31,086 research outputs found

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Free and regular mixed-model sequences by a linear program-assisted hybrid algorithm GRASP-LP

    Get PDF
    A linear program-assisted hybrid algorithm (GRASP-LP) is presented to solve a mixed-model sequencing problem in an assembly line. The issue of the problem is to obtain manufacturing sequences of product models with the minimum work overload, allowing the free interruption of operations at workstations and preserving the production mix. The implemented GRASP-LP is compared with other procedures through a case study linked with the Nissan’ Engine Plant from Barcelona.Peer ReviewedPostprint (author's final draft

    Balancing of parallel U-shaped assembly lines

    Get PDF
    Copyright © 2015 Elsevier. This is a PDF file of an unedited manuscript that has been accepted for publication in Computers & Operations Research (doi: 10.1016/j.cor.2015.05.014). As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Please cite this article as: Ibrahim Kucukkoc, David Z. Zhang, Balancing of parallel U-shaped assembly Lines, Computers & Operations Research, http://dx.doi.org/10.1016/j.cor.2015.05.014A new hybrid assembly line design, called Parallel U-shaped Assembly Line system, is introduced and characterised along with numerical examples for the first time. Different from existing studies on U-shaped lines, we combine the advantages of two individual line configurations (namely parallel lines and U-shaped lines) and create an opportunity for assigning tasks to multi-line workstations located in between two adjacent U-shaped lines with the aim of maximising resource utilisation. Utilisation of crossover workstations, in which tasks from opposite areas of a same U-shaped line can be performed, is also one of the main advantages of the U-shaped lines. As in traditional U-shaped line configurations, the newly proposed line configuration also supports the utilisation of crossover workstations. An efficient heuristic algorithm is developed to find well-balanced solutions for the proposed line configurations. Test cases derived from existing studies and modified in accordance with the proposed system in this study are solved using the proposed heuristic algorithm. The comparison of results obtained when the lines are balanced independently and when the lines are balanced together (in parallel to each other) clearly indicates that the parallelisation of U-shaped lines helps decrease the need for workforce significantly.Balikesir UniversityTurkish Council of Higher Educatio

    Simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines

    Get PDF
    Copyright © 2014 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 31 January 2014, available online: http://www.tandfonline.com/10.1080/00207543.2013.879618Growing interests from customers in customised products and increasing competitions among peers necessitate companies to configure their manufacturing systems more effectively than ever before. We propose a new assembly line system configuration for companies that need intelligent solutions to satisfy customised demands on time with existing resources. A mixed-model parallel two-sided assembly line system is introduced based on the parallel two-sided assembly line system previously proposed by Ozcan et al. (Balancing parallel two-sided assembly lines, International Journal of Production Research, 48 (16), 4767-4784, 2010). The mixed-model parallel two-sided assembly line balancing problem is illustrated with examples from the perspective of simultaneous balancing and sequencing. An agent based ant colony optimisation algorithm is proposed to solve the problem. This algorithm is the first attempt in the literature to solve an assembly line balancing problem with an agent based ant colony optimisation approach. The algorithm is illustrated with an example and its operational procedures and principles explained and discussed

    Balancing of mixed-model parallel U-shaped assembly lines considering model sequences

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this record.As a consequence of increasing interests in customised products, mixed-model lines have become the most significant components of today’s manufacturing systems to meet surging consumer demand. Also, U-shaped assembly lines have been shown as the intelligent way of producing homogeneous products in large quantities by reducing the workforce need thanks to the crossover workstations. As an innovative idea, we address the mixed-model parallel U-shaped assembly line design which combines the flexibility of mixed-model lines with the efficiency of U-shaped lines and parallel lines. The multi-line stations utilised in between two adjacent lines provide extra efficiency with the opportunity of assigning tasks into workstations in different combinations. The new line configuration is defined and characterised in details and its advantages are explained. A heuristic solution approach is proposed for solving the problem. The proposed approach considers the model sequences on the lines and seeks efficient balancing solutions for their different combinations. An explanatory example is also provided to show the sophisticated structure of the studied problem and explain the running mechanism of the proposed approach. The results of the experimental tests and their statistical analysis indicated that the proposed line design requires fewer number of workstations in comparison with independently balanced mixed-model U-lines

    A mathematical model and genetic algorithm-based approach for parallel two-sided assembly line balancing problem

    Get PDF
    Copyright © 2015 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Production Planning & Control on 27 April 2015, available online: http://dx.doi.org/10.1080/09537287.2014.994685Assembly lines are usually constructed as the last stage of the entire production system and efficiency of an assembly line is one of the most important factors which affect the performance of a complex production system. The main purpose of this paper is to mathematically formulate and to provide an insight for modelling the parallel two-sided assembly line balancing problem, where two or more two-sided assembly lines are constructed in parallel to each other. We also propose a new genetic algorithm (GA)-based approach in alternatively to the existing only solution approach in the literature, which is a tabu search algorithm. To the best of our knowledge, this is the first formal presentation of the problem as well as the proposed algorithm is the first attempt to solve the problem with a GA-based approach in the literature. The proposed approach is illustrated with an example to explain the procedures of the algorithm. Test problems are solved and promising results are obtained. Statistical tests are designed to analyse the advantage of line parallelisation in two-sided assembly lines through obtained test results. The response of the overall system to the changes in the cycle times of the parallel lines is also analysed through test problems for the first time in the literature

    Integrating ant colony and genetic algorithms in the balancing and scheduling of complex assembly lines

    Get PDF
    Copyright © 2015 Springer. This is a PDF file of an unedited manuscript that has been accepted for publication in The International Journal of Advanced Manufacturing Technology. The final publication is available at: http://link.springer.com/article/10.1007/s00170-015-7320-y. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.Different from a large number of existing studies in the literature, this paper addresses two important issues in managing production lines, the problems of line balancing and model sequencing, concurrently. A novel hybrid agent-based ant colony optimization–genetic algorithm approach is developed for the solution of mixed model parallel two-sided assembly line balancing and sequencing problem. The existing agent-based ant colony optimization algorithm is enhanced with the integration of a new genetic algorithm-based model sequencing mechanism. The algorithm provides ants the opportunity of selecting a random behavior among ten heuristics commonly used in the line balancing domain. A numerical example is given to illustrate the solution building procedure of the algorithm and the evolution of the chromosomes. The performance of the developed algorithm is also assessed through test problems and analysis of their solutions through a statistical test, namely paired sample t test. In accordance with the test results, it is statistically proven that the integrated genetic algorithm-based model sequencing engine helps agent-based ant colony optimization algorithm robustly find significantly better quality solutions

    Automatic assembly design project 1968/9 :|breport of economic planning committee

    Get PDF
    Investigations into automatic assembly systems have been carried out. The conclusions show the major features to be considered by a company operating the machine to assemble the contact block with regard to machine output and financial aspects. The machine system has been shown to be economically viable for use under suitable conditions, but the contact block is considered to be unsuitable for automatic assembly. Data for machine specification, reliability and maintenance has been provided
    • …
    corecore