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Abstract: Q-neutrosophic soft sets are essentially neutrosophic soft sets characterized by three
independent two-dimensional membership functions which stand for uncertainty, indeterminacy
and falsity. Thus, it can be applied to two-dimensional imprecise, indeterminate and inconsistent
data which appear in most real life problems. Relations are a suitable tool for describing
correspondences between objects. In this study we introduce and discuss Q-neutrosophic soft
relations, which can be discussed as a generalization of fuzzy soft relations, intuitionistic fuzzy soft
relations, and neutrosophic soft relations. Q-neutrosophic soft relation is a sub Q-neutrosophic soft set
of the Cartesian product of the Q-neutrosophic soft sets, in other words Q-neutrosophic soft relation
is Q-neutrosophic soft sets in a Cartesian product of universes. We also present the notions of inverse,
composition of Q-neutrosophic soft relations and functions along with some related theorems and
properties. Reflexivity, symmetry, transitivity as well as equivalence relations and equivalence classes
of Q-neutrosophic soft relations are also defined. Some properties of these concepts are presented
and supported by real life examples. Finally, an algorithm to solve decision making problems using
Q-neutrosophic soft relations is developed and verified by an example to show the efficiency of
this method.

Keywords: Q-neutrosophic soft set; Q-neutrosophic soft relation; neutrosophic soft set; fuzzy set

1. Introduction

The theory of neutrosophic set was firstly proposed by Smarandache [1] as a generalization of
fuzzy set [2] and intuitionistic fuzzy set [3]. Neutrosophic set is a tri-component logic set, thus it
can deal with uncertain, indeterminate and incompatible information where the indeterminacy is
quantified explicitly and truth membership, indeterminacy membership and falsity membership are
completely independent. The neutrosophic set was introduced for the first time by Smarandache in his
1998 book [4]. Neutrosophic set can handle indeterminate data which were not taken into account by
fuzzy set theory, and intuitionistic fuzzy set theory.

Another commonly used method in handling uncertainties and representing incomplete and
unreliable data is soft set theory which was established by Molodtsov [5] as a general mathematical
tool used to handle uncertainties, imprecision and vagueness. Since its inception, a lot of extensions
of soft set model have been developed such as fuzzy soft sets [6], vague soft sets [7], interval-valued
vague soft sets [8–10], soft expert sets [11], soft multi set theory [12] and neutrosophic soft set [13–16].
At present, soft set has attracted wide attention and made many achievements [17–19].

Q-fuzzy soft sets was established by Adam and Hassan [20,21]. The theory behind the development
of Q-fuzzy soft sets is that in many instances a second dimension must be added to the expression of the
membership value of an element or object. This concept was extended to Q-intuitionistic fuzzy soft
set by Broumi [22] by adding a two-dimensional non-membership function. However, these models

Entropy 2018, 20, 172; doi:10.3390/e20030172 www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/211837246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-0758-6062
https://orcid.org/0000-0002-1659-7089
http://dx.doi.org/10.3390/e20030172
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 172 2 of 14

cannot deal with indeterminate information which appears in two-dimensional universal sets. Thus,
the concept of the Q-neutrosophic soft sets (Q-NSSs) is established to combine the key features of soft
sets and Q-neutrosophic sets. The Q-neutrosophic soft sets (Q-NSSs) model is an improved model of
neutrosophic sets that can represent two-dimensional information.

Since fuzzy set theory was introduced by Zadeh [2], it has been successfully applied to many
real-life problems in uncertain and ambiguous environments [23–25], especially decision-making areas;
fuzzy decision making has become a research focal point since then. Hence, the extensions of fuzzy
set, intuitionistic fuzzy set [3], interval-valued [26], neutrosophic set [1], single valued neutrosophic
soft set [27] and their hybrid models were widely applied to decision making problems. This includes
neutrosophic sets and its extensions, to handle incomplete, indeterminate, and inconsistent problems
in real life such as decision-making [28–30].

The utilization of fuzzy relations [2] derived from the observation that real life objects can be
related to each other to a certain degree. Fuzzy relations are able to model vagueness, in the sense that
they provide the degree to which two objects are related to each other. Nevertheless, they cannot model
uncertainty. Consequently, Bustince and Burillo [31] introduced the concept of intuitionistic fuzzy
relations followed by Dinda and Samanta [32] on intuitionistic fuzzy soft relations. This gives a way to
include uncertainty to a certain degree, but it does not handle indeterminacy degree of membership.
Hence, neutrosophic soft relations were initiated by Deli and Broumi [33]. Recently, many researchers
studied fuzzy relations [34,35], fuzzy soft relations and their generalizations [36–38].

The relations between fuzzy sets, soft sets and their extensions have been widely studied.
However, these relations do not encompass indeterminate information which appears in two
dimensional universal sets. To overcome this, we introduce the Q-neutrosophic soft relation (Q-NSR),
which represents the degree of presence, absence or indeterminacy of interaction between the elements
of the Q-neutrosophic soft sets (Q-NSSs). Thus, it serves the indeterminacy and two-dimensionality
of a data set at the same time, which cannot be served by fuzzy sets, soft sets and their extensions
models. We present the concepts of inverse, functions and composition of Q-neutrosophic soft relations
(Q-NSRs), some related theorems and properties. We define reflexivity, symmetry, transitivity as well
as equivalence relations and equivalence classes of Q-neutrosophic soft relations (Q-NSRs). To show
the ability of this model to solve decision making problems with two-dimensional indeterminate
information, we developed an algorithm to solve decision making problems using Q-neutrosophic soft
relations (Q-NSRs) and illustrate it by an example.

2. Preliminaries

In this section, we review the notions of soft sets, neutrosophic sets, neutrosophic soft sets with
some of their properties which are pertinent to this work. The Q-neutrosophic soft sets (Q-NSSs) is
also introduced.

Soft set theory was first introduced by Molodtsov [5] as a parametrized family of subsets of the
universe of discourse X.

Definition 1 ([5]). A pair (F, E) is called a soft set over X, if and only if F is a mapping of E into the set of all
subsets of the set X. In other words, the soft set is a parametrized family of subsets of the set X.

Neutrosophic set was established by Smarandache [1] as a generalization of fuzzy set [2],
with a tri-component set to deal with uncertain, indeterminate and incompatible data.

Definition 2 ([1]). A neutrosophic set Γ on the universe X is defined as

Γ = {〈x, (TΓ(x), IΓ(x), FΓ(x))〉 : x ∈ X}, where T, I, F : X →]−0, 1+[

and
−0 ≤ TΓ(x) + IΓ(x) + FΓ(x) ≤ 3+.
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Definition 3 ([39]). Let Γ and Ψ be two neutrosophic sets, then we say that Γ is a subset of Ψ denoted by
Γ ⊆ Ψ if and only if TΓ(x) ≤ TΨ(x), IΓ(x) ≥ IΨ(x) and FΓ(x) ≥ FΨ(x) for all x ∈ X.

Maji [13] presented the notion of neutrosophic soft sets as a generalization of soft sets. It is
an improvement in the theory of soft sets and provides a way to deal with the uncertain data.

Definition 4 ([13]). Let X be an initial universe set and E be a set of parameters. Consider A ⊆ E. Let P(X)

denotes the set of all neutrosophic sets of X. The collection (F, A) is termed to be the soft neutrosophic set over
X, where F is a mapping given by F : A→ P(X).

We will now introduce the concept of Q-neutrosophic set to provide a way to deal with uncertain,
indeterminate and inconsistent two-dimensional information. We also extend this concept to multi
Q-neutrosophic set and Q-neutrosophic soft set (Q-NSS).

Definition 5. Let X be a universal set and Q be a nonempty set. A Q-neutrosophic set ΓQ in X and Q is an
object of the form

ΓQ = {
〈
(x, q), TΓQ(x, q), IΓQ(x, q), FΓQ(x, q)

〉
: x ∈ X, q ∈ Q},

where TΓQ , IΓQ , FΓQ : X×Q→]−0, 1+[ are the true membership function, indeterminacy membership function
and false membership function, respectively with −0 ≤ TΓQ + IΓQ + FΓQ ≤ 3+.

Note that the set of all Q-neutrosophic sets over X will be denoted by QNS(X).

Definition 6. Let X be a universal set, Q be any nonempty set, l be any positive integer and I be a unit interval
[0, 1]. A multi Q-neutrosophic set Γ̃Q in X and Q is a set of ordered sequences

Γ̃Q = {〈(x, q), TΓ̃Qi
(x, q), IΓ̃Qi

(x, q), FΓ̃Qi
(x, q)〉 : x ∈ X, q ∈ Q for all i = 1, 2, ..., l},

where TΓ̃Qi
, IΓ̃Qi

, FΓ̃Qi
: X × Q → Il for all i = 1, 2, ..., l are respectively, truth membership function,

indeterminacy membership function and falsity membership function for each x ∈ X and q ∈ Q and satisfy
the condition

0 ≤ TΓ̃Qi
+ IΓ̃Qi

+ FΓ̃Qi
≤ 3 for all i = 1, 2, ..., l

where l is called the dimension of Γ̃Q.

The set of all multi Q-neutrosophic sets of dimension l in X and Q is denoted by µlQNS(X).

Definition 7. Let X be a universal set, E be a set of parameters, and Q be a nonempty set. Let µlQNS(X)

denote the set of all multi Q-neutrosophic sets on X with dimension l = 1. Let A ⊆ E. A pair (ΓQ, A) is called
a Q-neutrosophic soft set (Q-NSS) over X, where ΓQ is a mapping given by

ΓQ : A→ µlQNS(X)

such that ΓQ(e) = φ if e /∈ A. A Q-neutrosophic soft set (Q-NSS) can be represented by the set of ordered pairs

(ΓQ, A) = {(e, ΓQ(e)) : e ∈ A, ΓQ ∈ µlQNS(X)}

The set of all Q-neutrosophic soft sets (Q-NSSs) in X and Q is denoted by QNSS(X).

Definition 8. Let (ΓQ, A), (ΨQ, B) ∈ Q− NSS(X). Then (ΨQ, B) is a QNS subset of (ΓQ, A), denoted by
(ΨQ, B) ⊆ (ΓQ, A), if B ⊆ A and ΨQ(x) ⊆ ΓQ(x) for all x ∈ X.
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The following example illustrates the above definition of the Q-NSS.

Example 1. Suppose we want to examine the attractiveness of houses that a person is considering purchasing.
Suppose there are three houses in the universe X = {x1, x2, x3}, Q = {p, q} be a set of cities under consideration
and E = {e1 = expensive, e2 = cheap} be a set of decision parameters. Then the Q-NSS (ΓQ, A) is given by:

(ΓQ, A) = {〈e1, [(x1, p), 0.7, 0.3, 0.4], [(x1, q), 0.5, 0.3, 0.1], [(x2, p), 0.9, 0.7, 0.6], [(x2, q), 0.6, 0.5, 0.3]〉,
〈e2, [(x1, p), 0.3, 0.4, 0.8], [(x1, q), 0.8, 0.4, 0.1], [(x2, p), 0.5, 0.5, 0.8], [(x2, q), 0.2, 0.4, 0.5]〉}.

The Q-NSS (ΓQ, A) represents the influence of price on the degree of attraction of a house in a specific
city. The neutrosophic components TΓQi

, IΓQi
and FΓQi

represent the degree of true attractiveness, the degree of
indeterminacy attractiveness and the the degree of falsity attractiveness of a house in a specific city, respectively.
The three neutrosophic components lie in [0, 1]. Values of TΓQi

close to zero implies that the price has a very
little influence on the degree of true attractiveness of a house in a specific city whereas values of TΓQi

close to
one implies that the price has a strong influence on the degree of true attractiveness of a house in a specific city.
Similarly, for values of IΓQi

and FΓQi
components.

3. Q-Neutrosophic Soft Set Relations

In this section, after introducing the Cartesian product of two Q-NSSs, we will characterize the
idea of Q-NSR, and present two fundamental operations of Q-NSRs, namely inverse and composition
with some essential properties.

In the following we define the Cartesian product of two Q-NSSs followed by an illustrative example.

Definition 9. If X is an initial universal set, Q is a nonempty set, E is a set of parameters, A, B ⊆ E and
(ΓQ, A) and (ΨQ, B) are Q-NSSs over the universe X, then the Cartesian product of (ΓQ, A) and (ΨQ, B),
denoted by (ΓQ, A)× (ΨQ, B), is a Q-NSS (ΛQ, C), where C = A× B and (ΛQ, C) is defined as:

(ΛQ, C) =(ΓQ, A)× (ΨQ, B)

={〈(a, b), TΛQ(a,b)(x, q), IΛQ(a,b)(x, q), FΛQ(a,b)(x, q)〉 : (a, b) ∈ A× B, (x, q) ∈ X×Q},

where TΛQ(a,b)(x, q), IΛQ(a,b)(x, q), FΛQ(a,b)(x, q) are the truth, indeterminacy and falsity membership functions
of (ΛQ, A × B) such that TΛQ(a,b)(x, q), IΛQ(a,b)(x, q), FΛQ(a,b)(x, q) : X × Q → [0, 1] and for all
(x, q) ∈ X×Q and (a, b) ∈ A× B we have:

TΛQ(a,b)(x, q) = min{TΓQ(a)(x, q), TΨQ(b)(x, q)},

IΛQ(a,b)(x, q) = max{IΓQ(a)(x, q), IΨQ(b)(x, q)},

FΛQ(a,b)(x, q) = max{FΓQ(a)(x, q), FΨQ(b)(x, q)}.

Example 2. Suppose we have a set of students X = {a, b}, with their academic degree
Q = {p = Bachelor, q = Master}, their field of study A = {M = Math, Ph = Physics} and their scholarly
achievement B = {Ex = Exellent, G = Good, P = Poor}. Suppose (ΓQ, A) and (ΨQ, B) are two Q-NSSs
over X defined as:

(ΓQ, A) = {ΓQ(M) = {[(a, p), 0.2, 0.5, 0.7], [(a, q), 0.1, 0.6, 0.9], [(b, p), 0.3, 0.5, 0.8], [(b, q), 0.1, 0.4, 0.7]},
ΓQ(Ph) = {[(a, p), 0.4, 0.9, 0.9], [(a, q), 0.4, 0.3, 0.2], [(b, p), 0.1, 0.4, 0.5], [(b, q), 0.5, 0.4, 0.3]}}.
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(ΨQ, B) = {ΨQ(Ex) = {[(a, p), 0.4, 0.4, 0.5], [(a, q), 0.3, 0.4, 0.8], [(b, p), 0.9, 0.4, 0.2], [(b, q), 0.3, 0.3, 0.2]},
ΨQ(G) = {[(a, p), 0.5, 0.2, 0.6], [(a, q), 0.3, 0.2, 0.6], [(b, p), 0.7, 0.4, 0.2], [(b, q), 0.6, 0.3, 0.1]},
ΨQ(P) = {[(a, p), 0.6, 0.5, 0.4], [(a, q), 0.5, 0.7, 0.9], [(b, p), 0.4, 0.2, 0.1], [(b, q), 0.4, 0.3, 0.5]}}.

The Cartesian product of (ΓQ, A) and (ΨQ, B) is

(ΛQ, C) = {ΓQ(M)×ΨQ(Ex), ΓQ(M)×ΨQ(G), ΓQ(M)×ΨQ(P),

ΓQ(Ph)×ΨQ(Ex), ΓQ(Ph)×ΨQ(G), ΓQ(Ph)×ΨQ(P)}.

where elements will look like

ΓQ(M)×ΨQ(EX) = {[(a, p), 0.2, 0.5, 0.7], [(a, q), 0.1, 0.6, 0.9], [(b, p), 0.3, 0.5, 0.8], [(b, q), 0.1, 0.4, 0.7]}.

Now, we introduce the relation between two Q-NSSs, followed by the definitions of the domain
and the range of a Q-NSR with some illustrative examples.

Definition 10. If X is an initial universal set, Q is a nonempty set, E is a set of parameters,
A, B ⊆ E and (ΓQ, A) and (ΨQ, B) are Q-NSSs over the universe X, then a Q-NSR from (ΓQ, A) to
(ΨQ, B) is a Q-NS subset of (ΓQ, A) × (ΨQ, B), and is of the form (RQ, C), where C ⊆ A × B and
RQ(a, b) ⊆ ΓQ(a)×ΨQ(b), ∀(a, b) ∈ C. Thus (RQ, C) can be represented as:

(RQ, C) = {〈(a, b), TRQ(a,b)(x, q), IRQ(a,b)(x, q), FRQ(a,b)(x, q)〉 : (a, b) ∈ C ⊆ A× B, (x, q) ∈ X×Q},

where for all (x, q) ∈ X×Q and (a, b) ∈ C ⊆ A× B,

TRQ(a,b)(x, q) = min{TΓQ(a)(x, q), TΨQ(b)(x, q)},

IRQ(a,b)(x, q) = max{IΓQ(a)(x, q), IΨQ(b)(x, q)},

FRQ(a,b)(x, q) = max{FΓQ(a)(x, q), FΨQ(b)(x, q)}.

If (RQ, C) is a Q-NSR from (ΓQ, A) to (ΓQ, A), then it is called a Q-NSR on (ΓQ, A) and it can be
defined in the parameterized form as follows.

If (ΓQ, A) = {ΓQ(a1), ΓQ(a2), ...}, then ΓQ(a1)RQΓQ(a2) if and only if ΓQ(a1)× ΓQ(a2) ∈ (RQ, C).

Definition 11. Let R be a Q-NSR from (ΓQ, A) to (ΨQ, B). Then the domain of R (domR) is
defined as the Q-NSS (D, A1), where A1 = {a ∈ A : RQ(a, b) ∈ RQ, for some b ∈ B} and
D(a1) = ΓQ(a1), for all a1 ∈ A1. The range of R (ranR) is defined as the Q-NSS (RG, B1),
where B1 = {b ∈ B : RQ(a, b) ∈ RQ, for some a ∈ A} and RG(b1) = ΨQ(b1), for all b1 ∈ B1.

Example 3. Reconsider Example 2 with a relation R from (ΓQ, A) to (ΨQ, B) as follows:

R = {ΓQ(M)×ΨQ(Ex), ΓQ(Ph)×ΨQ(G)} ⊂ (ΓQ, A)× (ΨQ, B).

Then domR = (D, A1) where A1 = {M, Ph} and D(a) = ΓQ(a), for all a ∈ A1, and ranR = (RG, B1)

where B1 = {Ex, G} and RG(b) = ΨQ(b), for all b ∈ B1.

Definition 12. The identity relation I(ΓQ ,A) on a Q-NSS (ΓQ, A) is defined as ΓQ(a)I(ΓQ ,A)ΓQ(b) if and only
if a = b.

Example 4. In Example 2, the relation I(ΓQ,A) = {ΓQ(M)× ΓQ(M), ΓQ(Ph)× ΓQ(Ph)} is an identity relation.
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Now, we introduce the operations of inverse and composition of two Q-NSRs followed by
examples and relevant theorems.

Definition 13. If (ΓQ, A) and (ΨQ, B) are Q-NSSs over a soft universe X and (RQ, C) is a Q-NSR relation
from (ΓQ, A) and (ΨQ, B), then The inverse of a Q-NSR R, (R−1

Q , C−1) is a Q-NSR relation and is defined as:

R−1
Q (a, b) = RQ(b, a), ∀(a, b) ∈ C ⊆ A× B.

It is to be noted that the inverse of R is defined by reversing the order of every pair belonging to R.

Example 5. Reconsider R as in Example 3, where we would then have R−1 = {ΨQ(Ex) × ΓQ(M),
ΨQ(G)× ΓQ(Ph)}.

Theorem 1. Suppose (ΓQ, A) and (ΨQ, B) are Q-NSSs over a universe X, and (RQ, C) and (ZQ, C) are
Q-NSRs from (ΓQ, A) to (ΨQ, B). Then the following results hold:

1. ((RQ, C)−1)−1 = (RQ, C).
2. If (RQ, C) ⊆ (ZQ, C) then (RQ, C)−1 ⊆ (ZQ, C)−1.

Proof. ∀(a, b) ∈ C ⊆ A× B, we have

1. ((RQ)
−1)−1(a, b) = R−1

Q (b, a), thus ((RQ, C)−1)−1 = (RQ, C).
2. If RQ(a, b) ⊆ ZQ(a, b), then R−1

Q (b, a) ⊆ Z−1
Q (b, a), and thus (RQ, C)−1 ⊆ (ZQ, C)−1.

Next, we will propose the definition of the composition of Q-NSRs along with an illustrative
example, followed by related theorem.

Definition 14. If (ΓQ, A), (ΨQ, B) and (ΥQ, C) are Q-NSSs over a universe X and (RQ, D1) and (ZQ, D2)

are Q-NSRs from (ΓQ, A) to (ΨQ, B) and from (ΨQ, B) to (ΥQ, C) respectively, where D1 ⊆ A × B and
D2 ⊆ B× C, then the composition of the Q-NSRs (RQ, D1) and (ZQ, D2) denoted by ZQ ◦ RQ from (ΓQ, A)

to (ΥQ, C) is defined as:

(ZQ ◦ RQ)(a, c) = {〈(a, c), T(ZQ◦RQ)(a,c)(x, q), I(ZQ◦RQ)(a,c)(x, q), F(ZQ◦RQ)(a,c)(x, q)〉 :

(a, c) ∈ A× C, (x, q) ∈ X×Q},

where for all (a, b) ∈ D1 ⊆ A× B and (b, c) ∈ D2 ⊆ B× C,

T(ZQ◦RQ)Q(a,c)(x, q) = max{TRQ(a,b)(x, q), TZQ(b,c)(x, q)}

= max{min{TΓQ(a)(x, q), TΨQ(b)(x, q)}, min{TΨQ(b)(x, q), TΥQ(b)(x, q)}},

I(ZQ◦RQ)Q(a,c)(x, q) = min{IRQ(a,b)(x, q), IZQ(b,c)(x, q)}

= min{max{IΓQ(a)(x, q), IΨQ(b)(x, q)}, max{IΨQ(b)(x, q), IΥQ(b)(x, q)}},

F(ZQ◦RQ)Q(a,c)(x, q) = min{FRQ(a,b)(x, q), FZQ(b,c)(x, q)}

= min{max{FΓQ(a)(x, q), FΨQ(b)(x, q)}, max{FΨQ(b)(x, q), FΥQ(b)(x, q)}}.

Example 6. Let X = {s, t} be a set of students, Q = {p, q} is the nationality of the students, E be a set of
parameters and A, B, C ⊆ E, where A = {a1 = Harvard, a2 = Ox f ord, a3 = Cambridge} describes the
universities from which students may acquire degrees, B = {b1 = Master, b2 = PhD} their academic degree
and C = {c1 = Lecturer, c2 = Manager} the professions students may be engaged in after acquiring degrees.
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Suppose that (ΓQ, A), (ΨQ, B) and (ΥQ, C) are Q-NSSs defined as:

(ΓQ, A) = {ΓQ(a1) = {[(s, p), 0.4, 0.2, 0.1], [(s, q), 0.8, 0.4, 0.1], [(t, p), 0.9, 0.2, 0.4], [(t, q), 0.5, 0.4, 0.6]},
ΓQ(a2) = {[(s, p), 0.2, 0.5, 0.4], [(s, q), 0.5, 0.3, 0.1], [(t, p), 0.6, 0.1, 0.8], [(t, q), 0.4, 0.4, 0.7]},
ΓQ(a3) = {[(s, p), 0.5, 0.8, 0.3], [(s, q), 0.9, 0.3, 0.3], [(t, p), 0.3, 0.8, 0.6], [(t, q), 0.7, 0.2, 0.7]}}.

(ΨQ, B) = {ΨQ(b1) = {[(s, p), 0.4, 0.3, 0.2], [(s, q), 0.3, 0.2, 0.3], [(t, p), 0.5, 0.6, 0.3], [(t, q), 0.7, 0.8, 0.2]},
ΨQ(b2) = {[(s, p), 0.6, 0.8, 0.9], [(s, q), 0.9, 0.1, 0.1], [(t, p), 0.4, 0.3, 0.3], [(t, q), 0.5, 0.6, 0.2]}}.

(ΥQ, C) = {ΥQ(c1) = {[(s, p), 0.7, 0.1, 0.6], [(s, q), 0.5, 0.1, 0.4], [(t, p), 0.4, 0.3, 0.4], [(t, q), 0.9, 0.2, 0.4]},
ΥQ(c2) = {[(s, p), 0.7, 0.9, 0.2], [(s, q), 0.8, 0.4, 0.5], [(t, p), 0.4, 0.4, 0.1], [(t, q), 0.2, 0.5, 0.2]}}.

Define the Q-NSRs RQ from (ΓQ, A) to (ΨQ, B) as a student from Oxford university or Cambridge
university to investigate the effect of university on the master academic degree and ZQ from (ΨQ, B) to (ΥQ, C)
as a master student to investigate the effect of the academic degree on the lecturing profession. Then the Q-NSRs
RQ and ZQ are given by:

RQ = {〈(a2, b1),[(s, p), 0.2, 0.5, 0.4], [(s, q), 0.3, 0.3, 0.3], [(t, p), 0.5, 0.6, 0.8], [(t, q), 0.4, 0.8, 0.7]〉,
〈(a3, b1),[(s, p), 0.4, 0.8, 0.3], [(s, q), 0.3, 0.3, 0.3], [(t, p), 0.3, 0.8, 0.6], [(t, q), 0.7, 0.8, 0.7]〉}.

ZQ = {〈(b1, c1), [(s, p), 0.4, 0.3, 0.6], [(s, q), 0.3, 0.2, 0.4], [(t, p), 0.4, 0.6, 0.4], [(t, q), 0.7, 0.8, 0.4]〉}.

The relation RQ describes the effect of the university on being a master students, where it measures the true,
indeterminacy and falsity degrees for a student to be a master’s student if he studied at Oxford university or
Cambridge university. Whereas, the relation ZQ describes the effect of the master academic degree in engaging in
a lecturing profession, it measures the true, indeterminacy and falsity degrees for a master’s student in engaging
in a lecturing profession.

The composition between the Q-NSRs RQ and ZQ which represents students engaged in a lecturing
profession illustrates how to employ both components of parameters to convey the idea of the composition concept.
The composition between the Q-NSRs RQ and ZQ is:

ZQ ◦ RQ = {〈(a2, c1), [(s, p), 0.4, 0.3, 0.4], [(s, q), 0.3, 0.2, 0.3], [(t, p), 0.5, 0.6, 0.4], [(t, q), 0.7, 0.8, 0.4]〉,
〈(a3, c1), [(s, p), 0.4, 0.3, 0.3], [(s, q), 0.3, 0.2, 0.3], [(t, p), 0.4, 0.6, 0.4], [(t, q), 0.7, 0.8, 0.4]〉}.

The components TZQ◦RQ(a, c), IZQ◦RQ(a, c) and FZQ◦RQ(a, c) represent respectively, the degrees of true,
indeterminacy and falsity engaging in a lecturing profession for a master’s student who acquires his/her degree
from Oxford university or Cambridge university. Thus, for the parameter 〈(a2, c1)〉 the term [(t, p), 0.5, 0.6, 0.4]
implies that student “t” whose nationality is “p” and studying for his/her master’s degree at Oxford university
has a 0.5 truth degree of engaging in lecturing profession, 0.6 indeterminacy degree of engaging in a lecturing
profession and 0.4 falsity degree of engaging in a lecturing profession.

Theorem 2. If (ΓQ, A), (ΨQ, B) and (ΥQ, C) are Q-NSSs over X and (RQ, D1) and (ZQ, D2) are Q-NSRs
from (ΓQ, A) to (ΨQ, B) and (ΨQ, B) to (ΥQ, C) respectively, where D1 ⊆ A × B and D2 ⊆ B × C,
then (ZQ ◦ RQ)

−1 = R−1
Q ◦ Z−1

Q .

Proof. If (RQ, D1) and (ZQ, D2) are Q-NSRs from (ΓQ, A) to (ΨQ, B) and (ΨQ, B) to (ΥQ, C)
respectively, then ZQ ◦ RQ ⊆ (ΓQ, A)× (ΥQ, C). Now, for (a, c) ∈ A× C, (x, q) ∈ X×Q,
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T(ZQ◦RQ)−1(c,a)(x, q) = T(ZQ◦RQ)(a,c)(x, q)

= max{TRQ(a,b)(x, q), TZQ(b,c)(x, q)}

= max{TZQ(b,c)(x, q), TRQ(a,b)(x, q)}

= max{min{TΨQ(b)(x, q), TΥQ(c)(x, q)}, min{TΓQ(a)(x, q), TΨQ(b)(x, q)}}

= max{min{TΥQ(c)(x, q), TΨQ(b)(x, q)}, min{TΨQ(b)(x, q), TΓQ(a)(x, q)}}

= max{TZ−1
Q (c,b)(x, q), TR−1

Q (b,a)(x, q)} = TR−1
Q ◦Z

−1
Q (c,a)(x, q).

Similar results follow for the rest of the terms. This completes the proof.

4. Partitions on Q-Neutrosophic Soft Sets

In this section, we will introduce various types of Q-NSRs, partitions and equivalence classes of
Q-NSSs with some related theorems.

Definition 15. Let R be a relation on (ΓQ, A), then

1. (RQ, C) is reflexive if RQ(a, a) ∈ (RQ, C), ∀a ∈ A.
2. (RQ, C) is symmetric if RQ(a, b) ∈ (RQ, C)⇒ RQ(b, a) ∈ (RQ, C), ∀(a, b) ∈ A× A.
3. (RQ, C) is transitive if RQ(a, b) ∈ (RQ, C) and RQ(b, c) ∈ (RQ, C) ⇒ RQ(a, c) ∈ (RQ, C),

∀a, b, c ∈ A.
4. (RQ, C) is a Q-NS equivalence relation if it is reflexive, symmetric and transitive.

Example 7. Consider a Q-NSS (ΓQ, A) over X, where X = {a, b}, Q = {p, q}, A = {e1, e2} and

ΓQ(e1) = {[(a, p), 0.2, 0.5, 0.7], [(b, p), 0.1, 0.2, 0.9], [(a, q), 0.3, 0.5, 0.2], [(a, q), 0.1, 0.4, 0.8]}
ΓQ(e2) = {[(a, p), 0.3, 0.5, 0.6], [(a, q), 0.4, 0.5, 0.8], [(b, p), 0.7, 0.1, 0.5], [(b, q), 0.5, 0.5, 0.6]}.

Consider a relation (RQ, C) defined on (ΓQ, A) as {ΓQ(e1)× ΓQ(e1), ΓQ(e1)× ΓQ(e2), ΓQ(e2)× ΓQ(e1),
ΓQ(e2)× ΓQ(e2)}. This relation is a Q-NS equivalence relation.

Definition 16. Let (ΓQ, A) be a Q-NSS. Then the equivalence class of ΓQ(a) is defined as

[ΓQ(a)] = {ΓQ(b) : ΓQ(b)RΓQ(a), ∀a, b ∈ A}.

Example 8. Reconsider R as in Example 7, we would then have [ΓQ(e1)] = {ΓQ(e1), ΓQ(e2)} = [ΓQ(e2)].

Lemma 1. Let (RQ, C) be an equivalence relation on a Q-NSS (ΓQ, A). For any ΓQ(a), ΓQ(b) ∈ (ΓQ, A),
ΓQ(a)RQΓQ(b) if and only if [ΓQ(a)] = [ΓQ(b)].

Proof. Suppose [ΓQ(a)] = [ΓQ(b)]. Since (RQ, C) is reflexive, then ΓQ(b)RQΓQ(b), hence
ΓQ(b) ∈ [ΓQ(b)] = [ΓQ(a)] which gives ΓQ(a)RQΓQ(b).

Conversely, suppose ΓQ(a)RQΓQ(b). Let ΓQ(a1) ∈ [ΓQ(a)]. Then ΓQ(a1)RQΓQ(a). Using the
transitive property of (RQ, C) this gives ΓQ(a1) ∈ [ΓQ(b)]. Hence, [ΓQ(a)] ⊆ [ΓQ(b)]. Similarly,
[ΓQ(b)] ⊆ [ΓQ(a)]. Thus, [ΓQ(b)] = [ΓQ(a)].

Now, we define the partition of a Q-NSS followed by some related theorems.
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Definition 17. A collection of nonempty Q-NS subsets P = {(ΓQi , Ai) : i ∈ I} of a Q-NSS (ΓQ, A) is called
a partition of (ΓQ, A) such that

1. (ΓQ, A) = ∪̃i(ΓQi , Ai) and
2. Ai ∩ Aj = φ, whenever i 6= j.

Example 9. Let X = {a, b} be a universal set, Q = {p, q} be a nonempty set, A = {e1, e2, e3} be a set of
parameters and (ΓQ, A) is a Q-NSS over X defined as:

(ΓQ, A) = {ΓQ(e1) = {[(a, p), 0.2, 0.3, 0.8], [(b, p), 0.5, 0.7, 0.2], [(b, q), 0.5, 0.3, 0.6]},
ΓQ(e2) = {[(a, p), 0.4, 0.2, 0.6], [(a, q), 0.4, 0.3, 0.9]},
ΓQ(e3) = {[(a, p), 0.4, 0.8, 0.4], [(a, q), 0.7, 0.8, 0.9], [(b, p), 0.1, 0.7, 0.5], [(b, q), 0.2, 0.1, 0.9]}}.

Suppose A1 = {e1, e3}, A2 = {e2}, where (ΓQ1 , A1) = {ΓQ1(e1), ΓQ1(e3)} and (ΓQ2 , A2) = {ΓQ2(e2)}
are Q-Ns subsets of (ΓQ, A) such that ΓQi = ΓQ, for i = 1, 2. Clearly, A1 ∩ A2 = φ and (ΓQ1 , A1) ∪
(ΓQ2 , A2) = (ΓQ, A). Thus, {(ΓQ1 , A1), (ΓQ2 , A2)} is a Q-neutrosophic soft set partition of (ΓQ, A).

Remark 1. Elements of the partition are called a block of (ΓQ, A).

Corresponding to a partition (ΓQi , Ai) of a Q-NSS (ΓQ, A), we can define a Q-NSR on (ΓQ, A)

by ΓQ(a)RΓQ(b) iff ΓQ(a) and ΓQ(b) belong to the same block. Now, we will prove that the relation
defined in this manner is an equivalence relation.

Theorem 3. Let {(ΓQi , Ai), i ∈ I} be a partition of the Q-NSS (ΓQ, A). The Q-NSR defined on (ΓQ, A) as
ΓQ(a)RQΓQ(b) is an equivalence relation if and only if ΓQ(a) and ΓQ(b) are members of the same block.

Proof. Reflexive: Let ΓQ(a) be any element of (ΓQ, A). It is clear that ΓQ(a) is in the same block itself.
Hence, RQ(a, a) ∈ (RQ, C).

Symmetric: If RQ(a, b) ∈ (RQ, C), then ΓQ(a) and ΓQ(b) are in the same block. Therefore,
RQ(b, a) ∈ (RQ, C).

Transitive: If RQ(a, b) ∈ (RQ, C) and RQ(b, c) ∈ (RQ, C) then ΓQ(a), ΓQ(b) and ΓQ(c) must lie in
the same block. Therefore, RQ(a, c) ∈ (RQ, C).

Remark 2. The equivalence Q-NSR defined in the above theorem is called an equivalence relation determined
by the partition P. In the previous example the equivalence relation determined by the partition P = {(ΓQ, A1),
(ΓQ, A2)} is given by

R = {ΓQ(a1)× ΓQ(a1), ΓQ(a2)× ΓQ(a2), ΓQ(a3)× ΓQ(a3), ΓQ(a1)× ΓQ(a3), ΓQ(a3)× ΓQ(a1)}.

Theorem 4. Corresponding to every equivalence relation defined on a Q-NSS (ΓQ, A) there exists a partition
on (ΓQ, A) and this partition precisely consists of the equivalence classes of (RQ, C).

Proof. Let [ΓQ(a)] be equivalence class with respect to a relation (RQ, C) on (ΓQ, A). Let Aa be all
elements in A corresponding to [ΓQ(a)] i.e., Aa = {b ∈ A : RQ(b, a) ∈ (RQ, C)}. Thus we can denote
[ΓQ(a)] as (ΓQ, Aa). Thus, we have to show that the collection {(ΓQ, Aa) : a ∈ A} of such distinct sets
forms a partition P of (ΓQ, A). In order to do this we should prove

(i) (ΓQ, A) = ∪̃a∈A(ΓQ, Aa),
(ii) If Aa, Ab are not identical then Aa ∩ Ab = φ.

Since RQ is reflexive, RQ(a, a) ∈ (RQ, C)∀a ∈ A so that (ΓQ, A) = ∪̃a∈A(ΓQ, Aa).
Now for the second part, let x ∈ Aa ∩ Ab. Then ΓQ(x) ∈ (ΓQ, Aa) and ΓQ(x) ∈ (ΓQ, Ab).

This implies RQ(x, a) ∈ (RQ, C) and RQ(x, b) ∈ (RQ, C). Using the transitive property of RQ,



Entropy 2018, 20, 172 10 of 14

we have RQ(a, b) ∈ (RQ, C). Now, using lemma 1 we have [ΓQ(a)] = [ΓQ(b)]. This gives Aa = Ab
(contradiction) since Aa and Ab are not identical, hence Aa ∩ Ab = φ.

Remark 3. The partition constructed in the above theorem consisting of all equivalence classes of (RQ, C) is
called the quotient Q-NSS of (ΓQ, A) and is denoted by (ΓQ, A)/(RQ, C).

5. Q-Neutrosophic Soft Functions

In this section, we present the concept of Q-NS function and some special types of Q-neutrosophic
soft functions with related theorems.

Definition 18. Let (ΓQ, A) and (ΨQ, B) be two nonempty Q-NSS. Then a Q-NSR f from (ΓQ, A) to (ΨQ, B)
is called a Q-NS function if every element in the domain has a unique element in the range. We write
f : (ΓQ, A)→ (ΨQ, B). If ΓQ(a) f ΨQ(b) then f (ΓQ(a)) = ΨQ(b).

Example 10. Reconsider Example 2. The Q-NSR f which consists of a science student with excellent GPA
forms a Q-NS function from (ΓQ, A) to (ΨQ, B) as follows:

f = {ΓQ(M)×ΨQ(Ex), ΓQ(Ph)×ΨQ(Ex)}.

Definition 19. Let f : (ΓQ, A)→ (ΨQ, B) be a Q-NS function. Then

1. f is injective (one to one) if ΓQ(a1) 6= ΓQ(a2) implying f (ΓQ(a1)) 6= f (ΓQ(a2)) for
ΓQ(a1), ΓQ(a2) ∈ (ΓQ, A). i.e., f is injective if each element of ran f appears exactly once in the function.

2. f is surjective (onto) if f ((ΓQ, A)) = (ΨQ, B) i.e., ran f = (ΨQ, B).
3. f is bijective if it is both injective and surjective.
4. f is a constant function if all elements in dom f have the same image.
5. f is an identity function if the identity Q-NS function I on a QNSS (ΓQ, A) is defined by the function

I : (ΓQ, A)→ (ΓQ, A) as I(ΓQ(a)) = ΓQ(a) for every ΓQ(a) in (ΓQ, A).

Theorem 5. Let f : (ΓQ, A) → (ΨQ, B) be a QNS function, (ΓQ, A1) and (ΓQ, A2) be a Q-NS subsets of
(ΓQ, A). Then

1. (ΓQ, A1) ⊆ (ΓQ, A2)⇒ f (ΓQ, A1) ⊆ f (ΓQ, A2).
2. f [(ΓQ, A1) ∪ (ΓQ, A2)] = f (ΓQ, A1) ∪ f (ΓQ, A2).
3. f [(ΓQ, A1) ∩ (ΓQ, A2)] ⊆ f (ΓQ, A1) ∩ f (ΓQ, A2) equality holds if f is one to one.

Proof. 1. Let ΨQ(b) ∈ f (ΓQ, A1). Then there exists ΓQ(a) ∈ (ΓQ, A1) such that f (ΓQ(a)) = ΨQ(b).
Since (ΓQ, A1) ⊆ (ΓQ, A2), then ΨQ(b) ∈ f (ΓQ, A2). Therefore, f (ΓQ, A1) ⊆ f (ΓQ, A2).

2. Let ΨQ(b) ∈ f [(ΓQ, A1) ∪ (ΓQ, A2)]. Then f (ΓQ(a)) = ΨQ(b) such that
ΓQ(a) ∈ [(ΓQ, A1)∪ (ΓQ, A2)]. By using union definition, we have ΓQ(a) ∈ (ΓQ, A1) or ΓQ(a) ∈ (ΓQ, A2).

This implies, ΨQ(b) ∈ f (ΓQ, A1) or ΨQ(b) ∈ f (ΓQ, A2). Thus, ΨQ(b) ∈ f (ΓQ, A1) ∪ f (ΓQ, A2).
Therefore, f [(ΓQ, A1) ∪ (ΓQ, A2)] ⊆ f (ΓQ, A1) ∪ f (ΓQ, A2).

Now, clearly (ΓQ, A1) ⊆ (ΓQ, A1) ∪ (ΓQ, A2) and (ΓQ, A2) ⊆ (ΓQ, A1) ∪ (ΓQ, A2).
This implies f (ΓQ, A1) ⊆ f [(ΓQ, A1) ∪ (ΓQ, A2)] and f (ΓQ, A2) ⊆ f [(ΓQ, A1) ∪ (ΓQ, A2)]. Thus,
f (ΓQ, A1)∪ f (ΓQ, A2) ⊆ f [(ΓQ, A1)∪ (ΓQ, A2)]. Hence, f [(ΓQ, A1)∪ (ΓQ, A2)] = f (ΓQ, A1)∪ f (ΓQ, A2).

3. Let ΨQ(b) ∈ f [(ΓQ, A1)∩ (ΓQ, A2)]. Then f (ΓQ(a)) = ΨQ(b) for ΓQ(a) ∈ [(ΓQ, A1)∩ (ΓQ, A2)].
By using intersection definition, we have ΓQ(a) ∈ (ΓQ, A1) and ΓQ(a) ∈ (ΓQ, A2). This implies
ΨQ(b) ∈ f (ΓQ, A1) and ΨQ(b) ∈ f (ΓQ, A2). Hence, ΨQ(b) ∈ f (ΓQ, A1) ∩ f (ΓQ, A2). Thus,
f [(ΓQ, A1) ∩ (ΓQ, A2)] ⊆ f (ΓQ, A1) ∩ f (ΓQ, A2).

Conversely, suppose ΨQ(b) ∈ f (ΓQ, A1) ∩ f (ΓQ, A2). By using intersection definition, we have
ΨQ(b) ∈ f (ΓQ, A1) and ΨQ(b) ∈ f (ΓQ, A2). This implies ΨQ(b) = f (ΓQ(a1)) for some ΓQ(a1) ∈ (ΓQ, A1)

and ΨQ(b) = f (ΓQ(a2)) for some ΓQ(a2) ∈ (ΓQ, A2). Since f (ΓQ(a1)) = f (ΓQ(a2)) = ΨQ(b),
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then ΓQ(a1) = ΓQ(a2) if f is one to one. ΨQ(b) ∈ f [(ΓQ, A1)∩ (ΓQ, A2)]. Hence, f (ΓQ, A1)∩ f (ΓQ, A2) ⊆
f [(ΓQ, A1)∩ (ΓQ, A2)]. Thus, f (ΓQ, A1)∩ f (ΓQ, A2)= f [(ΓQ, A1)∩ (ΓQ, A2)].

Definition 20. Let f : (ΓQ, A)→ (ΨQ, B) and g : (ΨQ, B)→ (ΥQ, C) be two Q-NS functions. Then g ◦ f :
(ΓQ, A)→ (ΥQ, C) is also a Q-NS function defined by (g ◦ f )(ΓQ(a)) = g( f (ΓQ(a))).

Definition 21. Let f : (ΓQ, A) → (ΨQ, B) be a bijective function. Then the inverse relation f−1:
(ΨQ, B)→ (ΓQ, A) is called the inverse function.

Now we will define and propose a few theorems on the composition of Q-neutrosophic soft functions.

Theorem 6. If f : (ΓQ, A)→ (ΨQ, B) is bijective then f−1 : (ΨQ, B)→ (ΓQ, A) is also a bijective function.

Proof. Let ΨQ(b1) 6= ΨQ(b2) for ΨQ(b1), ΨQ(b2) ∈ (ΨQ, B), and let f−1(ΨQ(b1)) = ΓQ(a1) and
f−1(ΨQ(b2)) = ΓQ(a2). Then f (ΓQ(a1)) = ΨQ(b1) and f (ΓQ(a2)) = ΨQ(b2). Since f is one to
one, f (ΓQ(a1)) 6= f (ΓQ(a1)) implies ΓQ(a1) 6= ΓQ(a2). Therefore, f−1(ΨQ(b1)) 6= f−1(ΨQ(b2)).
Hence f−1 is one to one.

Now ΓQ(a) is an element of (ΓQ, A). Since f is surjective, there exists a unique element ΨQ(b) in
(ΨQ, B) such that f (ΓQ(a)) = ΨQ(b) implies ΓQ(a) = f−1(ΨQ(b)) for ΓQ(a) in (ΓQ, A). Thus f−1 is
onto. Hence, f−1 is bijective.

Theorem 7. Let f : (ΓQ, A) → (ΨQ, B), g : (ΨQ, B) → (ΥQ, C) be two bijective functions. Then g ◦ f :
(ΓQ, A)→ (ΥQ, C) is also a bijective and (g ◦ f )−1 = f−1 ◦ g−1.

Proof. Let ΓQ(a1), ΓQ(a2) be two distinct elements of (ΓQ, A). Since f and g are one to
one we have f (ΓQ(a1)) 6= f (ΓQ(a2)) and g( f (ΓQ(a1))) 6= g( f (ΓQ(a2))). This implies
(g ◦ f )(ΓQ(a1)) 6= (g ◦ f )(ΓQ(a2)). Hence, g ◦ f is one to one.

Let ΥQ(c) be an element of (ΥQ, C). Then there exists ΨQ(b) in (ΨQ, B) such that
g(ΨQ(b)) = ΥQ(c) as g is onto. Again since f is onto there exists ΓQ(a) in (ΓQ, A) such that
f (ΓQ(a)) = ΨQ(b). Then, (g ◦ f )(ΓQ(a)) = ΥQ(c) for every ΥQ(c) in (ΥQ, C). Thus, g ◦ f is onto.
Hence, g ◦ f is bijective. Since f , g and g ◦ f are bijective, they are invertible and for any relation
(RQ, C) and (ZQ, C) we have (ZQ ◦ RQ)

−1 = R−1
Q ◦ Z−1

Q , therefore (g ◦ f )−1 = f−1 ◦ g−1.

6. Decision Making Method

In this section, we present an application of Q-NSR in a decision-making problem.
The problem we consider is as below.
Let X = {a, b, c, d} be a set of cars, Q = {p, q} be the set of colors and E be a set of parameters

where E = {e1 = cheap, e2 = type, e3 = modern, e4 = large}. If two individuals are going to buy a car
according to their choice of parameters A = {e1, e4}, B = {e2}.

Suppose the Q-NSS (ΓQ, A) describes the influence of being cheap and large on the degree of
attraction of a car with a specific color and the Q-NSS (ΨQ, B) describes the influence of the type on
the degree of attractivness of a car with a specific color as follows.

(ΓQ, A) = {〈e1,[(a, p), 0.5, 0.4, 0.7], [(a, q), 0.7, 0.3, 0.2], [(b, p), 0.4, 0.3, 0.4], [(b, q), 0.6, 0.1, 0.3],

[(c, p), 0.8, 0.2, 0.7], [(c, q), 0.2, 0.1, 0.9], [(d, p), 0.4, 0.9, 0.3], [(d, q), 0.5, 0.5, 0.1]〉,
〈e4,[(a, p), 0.9, 0.7, 0.3], [(a, q), 0.1, 0.4, 0.9], [(b, p), 0.2, 0.1, 0.1], [(b, q), 0.5, 0.3, 0.4],

[(c, p), 0.3, 0.2, 0.2], [(c, q), 0.4, 0.7, 0.7], [(d, p), 0.6, 0.3, 0.5], [(d, q), 0.3, 0.9, 0.1]〉}.

(ΨQ, B) = {〈e2,[(a, p), 0.7, 0.2, 0.6], [(a, q), 0.2, 0.3, 0.5], [(b, p), 0.9, 0.6, 0.5], [(b, q), 0.3, 0.2, 0.1],

[(c, p), 0.5, 0.7, 0.9], [(c, q), 0.5, 0.7, 0.6], [(d, p), 0.9, 0.8, 0.7], [(d, q), 0.8, 0.6, 0.4]〉}.
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Then we can select a car on the basis of their parameters using Q-NSR, by applying the
following algorithm.

Step 1. Construct two Q-NSSs over X, (ΓQ, A) and (ΨQ, B).
Step 2. Construct a Q-NSR (RQ, C) as requested.
Step 3. Compute the comparison table using the formula: T + I − F.
Step 4. Select the highest numerical grades for each column in the comparison table.
Step 5. Find the score table which shows the objects with highest numerical grades corresponding to

every pair of parameters.
Step 6. Compute the score S(x,q)of each object (x, q) by taking the sum of those numerical grades.

Step 7. The decision is any one of the elements in M where M = max(x,q)∈X×Q{S(x,q)}.

To execute the above steps, we will use the Q-NSSs (ΓQ, A) and (ΨQ, B) to apply Step 2 to Step 7.
We obtain the Q-NSR RQ corresponding to the Cartesian product of (ΓQ, A) and (ΨQ, B),

respectively as follows.

RQ = {〈(e1, e2),[(a, p), 0.5, 0.4, 0.7], [(a, q), 0.2, 0.3, 0.5], [(b, p), 0.4, 0.6, 0.5], [(b, q), 0.3, 0.2, 0.3],

[(c, p), 0.5, 0.7, 0.9], [(c, q), 0.2, 0.7, 0.9], [(d, p), 0.4, 0.9, 0.7], [(d, q), 0.5, 0.6, 0.4]〉,
〈(e4, e2),[(a, p), 0.7, 0.7, 0.6], [(a, q), 0.1, 0.4, 0.9], [(b, p), 0.2, 0.6, 0.5], [(b, q), 0.3, 0.3, 0.4],

[(c, p), 0.3, 0.7, 0.9], [(c, q), 0.4, 0.7, 0.7], [(d, p), 0.6, 0.8, 0.7], [(d, q), 0.3, 0.9, 0.4]〉}.

We compute the comparison table as:
The highest numerical grade for each column in Table 1 is written in bold, and the score is

tabulated in Table 2.

Table 1. Comparison table

X × Q (e1, e2) (e4, e2)

(a, p) 0.2 0.8

(a, q) 0 -0.4

(b, p) 0.5 0.3

(b, q) 0.2 0.2

(c, p) 0.3 0.1

(c, q) 0 0.4

(d, p) 0.6 0.7

(d, q) 0.7 0.8

Table 2. Score table.

(e1, e2) (e4, e2)

(d, q) (a, p), (d, q)

0.7 0.8

The score of each object by taking the sum of these numerical grades are: S(a,p) = 0.8 and
S(d,q) = 0.8 + 0.7 = 1.5.

Hence, M = max(x,q)∈X×Q{S(x,q)} = S(d,q). Thus, the decision is to choose the associated object
(d, q) which represents car “d” of color “q”, as the appropriate solution for selecting the most suitable
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car according to the basis of parameters e1, e4 and their related e2. Therefore, the selection of a car is
dependent on the choice parameters of each buyer.

7. Conclusions

This work established the notion of relations between Q-NSSs. It improved the concept
of relations between fuzzy sets, soft sets and hybrid models of these two types of sets because
the relations have been constructed based on the Q-NSSs model which has three independent
two-dimensional membership functions for uncertainty, indeterminacy and falsity. It provided an
adequate parametrization tool to deal with the aspects of two-dimensional imprecise, indeterminate
and inconsistent data which appear in most real life problems. The notions of inverse, composition of
Q-NSRs and functions were also presented along with some related theorems and properties. The ideas
of reflexive, symmetric, transitive and equivalence Q-NSRs were defined followed by the introduction
of the associated properties with illustrative examples. An algorithm using Q-NSR was constructed
and applied to a decision making problem. Q-NSS facilitates the way to numerous prospects for
future research since it serves the two-dimensionality and indeterminacy simultaneously. Thus, it can
be extended using the refined neutrosophic set [40], soft expert set [11] and many other structures.
The structure of the Q-NSR enables it to describe the relations between two-dimensional imprecise,
indeterminate and inconsistent data. It may be applied to different branches of mathematics, especially
to graph theory, to establish the notion of Q-neutrosophic graphs. It also may provide a powerful
framework to represent problems with uncertainty and two-dimensionality simultaneously in the
fields of physics, engineering and medical diagnosis.
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