

A Novel Path Planning Optimization Algorithm
for Semi-Autonomous UAV in Bird Repellent

Systems Based in Particle Swarm Optimization

Ricardo Jorge Mendes Mesquita

Dissertação para obtenção do Grau de Mestre em

Engenharia Eletrotécnica e de Computadores
(2º ciclo de estudos)

Orientador: Prof. Doutor Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

julho de 2021

 ii

 iii

Acknowledgements

This research work is funded by the PrunusBot project - Autonomous controlled spraying

aerial robotic system and fruit production forecast, Operation No. PDR2020-101-031358

(leader), Consortium No. 340, Initiative No. 140, promoted by PDR2020 and co-financed

by the EAFRD and the European Union under the Portugal 2020 program.

The authors thank the opportunity and financial support to carry on this project to

Fundação para a Ciência e Tecnologia (FCT) and R&D Unit "Centre for Mechanical and

Aerospace Science and Technologies" (C-MAST), under project UIDB/00151/2020.

 iv

 v

Resumo

Anualmente, os danos causados pelas aves em pomares criam perdas monetárias

significativas aos agricultores. A aplicação de métodos tradicionais de dispersão de aves,

como canhões repelentes de aves e redes nas árvores, torna-se ineficiente a longo prazo,

sendo ainda de alta manutenção e de mobilidade reduzida. Devido à sua versatilidade, os

Veículos Aéreos Não Tripulados (VANT) podem ser benéficos para resolver este problema.

No entanto, devido à baixa capacidade das suas baterias, que se traduz num baixo tempo de

voo, é necessário otimizar o planeamento dos caminhos.

Nesta dissertação, é apresentado um algoritmo de otimização para planeamento de

caminhos para VANT baseado no Particle Swarm Optimization (PSO). Para se iniciarem os

primeiros testes do algoritmo proposto, a técnica utilizada foi a supracitada devido à

necessidade de um algoritmo de otimização fácil de implementar. O algoritmo PSO é

simples e possuí poucos parâmetros de controlo, mantendo um bom desempenho. Este

algoritmo de otimização de planeamento de caminhos propõe-se a gerir a distância e o

tempo de voo do drone, aplicando técnicas de otimização e de aleatoriedade para superar a

sua desvantagem relativamente aos sistemas tradicionais. O desempenho do algoritmo de

planeamento de caminhos foi testado em três casos de estudo: dois deles em simulação para

testar a variação de cada parâmetro e outro em campo para testar a capacidade da bateria.

Todos os casos foram testados nas três situações possíveis: mesma taxa de incidência, taxas

diferentes e taxas diferentes sem danos de aves.

Os resultados apresentados pelo algoritmo proposto demonstram um erro médio muto

reduzido na distância total para o planeamento de caminhos obtido e baixo tempo de

execução. Porém, é necessário destacar que o algoritmo pode ter dificuldade em encontrar

uma solução adequada se houver uma má relação entre a distância total para o planeamento

de caminhos e os pontos de interesse. Os testes de campo também foram essenciais para

entender o comportamento do algoritmo na prática, mostrando que há menos energia

consumida com menos pontos de interesse, sendo que este parâmetro não se correlaciona

com o tempo de voo. Além disso, não há associação entre a velocidade horizontal máxima e

o tempo da missão, o que significa que a função de cálculo da distância total para o

planeamento de caminhos requer ser ajustada.

Palavras-chave

Danos a Pássaros; Agricultura de Precisão; Veículos Aéreos Não Tripulados; Planeamento

de Caminho; Meta-heurística; Algoritmo de Otimização para Planeamento de Caminhos

 vi

 vii

Abstract

Bird damage to fruit crops causes significant monetary losses to farmers annually. The

application of traditional bird repelling methods such as bird cannons and tree netting

became inefficient in the long run, keeping high maintenance and reduced mobility. Due to

their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem.

However, due to their low battery capacity that equals low flight duration, it is necessary to

evolve path planning optimization.

A path planning optimization algorithm of UAVs based on Particle Swarm Optimization

(PSO) is presented in this dissertation. This technique was used due to the need for an easy

implementation optimization algorithm to start the initial tests. The PSO algorithm is

simple and has few control parameters while maintaining a good performance. This path

planning optimization algorithm aims to manage the drone's distance and flight time,

applying optimization and randomness techniques to overcome the disadvantages of the

traditional systems. The proposed algorithm's performance was tested in three study cases:

two of them in simulation to test the variation of each parameter and one in the field to test

the influence on battery management and height influence. All cases were tested in the three

possible situations: same incidence rate, different rates, and different rates with no bird

damage to fruit crops.

The proposed algorithm presents promising results with an outstanding reduced average

error in the total distance for the path planning obtained and low execution time. However,

it is necessary to point out that the path planning optimization algorithm may have difficulty

finding a suitable solution if there is a bad ratio between the total distance for path planning

and points of interest. The field tests were also essential to understand the algorithm's

behavior of the path planning algorithm in the UAV, showing that there is less energy

discharged with fewer points of interest, but that do not correlates with the flight time. Also,

there is no association between the maximum horizontal speed and the flight time, which

means that the function to calculate the total distance for path planning needs to be

adjusted.

Keywords

Bird Damage to Fruit Crops; Precision Agriculture; Unmanned Aerial Vehicles; Path

Planning; Meta-heuristic; Path Planning Optimization Algorithm

 viii

 ix

Index

Acknowledgements ... iii

Resumo .. v

Abstract .. vii

Index ... ix

List of Figures ... xi

List of Tables ... xiii

List of Acronyms ...xv

1. Introduction ... 1

1.1. Contextualization ... 1

1.2. Objetives and Contribution of the Dissertation .. 3

1.3. Overview and Organization of the Dissertation ... 4

2. State of the Art ... 7

2.1. Autopilots and Ground Control Stations .. 7

2.2. Optimization Algorithms ... 15

2.3. UAV Path Planning Algorithms ... 17

2.4. Final Remarks ... 20

3. Materials and Methods ... 21

3.1. Materials ..21

3.1.1. UAV ..21

3.1.2. Ground Control Station ... 23

3.2. Methods .. 25

3.2.1 Particle Swarm Optimization .. 25

3.2.2 Haversine Formula .. 27

3.2.3 Generate Random Geographic Coordinates within a Circle 28

3.3 Final Remarks ... 29

4. Novel Path Planning Algorithm .. 31

4.1. Global Architecture .. 31

4.2. Parameter Setting ... 32

4.3. Minimization Between PoIs .. 33

4.4. Maximization of Random Waypoints ... 34

4.5. Creation of Pre-Planned Mission File ... 35

4.6. Final Remarks ... 36

5. Analysis and Discussion of Results .. 37

5.1. Introduction .. 37

5.2. Case study #1 .. 38

 x

5.3. Case study #2 .. 43

5.4. Case study #3 .. 45

5.5. Final Remarks..47

6. Conclusions ... 49

6.1. General Conclusions ... 49

6.2. Specific Conclusions .. 51

6.3. Suggestions for Future Work .. 52

References ... 53

 xi

List of Figures

Figure 1 – DJI AGRAS T20 …………………………………………………………………………………. 2
Figure 2 – Flock of birds in Soalheira, Fundão, Portugal ………………………………………… 3
Figure 3 – Classification of CI methods in UAV path planning by algorithm ….………… 18
Figure 4 – Multirotor used in this study ……………………………………………………………..... 21
Figure 5 – CAD design (left) and 3D printed component (right)
developed to secure the GPS antenna into the quadcopter frame

………………........... 22

Figure 6 – Tools and connections used to calibrate the power brick ……………………….. 24
Figure 7 – Example of a mission plan in Mission Planner ……………………………………... 25
Figure 8 – Pseudo code of PSO algorithm …………………………………………...................... 27
Figure 9 – Two thousand random points in the unit disk ………….…………………………... 28
Figure 10 – Path planning optimization algorithm main steps ………………………........... 31
Figure 11 – First window of the path planning optimization algorithm GUI …………..… 32
Figure 12 – Second window of the path planning optimization algorithm GUI ……...... 33
Figure 13 – a) With optimization function b) Without optimization function ……......… 34
Figure 14 – Search study field …………………………………………………………………………...... 37
Figure 15 – PoIs of the Case study #1 ……………………………………..………………………..….. 39
Figure 16 – PoIs of the Case study #2 …………………………..………………………………………. 43
Figure 17 – PoIs of the Case study #3 ………………...……………………………..…………………. 46

 xii

 xiii

List of Tables

Table 1 – AutoPilot Hardware – Open Hardware …………………………………….. 9

Table 2 - AutoPilot Hardware - Closed hardware …………………………………….. 13

Table 3 - Mission plain-text file format column parameters ………………………….. 36

Table 4 – PSO initial configuration parameters ………………………………………. 38

Table 5 – Incidence rate vectors for Case study #1 …………………………………… 39

Table 6 – Results from the variation of total distances for path planning …………….. 40

Table 7 – Results from the variation of final error ……………………………………. 41

Table 8 – Results from the variation of take-off and landing position ………………... 42

Table 9 – Incidence rate vectors for Case study #2 …………………………………… 44

Table 10 – Results from Case study #2 ……………………………………………….. 44

Table 11 – Incidence rate vectors for Case study #3 ………………………………….. 45

Table 12 – Results from Case study #3 ……………………………………………….. 47

 xiv

 xv

List of Acronyms

UAVs Unmanned Aerial Vehicles

VTOL Vertical Take-Off and Landing

ESC Electronic Speed Control

INS Inertial Navigation System

LiDAR Light Detection and Ranging

GCS Ground Control Station

FAAS Fully Autonomous Aerial Systems

AI Artificial Intelligence

GNSS Global Navigation Satellite System

ARM Advanced Reduced Instruction Set Computer Machine

RPi Raspberry Pi (RPi)

SITL Software-in-the-loop
RAM Random Access Memory

DC Direct Current

LED Light-emitting Diode

UART Universal Asynchronous Receiver-Transmitter

PWM Pulse-Width Modulation

LCD Liquid Crystal Display

SPI Serial Peripheral Interface

I2C Inter-integrated Circuit

ADC Analog to Digital Converter

CAN Bus Controller Area Network

USB Universal Serial Bus

PPM Pulse-position Modulation

RSSI Received Signal Strength Indication

RC Radio Control

GPS Global Positioning System

RGB Red, Green and Blue

CPPM Chaotic Pulse-position Modulation

FRAM Ferroelectric RAM

SD Secure Digital

CPU Central Processing Unit

HDMI High-Definition Multimedia Interface

OSD On-screen Display

OS Operating System

GPIO General-purpose Input/Output

GPU Graphic Processor Unit

HD High Definition

PSO Particle Swarm Optimization

GWO Grey Wolf Optimizer

IEEE Institute of Electrical and Electronics Engineers

FA Flower Algorithm

PV Photo-voltaic

MPP Maximum Power Point

 xvi

BI Bat-inspired

CI Computational Intelligence

GA Genetic Algorithm

ACO Ant Colony Optimization

ANN Artificial Neural Networks

LB Learning-based Methods

FL Fuzzy Logic Algorithms

Li-Po Lithium Polymer

CH Chanel

RF Radio Frequency

CAD Computer-aided Design

FDM Fused Deposition Modeling
PWM Pulse-width Modulation
PoI Points of Interest
GDP Gross Domestic Product

 1

1. Introduction

1.1. Contextualization

Agriculture is not only a source of food but also a source of vast employment and rural

development. However, the contribution of agriculture to national economies has decreased

over the years, as countries have moved upward to upper-income classes. Still, 26.5% of the

world's total employment is in this sector. Increased productivity contributes to lowering

food prices, which will benefit the consumers, particularly the low income since food

expenses represent a large share of their total budget. Hence, its development and growth

have always been and will remain one of the topmost priority agendas of policymakers [1],

companies, and researchers.

Precision Agriculture is an old concept being mentioned in 1999 as applying technologies

and principles to manage spatial and temporal variability associated with all aspects of

agricultural production to improve crop performance and environmental quality [2]. In

essence, this concept represents the importance of introducing new technologies and

techniques to optimize the farming process, increase quality, and reduce production prices

for both growers and consumers. Among these new technologies, Unmanned Aerial

Vehicles (UAVs), commonly known as drones, have been increasingly used in agricultural

activities. UAVs are unmanned aircrafts that are already being applied in agriculture and

used to overcome traditional systems' failures. Several parameters characterize its types,

such as the structure, method to depart and land, and the number of motors. Horizontal

Take-Off and Landing, multirotor, helicopter, and Vertical Take-Off and Landing (VTOL)

are the main configurations. Its basic architecture consists of a frame, brush-less motors,

Electronic Speed Control (ESC) modules, control board, Inertial Navigation System (INS),

and a transmitter/receiver module [3]. Depending on its function, these may include cargo

compartments, actuators, and sensors such as Light Detection and Ranging (LiDAR)

modules and multispectral cameras. The possibility of systematic data collection, mapping

field variability, and better decisions lead farmers and companies to invest in UAVs for

agriculture. These are used in early soil analysis to acquire image-based data helpful in

irrigation and ground-level management by determining the strength of nutrients. Appling

hyperspectral, multispectral, thermal, or LiDAR sensors mounted to the UAVs, farmers can

identify which parts of crops need improvements and react appropriately on time [4].

Another good example is the commercially available DJI AGRAS T20 shown in Figure 1.

This UAV system can autonomously spread seeds, fertilizer, and other solid materials, using

 2

a 360º digital radar to avoid obstacles and a P4 multispectral camera, gathering precise

plant-level data, which improves general efficiency in all processes [5].

Figure 1 – DJI AGRAS T20 [5].

Bird damage to fruit and other horticultural crops is a well-documented agricultural

problem [6]-[7], due to being costly and persistent to farmers worldwide. Flocks destroy

trees and feed on fruits and grains. In addition to consumption, diseases can appear, leading

to decreased product quality and quantity [8]. Bird damage to orchards is a long-term

problem. In 1974, Clark [9] addressed the issue, making an overview of the control

techniques commonly used back then in California for each bird. With the advancement of

technology, new techniques have emerged to reduce the environmental impact, such as

chemical pollutants and lethal systems. Bird cannons usually use propane to randomly

imitate a loud sound like an explosion, consisting of a support, control system, feeding

cylinder, and a cone to disperse the sound, making this heavy, low mobility, and predictable.

These systems are the most popular of numerous mechanical, visual, and auditory methods

used for scaring birds away from crop fields [10]. Another popular method is speakers who

use various species-specific distress signals and predator calls to send a danger alert to birds

in the area. Despite its small size, this method presents low mobility because it is necessary

to move it not to become predictable. An alternative to these active and mechanical methods

are cultural methods such as protecting crops with netting, but this only works on a small

scale and may divert birds to crops with no netting present or planting and harvest date

manipulation but is not always possible and required knowledge of bird movement [11].

The central region of the Portugal countryside has good climatic and edaphic conditions for

fruit species production, mainly Prunus fruit, specifically cherry and peach trees, with Beira

Interior being the leading grower of this type of fruit in the Country [12]. In this area, flocks

of birds, such as shown in Figure 2, find in these orchards' food and shelter, destroying fruits

and trees, creating a financial and management problem since these are intelligent animals

that can detect patterns, are highly mobile and persist after a food source is discovered [13].

 3

Affecting producers worldwide, in the U.S.A., farmers lose tens of millions of dollars each

year through direct losses and often ineffective efforts to deter birds [14].

Figure 2 – Flock of birds in Soalheira, Fundão, Portugal.

Due to this current problem for national and international farmers', modern technologies

emerge to minimize it. Drones merged with repelling systems become tools to solve bird

damage to orchards problem. Wang et al. [15] studied the impact of these technologies using

bird taxidermy and loud distress calls in ravens, starlings, and cockatoos. The results

strongly indicated that the UAV is an effective bird deterrent for the target species and

showed that several of these systems may be needed in larger fields and may need to be

operated frequently if the birds return after short periods. Once it is confirmed that this

technology is a solution to the problem, it is necessary to highlight its flaws to increase its

efficiency. Thus, creating an unpredictable autonomous algorithm that controls the drone

according to the movement of the birds should be the main focus of future works.

1.2. Objectives and Contribution of the Dissertation

As stated above, farmers use different methods to deal with the challenge of bird damage to

fruit crops. The most used in Beira Interior region in cherry and peach production is timed

bird cannons, loudspeakers with sounds of predators, netting, and planting and harvesting

manipulation. These techniques present the same problems: low mobility, predictability,

and high maintenance, becoming inefficient in the long run. UAVs or drones can fly without

pilots' onboard presence [16] and can be autonomous via an onboard electronic flight

controller and a path map or remote-controlled from the ground. This technology is already

widely used in agriculture in different applications due to its high mobility, task versatility,

low maintenance, and cost. All the advantages of this technology fill the disadvantages of

 4

traditional systems, so drones with repelling systems attached start to emerge as good

solutions against bird damage to fruit crops. Although these problems have been solved,

new ones arise, such as short flight time. These aircraft can be controlled through flight

optimization using trajectory planning and expanding batteries' capacity, representing one

of the heaviest parts of the UAVs. Increasing its capacity also increases volume and weight,

making the drone heavier and less efficient, and in most off-the-shelf products, it is not

possible to modify them. So, it is necessary to optimize the path to ensure the most energy-

efficient flight accordingly to the final objective.

This dissertation presents a novel path planning optimization algorithm for UAVs to help

bird damage in agriculture, using metaheuristic optimization techniques and flight

planning based on points of interest to focus the path to the most affected areas and random

waypoints to avoid patterns. Different scenarios are tested in simulation and field, studying

variables such as processing time, number of iterations, and energy consumption. This

study focuses on energy efficiency and flight time optimization, which can be an asset in

autonomous bird repelling UAVs, besides many other applications.

1.3. Overview and Organization of the Dissertation

Chapter 1 describes an overall overview of some essential concepts such as precision

agriculture. Then, the bird damage to fruit crops problem was contextualized and explained

how UAVs are used in agriculture and how they can help the study case. Finally, the

dissertation's objectives and contribution are addressed, stating the need for a novel path

planning optimization algorithm for UAVs, which is applied mainly to autonomous bird

repelling systems, but it may include many other applications.

Chapter 2 describes the State of the Art of some tools and techniques necessary to develop

the path planning optimization algorithm. Initially, were shown the most used and essential

autopilots and Ground Control Station (GCS). Then it was explained what optimization

algorithms are and some real-world applications, following by defining the concept of UAV

path planning and some examples of optimization techniques in this field. In the end, a

summary of the entire State of the Art is made.

Chapter 3 describes in detail all the UAV components built to test the novel path planning

optimization algorithm, including its configuration and calibration, and GCS used in this

study is also explored. After that, the mathematical methods and techniques used in the new

algorithm are explained in detail.

Chapter 4 describes the path planning optimization algorithm and explains each of the four

main steps: Parameter Setting, Minimization Between Points of Interest (PoIs),

Maximization of Random Waypoints, and Creation of Pre-Planned Mission File.

 5

Chapter 5 includes the analysis and discussion of the three case study, the first two in

simulation and the last in the field with the test UAV. All cases were tested in three possible

situations: same incidence rate, different rates, and different rates with no bird damage. The

study cases were used to understand the path planning optimization algorithm performance

and the effect of each parameter variation.

In Chapter 6 a global conclusion is made where all the work developed is presented. Then,

a specific conclusion is presented, where the conclusions regarding the performance of the

algorithm are presented. In the end, some indications of future work to be developed are

made.

 7

2. State of the Art

2.1. Autopilots and Ground Control Stations

Fully Autonomous Aerial Systems (FAAS) are an emerging workload wherein UAVs execute

dynamic missions defined wholly by software. End users do not support pilot FAAS, nor do

they define preset waypoints. Instead, they provide goals, constraints, and software that

execute missions. Like edge-driven video analytics, FAAS processes images in real-time and

leverages Artificial Intelligence (AI) for scene analysis. However, FAAS also controls aircraft

flight, making flight paths dynamic [17]. Semi-autonomous systems can sense their

environment and perform their tasks autonomously, but they may also be supervised by

humans [18].

As previously mentioned in Section 1.1, conventional UAVs contain a flight controller

system mechanically connected to the respective cockpit controls to define the aircraft

direction, speed, and altitude assisted by an INS and external sensors. The manual control

can be replaced or assisted by autopilot systems. These are crucial and provide semi-

autonomous navigation and assist the remote piloting of the aircraft when required. Semi-

automated piloting is possible using a remote control. The operator also can use a computer,

tablet, or mobile phone to provide Global Navigation Satellite System (GNSS) waypoints

that can be saved in the autopilot to navigate. Open hardware autopilots provide complete

information about the electronic components of which they are composed and the code

running on the system. On the other hand, the information provided by the closed hardware

autopilots depends on the manufacturer's strategy and typically is not open to users [19].

There are few examples of autopilot boards at the academics and research level, but these

controllers are not reliable, neither easy to buy nor make. However, some companies

produce readily available, reliable, cheaper, and simple-to-use boards. Table 1 to Table 2

shows some of the most commercially available of both open and closed hardware used [20],

[21], [30]–[39], [22], [40]–[44], [23]–[29]. Each board is different in weight, dimensions,

processor, internal sensors, and interfaces and has its advantages and disadvantages,

depending on the application. The same table shows that most controllers use the STM32

processor family with Advanced Reduced Instruction Set Computer Machine (ARM)

architecture and 32-bits. Due to the global characteristics of the processors, information,

and most run software’s such as PX4, an open-source flight control software for drones and

other unmanned vehicles [45], known for its ecosystem and hardware compatibility.

Another type of processor widely use is the Raspberry Pi (RPi) with a shield to accommodate

external sensors and additional input and output. These processors run some versions of

 8

Linux and usually are popular due to being easy to program. The Intel Aero is another

example of a Linux base autopilot developed by Intel and was discontinued in February of

2019 [46]. Both the Erle-Brain 2 and the Emlid Edge are also discontinued controllers, but

they are still widely used. There are several software options for Ground Control Stations

(GCS), and this controls the autonomous flights, the visualization of the flight map, make

video streaming in real-time, among others. Mission Planner [47] is widely used due to

having the full feature and lots of information. This open-source system is compatible with

Windows and macOS, and some of its features are: point-and-click waypoint, using Google

Maps/Bing/Open Street maps/Custom WMS; Select mission commands from drop-down

menus; Download mission log files and analyze them; Configure autopilot settings;

Interface with a PC flight simulator to create a full software-in-the-loop (SITL) UAV

simulator; Run its own SITL simulation of many frame types for all the ArduPilot vehicles.

Another popular GCS is the APM Planner 2.0 [48], because of its open-source system and

compatibility with macOS and Linux. It has a smaller user base and a reduced feature set

than the previous platforms, which can be advantageous for new users. QGroundControl

works with MAVLink [49], a very lightweight messaging protocol for communicating with

drones, capable of autopilots, including ArduPilot [50]. It is unique among the GCS

offerings as it runs on all platform’s desktop and mobile [51]. The last platform will be Litchi,

a closed software available on Windows, macOS, Android, and iOS, known for being the

most trusted autonomous flight app for DJI drones [52]. Other similar softwares are Drone

Harmony [53], Rainbow [54], Red Waypoint [55], among others.

It is essential to highlight that autopilot hardware and software have much information and

are available, reliable, easy to use, and have many open and closed sources depending on

the applications and price.

 9

Table 1 - AutoPilot Hardware - Open hardware.
AutoPilot Hardware Processor Internal Sensors Interfaces

Beagle Bone Blue

Weight: 36g
Dimensions:175mm x

112mm x 40mm

• AM335x 1GHz ARM® Cortex-
A8 processor;

• 512MB Random Access
Memory (RAM);

• Integrated power management;

• 2×32-bit 200-MHz
programmable real-time units;

• NEON floating-point
accelerator;

• ARM Cortex-M3;

• Programmed with Debian
Linux.

• Nine axis INS (accelerometer /
gyroscope / magnetometer);

• Barometer;

• Thermometer.

• Wireless: 802.11 bgn;

• Bluetooth 4.1;

• 8 x 6V servo output

• 4x bidirectional direct current (DC) motor
output;

• 4x quadrature encoder input;

• 11 x user programmable light-emitting diode
(LED);

• 2 x user programmable buttons;

• 4x universal asynchronous receiver-
transmitter (UART);

• 12x Pulse-Width Modulation (PWM)/Timers;

• Liquid crystal display (LCD);
• MMC1;

• 2x Serial Peripheral Interface (SPI);

• 2x Inter-Integrated Circuit (I2C);

• Analog to Digital Converter (ADC);

• 2x Controller Area Network (CAN Bus);

• Universal Serial Bus (USB) client for power &
communications, USB host.

CUAV Nora

Weight: 75g
Dimensions:

46mm x 64mm x 22mm

• 32-bit STM32H743 main
processor;

• 480Mhz;

• 1MB RAM;
• 2MB Flash.

• InvenSense ICM20689
(accelerometer / gyroscope);

• InvenSense ICM20649
(accelerometer / gyroscope);

• Bosch BMI088 (accelerometer
/ gyroscope);

• 2x MS5611 (barometer);

• RM3100 (Industrial grade
magnetometer).

• 14x PWM servo outputs;
• Analog/ PWM RSSI input;

• 2x Global Positioning System (GPS) ports;

• 4x I2C buses;

• 2x CAN Bus ports;

• 2x Power ports;

• 2x ADC input ports;

• 2x USB ports.

OpenPilot CC3D Revolution
(Revo)

Weight: 9g

Dimensions:
36 x 36mm

• STM32F405RGT6 ARM
Cortex-M4;

• 168 Mhz;

• 1 MB Flash.

• InvenSense MPU6000 IMS
(accelerometer / gyroscope);

• Honeywell HMC5883L
(compass);

• MS5611 (barometer).

• 8x PWM outputs;

• RC input;

• ADC;

• GPS;

• Telemetry;
• USB port;

• Serial Wire Debug port;

• HopeRF RFM22B 100mW 433MHz;

 10

Table 1 - AutoPilot Hardware - Open hardware (cont).

AutoPilot Hardware Processor Internal Sensors Interfaces

Hex/ProfiCNC Cube Black

Weight: 75g
Dimensions:

95mm x 45mm x 32mm

• 32-bit ARM Cortex M4 core;

• 168 Mh;

• 256 KB RAM;

• 2 MB Flash;

• 32-bit failsafe co-processor;
• PX4 FMUv3 generation.

• 3x IMS (accelerometers /
gyroscopes /compass);

• InvenSense MPU9250,
ICM20948 and/or ICM20648
(accelerometer / gyroscope);

• ST Micro L3GD20+LSM303D
or InvenSense ICM2076xx
(accelerometer / gyroscope);

• 2x MS5611 (barometers).

• 14x PWM servo outputs;

• SBus servo output;

• RC inputs Chaotic PPM (CPPM), Spektrum
SBus;

• Analogue / PWM RSSI input;

• 5x general purpose serial ports;

• 2x I2C ports;
• SPI port;

• 2x CAN Bus interface;

• 3x Analogue inputs (3.3V and 6.6V);

• High-powered piezo buzzer driver.

• High-power RGB LED;

• Safety switch / LED;

• Optional carrier board for Intel Edison.

F4BY FMU

Dimensions:
50mm x 50mm

• 32-bit ARM Cortex M4 core
with STM32 F407.

• MPU6000 (accelerometer /
gyroscope);

• MEAS 5611 (barometer);

• HMC 5983 (compass).

• 5x UART serial ports;
• 1x inverter for frsky telemertry;

• 12x PWM outputs;

• Spektrum input;

• Futaba SBUS input support;

• PPM;

• RSSI input;
• I2C;

• SPI;

• CAN;

• USB;

• 3.3V and 6.6V ADC inputs.

Drotek Pixhawk3 Pro

Weight: 45g
Dimensions:

71mm x 49mm x 23 mm

• 32-bit STM32F469 main
processor;

• 384KB RAM;

• 2MB Flash;
• PX4 FMUv4-PRO generation.

• ICM-20608-G (accelerometer
/ gyroscope);

• MPU-9250 (accelerometer /
gyroscope/ magnetometer);

• LIS3MDL (compass).

• 6-14x PWM servo outputs;

• RC inputs, Spektrum / DSM and SBus;

• Analog / PWM RSSI input;
• SBus servo output;

• 6x general purpose serial ports;

• 2x I2C ports;

• 2x SPI ports;

• 2x CAN Bus interfaces;

• 2x Analog inputs for voltage and current;
• High-power red, green and bue (RGB) LED;

• Safety switch / LED.

 11

Table 1 - AutoPilot Hardware - Open hardware (cont).

AutoPilot Hardware Processor Internal Sensors Interfaces

mRo Pixracer

Weight: 10.54g
Dimensions:

36mm x 36mm

• STM32F427VIT6 rev.3;
• Ferroelectric RAM (FRAM) -

FM25V02-G;

• PX4 FMUv4 generation.

• Invensense MPU9250
(accelerometer / gyroscope /
magnetometer);

• Invensense ICM-20608
(accelerometer / gyroscope);

• MS5611 (barometer);

• Honeywell HMC5983
(magnetometer).

• Wifi: ESP-01 802.11bgn Flashed with
MavESP8266;

• Micro Secure Digital (SD) card reader;

• Micro USB;

• RGB LED;

• GPS (serial + I2C);

• TELEM1/TELEM2;
• Wifi serial;

• FrSky Telemetry serial;

• Debug connector (serial + SWD);

• GPS+I2C;

• RC-In;

• PPM-In;

• RSSI;
• SBus-In;

• Spektrum-In;

• UART;

• FRSky-In;

• FRSky-Out;

• CAN;
• ESP8266;

• 6x servos output;

• Joint Test Action Group;

• Safety switch/LED.

• High-powered piezo buzzer driver;

Erle-Brain 2

Weight: 100g
Dimensions: 96mm x 70mm

x 25mm

• Quad-core ARM Cortex-A7
Central Processing Unit (CPU);

• 900MHz;

• VideoCore IV 3D graphics core;

• 1GB RAM.

• Gravity sensor;

• Gyroscope;

• Digital compass;

• Pressure sensor;
• Temperature sensor;

• 5MP Camera.

• 12x PWM Output;

• PPM input;

• I2C;
• UART;

• Ethernet;

• ADC

• 4x USB;

• MicroUSB Power;

• High-Definition Multimedia Interface
(HDMI);

• Audio Jack;

• SD Card slot.

 12

Table 1 - AutoPilot Hardware - Open hardware (cont).

AutoPilot Hardware Processor Internal Sensors Interfaces

Holybro Durandal

Weight: 64g
Dimensions:

80mm x 45mm x 20.5mm

• 32-bit STM32H743 main
processor;

• 400Mhz;
• 1MB RAM;

• 2MB Flash;

• 32-bit co-processor.

• InvenSense ICM20689
(accelerometer / gyroscope);

• Bosch BMI088 (accelerometer
/ gyroscope);

• MS5611 (barometer);

• IST8310 (magnetometer).

• USB-C and JST_GH USB ports;

• 16 PWM outputs;

• Dual power module inputs;

• SBus servo output;

• RC inputs for CPPM and SBus;

• DSM input port;

• Analogue / PWM RSSI input;

• 5x general purpose serial ports plus debug
port;

• 3x I2C ports;

• 4x SPI buses;

• 2x CAN Bus ports;

• 2x analog inputs;

• Safety switch/LED.

CUAV V5 Plus

Weight: 90g
Dimensions: 85.5mm x

42mm x 33mm

• 32-bit ARM Cortex M7 core;

• 216 Mhz;

• 512 KB RAM;

• 2 MB Flash;

• 32-bit IOMCU co-processor;

• PX4 FMUv5 generation.

• InvenSense ICM20689
(accelerometer / gyroscope);

• InvenSense ICM20602
(accelerometer / gyroscope);

• Bosch BMI055 (accelerometer
/ gyroscope);

• MS5611 (barometer);
• IST8310 (magnetometer).

• 8 – 14x PWM servos outputs;
• 3x PWM/Capture inputs on FMU;

• SBus servo output;

• Pulse-position modulation (PPM) connector;

• SBUS/ Received Signal Strength Indication
(RSSI) connector supports all radio control
(RC) protocols;

• Analog / PWM RSSI input;

• 5x general purpose serial ports;

• 4x I2C ports;

• 4x SPI bus;

• 2x CAN Bus ports;
• 2x Analog battery monitor ports.

 13

Table 2 - AutoPilot Hardware - Closed hardware.

AutoPilot Hardware Processor Internal Sensors Interfaces

Emlid Edge

Weight 59g
Dimensions:

97mm x 46mm x 15mm

• ARM Cortex-A53 64-bit quad-
core CPU;

• ARM Cortex-M3 co-processor;

• 1GB RAM.

• 2x InvenSense ICM20602
(IMS);

• MS5611 (barometer);

• 2x IsenTek IST8310
(compasses);

• uBlox NEO-M8N.

• 1x PPM;

• 1xSBUS input;

• 12x PWM servo outputs;

• 2x CAN;

• 2x USB;

• 1x Serial+I2C;

• 1x Serial+ADC;

• 5.180 ~ 5.825 Ghz datalink at up to 27 dBm;

• Power monitor up to 12S, 200A;

FlyWoo F745 AIO BL_32

Weight:8.5 g
Dimensions:

33.5mm x 333.5mm

• STM32F745VG ARM;

• 216 MHz;
• 1MB Flash.

• InvenSense MPU6000 IMS
(accelerometer / gyroscope);

• BMP280 (barometer);

• Voltage and current sensor.

• 7x UART;

• 10x PWM outputs;

• I2C;
• USB port;

• Camera input/output;

• Built-in on-screen display (OSD);
NAVIO2

Weight: 23g (shield) + 54g

(RPi2)
Dimensions:

55x65mm (shield only)

• 1.2GHz 64-bit quad-core
ARMv8 CPU (RPi3);

• 1GB RAM.

• MPU9250 9DOF (IMS);

• LSM9DS1 9DOF (IMS);

• MS5611 (Barometer);

• U-blox M8N;

• Glonass/GPS/Beidou;

• UART;

• I2C;

• ADC;

• PPM/SBus input;

• 14x PWM servo outputs.

Intel Aero

Weight: 30g (without
heatsink, 60g (with

heatsink)
Dimensions:

88mm x 63mm x 20mm

• Intel® Atom™ x7-Z8700
Processor - 2.4 GHz burst, quad
core, 2M cache, 64 bit - 4GB
RAM LPDDR3-1600 - 32GB
eMMC;

• Linux 4.4.3-yocto-standard
Operating System (OS)
powered with Yocto Project* 2.1
(Krogoth).

• Bosch BMI160 6-axis (IMS);

• Bosch BMC150 6-axis
(compass);

• MS5611 (barometer).

• 2x I2C;
• UART;

• SPI;

• CAN;

• 5x analog inputs;

• 25x programmable general-purpose
input/output (GPIO) pins;

• Wi-Fi (802.11ac);

• Micro HDMI 1.4b;

• USB 3.0;
• Camera Serial Interface - 2;

• MicroSD memory card slot;

 14

Table 2 - AutoPilot Hardware - Closed hardware (cont.).

AutoPilot Hardware Processor Internal Sensors Interfaces

Mateksys F405-SE

Weight: 10g
Dimensions:

46mm x 36mm

• STM32F405RGT6 ARM;

• 168MHz.

• InvenSense MPU6000 IMS
(accelerometer / gyroscope);

• DPS310 (barometer);

• Voltage and current sensor.

• 6x UARTS;

• 10x PWM outputs;

• RC input PWM/PPM, SBUS;

• 2x I2C port.

• USB port;

• Built-in OSD;

• 3x ADC;

• Micro SD slot.

Parrot Bebop

Weight: 400g (with hull)
Dimensions:

 33x38x3.6cm (with hull)

• Parrot P7 dual-core CPU Cortex
9

• Quad-core Graphic Processor
Unit (GPU);

• 8GB flash;

• Linux (Busybox).

• MPU6050 (accelerometer /
gyroscope);

• AKM 8963 (compass);

• MS5607 (barometer);

• Furuno GN-87F GPS;

• Sonar;

• Optical flow;
• High Definition (HD) camera;

• UART serial ports;

• USB;

• Built-in Wifi.

RadioLink MiniPix

Weight: 12g
Dimensions:

39 mm x 39 mm x 12 mm

• STM32F405VGT6 ARM.

• InvenSense MPU6500
(accelerometer / gyroscope);

• QMC5883L (compass);

• LPS22HB (barometer).

• RC input (PWM/PPM, SBUS);

• 3x UART;

• I2C;

• 2 x ADC for voltage and current sensor;

• ADC;

• MicroSD card slot;
• Micro USB connector;

• Buzzer;

• Safety switch connector;

• Power module.

QioTek Zealot F427

Weight: 65g
Dimensions:

42mm x 65mm x 25mm

• STM32F427VIT6;

• 16KB FRAM - FM25V01.

• ICM20689, ICM20602, and
BMI088 (accelerometer /
gyroscope);

• MS5611 and DPS3018
(barometers);

• IST8310 or QMC5883L
(Compass).

• 14x PWM Outputs;

• 4x relay outputs;

• MicroSD card reader;

• Micro USB or remote USB via a JST_GH
connect;

• Built-in RGB LED;
• External buzzer interface

• 2x 6.6V tolerant ADC inputs;

• 5x UART;

• Safety switch connector.

 15

2.2. Optimization Algorithms

Optimization techniques, or algorithms, are used to find the solution to the problem

specified in Equation (1). The procedure consists of finding the combination of design

variable values that results in the best objective function value while satisfying all the

equality, inequality, and side constraints.

Minimize: 𝑓(𝑥)

Subject to: 𝑔𝑗(𝑥) ≤ 0 𝑗 = 1, 𝑚

 ℎ𝑘(𝑥) = 0 𝑘 = 1, 𝑝

 𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈 𝑖 = 1, 𝑛

(1)

Equation (1) expresses the standard form for a single-objective, non-linear, constrained

optimization problem, where 𝑓(𝑥) is the object or goal function, 𝑔𝑗(𝑥) is an inequality

constraint, ℎ𝑥(𝑥) an equality constraint function and 𝑥 represents the n design variables

that are modified to obtain the optimum solution. The upper 𝑥𝑖𝑈 and lower 𝑥𝑖𝐿 bounds

define the searchable design space, referred to as the side constraints [56]. Real-world

optimization problems are often very challenging. As a result, many problems must be

solved by trial and error using various optimization techniques. In addition, new algorithms

are developed to eventually cope with these challenging optimization problems. Nature has

motivated many researchers in different ways and thus is a rich source of inspiration.

Nature-Inspired algorithms, such as particle swarm optimization (PSO), cuckoo search, and

firefly algorithm, have gained popularity due to their high efficiency [57] and are all based

on the principle of biology, physics, ethology, or swarm intelligence. Currently, Nature-

Inspired optimization methods are applied in most areas, and their development and review

are continuous.

Hajihassani et al. [58] performed a comprehensive review of PSO application in

Geotechnical Engineering, presenting real examples as slope stability analysis, pile and

foundation design, rock and soil mechanics, and tunneling and underground space

technology, among others. In their study, the authors conclude that complex and not well-

understood problems are the common obstacles in geotechnical engineering, where finding

the optimum solution is difficult and even impossible in some cases. Consequently, based

on the available literature, PSO has been extensively used in the field as a powerful

optimization technique to find the optimum solution. The simplicity of the operations and

reasonability of the results have paved the way to use PSO in various areas of geotechnical

engineering. The PSO is an optimization algorithm that employs a swarm of particles to

 16

traverse a multidimensional search space to seek out optima. Each particle is a potential

solution and is influenced by the experiences of its neighbors as well as itself [59].

The Grey Wolf Optimizer (GWO) [60] is a technique inspired by the hunting method of the

grey wolf (Canis Lupus). This animal is at the top of its food chain and usually lives in packs

ranging from 5 to 12 elements having a strict social hierarchy. The mathematical models are

based on the social hierarchy (α, β, δ, ω), tracking, encircling, and attacking prey. In GWO,

α, β, and δ lead ω wolves toward the areas of the search space that are promising for finding

the optimal solution. This behavior may lead to entrapment in a locally optimal solution.

Another side-effect is the reduction of the diversity of the population and causes GWO to

fall into the local optimum. Mohammad et al. [61] proposed an improved GWO for solving

engineering problems to overcome these issues. The improvements include a new search

strategy associated with selecting and updating steps. This improved technique was tested

in benchmark functions and experimental environments. In the end, the authors show the

applicability of the new algorithm for solving four engineering problems, including pressure

vessel design, the welded beam design, and the optimal power flow problems for the

Institute of Electrical and Electronics Engineers (IEEE) 30-bus and IEEE 118-bus systems.

Benkercha et al. [62] proposed a modified flower algorithm (FA) for extraction of the

photovoltaic (PV) module parameters with maximum power point (MPP) estimation. The

FA [63] is a metaheuristic algorithm that imitates the behavior of a plant's pollination. This

process has four main rules which can aid to describe the flower algorithm, being global

pollination (first rule), local pollination (second rule), flower constancy factor which can be

expressed by a reproduction probability while this latter is proportional to the similarity

among two working flowers (third rule), switching factor that allows passing from the local

pollination to the global pollination or vice versa (fourth rule). The modified algorithm has

the fundamental rules of the FA expect the fourth rule is modified in such a way that the

switching probability is changed at each iteration. The main idea in this algorithm is to

change the value of the switching probability to increase the accuracy of the solution so that

the solution found will be close to the global solution. In addition, the probability becomes

variable in this new algorithm at each iteration. The authors also simulated and

experimented with the new technique for both single diode and double diode models,

comparing it with three other optimization algorithms and concluded that the new

technique has better optimization performance (accuracy, fast convergence, minimum

iterations, and lower error than the other algorithms, therefore the identified parameters

by the modified FA are more accurate than the one obtained from other algorithms. In

predicting current, voltage, and power at the MPP, the parameters for the single diode

model show the effectiveness of prediction in both features' days, and a high matching

between the measured MPP values and the predicted one is achieved.

 17

Typically, in practical design optimization of truss structures, the aim is to find a minimum

cost or weight design by selecting cross-sectional areas of structural members from a table

of available sections. The final design satisfies strength and serviceability requirements

determined by technical. Hasançebi et al. [64] proposed a bat-inspired algorithm for

structural optimization. Bat-inspired (BI) algorithm derived from the echolocation behavior

of bats. Echolocation is an advanced hearing-based navigation system used by bats and

some other animals to detect objects in their surroundings by emitting a sound to the

environment. After testing the presented technique in four truss structure examples, the

results demonstrate the algorithm's efficiency, which found the best-known design for the

first two test problems and converged to improved designs in the last two test problems.

The results also show that the BI algorithm also has a good convergence speed compared to

most other metaheuristic techniques.

There are many optimization algorithms, and the ones presented above are just a few

examples. Due to the need and this being a very researched area, new techniques Nature-

inspired will continue to emerge to perform mathematical benchmarks and real-life

applications.

2.3. UAV Path Planning Algorithms

Path planning is one of the most critical problems explored in UAVs to find an optimal path

between source and destination. The path determination should be free from all collisions

from the surrounding obstacles. To have low computational cost and time for optimal path

planning is the primary objective of these techniques. The path generated should be optimal

to consume minimum energy, take less time, and reduce collision between the UAVs. On

the other hand, it needs to satisfy the robustness and completeness criterion during path

planning techniques. The significant challenges for optimal path planning of UAVs are path

length, optimality, completeness, cost, time and energy efficiency, robustness, and collision

avoidance [65].

In 2018, Zhao et al. [66] surveyed computational-intelligence-based UAV path planning.

Computational intelligence (CI) is a set of nature-inspired computational methodologies

and approaches that can address complex real-world problems for which mathematical or

traditional modeling is not practical. In their study, 231 articles were collected and classified

in three orthogonal dimensions, being classification from the aspect of algorithms,

classification from the aspect of the time domain, and classification from the aspect of the

space domain. Based on the aspect of algorithms, the authors presented Figure 3. This pie

chart shows the percentages of various CI algorithms used for UAV path planning from

2008 to 2017 through the authors’ research. The genetic algorithm (GA) was the most

common, accounting for 21%. Ant colony optimization (ACO) and artificial neural networks

 18

(ANN), as two of the most famous intelligence algorithms, occupying the second and third

positions with 16% and 15%, respectively, followed by learning-based methods (LB), PSO,

and fuzzy logic algorithms (FL).

Figure 3 – Classification of CI methods in UAV path planning by algorithm [66].

From time-domain classification, the algorithms are divided into two categories online or

offline. An online method is a method that can plan the UAV paths in real-time. In other

words, the UAV can identify changes in the environment and react to them. In contrast, an

offline method performs path planning based on offline information instead of real-time

information. In all articles studied, only 29.9% of methods are online, and most methods

focus on offline algorithms and their improvements, accounting for approximately 70.1% of

methods. According to their research, for offline path planning, most studies focus on

minimizing the length of a path with obstacle or threat constraints in the environment. The

optimization problem is multi-modal because there can be multiple sets of paths with

varying costs for every set of obstacles or threats. Thus, CI methods such as GA or PSO

would be highly suitable for optimizing the generated paths. Researchers have shown that

CI methods have obtained high-quality solutions because they are computationally efficient

on a wide variety of multi-modal unconstrained problems. Online path planning is a

dynamic multi-objective optimization problem. The most popular online path planning

algorithms are based on GA and FL. In the last classification, the algorithms are divided into

2D and 3D environments. Traditional path planning methods has usually been described

by a 2D scene. 55.8% of articles studied explore 2D path planning methods, while 44.2% of

articles explore 3D methods. In a 2D scene, it is supposed that the UAV flies by maintaining

its height or manual adjustment. From the optimization point of view, there are no standard

solutions in a 2D path planning problem. Fortunately, CI algorithms reduce the

 19

requirements of computing the gradients of cost functions and constraint functions,

enabling the problem to be solved and optimized. Path planning algorithms for 3D

environments are urgently needed due to an increasing range of fields, such as

transportation, detection, navigation, and operations. One classical problem is modeling

the environment while considering the kinematic constraints to plan a collision-free path.

Thus, a comprehensive analysis of the most optimization methods for UAV path planning

and the different aspect of its applications was presented, given a complete guideline that

can help related researchers.

Tseng et al. [67] developed flight planning with recharging optimization for battery-

operated autonomous UAVs. This is an example of path planning applied to a specific area.

They start to conduct an empirical study to model the energy consumption of drones,

considering various flight scenarios. Then, a joint problem of flight mission planning and

recharging optimization for drones was studied, using the calibrated power consumption

model of a drone, to complete a tour mission for a set of sites of interest in the shortest time,

considering uncertainty in dynamic environments, such as wind conditions. They also

presented and implemented algorithms for solving flight mission planning and recharging

optimization in a drone management system, supporting real-time flight path tracking and

re-computation in dynamic environments. At the end, the authors evaluated the results for

the algorithms using data from empirical studies and proposed a robotic charging station

prototype that can recharge drones autonomously. In conclusion, the authors highlight the

importance of automated drone management systems for practical applications of drones,

and future work should incorporate a variety of additional features, such as restrictions of

no-fly zones and attitude, and wind speed forecast.

Li et al. [68] present another example applied to precision agriculture, using a hybrid PSO

algorithm to optimize flight paths in a UAV group. Farmers need to spray daily different

orchard blocks. Using a single drone becomes an impossible task due to endurance and

battery change. The authors developed a hybrid optimization algorithm that combined PSO

with the variable neighborhood descent technique as the local search to overcome this

problem. The focus of this article is to obtain the optimal paths for the group of UAVs so

that the flight time of a mission is minimized. After presenting the structure and

architecture of the proposed algorithm, the authors show the simulation results made in

two agriculture regions of Shaanxi, for both approach A (minimizing the total flight

distance) and approach B (optimize the flight paths of the whole UAVs group with minimum

make-span) with two and three groups of drones. In all path planning simulations, the total

path length was longer in approach B than in approach A, yet the time was always shorter

in approach B. Therefore, the authors conclude that the proposed hybrid algorithm can

 20

effectively shorten the UAV group’s flight time, enabling multiple agricultural UAVs to be

better applied in precision agriculture.

2.4. Final Remarks

FAAS is an emerging area based on complex control systems, sensors, and computer vision

that can complete an objective without human interventions. This technology is still not

commercially available nor fully implemented due to regulation and safety reasons. On the

other hand, autopilot controllers and waypoints software are well established as semi-

autonomous systems. Nowadays, there are commercially available hardware and software

that is easy to use for both open and closed systems, with a lot of information, and reliable.

Optimization is a commonly encountered mathematical problem in all engineering

disciplines and means finding the best possible solution. Optimization algorithms can be

either deterministic or stochastic. Former methods to solve optimization problems require

enormous computational efforts, which tend to fail as the problem size increases. This is the

motivation for employing bio-inspired stochastic optimization algorithms as

computationally efficient alternatives to the deterministic approach. Meta-heuristics are

based on the iterative improvement of either a population of solutions or a single solution

and mainly employ randomization and local search to solve a given optimization problem

[69]. Optimization problems are wide-ranging and numerous. Hence, methods for solving

these problems ought to be an active research topic. The emergence and evolution of new

and old optimization techniques improve benchmarks, dynamic optimization problems,

and real-world applications [70].

The main objective in UAV path planning is to find the solution route between source and

destination based on a goal (cost, time, distance, among others). Using an optimization

algorithm, it is possible to calculate the best flight path for UAVs applying a suitable cost

function to the problem, with less time and computer power than traditional systems.

 21

3. Materials and Methods

3.1. Materials

3.1.1. UAV

Multirotor drones being low cost, with good maneuverability and VTOL capability, are

suitable for precision agriculture remote sensing tasks [71]. The UAV frame used in this

study was a multirotor with four motors (quadcopter), equipped with self-tightening

propellers that make it very simple to assemble and disassemble in the field and for

transportation. This configuration is also one of the most used in agriculture nowadays and

can lift its weight and equipment to repel birds without compromising flight time. However,

because of the short flight endurance from lithium polymer (Li-Po) batteries, UAVs have a

smaller field area coverage per flight than airplanes [71]. This work used four Li-Po batteries

in series with the capacity of 5000 mAh. Due to this study being of path planning is not

essential to have the best UAV/battery weight ratio, but this requirement is advised in a

real-life application. Figure 4 shows the multirotor used in this study during a test flight.

Figure 4 – Multirotor used in this study.

The optimization algorithm presented in this study generalizes to any UAV configuration

and flight time capabilities. Thus, the essential component to consider is the flight controller

that needs to have an autopilot compatible with the chosen GCS, suitable internal sensors,

and the necessary input/output accordingly to the UAV configuration. In this case, was

chosen Hex Cube Black [72], previously known as Pixhawk 2.1, which was already

 22

characterized in the last chapter. This autopilot is flexible, intended primarily for

manufacturers of commercial systems. It is based on the Pixhawk-project FMUv3 open

hardware design and runs PX4 on the NuttX OS [73]. The Hex Cube Black is reliable and

has a premium built quality with much information. As a GPS receiver, the HERE+ [74] was

chosen due to quality construction, compatibility, and information. Another essential

component is the power brick that comes with the flight controller that provides power to

all the UAV components and measures current consumption and battery voltage. Thus, it

makes it possible to test the path planning optimization algorithm in real-world scenarios.

It is also important to mention that during the construction of this system, it was necessary

to use computer-aided design (CAD) techniques and 3D printing via fused deposition

modeling (FDM) to accommodate all the electronics into the frame. The components

manufactured through FDM were made in Acrylonitrile Butadiene Styrene (ABS) because

it is resistant to temperature changes and impact. ABS is the most utilized material after

Polylactic Acid (PLA), and in addition to the features highlighted above, it also has good

mechanical properties, low price, and long-life services [75]. One example is shown in

Figure 5 with both the CAD design (left) and the 3D printed component (right) developed

to secure the GPS antenna into the quadcopter frame.

To activate the flight plan, the RadioKing TX18S was used, a 2.4 GHz, 16 channel (CH)

multi-protocol radio frequency (RF) system transistor with the open-source firmware

OpenTX [76] for radio transmitters. A multi-protocol radio was chosen because it can

communicate with the FrSky X8R, which is the receiver that the UAV of this study was built

with but is also compatible with several telemetry receivers for future work. However, those

components are not the most important for this research work, so it is only necessary to

ensure the compatibility transmitter/receiver and an OpenTX model with all the

configurations for a safe flight. It is essential to mention that sometimes accidents related

Figure 5 – CAD design (left) and 3D printed component (right) developed to secure the GPS antenna into
the quadcopter frame.

 23

to the arm and disarm of the drone happen unintentionally. For that reason, a sequence of

switches was programmed in the radio transmitter instead of the pre-defined throttle stick,

possible through the logical functions in OpenTX and changing the pre-defined parameters

in the GCS.

3.1.2. Ground Control Station

GCS has several different functions that vary from software to software, as mentioned in

Section 2.1. In this study, Mission Planner was used to updating firmware, initial

configuration, advance parameter configuration, and flight planning. Although this

software is easy to use in most of its features, it presents some complexity in others due to

being very complete. Particularly in the visualization and analysis of flight logs,

APMPlanner2 was used, which has a more straightforward and equally complete graphical

interface environment.

During the UAV setup start, the autopilot board was connected to the computer via a USB

port to load the firmware that matched the chosen frame. Mission Planner has all the

versions classified as: stable (passed all stages and it is good to use), beta (prior stable that

may have some bugs), and latest (passed development team and all automated tests and are

ready to be tested by users). To ensure a safe flight and easy configuration, a stable version

was selected. In this case, it was chosen ArduCopter V4.0.7 Quad, being the newest stable

version. Then the setup itself starts, and it was in this step, the UAV is configured and

calibrated, ensuring a precise and safe flight. The setup menu of Mission Planner as three

main sections of settings: mandatory hardware, optional hardware and advanced. The

mandatory hardware allows the user to calibrate sensors like the accelerometer and

compass, with a set of drone moves and the radio, moving the sticks and switches of each

channel to their minimum and maximum. Apart from the sensor calibration, it also lets the

user define flight and failsafe modes. Three flight modes were selected: loiter, holds altitude

and position; auto, executes pre-defined mission; and return to launch (RTL), returns above

takeoff location and lands. Failsafe modes ensure a safe flight if anything happens and are

triggered when the values are lower than those defined and activate a flight configuration

like landing or RTL. For this case, a low battery, controlled by the voltage measurement in

the power brick and radio failsafe, previously called throttle failsafe, was chosen because it

uses the throttle channel to signal the loss of contact. Other parameters can be adjusted in

mandatory hardware, but they weren’t used like servo output calibration, automatic

dependent surveillance-broadcast, and ECS calibration. Important to mention that

although the last parameter is crucial for an efficient flight, the systems used are blocked

and do not allow calibration, thus having been manually adjusted the PWM channel in the

 24

radio transmitter. Except for the battery monitor calibration found in the second setup

section, changes were not made in the two other sections. To calibrate the power brick in

the battery monitor set, two known measures provided by a power supply were applied. The

tools and connections used in this system calibration are represented in Figure 6. First, the

propellers were removed, and the system was connected to the computer. Next, the UAV

was powered by the power supply with a constant voltage of 16.80 V, measured with an

accuracy of equal or less to 0.1% plus two digits. In the end, the drone was armed and

activated with full throttle, and the current consumption was measured in the power supply

also with an accuracy of equal or less to 0.1% plus three digits. Both measures were inserted

in the GC software, and the values were loaded to serve as references.

Figure 6 – Tools and connections used to calibrate the power brick.

An essential function from Mission Planner for this work is mission planning. Together with

the autopilot, the software allows the UAV to flight through a waypoint map file without

human intervention. After setting the home location where the vehicle is armed, the user

can point and click a list of waypoints and create a mission. The generated mission can be

written into the autopilot, but it can also be read from it. Each mission can be saved as

mission plain-text file format that a text editor can read, and the files can also be loaded into

the GCS software. Important to mention that not all software’s share the same file

configuration. So, it is not always possible to make a waypoint file in one software and read

it in another. In the planning section of Mission Planner, it is possible to visualize a map

 25

with the waypoints created and their configurations and the default parameters that can be

changed. Whenever a point is created, the software shows a bar with its parameters that

can be modified manually. The most important for this case are command (landing, delay,

RTL), delay, latitude and longitude coordinates, and altitude. Figure 7 shows an example of

a pre-planned mission on Mission Planner, and it is possible to visualize the previously

described functions.

Figure 7 – Example of a mission plan in Mission Planner.

Through the menus available in the software's graphical interface environment, it is easy to

ensure that all the general parameters are set, but sometimes it is necessary to change

specific values, and for that, Mission Planner provides a complete list. Outside this method,

command-line interface configuration or Python programming language scripts with pre-

developed libraries are available.

3.2. Methods

3.2.1 Particle Swarm Optimization

Initially proposed in 1995 by Kennedy et al. [77] , PSO is a method for optimizing continuous

nonlinear functions. This evolutionary computation technique was developed to simulate a

simplified social system and has been used for approaches across a wide range of

applications or specific requirements.

The optimization algorithm is initialized with a population (swarm) defined as 𝑛 of random

solutions called particles, that have the dimension of the problem defined as 𝑑𝑖𝑚. Each

position 𝑥𝑖𝑗 of the 𝑗th dimension of the 𝑖th particle keeps track of its best solution in the

problem space (fitness) and the corresponding coordinates, this value is called 𝑝𝑏𝑒𝑠𝑡. The

 26

overall fitness of the swarm is also tracked, and it is called 𝑔𝑏𝑒𝑠𝑡. Every iteration defined as

𝑖𝑡 changes the velocity 𝑣𝑖𝑗 of each particle toward its 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 locations. Velocity is

weighted by two different random numbers in the interval [0, 1] defined as 𝑟1and 𝑟2 and two

constants named 𝑐1 and 𝑐2. The random numbers control the acceleration, and the

constants control the stochastic acceleration terms towards 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 [78]. In the

original form proposed by Kennedy et al. [77], both 𝑐1 and 𝑐2 are set to two, making the

search to cover the region centered in 𝑝𝑏𝑒𝑠𝑡and 𝑔𝑏𝑒𝑠𝑡. These values can be changed to achieve

better performance, and over the year, new common values appear [79]. Equations 2 and 3

show how the velocity and position of each particle is updated.

𝑣𝑖𝑗
𝑖𝑡+1= 𝑣𝑖𝑗

𝑖𝑡 + 𝑐1 ∙ 𝑟1 ∙ (𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗
𝑖𝑡) + 𝑐2 ∙ 𝑟2 ∙ (𝑔𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗

𝑖𝑡) (2)

𝑥𝑖𝑗
𝑖𝑡+1 = 𝑥𝑖𝑗

𝑖𝑡 + 𝑣𝑖𝑗
𝑖𝑡+1 (3)

Since the initial version of PSO was not very effective in the optimization problem, a

modified PSO algorithm [80] appeared soon after the initial algorithm was proposed.

Inertia weight was introduced to the velocity update formula, and the new velocity update

formula became Equation 4. Although this modified algorithm has almost the same

complexity as the initial version, it has dramatically improved the algorithm performance.

Therefore, it has achieved extensive applications. Generally, the modified algorithm is

called the canonical PSO algorithm, and the initial version is called the original PSO

algorithm [81].

𝑣𝑖𝑗
𝑖𝑡+1 = 𝑤 ∙ 𝑣𝑖𝑗

𝑖𝑡 + 𝑐1 ∙ 𝑟1 ∙ (𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗
𝑖𝑡) + 𝑐2 ∙ 𝑟2 ∙ (𝑔𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗

𝑖𝑡) (4)

After the new particle position is calculated, it is tested to ensure constriction. If it is not

within limits, it will have to be modified through a condition. Figure 8 shows the pseudocode

of the PSO algorithm with the same conditions as the new algorithm proposed in this

dissertation. The pseudocode uses the maximum number of iterations 𝑖𝑡𝑚𝑎𝑥 as the final

condition and constricts the generation of a new random particle.

 27

Initialize the swarm with 𝑛 and 𝑑𝑖𝑚

Initialize 𝑐1, 𝑐2, 𝑤, 𝑖𝑡𝑚𝑎𝑥

while it less or equal 𝑖𝑡𝑚𝑎𝑥:

 for each particle

 Calculate the fitness of each particle

 Update the 𝑝𝑏𝑒𝑠𝑡and 𝑔𝑏𝑒𝑠𝑡

 end for

 for each particle

 r1 = rand

 r2 = rand

 Equations 4

 Equations 3

 if particle < lower bound or particle > upper bound

 Random new particle

 end if

 end for

 it = it +1

end while

Figure 8 – Pseudo code of PSO algorithm.

PSO advantages can be summarized as follows: It does not require the differential of the

optimized function, derivative and continuous; its convergence rate is fast, and the

algorithm is simple and easy to execute through programming. The same also has some

disadvantages as it probably falls into the local extreme and cannot get a correct result; does

not sufficiently use the information obtained in the calculation procedure. During each

iteration, instead, it only uses the information of the swarm optima and individual optima;

though PSO algorithm provides the possibility of global search, it cannot guarantee

convergence to the global optima; and is a meta-heuristic bionic optimization algorithm,

furthermore, there is no rigorous theory foundation so far. It is designed only by simplifying

and simulating some swarms' search phenomenon, but neither explains why this algorithm

is effective from the principle nor specifies its applicable range. Therefore, the PSO

algorithm is generally suitable for a class of optimization problems that are high

dimensional and do not require very accurate solutions [81].

3.2.2 Haversine Formula

Several methods have been tested to measure the distance between two geographic

coordinates, including the Google Maps Platform APIs [82], Haversine Formula [83],

Spherical Law of Cosines [84], and Equi-rectangular Approximation [85]. The first

approach uses Google resources but proved to be very time-consuming, dependent on an

internet connection, and just works on road routes. The other three formulas all had the

same results and, although they are less accurate than the first method, the error is

proportional to the distance, which is not relevant for the study case. Thus, Haversine

Formula was chosen due to simplicity, precision, and previous work already developed [83],

[86].

The Haversine Formula is an essential equation in navigation, giving great-circle distances

between two points on a sphere from their longitudes and latitudes [87]. It is necessary to

 28

know the geographic coordinates of each point to apply this method. The latitude and

longitude of each point is represented as 𝑙𝑎𝑡1, 𝑙𝑎𝑡2, and 𝑙𝑜𝑛1, 𝑙𝑜𝑛2, respectively, and the

earth's radius is defined as 𝑟 in Equations 5 and 6, representing the Haversine Formula. The

distance between the two points is defined as 𝑑 in Equation 6.

𝑐 = √sin
2 (

lat1-lat2

2
) + cos(lat1) ∙ cos(lat2) ∙ (

lon1-lon2

2
)

(5)

𝑑 = 2 ∙ 𝑟 ∙ arcsin (𝑐) (6)

3.2.3 Generate Random Geographic Coordinates within a Circle

To generate a random point (𝑥, 𝑦) over a disk with radius R, Equations 7 and 8 are used:

𝑥 = 𝑟 ∙ cos θ (7)

𝑦 = 𝑟 ∙ 𝑠𝑖𝑛 θ (8)

𝑟 ∈ [0, 𝑅], and is a random value calculated through Equation 9:

𝑟 = 𝑅 ∙ √𝑟𝑎𝑛𝑑𝑜𝑚() (9)

And θ another random value, where θ ∈ [0, 2𝜋] and it is calculated by Equation 10:

θ = 2 ∙ 𝜋 ∙ 𝑟𝑎𝑛𝑑𝑜𝑚() (10)

Figure 9 shows the unit disk and two thousand random points generated with Equations 7

and 8. This graph demonstrates that all points are evenly distributed, with no disk area

being underloaded.

 29

Figure 9 – Two thousand random points in the unit disk.

Lastly, it is necessary to convert the coordinates of the points to geographical coordinates

(latitude and longitude). One-degree latitude corresponds to approximately 111.2 km, and

one-degree longitude corresponds to approximately 111.2 km at the equator but 0 km at the

poles. To generate random geographic coordinates within a circle, Equation 11 to 13 where

used.

𝑂𝑛𝑒𝐷𝑒𝑔𝑟𝑒𝑒 =
𝐸𝑎𝑟𝑡ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 ∙ 2𝜋

360
 (11)

𝑅𝑎𝑛𝑑𝑜𝑚𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =
𝑙𝑎𝑡𝐶𝑒𝑛𝑡𝑒𝑟 + 𝑥

𝑂𝑛𝑒𝐷𝑒𝑔𝑟𝑒𝑒
 (12)

𝑅𝑎𝑛𝑑𝑜𝑚𝐿ongitude =
𝑙𝑜𝑛𝐶𝑒𝑛𝑡𝑒𝑟 + 𝑦

𝑂𝑛𝑒𝐷𝑒𝑔𝑟𝑒𝑒 ∗ cos (
𝑙𝑎𝑡𝐶𝑒𝑛𝑡𝑒𝑟 ∙ 𝜋

180)
 (13)

𝐸𝑎𝑟𝑡ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 is given in meters, and 𝑙𝑎𝑡𝐶𝑒𝑛𝑡𝑒𝑟 and lonCenter are the latitude and longitude

of the center of the circle, respectively.

3.3 Final Remarks

A UAV capable of flying semi-autonomously was built to test the novel optimization

algorithm. The configuration of this system is not important for the problem studied, as it

is only necessary to ensure that it can fly with the dispersion system without significantly

damaging the flight time. Thus, a quadcopter was chosen, equipped with Hex Cube Black

autopilot, and a Here+ as a GPS module. A GCS software was used to upload firmware,

initial configuration, modifying advanced parameters, pre-planned flights, and review data

logs. Because Mission Planner is complete, intuitive, and full of information, it was used as

GCS for this study except to read and analyze data logs where APMPlanner2 was used due

to its simplicity. This chapter also presented the mathematical methods and techniques

used in the novel path planning optimization algorithm. PSO is a population-based meta-

heuristic search algorithm that has been widely applied to a variety of problems [88]. The

Haversine formula is used to calculate the geographical distance on earth between two

coordinates [89]. In the end, is shown a method to generate random geographical

coordinates within a circle with disk point picking.

 31

4. Novel Path Planning Algorithm

4.1. Global Architecture

Before developing the proposed optimization algorithm, it was necessary to study the

general problem and the tools needed to solve it. Birds damage trees and eat fruits to

producers around the world, causing quantity and quality to decrease. Traditional repelling

systems work in the short term, but because they possess low mobility and as birds can

easily detect patterns, they became ineffective. UAVs have already proven to be essential

tools to solve this problem, bridging traditional systems disadvantages. However, because

drones have limited flight time, optimizing the path according to the bird's pattern is

necessary.

After analyzing the problem, the algorithm was developed in Python programming

language, in version 3.8, due to its versatility and pre-existing libraries in all areas of the

algorithm, such as Graphical User Interface (GUI), math functions, and file manipulation.

The fields were divided into plots assigned by the producer or detection sensors positioned

along the field. These segments will be mentioned as points of interest (PoI) and have

different damage proportions and will be divided accordingly. In this way, and since the

problem needs consistent application of the repelling systems, the optimization algorithm

needs to minimize the flight distance between sections and maximize it according to the

percentage of damage in each plot. Yet, birds can detect patterns and learn how to avoid

them, so is also required different numbers of random waypoints according to the area. As

already mentioned, Mission Planner was chosen as pre-planning software, so it is essential

to generate a compatible file of waypoints with various parameters, being the most

important for this work the coordinated geographical system (latitude and longitude),

height above takeoff and command. Figure 10 represents the four main steps of the novel

path planning optimization algorithm, and they will be further explained in the following

sections.

Figure 10 – Path planning optimization algorithm main steps.

 32

4.2. Parameter Setting

This path planning optimization algorithm can be applied to any UAV, orchard, and farmer,

so it was essential to develop a GUI to import the specific parameters. The graphical

interface was built around PySimpleGUI, a friendly pythonic interface library that runs on

Windows, Linux, and macOS. The GUI was built to be visually simple and easy to use and

can be divided into two main windows. It is possible to insert the file name (mission plain-

text file format generated) along with the destination path on the first page. A button was

also developed to browse folders on the computer so the user can choose quickly.

Additionally, it is further possible to enter the number of PoIs, the speed of the autonomous

mission in cm/s, and the drone's flight time in minutes. The speed matches the parameter

WPNAV_SPEED on Mission Planner, where the unit is cm/s. If the user does not want to

modify it, a check button to activate the default velocity of 500 cm/s was built. These

parameters are used to calculate the total distance for path planning. The user can also add

the radius of the randomly generated waypoints around the PoIs (random waypoints

radius), the final error in the total distance for path planning in percentage, and the height

at which the drone will fly. All these parameters, except for the final error, are in meters.

When everything is complete, it is possible to continue to the next page or exit. Figure 11

represents the first window of the path planning optimization algorithm GUI developed.

Figure 11 – First window of the path planning optimization algorithm GUI.

The second window is used to insert geographical coordinates of take-off, landing, and PoIs,

with the percentage of bird damage incidence at each point. All coordinates need to be

 33

described in latitude and longitude, respectively, and a point instead of a coma must be

used. In some cases, the take-off and landing points are the same, so a check button has

been included not to enter twice the same values. To insert a new PoI, the user writes each

value and clicks the Ok button, and the values will appear below. If the user mistake entering

some value, the Clean button undo action and allows writing again. The incidence rate is

the bird damage rate at each PoI, which can be assigned the same value to all points through

the Check button, causing the same number of random waypoints to be generated, or a

value can be entered, distributing the points according to the damage. These values can be

entered into an input if the check button is disabled, and it will explain how the scale works.

At the bottom, this page contains three buttons where the user can go back to the previous

page, start the optimization algorithm, or exit. Figure 12 represents the second window of

the path planning optimization algorithm GUI developed.

Figure 12 – Second window of the path planning optimization algorithm GUI.

4.3. Minimization Between PoIs

Depending on the type of field and the position of the PoI, the UAV must fly according to

the needs. It is crucial that the algorithm receives the data and establishes the shortest path

to save the battery for the areas next to the PoI. The PSO to minimization is used to calculate

the fastest route or the minimum distance. Each particle contains a permute sequence of

PoIs, and the objective function is the sum of the distances, using Haversine Formula,

between the points, the take-off, and landing. In the end, this function will send the

minimum distance and the order sequence of PoIs that the drone needs to fly. If a farmer

inserts the value zero in the incidence rate, in other words, without any bird damage, the

algorithm will eliminate it from that flight. Figure 13 represents the importance of

minimizing the path between PoIs with two cases through an example. One with

 34

optimization represented as a) and the other a random order without optimization

represented as b). The path of the first case scenario has a total distance of 216.3 m, while

the path of the second case scenario has 268.3 m, which represents a reduction of 52 m.

Figure 13 – Example of the importance of minimizing the path between PoIs: a) With optimization function

b) Without optimization function.

4.4. Maximization of Random Waypoints

After planning the order of the PoIs, the proposed algorithm will calculate the distance

available to the random waypoints subtracting the minimum path between PoIs from the

total distance for path planning. To calculate the number of points, the maximum number

of points one meter apart is calculated with the remaining distance. Then, the ratio between

the total number and the incidence rate is made to find the individual number for each PoI.

If the farmer uses bird detection sensors, it can indicate the percentage of detections per

PoI. Otherwise, the incidence rate must be inserted manually, as mentioned above, through

 35

the parameters. These values can be entered into an input if the Check button is disabled

and is assigned from zero (there is no damage and the PoI does not need points) to five

(severe damage, the maximum number of points need to be generated). This scale ensures

differentiation in the number of random waypoints between PoIs. Still, if the farmer needs

more diversity, he can introduce any maximum value because the incidence rate is

calculated by dividing the value by the sum of the total values assigned, obtaining a unit

scale. Then, random waypoints around the PoI will be generated based on the method

explained in Subsection 3.2.3, where the radius of the circle is the random waypoints radius

parameter inserted by the user in the GUI. After each waypoint is generated PSO will be

applied again but in this case for maximization. Each particle corresponds to a sequence of

random waypoints and for the objective function the Haversine Formula is used again

where the distance from the first and last points are tested with the position of the PoI itself.

In the end, the sum of all distances is performed and compared with the total distance for

path planning. If this value is within the acceptable interval with the final error defined by

the user, a mission plain-text file format file will be generated with all geographical

coordinates. Otherwise, the algorithm will compare whether the difference is greater or less

than the final error and will adjust the total number of waypoints based on this factor,

generating new waypoints, and rerun the PSO maximization.

4.5. Creation of Pre-Planned Mission File

In the end, the Python programming languages file handling functions are used to write all

waypoints parameters. If there is a file in the predefined folder with the same name inserted

on the parameter settings, the path planning optimization algorithm will open it and writing

over; otherwise, it creates a new file. The Plain-text file format is a standard applied in many

GCS and developer APIs for storing mission information. The data included: mission plans,

geofence definitions, rally points, parameters, logs, among others. The first line contains

the file format and version information, while subsequent the line(s) are mission items in

each column [90]. Table 3 lists the columns and their parameters. The spaces between the

fields above are <tab> or 8 spaces (\t Python programming languages).

 36

Table 3 - Mission plain-text file format column parameters.

Column Representation

1 <INDEX>

2 <CURRENT WP>

3 <COORD FRAME>

4 <COMMAND>

5 <PARAM1>

6 <PARAM2>

7 <PARAM3>

8 <PARAM4>

9 <PARAM5/X/LATITUDE>

10 <PARAM6/Y/LONGITUDE>

11 <PARAM7/Z/ALTITUDE>

12 <AUTOCONTINUE>

4.6. Final Remarks

As mentioned in previous chapters, although optimization algorithms for path planning are

not new, their use in UAVs to control bird damage to fruit crops problems in orchards is. So

far, this is the only known algorithm with this objective. Despite the path planning

optimization algorithm for semi-autonomous UAVs in bird repellent systems based on PSO

is presented in more detail in this dissertation and with the newest features, some work is

available in Mesquita and Gaspar [91], and some simulation results were presented. The

original algorithm has some disadvantages compared to the final version presented in this

dissertation since parameters were inserted on the command line, and the processing time

was longer because the disk point picking technique was not used, among others. Since then,

it has been improved to obtain better results, become faster, and be more user-friendly. The

latest version can be accessed on GitHub with the flowing link:

https://github.com/RJMesquita/Path-Planning-Optimization-Algorithm-for-Semi-

Autonomous-UAV-in-Bird-Repellent-Systems.git. The path planning optimization

algorithm has the advantages of its graphical interface that facilitates its use for producers,

scalability being built by functions, compatibility with Mission Planner, and other used GCS.

Notwithstanding having the objective of optimizing paths for bird damage to fruit crops,

being one of its main features, the random generation of waypoints can be applied to

optimize flights with PoIs in general.

 37

5. Analysis and Discussion of Results

5.1. Introduction

Three case studies were developed to study the novel path planning optimization algorithm

(two in simulation and one in the field). Case study #1 uses several PoIs with a low radius,

and Case study #2 has fewer PoIs, with a high random waypoint's radius to serve as a

comparison. Both simulations are used to understand better the algorithm's performance

and the influence of each parameter. The Case study #3 is developed in the field to analyze

the real-world application and the impact on drone battery savings and height influence. A

peach orchard in Orjais, Covilhã, in Portugal, marked in red line in Figure 14, was used as a

search field in both simulation and real-world tests.

Figure 14 – Search study field.

During simulations, all values chosen are real-life representations of each parameter, and

during their individual study, the limits and average values were used. The parameter

variations were tested in the three possible scenarios: same incidence rate, different rates,

and different rates with no bird damage. Because it is a simulation, random vectors of

damage were generated. In Scenario 1, the same number of waypoints were assigned to each

PoI. In Scenario 2, a random vector of numbers of incidence rate, on a scale between one

and five. In Scenario 3, within the same vector as Scenario 2, some PoIs became zero

 38

because they did not have bird incidence. Due to the heuristic nature of the PSO, all cases

run thirty-five times, and the total distance for path planning obtained by the optimization

algorithm in meters, the total number of waypoints, the number of iterations that the code

had to re-run to find a solution within the acceptance range, and the execution time in

seconds, were collected, and the average, maximum and minimum values were calculated.

In all cases, the PyCharm Community Edition as an interpreter on Windows 10 of 64 bits

were used to run the proposed algorithm, on a computer with an Intel Core i7-6700HQ CPU

and 16 GB RAM. Table 4 shows the initial configuration parameters used in each PSO,

assigned through the study of convergence curves to provide the best overall performance

to the path planning optimization algorithm.

Table 4 – PSO initial configuration parameters.

Parameter Minimization Maximization

𝑐1 2 2

𝑐2 2 2

𝑤 Random Inertia Weight Random Inertia Weight

Number of Particles 5 5

Initial Velocity Random Random

𝑖𝑡𝑚𝑎𝑥 50 200

It is noteworthy the same value for 𝑐1 and 𝑐2, giving equal weight to the experience of the

individual and the group, the low number of particles so that the algorithm process faster,

and different values in the maximum number of iterations due to the complexity of each

problem. The Random Inertia Weight, shown in Equation 14, was selected due to being the

best for efficiency [92].

𝑤 = 0.5 +
𝑟𝑎𝑛𝑑𝑜𝑚()

2
 (14)

5.2. Case study #1

The goal of the first study case was to understand the performance of the algorithm with

multiple PoI and low maximum random waypoints radius, varying each parameter (total

distance for path planning, final error, and take-off and landing position). To cover the

entire field of study, thirty-nine PoIs were chosen with random waypoints radius of twenty

meters. Figure 15 shows the PoIs (green dots) used with the corresponding radius from

which the random waypoint will be generated (white circle).

 39

Figure 15 – PoIs of the Case study #1.

As mentioned above, in all simulations, the three possible cases were performed with the

same incidence rate vectors represented in Table 5.

Table 5 – Incidence rate vectors for Case study #1.

Scenario Incidence rate vector

Scenario 1 [1,1]

Scenario 2 [3,4,1,2,4,4,2,1,5,2,3,2,4,5,5,3,1,1,2,4,2,4,3,1,2,5,2,5,1,5,2,4,2,1,3,1,2,4,3]

Scenario 3 [0,4,1,2,4,4,2,0,5,2,3,2,4,5,5,0,0,1,2,4,2,4,0,1,2,5,2,5,1,0,2,4,2,0,3,0,2,4,3]

The first parameter tested was the total distance for path planning. The values were

calculated through the mission speed and the flight time. Since Li-Po batteries last an

average between 20 to 30 minutes [71], with the Mission Planner's default speed of 500

cm/s, the average values for the total distance for path planning were between 6,000 and

9,000 meters. Since the total distance for the path planning to be varied, the final error was

constant at 5% of the total distance for path planning, and the same take-off and landing

waypoint was used, positioned on the center of the field. Table 6 shows the results obtained

in the variation of total distances for path planning. Regarding the total distance for path

planning, there is nothing to point out. All scenarios for both distances presented identical

results, with Scenario 2 having reached an average error in total distance for path planning

obtained from both cases of less than 1% of the original value, this being the best result.

Fewer points were obtained in the total number of waypoints for the 6,000 meters distance,

which is expected as this value is related to the minimum distance between PoIs and the

total distance for path planning. Notice that at both distances for Scenario 1, the total

number of waypoints did not change in all simulations. It is also essential to highlight the

number of iterations in Scenario 1 of the total distance for path planning of 6,000 meters in

which it was difficult for the algorithm to find a good distance value, having to rerun an

 40

average of 13 times, having a maximum of 96 iterations, much higher than the value

presented in the other scenarios. This occurred because the algorithm has an equal number

of waypoints across all PoIs with a lower total distance. Concerning the execution time, it

can be observed that the greater the total distance, the longer the time will be, as it takes

longer to process more waypoints. In Scenario 3 of the total distance for path planning of

9,000 meters, the time is much longer than the other two scenarios. Since there are fewer

PoIs, the algorithm must calculate more points within the remaining points of interest.

Table 6 – Results from the variation of total distances for path planning.

 Average Maximum Minimum

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters]

 Total Distance for Path Planning: 9,000 meters
Scenario 1 8,890.980 9,225.393 8,580.921
Scenario 2 8,932.331 9,320.805 8,567.005
Scenario 3 8,849.140 9,117.971 8,558.183

 Total Distance for Path Planning: 6.000 meters
Scenario 1 6,185.257 6,296.571 5,898.484
Scenario 2 5,951.177 6,298.591 5,741.981
Scenario 3 5,936.690 6,295.887 5,702.002

Total Number of Waypoints

 Total Distance for Path Planning: 9,000 meters
Scenario 1 236 236 236
Scenario 2 233 255 210
Scenario 3 253 264 248

 Total Distance for Path Planning: 6,000 meters
Scenario 1 119 119 119
Scenario 2 110 125 100
Scenario 3 133 156 120

Number of Iterations

 Total Distance for Path Planning: 9,000 meters
Scenario 1 4 8 4
Scenario 2 7 8 6
Scenario 3 7 11 7

 Total Distance for Path Planning: 6,000 meters
Scenario 1 13 96 2
Scenario 2 2 3 2
Scenario 3 5 9 4

Execution Time [seconds]

 Total Distance for Path Planning: 9,000 meters
Scenario 1 10.562 32.767 9.021
Scenario 2 16.590 21.884 11.637
Scenario 3 28.853 54.526 24.333

 Total Distance for Path Planning: 6,000 meters
Scenario 1 8.681 53.904 1.625
Scenario 2 1.823 2.960 1.293
Scenario 3 5.226 11.940 3.407

Then the final error was tested, and the results are shown in Table 7. In the beginning, the

values of 10% and 1% of the total distance for path planning were used. After performing

some tests with the final error at 1%, it was noticed that the optimization algorithm was very

slow and quickly blocked in the random waypoints function, needing improvement in future

works. Not becoming a valid comparison, the final error was increased until obtaining

 41

comparable results, reaching a value of 3%. Since it is the final error to be varied, the total

distance for path planning was constant at 7,500 meters, and the same take-off and landing

position was used, positioned on the center of the field. Related to the total distance for path

planning obtained by the optimization algorithm, although a final error of 10% was used,

the average values in the three scenarios have a maximum less than 7%. When the final error

is 3%, all scenarios present in average final errors values of less than 1% of the original total

distance for path planning. The variation of the final error did not affect the total number

of waypoints, being that for both cases and all scenarios, the values were identical. As

expected, between the two cases, there was a significant discrepancy in the number of

iterations and, consequently, the execution time, since the smaller the error, the longer it

takes for the optimization algorithm to find a value of the total distance for the path

planning within the acceptance range. Note that with a final error of 10%, the optimization

algorithm was faster in the scenarios in the order of 3-2-1 and that in the other case, the

opposite occurred because there is a greater total distance for path planning and needs to

be divided by more PoIs, generating more random waypoints per PoI. In conclusion, the

optimization algorithm with a final error of 3% becomes impractical for scenarios 1 and 2.

Table 7 – Results from the variation of final error.

 Average Maximum Minimum

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters]

 Final error: 10% of the total distance for path planning
Scenario 1 7,136.907 7,945.977 6,757.306
Scenario 2 7,099.347 7,753.496 6,751.171
Scenario 3 7,014.388 7,611.317 6,752.426

 Final error: 3% of the total distance for path planning
Scenario 1 7,528.572 7,721.526 7,275.601
Scenario 2 7,556.262 7,724.228 7,284.137
Scenario 3 7,506.082 7,723.167 7,290.456

Total Number of Waypoints

 Final error: 10% of the total distance for path planning
Scenario 1 163 197 119
Scenario 2 159 190 145
Scenario 3 178 196 156

 Final error: 3% of the total distance for path planning
Scenario 1 184 197 158
Scenario 2 179 190 151
Scenario 3 199 212 172

Number of Iterations

 Final error: 10% of the total distance for path planning
Scenario 1 3 4 2
Scenario 2 5 6 4
Scenario 3 5 6 4

 Final error: 3% of the total distance for path planning
Scenario 1 72 737 3
Scenario 2 45 270 5
Scenario 3 6 12 5

 42

Table 7 – Results from the variation of final error (cont).

Execution Time [seconds]

 Final error: 10% of the total distance for path planning
Scenario 1 3.924 6.604 1.797
Scenario 2 6.067 9.444 4.113
Scenario 3 9.718 13.002 5.782

 Final error: 3% of the total distance for path planning
Scenario 1 203.933 3452.745 3.377
Scenario 2 83.237 514.559 5.633
Scenario 3 15.678 31.765 12.022

The last parameter varied, ending Case study #1, was the take-off and landing position.

Table 8 shows the results obtained. Two cases were used to test this parameter. One with

the same take-off and landing position placed in the center of the field and the other with

different take-off and landing position located at opposite sites in the field. Since the take-

off and landing position was varied, both the total distance for path planning and the final

error were kept constant at 7,500 meters and 5%, respectively. During the test of this

parameter, all values remained identical for the two cases in all situations, except for the

total distance for path planning in different take-off and landing positions, having presented

a more significant discrepancy to the original value. Since the maximum and minimum

values were identical for all scenarios in both cases, it is possible to indicate that there was

only a higher variation in the simulation values.

Table 8 – Results from the variation of take-off and landing position.

 Average Maximum Minimum

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters]

 Same take-off and landing position
Scenario 1 7,508.493 7,872.638 7,131.713
Scenario 2 7,551.033 7,866.488 7,138.796
Scenario 3 7,473.269 7,785.815 7,128.395

 Different take-off and landing position
Scenario 1 7,219.699 7,871.990 7,125.665
Scenario 2 7,524.375 7,868.870 7,141.019
Scenario 3 7,399.987 7,786.099 7,142.777

Total Number of Waypoints

 Same take-off and landing position
Scenario 1 178 197 158
Scenario 2 179 190 145
Scenario 3 198 212 172

 Different take-off and landing position
Scenario 1 177 197 158
Scenario 2 174 190 151
Scenario 3 194 212 172

Number of Iterations

 Same take-off and landing position
Scenario 1 6 22 3
Scenario 2 7 15 4
Scenario 3 6 8 5

 Different take-off and landing position
Scenario 1 7 27 3
Scenario 2 7 26 5
Scenario 3 6 6 5

 43

Table 8 – Results from the variation of take-off and landing position. (cont)
 Average Maximum Minimum

Execution Time [seconds]

 Same take-off and landing position
Scenario 1 10.889 53.069 3.325
Scenario 2 10.995 28.920 4.323
Scenario 3 14.064 18.804 9.316

 Different take-off and landing position
Scenario 1 12.168 60.809 3.200
Scenario 2 11.673 49.451 5.683
Scenario 3 14.098 19.210 9.860

5.3. Case study #2

After understanding the performance of the optimization algorithm with the variation of

each parameter in the first case study, it was developed a second case to acknowledge the

difference in the execution of the algorithm with different numbers of PoIs and random

waypoint radius. In contrast to the previous case, fewer PoIs were selected with a higher

radius of random waypoints to cover the entire field. To cover the entire field of study, ten

PoIs were chosen with random waypoints radius of fifty meters. Figure 16 shows the PoIs

(green dots) used with the corresponding radius from which the random waypoint will be

generated (white circle).

Figure 15 – PoIs of the Case study #2.

In this case study, the performance of the optimization algorithm of the PoIs presented in

Figure 15, named hereafter as the case with lower PoIs, and was compared with the PoIs in

Figure 16, referred henceforth as the case with higher PoIs. As mentioned above, in all

simulations, the three possible cases were performed with the same incidence rate vectors

represented in Table 9.

 44

Table 9 – Incidence rate vectors for Case study #2.

Scenario Incidence rate vector

Scenario 1 [1,1,1,1,1,1,1,1,1,1]

Scenario 2 [3,4,1,2,4,4,2,1,5,2]

Scenario 3 [0,4,1,2,4,4,2,0,5,2]

The average parameters tested in the previous case for both PoIs schemes were kept, along

with the test variables (total distance for path planning obtained by the optimization

algorithm, total number of waypoints, number of iterations, and execution time). The values

corresponding to the parameters were: 7,500 meters for the total distance for path planning,

final error of 5%, and the same take-off and landing point. Table 10 shows the results

obtained with the PoIs of both cases. The total distance for path planning obtained by the

optimization algorithm shows similar values on average, with the case with lower PoIs

presenting better results, being each one below 1% of the original value. The case with higher

PoIs has more total number of waypoints in all scenarios because the random waypoints are

closer to the PoI, so there is less flight distance between the random waypoints. Thus, the

path planning optimization algorithm can generate more points. The variables most

negatively affected by the reduction in the number of PoIs and consequent increase in the

radius of the random waypoint are the number of iterations and the execution time. Clearly,

in this case, the optimization algorithm becomes impracticable due to being very slow. One

thing to note is the low number of iterations per second of execution compared to the Case

study #1 situation with a final error of 3%. The execution time is identical, but there is more

number of iterations. This can be explained because the algorithm takes longer to reduce

the total number of waypoints until it has a viable value.

Table 10 – Results from Case study #2.

 Average Maximum Minimum

Total Distance for Path Planning Obtained by the Optimization Algorithm [meters]

 Higher Number PoIs
Scenario 1 7,498.936 7,874.698 7,140.985
Scenario 2 7,599.392 7,873.370 7,146.384
Scenario 3 7,419.634 7,840.074 7,125.564

 Lower Number PoIs
Scenario 1 7,556.118 7,873.750 7,161.054
Scenario 2 7,511.199 7,846.897 7,130.927
Scenario 3 7,563.032 7,851.434 7,128.681

Total Number of Waypoints

 Higher Number PoIs
Scenario 1 180 197 158
Scenario 2 179 190 145
Scenario 3 198 212 172

 Lower Number PoIs
Scenario 1 126 132 122
Scenario 2 126 134 138
Scenario 3 129 138 118

 45

Table 10 – Results from Case study #2 (cont.).
 Average Maximum Minimum

Number of Iterations

 Higher Number PoIs
Scenario 1 6 18 3
Scenario 2 7 21 4
Scenario 3 6 6 5

 Lower Number PoIs
Scenario 1 21 24 20
Scenario 2 16 18 14
Scenario 3 25 27 24

Execution Time [seconds]

 Higher Number PoIs
Scenario 1 11.570 37.737 3.448
Scenario 2 10.222 34.172 4.059
Scenario 3 12.806 16.423 9.468

 Lower Number PoIs
Scenario 1 209.111 232.803 197.770
Scenario 2 175.687 200.649 146.040
Scenario 3 408.003 443.052 371.005

5.4. Case study #3

Case study #3 was developed to understand the influence of the path planning optimization

algorithm and the drone’s flight height (wind influence) on the battery life and

corresponding flight time. Two cases were then developed, one at the height of 10 meters,

near the treetops, and the other at 20 meters. The preliminary tests of this case study were

performed in a peach tree field in Orjais, Portugal.

The variables selected to study the influence of the path planning optimization algorithm

were: the voltage difference between the initial and final voltage, measured through the

voltage sensor of the power brick, the capacity discharged from the batteries, calculated

through the battery’s charger (Ultramat AC/DC EQ) in mAh, and the flight time in seconds

obtained from the flight records. Field tests with a new PoI scheme were performed in a

cornfield in Macieira, Lousada, Portugal. Following the exact measurements used in the

peach tree field, eight PoIs were then used to ensure equality, with a random waypoint

radius of twenty meters. A short path was created so that the environment was as controlled

as possible, always keeping the drone in line of sight for security. Figure 17 shows the PoIs

(green dots) used with the corresponding radius from which the random waypoint will be

generated (white circle).

 46

Figure 17 – PoIs of the Case study #3.

The field tests for all cases were also performed in the three possible cases with the same

incidence rate vectors represented in Table 11.

Table 11 – Incidence rate vectors for Case study #3.

Scenario Incidence rate vector

Scenario 1 [1,1,1,1,1,1,1,1]

Scenario 2 [3,4,1,2,4,4,2,1]

Scenario 3 [0,4,1,2,4,5,2,0]

For both cases, the values corresponding to the parameters were: 1,500 meters for the total

distance for path planning, final error of 5%, and the same take-off and landing point. It is

also important to mention that the Mission Planner default speeds were all kept. In order

to obtain statistical data, four flights were performed per scenario. To achieve a more

accurate measurement, the same battery should have been used during all flights, but this

is not practical, so four batteries of the same brand with the same configuration were used.

It must be highlighted that no battery was repeated per scenario and that the flights were

carried out over three days at different times sequentially to ensure data reliability. Table

12 shows the results in the field obtained from the quadcopter studied. After analyzing the

results obtained, it is possible to indicate that scenario 3 in both cases presents lower voltage

difference and capacity discharged from the batteries, although this does not directly

transpose into more flight time. This result arises from the fewer corrections between PoIs

made by the UAV. Another consideration is that although the optimization algorithm does

not use height as a parameter in path planning, the results show more flight time for 10

meters because the cornfield was covered with trees that protected the drone at lower

 47

altitudes. It is also important to indicate that there is no direct connection between the

discharged capacity of the batteries and the flight time. One would expect less flying time to

discharge less battery capacity, but since drones depend on factors such as wind, this doesn't

always happen. It is also possible to establish that there is no relationship between the

mission velocity and the flight time, considering that for 1,500 meters, an expected 5 minute

mission should be obtained, and the time varies between 7 to 14 minutes approximately.

Table 12 – Results from Case study #3.

 Average Maximum Minimum

Voltage Difference [V]

 Height: 10 meters
Scenario 1 1.17 1.23 1.12
Scenario 2 1.23 1.25 1.20
Scenario 3 1.09 1.15 1.02

 Height: 20 meters
Scenario 1 1.22 1.29 1.18
Scenario 2 1.25 1.32 1.16
Scenario 3 1.08 1.19 0.89

Capacity Discharged from the Batteries [mAh]

 Height: 10 meters
Scenario 1 1,662 1,790 1,499
Scenario 2 1,804 1,834 1,743
Scenario 3 1,569 1,636 1,491

 Height: 20 meters
Scenario 1 1,763 1,872 1,626
Scenario 2 1,837 1,985 1,642
Scenario 3 1,497 1,684 1,127

Flight Time [seconds]

 Height: 10 meters
Scenario 1 599 643 571
Scenario 2 724 820 674
Scenario 3 588 676 540

 Height: 20 meters
Scenario 1 612 701 437
Scenario 2 742 810 621
Scenario 3 722 839 652

5.5. Final Remarks

In Orjais, Covilhã, Portugal, a peach orchard was selected as a search field to test the novel

path planning optimization algorithm. Three study cases, two in simulation and one in the

field, were developed to understand the performance of the optimization algorithm, the

parameter variation, and the influence on battery management. All parameter variations

were tested in the three possible scenarios: same incidence rate, different rates, and

different rates with no bird damage. During testing, the average, maximum, and minimum

of the total distance for path planning obtained by the optimization algorithm, the total

number of waypoints, the number of iterations, and the execution time were collected. Case

study #1 used more PoIs and a low random waypoints radius, where all input parameters

were varied to understand how the optimization algorithm performed. In Case study#2, a

 48

new PoIs scheme was created with lower number PoIs and a higher random waypoints

radius, which was compared to the previous case study. Case study #3 was the field test with

the quadcopter described in Chapter 3. During the tests, the height varied in the three

possible scenarios and the voltage difference, discharged battery capacity and time were

evaluated.

After analyzing the results obtained in Case study #1, it is possible to infer that the algorithm

guarantees an outstanding average error of the total distance for path planning, having a

maximum error of 7%, where the final error was set at 10%. However, the average error in

most examples of the first case (final error at 5%) was 1.3% of the original value of the total

distance for path planning. It is also possible to indicate that this algorithm has a reasonable

execution time. The final error is the parameter that most influences the results, and the

smaller the error, the longer will be the running time, with an average of almost 2 minutes

when the error is 3%. For all cases, when the final error is 5%, the average execution time is

12 seconds. In the end, it can be observed that there is a relationship with the variation of

the parameter of the total distance for path planning, the number of waypoints, and the

execution time. The greater the distance, the greater the other two parameters are.

Important to also observe with Case study #1 is that the takeoff and landing position does

not influence the other parameters.

Case study #2 shows that the algorithm with fewer PoIs and a larger random waypoint

radius increases the execution time of the proposed algorithm, making it very slow with an

average execution time of 4 minutes and 24 seconds. This result reveals that will be

necessary in the future to create a ratio between the number of PoIs and the total distance

for path planning or improve the function that calculates the number of random waypoints.

From Case study #2 results, it is also possible to verify that the smaller the number of PoIs,

the greater the total number of waypoints. This result comes from the lower distance

between the PoIs and because the path planning optimization algorithm can generate more

waypoints.

The results in Case study #3 show that fewer PoIs (Scenario 3) causes a lower value in the

discharge of the battery capacity with an average of 1,533 mAh comparing to 1,712 mAh and

1,820 mAh of the other two scenarios, a factor that is not directly related to the flight time.

The ratio between the mission velocity and the flight time does not relate as anticipated,

being expected 5 minutes in mission time and some flights reached 14 minutes. One of the

most important conclusions derived from Case study #3 is that height does not influence

the flight, and the most influencing factor is terrain and weather conditions.

In conclusion, all case study present satisfactory results, especially the error in the total

distance for path planning obtained and the execution time. With some modifications in the

future, the proposed algorithm can be tested by producers.

 49

6. Conclusions

6.1. General Conclusions

According to The World Back [93] , agriculture is crucial to economic growth. In 2018, it

accounted for 4% of global gross domestic product (GDP), and in some developing

countries, it can account for more than 25% of GDP. It is, therefore, crucial to reduced

production losses for farmers worldwide with new techniques and technologies. Despite not

being recent, a concept that still has much attention from companies and researchers is

precision agriculture (PA). PA is a management strategy that employs information

technology to improve agricultural quality and production, differing from traditional

farming in the sense that this process accurately identifies variations and relates the spatial

data to management activities [94]. Bird damage to fruit crops is a significant concern for

farmers, causing millions of dollars in lost yield each year. In addition to consumption, a

large number of birds can damage fruit, leaving it susceptible to infection and reducing its

quality [8]. Although this problem is general worldwide, this work was based and tested on

the needs of peach and cherry farmers in the region of Covilhã, Portugal. Most still use

traditional methods such as netting, planting, and harvesting manipulation, with the bird

cannons and loudspeakers, which are the most technological systems but still primitive.

Birds are unique pests because they are highly mobile, resulting in greater spatial and

temporal variation in damage levels than mammalian pests. Today, most systems

employees are not very mobile and are predictable over time, becoming ineffective in the

long run. UAVs have advantages in their versatility and low maintenance, making them

potential solutions to this problem when combined with repelling systems. One of the most

notable disadvantages is its limited battery capacity turned into low flight time, being

essential to improve the efficiency of the mission by planning the path according to the

problem.

In this dissertation is presented a novel path planning optimization algorithm for semi-

autonomous UAV in bird repellent systems based in Particle Swarm Optimization,

developed in Python programming language, with the objective of maximizing the path and

randomly generating waypoints according to the bird damage. Nature has been

continuously solving challenging problems using evolution. Therefore, it is reasonable to be

inspired by nature to solve different challenging problems. Swarm intelligence and

evolutionary computation are searching methods based on the physical behavior and

natural evolution of social intelligence development of real animals and others in real life

[95]. These techniques can optimize complete systems while maintaining the simplicity and

 50

efficiency of other algorithms. One of these techniques is Particle Swarm Optimization

which is a population-based self-adaptive, stochastic optimization technique [96], used for

its performance, accuracy in solving optimization problems, easy implementation, and

adaptation [97]. A method to calculate the distance between two geographic coordinates

had to be applied in the path planning optimization algorithm, and after research, the

haversine formula was used. Another essential method applied is the generation of random

geographic coordinates within a circle with disk point picking. To test the mentioned

algorithm, it was necessary to build and configure a UAV capable of flying through a pre-

planned mission, using autopilots flight controllers and ground control stations software.

Despite all the information about drone building and each subsystem within it, the

configuration was one of the most challenging aspects. An incorrect or poorly calibrated

parameter can cause it not to fly correctly or even crash during flight. UAVs of any structure

can be dangerous, so it is necessary to fly safely with proper precautions. During this work,

all flights were carried out in a controlled, safe environment, with the drone always on the

line of sight.

The path planning optimization algorithm presented in this dissertation can be divided into

four main steps: Parameter Setting, using a graphical interface the user can insert all the

necessary parameters; Minimization Between PoIs, ensuring that the UAV wastes the

minimum time between sensors; Maximization of Random Waypoints, random waypoints

are generated around the PoI, accordingly to the bird damage and their path is maximized;

Creation of Pre-Planned Mission File, a file is created to be read by the GCS and transferred

to the autopilot. As to the author's knowledge, this is a novel path planning optimization

algorithm, so it is impossible to compare it with other algorithms. So, three case studies

were created to understand the performance and parameter variation of the proposed

algorithm. All cases were tested in three possible situations: same incidence rate, different

rates, and different rates with no bird damage. Case Study #1 was in simulation and used

32 PoIs with 20 meters random waypoints radius and was done to understand how the

proposed algorithm performed when each parameter was varied. In the second case, Case

Study#2, also in simulation, a new PoIs scheme was created with 10 PoIs, and 50 meters as

random waypoints radius and was compared to the previous case study. For last, a field test

with the quadcopter was done. During Case Study #3, the height was varied in the three

possible scenarios, and the voltage difference, discharged battery capacity, and time was

evaluated. It should be mentioned that, although the focus of this dissertation is on path

optimization and not the effectiveness of the path planning optimization algorithm to

repealed birds, during the field case study, birds ended up disappearing.

In conclusion, this algorithm intends to overcome the failures of traditional systems in bird

damage to fruit crops used by producers today, optimizing UAV flights, distributing points

 51

according to the bird damage, and creating random waypoints so that they do not detect

patterns. Also, although it is aimed at this agricultural problem, the algorithm can be

modified for other scenarios and problems and adapted to any autopilot or GCS.

6.2. Specific Conclusions

Case study #1 was used to understand the performance of the proposed algorithm with the

variation of each parameter. After examining the first case, it is possible to indicate that the

algorithm has an overall satisfactory performance, obtaining an excellent average error in

the total distance for path planning than the original value and a reliable execution time for

most cases. After varying each parameter, it is also possible to infer that the total distance

for path planning directly affects the number of waypoints and the execution time. The final

error influences the total distance for path planning and the number of iterations that affect

the execution time per consequence. Finally, it is also possible to indicate that the takeoff

and landing position parameter has practically no influence on any other parameter.

The Case study #2 was developed to test the performance in different scenarios, using two

PoIs schemes. The first had higher number of PoIs with lower random waypoint radius and

the second one a smaller number of PoIs with higher random waypoint radius. Case study

#2 shows that decreasing the number of PoIs with a consequent increase in the random

waypoint radius can lead to an impractical use of the optimization algorithm, directly

affecting the execution time. This can be interpreted as a bad ratio between the total

distance for path planning and the number of PoIs and that the function that generates the

number of random waypoints needs to be changed. It was also shown that with fewer

number of PoIs, the number of total waypoints is fewer than with higher number of

waypoints.

Case study #3 was a field test with the studied quadcopter. This case is very important to

understand the influence of the proposed algorithm in battery capacity and flight time. After

analyzing the results obtained for the last case, it is possible to infer that fewer PoIs cause a

reduction in the discharge of the battery capacity, a factor that is not directly related to the

flight time. That flight height does not influence the flight, and the most influencing factor

is the terrain and weather conditions. There is no established relationship between the

mission velocity (maximum horizontal speed) and the flight time, and this function needs

to be changed in future works. It is impossible to assign a quality level to the path planning

optimization algorithm since there is no relative term. However, it is reasonable to state that

the results are generally satisfactory due to execution time and functionality, and the

implementation of this system in real-world applications is viable.

 52

6.3. Suggestions for Future Work

As already mentioned, the optimization algorithm presented is still being improved, and at

each iteration, a new functionality or performance improvement is added. After completing

this dissertation, it is possible to suggest some possibilities for improvements and future

work. Due to the Python programming language being high level, it is possible to work

quickly and integrate systems more effectively than other programming languages such as

C or Rust. Although this language gains in development time, it loses in execution time

because code is interpreted at runtime instead of being compiled to native code at

compilation. Future work may be related to implementing and comparing this path

planning optimization algorithm in other programming languages to ensure faster

execution time. Optimization techniques other than PSO should also be implemented and

tested. These approaches should improve the execution time and quality of the results

obtained by the path planning algorithm. After the field tests, the programming function

that relates the mission velocity and the flight time and calculates the total distance for the

path planning must be modified considering other speeds besides the maximum horizontal

speed. Without this improvement, the farmer must be very conservative when inserting the

flight time. More field tests should be carried out with more drones and batteries, where the

power consumption and autonomy are studied. The efficiency of the proposed algorithm in

bird damage to fruit crops problem to must also be evaluated. Features such as compatibility

with other GCS and variable random waypoint radius must also be added to complete the

characteristics of the proposed algorithm. It is also necessary to establish a relationship

between the total distance for the path planning and the number of PoIs and a better

function to control the number of generated waypoints, avoiding a slow algorithm.

 53

References

[1] A. R. Anik, S. Rahman, and J. R. Sarker, “Five decades of productivity and efficiency
changes in world agriculture (1969–2013),” Agric., vol. 10, no. 6, pp. 1–21, 2020,
doi: 10.3390/agriculture10060200.

[2] F. J. Pierce and P. Nowak, “Aspects of Precision Agriculture,” Adv. Agron., vol. 67,
no. C, pp. 1–85, 1999, doi: 10.1016/S0065-2113(08)60513-1.

[3] P. Daponte et al., “A review on the use of drones for precision agriculture,” IOP
Conf. Ser. Earth Environ. Sci., vol. 275, no. 1, 2019, doi: 10.1088/1755-
1315/275/1/012022.

[4] M. Kulbacki et al., “Survey of Drones for Agriculture Automation from Planting to
Harvest,” INES 2018 - IEEE 22nd Int. Conf. Intell. Eng. Syst. Proc., pp. 000353–
000358, 2018, doi: 10.1109/INES.2018.8523943.

[5] “AGRAS T20 - DJI.” Accessed: May 03, 2021. [Online]. Available:
https://www.dji.com/pt/t20.

[6] S. B. Canavelli, L. C. Branch, P. Cavallero, C. González, and M. E. Zaccagnini,
“Multi-level analysis of bird abundance and damage to crop fields,” Agric. Ecosyst.
Environ., vol. 197, pp. 128–136, 2014, doi: 10.1016/j.agee.2014.07.024.

[7] M. B. Hannay et al., “Bird species and abundances in fruit crops and implications
for bird management,” Crop Prot., vol. 120, no. September 2018, pp. 43–49, 2019,
doi: 10.1016/j.cropro.2019.02.015.

[8] J. L. Elser et al., “Measuring bird damage to three fruit crops: A comparison of
grower and field estimates,” Crop Prot., vol. 123, no. December 2018, pp. 1–4, 2019,
doi: 10.1016/j.cropro.2019.05.010.

[9] D. O. Clark, “An overview of depredating bird damage control in California,” Bird
Control Semin. Proc., no. November, pp. 21–27, 1976.

[10] G. M. Linz, H. J. Homan, S. J. Werner, H. M. Hagy, and W. J. Bleier, “Assessment
of bird-management strategies to protect sunflowers,” Bioscience, vol. 61, no. 12,
pp. 960–970, 2011, doi: 10.1525/bio.2011.61.12.6.

[11] R. A. Cheke and M. El Hady Sidatt, “A review of alternatives to fenthion for quelea
bird control,” Crop Prot., vol. 116, no. July 2018, pp. 15–23, 2019, doi:
10.1016/j.cropro.2018.10.005.

[12] C. Dias, D. Alberto, and M. P. A. F. Simões, “Cap. 01 - Produção de pêssego e
nectarina na Beira Interior,” +Pêssego-Guia Prático de Produção, no. June, pp. 15–
31, 2016.

[13] C. A. Lindell, “Commentary Supporting farmer adoption of sustainable bird
management strategies,” Human-Wildlife Interact., vol. 14, no. 3, pp. 442–450,
2020, doi: 10.26077/6dda-b98d.

[14] A. Anderson et al., “Bird damage to select fruit crops: The cost of damage and the
benefits of control in five states,” Crop Prot., vol. 52, pp. 103–109, 2013, doi:
10.1016/j.cropro.2013.05.019.

 54

[15] Z. Wang, A. S. Griffin, A. Lucas, and K. C. Wong, “Psychological warfare in
vineyard: Using drones and bird psychology to control bird damage to wine grapes,”
Crop Prot., vol. 120, no. March, pp. 163–170, 2019, doi:
10.1016/j.cropro.2019.02.025.

[16] R. G. L. Narayanan and O. C. Ibe, “Joint Network for Disaster Relief and Search and
Rescue Network Operations,” Wirel. Public Saf. Networks 1 Overv. Challenges, pp.
163–193, 2015, doi: 10.1016/B978-1-78548-022-5.50006-6.

[17] J. G. Boubin, N. T. R. Babu, C. Stewart, J. Chumley, and S. Zhang, “Managing edge
resources for fully autonomous aerial systems,” Proc. 4th ACM/IEEE Symp. Edge
Comput. SEC 2019, pp. 74–87, 2019, doi: 10.1145/3318216.3363306.

[18] M. Palmieri, C. Bernardeschi, and P. Masci, “Co-simulation of semi-autonomous
systems: The line follower robot case study,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2018, vol. 10729 LNCS, pp. 423–437, doi: 10.1007/978-3-319-
74781-1_29.

[19] H. González-Jorge, J. Martínez-Sánchez, M. Bueno, and P. Arias, “Unmanned aerial
systems for civil applications: A review,” Drones, vol. 1, no. 1, pp. 1–19, 2017, doi:
10.3390/drones1010002.

[20] “Mateksys F405-SE/WSE — Copter documentation.” Accessed: May 20, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/common-matekf405-
se.html.

[21] “The Cube Orange Standard Set (ADS-B Carrier Board) : Drones, UAV, OnyxStar,
MikroKopter, ArduCopter, RPAS : AltiGator, drones, radio controlled aircrafts:
aerial survey, inspection, video & photography.” Accessed: May 18, 2021. [Online].
Available: https://drones.altigator.com/the-cube-orange-standard-set-adsb-
carrier-board-p-42736.html?pg=store.

[22] “The Cube Orange With ADSB-In Overview — Copter documentation.” Accessed:
May 18, 2021. [Online]. Available: https://ardupilot.org/copter/docs/common-
thecubeorange-overview.html.

[23] “The Cube Overview — Copter documentation.” Accessed: May 18, 2021. [Online].
Available: https://ardupilot.org/copter/docs/common-thecube-overview.html.

[24] “NAVIO2 Overview — Copter documentation.” Accessed: May 19, 2021. [Online].
Available: https://ardupilot.org/copter/docs/common-navio2-overview.html.

[25] “OpenPilot Revolution and RevoMini — Copter documentation.” Accessed: May 18,
2021. [Online]. Available: https://ardupilot.org/copter/docs/common-openpilot-
revo-mini.html.

[26] “Parrot Bebop Autopilot — Copter documentation.” Accessed: May 20, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/parrot-bebop-
autopilot.html.

[27] “Pixhawk 3 Pro User Guide - Pixhawk 3 Pro.” Accessed: May 18, 2021. [Online].
Available: https://drotek.gitbook.io/pixhawk-3-pro/.

[28] “Pixhawk Series | PX4 User Guide.” Accessed: May 18, 2021. [Online]. Available:
https://docs.px4.io/master/en/flight_controller/pixhawk_series.html.

 55

[29] “Pixracer — Copter documentation.” Accessed: May 18, 2021. [Online]. Available:
https://ardupilot.org/copter/docs/common-pixracer-overview.html.

[30] “QioTek Zealot F427 — Copter documentation.” Accessed: May 20, 2021. [Online].
Available: https://ardupilot.org/copter/docs/common-qiotek-zealot.html.

[31] “RadioLink MiniPix — Copter documentation.” Accessed: May 20, 2021. [Online].
Available: https://ardupilot.org/copter/docs/common-radiolink-minipix.html.

[32] “Archived Topic: Erle-Brain Linux Autopilot — Copter documentation.” Accessed:
May 19, 2021. [Online]. Available: https://ardupilot.org/copter/docs/common-
erle-brain-linux-autopilot.html.

[33] “Archived: Emlid Edge — Copter documentation.” Accessed: May 19, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/common-emlid-edge.html.

[34] “Autopilot Hardware Options — Copter documentation.” Accessed: May 20, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/common-autopilots.html.

[35] “BeagleBoard.org - blue.” Accessed: May 18, 2021. [Online]. Available:
https://beagleboard.org/blue.

[36] “BeagleBone Blue - Seeed Studio.” Accessed: May 18, 2021. [Online]. Available:
https://www.seeedstudio.com/BeagleBone-Blue-p-2809.html.

[37] “CUAV Nora Overview — Copter documentation.” Accessed: May 18, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/common-cuav-nora-
overview.html.

[38] “CUAV V5 Plus Overview — Copter documentation.” Accessed: May 18, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/common-cuav-v5plus-
overview.html.

[39] “Cube Orange Flight Controller | PX4 User Guide.” Accessed: May 18, 2021.
[Online]. Available:
https://docs.px4.io/master/en/flight_controller/cubepilot_cube_orange.html.

[40] “Erle-Brain 2, the newest Linux autopilot from Erle Robotics - Blogs - diydrones.”
Accessed: May 19, 2021. [Online]. Available:
https://diydrones.com/profiles/blogs/erle-brain-2-the-newest-linux-autopilot-
from-erle-robotics-1.

[41] “F4BY FMU — Copter documentation.” Accessed: May 18, 2021. [Online].
Available: https://ardupilot.org/copter/docs/common-f4by.html.

[42] “FlyWoo F745 AIO BL_32 — Copter documentation.” Accessed: May 19, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/common-flywoo-f745.html.

[43] “Holybro Durandal — Copter documentation.” Accessed: May 18, 2021. [Online].
Available: https://ardupilot.org/copter/docs/common-durandal-overview.html.

[44] “Intel Aero Overview — Copter documentation.” Accessed: May 19, 2021. [Online].
Available: https://ardupilot.org/copter/docs/common-intel-aero-overview.html.

[45] “Open Source Autopilot for Drones - PX4 Autopilot.” Accessed: May 20, 2021.
[Online]. Available: https://px4.io/.

 56

[46] “Support for Intel® Aero Compute Board.” .

[47] “Mission Planner Home — Mission Planner documentation.” Accessed: May 21,
2021. [Online]. Available: https://ardupilot.org/planner/.

[48] “APM Planner 2 Home — APM Planner 2 documentation.” Accessed: May 21, 2021.
[Online]. Available: https://ardupilot.org/planner2/index.html#home.

[49] “Introduction · MAVLink Developer Guide.” https://mavlink.io/en/ (accessed Jul.
01, 2021).

[50] “ArduPilot Documentation — ArduPilot documentation.”
https://ardupilot.org/ardupilot/index.html# (accessed Jul. 01, 2021).

[51] “Choosing a Ground Station — Copter documentation.” Accessed: May 21, 2021.
[Online]. Available: https://ardupilot.org/copter/docs/common-choosing-a-
ground-station.html.

[52] “Litchi for DJI Mavic / Phantom / Inspire / Spark.” Accessed: May 21, 2021.
[Online]. Available: https://flylitchi.com/.

[53] “Data Capture Platform for Drones & UAVs.” https://droneharmony.com/
(accessed Jul. 01, 2021).

[54] “Rainbow for DJI Drones (Mavic Mini compatible) – Apps no Google Play.”
https://play.google.com/store/apps/details?id=com.rainbow.drone.pro&hl=pt_PT
&gl=US (accessed Jul. 01, 2021).

[55] “Red Waypoint APP.” http://redwaypoint.com/index.html (accessed Jul. 01, 2021).

[56] G. Venter, “Review of Optimization Techniques,” Encycl. Aerosp. Eng., pp. 1–10,
2010, doi: 10.1002/9780470686652.eae495.

[57] I. Fister, X. S. Yang, J. Brest, and D. Fister, “A brief review of nature-inspired
algorithms for optimization,” Elektroteh. Vestnik/Electrotechnical Rev., vol. 80, no.
3, pp. 116–122, 2013.

[58] M. Hajihassani, D. Jahed Armaghani, and R. Kalatehjari, “Applications of Particle
Swarm Optimization in Geotechnical Engineering: A Comprehensive Review,”
Geotech. Geol. Eng., vol. 36, no. 2, pp. 705–722, 2018, doi: 10.1007/s10706-017-
0356-z.

[59] S. Sengupta, S. Basak, and R. Peters, “Particle Swarm Optimization: A Survey of
Historical and Recent Developments with Hybridization Perspectives,” Mach.
Learn. Knowl. Extr., vol. 1, no. 1, pp. 157–191, 2018, doi: 10.3390/make1010010.

[60] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw.,
vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

[61] M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, “An improved grey wolf
optimizer for solving engineering problems,” Expert Syst. Appl., vol. 166, no.
August 2020, p. 113917, 2021, doi: 10.1016/j.eswa.2020.113917.

[62] R. Benkercha, S. Moulahoum, and B. Taghezouit, “Extraction of the PV modules
parameters with MPP estimation using the modi fi ed fl ower algorithm,” Renew.
Energy, vol. 143, pp. 1698–1709, 2019, doi: 10.1016/j.renene.2019.05.107.

 57

[63] X. Yang, M. Karamanoglu, and X. He, “Flower pollination algorithm : A novel
approach for multiobjective optimization Flower pollination algorithm : A novel
approach for multiobjective optimization,” Eng. Optim., vol. 46, no. 9, pp. 1222–
1237, 2014, doi: 10.1080/0305215X.2013.832237.

[64] O. Hasançebi, T. Teke, and O. Pekcan, “A bat-inspired algorithm for structural
optimization,” Comput. Struct., vol. 128, pp. 77–90, 2013, doi:
10.1016/j.compstruc.2013.07.006.

[65] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial
vehicles: A review, solutions, and challenges,” Comput. Commun., vol. 149, no. July
2019, pp. 270–299, 2020, doi: 10.1016/j.comcom.2019.10.014.

[66] Y. Zhao, Z. Zheng, and Y. Liu, “Survey on computational-intelligence-based UAV
path planning,” Knowledge-Based Syst., vol. 158, no. March, pp. 54–64, 2018, doi:
10.1016/j.knosys.2018.05.033.

[67] C.-M. Tseng, C.-K. Chau, K. Elbassioni, and M. Khonji, “Autonomous Recharging
and Flight Mission Planning for Battery-operated Autonomous Drones,” no. March,
2017, [Online]. Available: http://arxiv.org/abs/1703.10049.

[68] X. Li, Y. Zhao, J. Zhang, and Y. Dong, “A hybrid PSO algorithm based flight path
optimization for multiple agricultural UAVs,” Proc. - 2016 IEEE 28th Int. Conf.
Tools with Artif. Intell. ICTAI 2016, pp. 691–697, 2017, doi:
10.1109/ICTAI.2016.0107.

[69] B. S and S. S. S, “A Survey of Bio inspired Optimization Algorithms,” Int. J. Soft
Comput. Eng., vol. 2, no. 2, pp. 2231–2307, 2012, doi: 10.1007/s11269-015-0943-9.

[70] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence for dynamic
optimization: Algorithms and applications,” Swarm Evol. Comput., vol. 33, no.
December 2016, pp. 1–17, 2017, doi: 10.1016/j.swevo.2016.12.005.

[71] P. Pradeep, S. G. Park, and P. Wei, “Trajectory optimization of multirotor
agricultural UAVs,” IEEE Aerosp. Conf. Proc., vol. 2018-March, pp. 1–7, 2018, doi:
10.1109/AERO.2018.8396617.

[72] “Hex Cube Black Flight Controller | PX4 User Guide.”
https://docs.px4.io/master/en/flight_controller/pixhawk-2.html (accessed Jul. 01,
2021).

[73] “Home.” https://nuttx.apache.org/ (accessed Jul. 01, 2021).

[74] “Here+ RTK GPS — Copter documentation.”
https://ardupilot.org/copter/docs/common-here-plus-gps.html (accessed Jul. 02,
2021).

[75] A. Rodríguez-Panes, J. Claver, and A. M. Camacho, “The influence of
manufacturing parameters on the mechanical behaviour of PLA and ABS pieces
manufactured by FDM: A comparative analysis,” Materials (Basel)., vol. 11, no. 8,
2018, doi: 10.3390/ma11081333.

[76] “Welcome to OpenTX.” https://www.open-tx.org/ (accessed Jul. 02, 2021).

[77] R. E. James Kennedy, “Particle Swarm Optimization,” 1995.

 58

[78] R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments,
applications and resources,” Proc. IEEE Conf. Evol. Comput. ICEC, vol. 1, pp. 81–
86, 2001, doi: 10.1109/cec.2001.934374.

[79] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence
in a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp.
58–73, 2002, doi: 10.1109/4235.985692.

[80] Y. Shi and R. Eberhart, “A modified particle swarm optimizer algorithm,” 1998, doi:
10.1109/ICEC.1998.699146.

[81] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,”
Soft Comput., vol. 22, no. 2, pp. 387–408, 2018, doi: 10.1007/s00500-016-2474-6.

[82] “Plataforma Google Maps | Google Developers.”
https://developers.google.com/maps (accessed Jul. 05, 2021).

[83] P. Dauni, M. D. Firdaus, R. Asfariani, M. I. N. Saputra, A. A. Hidayat, and W. B.
Zulfikar, “Implementation of Haversine formula for school location tracking,” J.
Phys. Conf. Ser., vol. 1402, no. 7, 2019, doi: 10.1088/1742-6596/1402/7/077028.

[84] N. E. Daidzic, “Long and short-range air navigation on spherical Earth,” Int. J.
Aviat. Aeronaut. Aerosp., vol. 4, no. 1, 2017, doi: 10.15394/ijaaa.2017.1160.

[85] M. A. Hoque, X. Hong, and B. Dixon, “Analysis of mobility patterns for urban taxi
cabs,” 2012 Int. Conf. Comput. Netw. Commun. ICNC’12, pp. 756–760, 2012, doi:
10.1109/ICCNC.2012.6167524.

[86] C. N. Alam, K. Manaf, A. R. Atmadja, and D. K. Aurum, “Implementation of
haversine formula for counting event visitor in the radius based on Android
application,” Proc. 2016 4th Int. Conf. Cyber IT Serv. Manag. CITSM 2016, pp. 3–
8, 2016, doi: 10.1109/CITSM.2016.7577575.

[87] N. Chopde and M. Nichat, “Landmark Based Shortest Path Detection by Using A*
and Haversine Formula,” GH Raisoni Coll. Eng. …, vol. 1, no. 2, pp. 298–302, 2013,
[Online]. Available:
http://www.ijircce.com/upload/2013/april/17_V1204030_Landmark_H.pdf.

[88] D. Tian and Z. Shi, “MPSO: Modified particle swarm optimization and its
applications,” Swarm Evol. Comput., vol. 41, no. January, pp. 49–68, 2018, doi:
10.1016/j.swevo.2018.01.011.

[89] T. Monawar, B. S. Mahmud, and A. Hira, “Anti-theft vehicle tracking and regaining
system with automatic police notifying using Haversine formula,” 2017, doi:
10.1109/ICAEE.2017.8255459.

[90] “File Formats · MAVLink Developer Guide.” https://mavlink.io/en/file_formats/
(accessed Jul. 12, 2021).

[91] R. Mesquita and P. D. Gaspar, “A Path Planning Optimization Algorithm Based on
Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling -
Simulation Results,” 2020 Int. Conf. Decis. Aid Sci. Appl. DASA 2020, pp. 1144–
1148, 2020, doi: 10.1109/DASA51403.2020.9317271.

[92] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A. Abraham,
“Inertia weight strategies in particle swarm optimization,” Proc. 2011 3rd World

 59

Congr. Nat. Biol. Inspired Comput. NaBIC 2011, pp. 633–640, 2011, doi:
10.1109/NaBIC.2011.6089659.

[93] “Agriculture Overview.”
https://www.worldbank.org/en/topic/agriculture/overview (accessed Jul. 23,
2021).

[94] H. M. Jawad, R. Nordin, S. K. Gharghan, A. M. Jawad, and M. Ismail, “Energy-
efficient wireless sensor networks for precision agriculture: A review,” Sensors
(Switzerland), vol. 17, no. 8, 2017, doi: 10.3390/s17081781.

[95] L. Abualigah, “Group search optimizer: a nature-inspired meta-heuristic
optimization algorithm with its results, variants, and applications,” Neural Comput.
Appl., vol. 33, no. 7, pp. 2949–2972, 2021, doi: 10.1007/s00521-020-05107-y.

[96] N. K. Jain, U. Nangia, and J. Jain, “A Review of Particle Swarm Optimization,” J.
Inst. Eng. Ser. B, vol. 99, no. 4, pp. 407–411, 2018, doi: 10.1007/s40031-018-0323-
y.

[97] M. S. Kiran, “Particle swarm optimization with a new update mechanism,” Appl.
Soft Comput. J., vol. 60, pp. 670–678, 2017, doi: 10.1016/j.asoc.2017.07.050.

