameter variations 

were tested in the three possible scenarios: same incidence rate, different rates, and 

different rates with no bird damage. During testing, the average, maximum, and minimum 

of the total distance for path planning obtained by the optimization algorithm, the total 

number of waypoints, the number of iterations, and the execution time were collected. Case 

study #1 used more PoIs and a low random waypoints radius, where all input parameters 

were varied to understand how the optimization algorithm performed.  In Case study#2, a 
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new PoIs scheme was created with lower number PoIs and a higher random waypoints 

radius, which was compared to the previous case study. Case study #3 was the field test with 

the quadcopter described in Chapter 3. During the tests, the height varied in the three 

possible scenarios and the voltage difference, discharged battery capacity and time were 

evaluated. 

After analyzing the results obtained in Case study #1, it is possible to infer that the algorithm 

guarantees an outstanding average error of the total distance for path planning, having a 

maximum error of 7%, where the final error was set at 10%. However, the average error in 

most examples of the first case (final error at 5%) was 1.3% of the original value of the total 

distance for path planning. It is also possible to indicate that this algorithm has a reasonable 

execution time. The final error is the parameter that most influences the results, and the 

smaller the error, the longer will be the running time, with an average of almost 2 minutes 

when the error is 3%. For all cases, when the final error is 5%, the average execution time is 

12 seconds. In the end, it can be observed that there is a relationship with the variation of 

the parameter of the total distance for path planning, the number of waypoints, and the 

execution time. The greater the distance, the greater the other two parameters are. 

Important to also observe with Case study #1 is that the takeoff and landing position does 

not influence the other parameters. 

Case study #2 shows that the algorithm with fewer PoIs and a larger random waypoint 

radius increases the execution time of the proposed algorithm, making it very slow with an 

average execution time of 4 minutes and 24 seconds. This result reveals that will be 

necessary in the future to create a ratio between the number of PoIs and the total distance 

for path planning or improve the function that calculates the number of random waypoints. 

From Case study #2 results, it is also possible to verify that the smaller the number of PoIs, 

the greater the total number of waypoints. This result comes from the lower distance 

between the PoIs and because the path planning optimization algorithm can generate more 

waypoints. 

The results in Case study #3 show that fewer PoIs (Scenario 3) causes a lower value in the 

discharge of the battery capacity with an average of 1,533 mAh comparing to 1,712 mAh and 

1,820 mAh of the other two scenarios, a factor that is not directly related to the flight time. 

The ratio between the mission velocity and the flight time does not relate as anticipated, 

being expected 5 minutes in mission time and some flights reached 14 minutes. One of the 

most important conclusions derived from Case study #3 is that height does not influence 

the flight, and the most influencing factor is terrain and weather conditions. 

In conclusion, all case study present satisfactory results, especially the error in the total 

distance for path planning obtained and the execution time. With some modifications in the 

future, the proposed algorithm can be tested by producers.
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6. Conclusions  

 

6.1. General Conclusions 

According to The World Back [93] , agriculture is crucial to economic growth. In 2018, it 

accounted for 4% of global gross domestic product (GDP), and in some developing 

countries, it can account for more than 25% of GDP. It is, therefore, crucial to reduced 

production losses for farmers worldwide with new techniques and technologies. Despite not 

being recent, a concept that still has much attention from companies and researchers is 

precision agriculture (PA). PA is a management strategy that employs information 

technology to improve agricultural quality and production, differing from traditional 

farming in the sense that this process accurately identifies variations and relates the spatial 

data to management activities [94]. Bird damage to fruit crops is a significant concern for 

farmers, causing millions of dollars in lost yield each year. In addition to consumption, a 

large number of birds can damage fruit, leaving it susceptible to infection and reducing its 

quality [8]. Although this problem is general worldwide, this work was based and tested on 

the needs of peach and cherry farmers in the region of Covilhã, Portugal. Most still use 

traditional methods such as netting, planting, and harvesting manipulation, with the bird 

cannons and loudspeakers, which are the most technological systems but still primitive. 

Birds are unique pests because they are highly mobile, resulting in greater spatial and 

temporal variation in damage levels than mammalian pests. Today, most systems 

employees are not very mobile and are predictable over time, becoming ineffective in the 

long run. UAVs have advantages in their versatility and low maintenance, making them 

potential solutions to this problem when combined with repelling systems. One of the most 

notable disadvantages is its limited battery capacity turned into low flight time, being 

essential to improve the efficiency of the mission by planning the path according to the 

problem.  

In this dissertation is presented a novel path planning optimization algorithm for semi-

autonomous UAV in bird repellent systems based in Particle Swarm Optimization, 

developed in Python programming language, with the objective of maximizing the path and 

randomly generating waypoints according to the bird damage. Nature has been 

continuously solving challenging problems using evolution. Therefore, it is reasonable to be 

inspired by nature to solve different challenging problems. Swarm intelligence and 

evolutionary computation are searching methods based on the physical behavior and 

natural evolution of social intelligence development of real animals and others in real life 

[95].  These techniques can optimize complete systems while maintaining the simplicity and 
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efficiency of other algorithms. One of these techniques is Particle Swarm Optimization 

which is a population-based self-adaptive, stochastic optimization technique [96], used for 

its performance, accuracy in solving optimization problems, easy implementation, and 

adaptation [97]. A method to calculate the distance between two geographic coordinates 

had to be applied in the path planning optimization algorithm, and after research, the 

haversine formula was used. Another essential method applied is the generation of random 

geographic coordinates within a circle with disk point picking. To test the mentioned 

algorithm, it was necessary to build and configure a UAV capable of flying through a pre-

planned mission, using autopilots flight controllers and ground control stations software. 

Despite all the information about drone building and each subsystem within it, the 

configuration was one of the most challenging aspects. An incorrect or poorly calibrated 

parameter can cause it not to fly correctly or even crash during flight. UAVs of any structure 

can be dangerous, so it is necessary to fly safely with proper precautions. During this work, 

all flights were carried out in a controlled, safe environment, with the drone always on the 

line of sight.  

The path planning optimization algorithm presented in this dissertation can be divided into 

four main steps: Parameter Setting, using a graphical interface the user can insert all the 

necessary parameters; Minimization Between PoIs, ensuring that the UAV wastes the 

minimum time between sensors; Maximization of Random Waypoints, random waypoints 

are generated around the PoI, accordingly to the bird damage and their path is maximized; 

Creation of Pre-Planned Mission File, a file is created to be read by the GCS and transferred 

to the autopilot. As to the author's knowledge, this is a novel path planning optimization 

algorithm, so it is impossible to compare it with other algorithms. So, three case studies 

were created to understand the performance and parameter variation of the proposed 

algorithm. All cases were tested in three possible situations: same incidence rate, different 

rates, and different rates with no bird damage. Case Study #1 was in simulation and used 

32 PoIs with 20 meters random waypoints radius and was done to understand how the 

proposed algorithm performed when each parameter was varied. In the second case, Case 

Study#2, also in simulation, a new PoIs scheme was created with 10 PoIs, and 50 meters as 

random waypoints radius and was compared to the previous case study. For last, a field test 

with the quadcopter was done. During Case Study #3, the height was varied in the three 

possible scenarios, and the voltage difference, discharged battery capacity, and time was 

evaluated. It should be mentioned that, although the focus of this dissertation is on path 

optimization and not the effectiveness of the path planning optimization algorithm to 

repealed birds, during the field case study, birds ended up disappearing.  

In conclusion, this algorithm intends to overcome the failures of traditional systems in bird 

damage to fruit crops used by producers today, optimizing UAV flights, distributing points 
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according to the bird damage, and creating random waypoints so that they do not detect 

patterns. Also, although it is aimed at this agricultural problem, the algorithm can be 

modified for other scenarios and problems and adapted to any autopilot or GCS. 

 

6.2. Specific Conclusions  

Case study #1 was used to understand the performance of the proposed algorithm with the 

variation of each parameter. After examining the first case, it is possible to indicate that the 

algorithm has an overall satisfactory performance, obtaining an excellent average error in 

the total distance for path planning than the original value and a reliable execution time for 

most cases. After varying each parameter, it is also possible to infer that the total distance 

for path planning directly affects the number of waypoints and the execution time. The final 

error influences the total distance for path planning and the number of iterations that affect 

the execution time per consequence. Finally, it is also possible to indicate that the takeoff 

and landing position parameter has practically no influence on any other parameter. 

The Case study #2 was developed to test the performance in different scenarios, using two 

PoIs schemes. The first had higher number of PoIs with lower random waypoint radius and 

the second one a smaller number of PoIs with higher random waypoint radius. Case study 

#2 shows that decreasing the number of PoIs with a consequent increase in the random 

waypoint radius can lead to an impractical use of the optimization algorithm, directly 

affecting the execution time. This can be interpreted as a bad ratio between the total 

distance for path planning and the number of PoIs and that the function that generates the 

number of random waypoints needs to be changed. It was also shown that with fewer 

number of PoIs, the number of total waypoints is fewer than with higher number of 

waypoints. 

Case study #3 was a field test with the studied quadcopter. This case is very important to 

understand the influence of the proposed algorithm in battery capacity and flight time. After 

analyzing the results obtained for the last case, it is possible to infer that fewer PoIs cause a 

reduction in the discharge of the battery capacity, a factor that is not directly related to the 

flight time. That flight height does not influence the flight, and the most influencing factor 

is the terrain and weather conditions. There is no established relationship between the 

mission velocity (maximum horizontal speed) and the flight time, and this function needs 

to be changed in future works. It is impossible to assign a quality level to the path planning 

optimization algorithm since there is no relative term. However, it is reasonable to state that 

the results are generally satisfactory due to execution time and functionality, and the 

implementation of this system in real-world applications is viable. 
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6.3. Suggestions for Future Work 

As already mentioned, the optimization algorithm presented is still being improved, and at 

each iteration, a new functionality or performance improvement is added. After completing 

this dissertation, it is possible to suggest some possibilities for improvements and future 

work. Due to the Python programming language being high level, it is possible to work 

quickly and integrate systems more effectively than other programming languages such as 

C or Rust. Although this language gains in development time, it loses in execution time 

because code is interpreted at runtime instead of being compiled to native code at 

compilation. Future work may be related to implementing and comparing this path 

planning optimization algorithm in other programming languages to ensure faster 

execution time. Optimization techniques other than PSO should also be implemented and 

tested. These approaches should improve the execution time and quality of the results 

obtained by the path planning algorithm. After the field tests, the programming function 

that relates the mission velocity and the flight time and calculates the total distance for the 

path planning must be modified considering other speeds besides the maximum horizontal 

speed. Without this improvement, the farmer must be very conservative when inserting the 

flight time. More field tests should be carried out with more drones and batteries, where the 

power consumption and autonomy are studied. The efficiency of the proposed algorithm in 

bird damage to fruit crops problem to must also be evaluated. Features such as compatibility 

with other GCS and variable random waypoint radius must also be added to complete the 

characteristics of the proposed algorithm. It is also necessary to establish a relationship 

between the total distance for the path planning and the number of PoIs and a better 

function to control the number of generated waypoints, avoiding a slow algorithm. 
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