8 research outputs found

    A New Type-2 Soft Set: Type-2 Soft Graphs and Their Applications

    Get PDF
    The correspondence between a vertex and its neighbors has an essential role in the structure of a graph. Type-2 soft sets are also based on the correspondence of primary parameters and underlying parameters. In this study, we present an application of type-2 soft sets in graph theory. We introduce vertex-neighbors based type-2 soft sets over X (set of all vertices of a graph) and E (set of all edges of a graph). Moreover, we introduce some type-2 soft operations in graphs by presenting several examples to demonstrate these new concepts. Finally, we describe an application of type-2 soft graphs in communication networks and present procedure as an algorithm

    Q-Neutrosophic Soft Relation and Its Application in Decision Making

    Get PDF
    Q-neutrosophic soft sets are essentially neutrosophic soft sets characterized by three independent two-dimensional membership functions which stand for uncertainty, indeterminacy and falsity. Thus, it can be applied to two-dimensional imprecise, indeterminate and inconsistent data which appear in most real life problems. Relations are a suitable tool for describing correspondences between objects

    CorrAUC: a Malicious Bot-IoT Traffic Detection Method in IoT Network Using Machine Learning Techniques

    Get PDF
    Identification of anomaly and malicious traffic in the Internet of things (IoT) network is essential for the IoT security to keep eyes and block unwanted traffic flows in the IoT network. For this purpose, numerous machine learning (ML) technique models are presented by many researchers to block malicious traffic flows in the IoT network. However, due to the inappropriate feature selection, several ML models prone misclassify mostly malicious traffic flows. Nevertheless, the significant problem still needs to be studied more in-depth that is how to select effective features for accurate malicious traffic detection in IoT network. To address the problem, a new framework model is proposed. Firstly, a novel feature selection metric approach named CorrAUC proposed, and then based on CorrAUC, a new feature selection algorithm name Corrauc is develop and design, which is based on wrapper technique to filter the features accurately and select effective features for the selected ML algorithm by using AUC metric. Then, we applied integrated TOPSIS and Shannon Entropy based on a bijective soft set to validate selected features for malicious traffic identification in the IoT network. We evaluate our proposed approach by using the Bot-IoT dataset and four different ML algorithms. Experimental results analysis showed that our proposed method is efficient and can achieve >96% results on average

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    New results on type-2 soft sets

    No full text
    corecore