
 

University of Exeter’s Institutional Repository, ORE 

https://ore.exeter.ac.uk/repository/  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please scroll down to view the document 

 

Article version: AUTHOR’S ACCEPTED MANUSCRIPT 

Author(s): Ibrahim Kucukkoc, David Z. Zhang 

Article title: Balancing of Parallel U-shaped Assembly Lines 

Originally published in: Computers & Operations Research, DOI: 10.1016/j.cor.2015.05.014  

© Elsevier, 2015. 

To cite this article: Ibrahim Kucukkoc, David Z. Zhang, Balancing of Parallel U-shaped Assembly Lines, 

Computers & Operations Research, http://dx.doi.org/10.1016/j.cor.2015.05.014  

The final publication is available at: 

http://dx.doi.org/10.1016/j.cor.2015.05.014      

Usage guidelines 

This version is made available online in accordance with publisher policies. To see the final version of 

this paper, please visit the publisher’s website (a subscription may be required to access the full text). 

Before reusing this item please check the rights under which it has been made available. Some items 

are restricted to non-commercial use. Please cite the published version where applicable. 

Further information about usage policies can be found at: 

http://as.exeter.ac.uk/library/resources/openaccess/ore/orepolicies/  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43095219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ore.exeter.ac.uk/repository/
http://dx.doi.org/10.1016/j.cor.2015.05.014
http://dx.doi.org/10.1016/j.cor.2015.05.014
http://as.exeter.ac.uk/library/resources/openaccess/ore/orepolicies/


Author's Accepted Manuscript

Balancing of Parallel U-shaped Assembly Lines

Ibrahim Kucukkoc, David Z. Zhang

PII: S0305-0548(15)00141-0
DOI: http://dx.doi.org/10.1016/j.cor.2015.05.014
Reference: CAOR3796

To appear in: Computers & Operations Research

Received date: 24 October 2014
Revised date: 8 April 2015
Accepted date: 30 May 2015

Cite this article as: Ibrahim Kucukkoc, David Z. Zhang, Balancing of Parallel U-
shaped Assembly Lines, Computers & Operations Research, http://dx.doi.org/
10.1016/j.cor.2015.05.014

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/caor

http://dx.doi.org/10.1016/j.cor.2015.05.014
http://dx.doi.org/10.1016/j.cor.2015.05.014
http://dx.doi.org/10.1016/j.cor.2015.05.014
http://dx.doi.org/10.1016/j.cor.2015.05.014
http://dx.doi.org/10.1016/j.cor.2015.05.014
http://dx.doi.org/10.1016/j.cor.2015.05.014
http://dx.doi.org/10.1016/j.cor.2015.05.014


1 
 

Balancing of Parallel U-shaped Assembly Lines 

 

Ibrahim KUCUKKOC 
ab*

 and David Z. ZHANG a 

a College of Engineering, Mathematics and Physical Sciences, North Park Road, University of Exeter, Exeter, 
EX4 4QF, England, United Kingdom 

b Department of Industrial Engineering, Balikesir University, Cagis Campus, Balikesir, Turkey 

I.Kucukkoc@exeter.ac.uk, D.Z.Zhang@exeter.ac.uk 

 

Abstract 

A new hybrid assembly line design, called Parallel U-shaped Assembly Line system, is introduced 

and characterised along with numerical examples for the first time. Different from existing studies on 

U-shaped lines, we combine the advantages of two individual line configurations (namely parallel 

lines and U-shaped lines) and create an opportunity for assigning tasks to multi-line workstations 

located in between two adjacent U-shaped lines with the aim of maximising resource utilisation. 

Utilisation of crossover workstations, in which tasks from opposite areas of a same U-shaped line can 

be performed, is also one of the main advantages of the U-shaped lines. As in traditional U-shaped 

line configurations, the newly proposed line configuration also supports the utilisation of crossover 

workstations. An efficient heuristic algorithm is developed to find well-balanced solutions for the 

proposed line configurations. Test cases derived from existing studies and modified in accordance 

with the proposed system in this study are solved using the proposed heuristic algorithm. The 

comparison of results obtained when the lines are balanced independently and when the lines are 

balanced together (in parallel to each other) clearly indicates that the parallelisation of U-shaped lines 

helps decrease the need for workforce significantly. 
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production lines; artificial intelligence. 
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Balancing of Parallel U-shaped Assembly Lines 

Abstract 

A new hybrid assembly line design, called Parallel U-shaped Assembly Line system, is 

introduced and characterised along with numerical examples for the first time. 

Different from existing studies on U-shaped lines, we combine the advantages of two 

individual line configurations (namely parallel lines and U-shaped lines) and create an 

opportunity for assigning tasks to multi-line workstations located in between two 

adjacent U-shaped lines with the aim of maximising resource utilisation. Utilisation of 

crossover workstations, in which tasks from opposite areas of a same U-shaped line can 

be performed, is also one of the main advantages of the U-shaped lines. As in 

traditional U-shaped line configurations, the newly proposed line configuration also 

supports the utilisation of crossover workstations. An efficient heuristic algorithm is 

developed to find well-balanced solutions for the proposed line configurations. Test 

cases derived from existing studies and modified in accordance with the proposed 

system in this study are solved using the proposed heuristic algorithm. The comparison 

of results obtained when the lines are balanced independently and when the lines are 

balanced together (in parallel to each other) clearly indicates that the parallelisation of 

U-shaped lines helps decrease the need for workforce significantly.  

Keywords: assembly line balancing; parallel lines; U-shaped assembly lines; heuristic 

algorithm; production lines; artificial intelligence. 

 

1. Introduction 

Flexibility is one of the most crucial criteria of modern manufacturing systems to satisfy customised 

demands in a cost-effective manner. As mentioned by Miltenburg [1], proper design and machinery 

layout is one of three important elements that help increase flexibility to respond to changes in 

demand. The other two elements are multi-functional workers, and continuous evaluation and 

revisions of the standard operations. U-shaped lines (or U-lines shortly) not only provide the 

flexibility and efficiency of a proper line design but also help increase functionality of workers on the 

line. 
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An assembly line is a sequence of workstations in which a set of tasks related to the assembly of a 

product are performed based on pre-defined rules and certain constraints. Precedence relationship 

constraint is one of these constraints and must be satisfied due to technological or organisational 

restrictions. Another must have constraint is capacity constraint. Tasks assigned to workstations must 

be completed within a designated time, called cycle time. Also, every task must be assigned to exactly 

one workstation to obtain a feasible balance. In U-shaped lines, the entrance and the exit of the line 

system are very close to each other and form a ‘U’ shape allowing operators to handle work-pieces 

both at the front and at the back of the line [2, 3]. Figure 1 provides schematic representation of a U-

shaped line configuration. 

 

Figure 1. Typical illustration of a U-shaped line configuration 

The common objective is to obtain the optimal line balance which minimises the total number of 

required workstations (or operators) for a given cycle time determined by demand for assembled 

product(s) on the line. This problem is referred to as type-I. The problem is called type-II if the 

minimisation of cycle time is the main objective for a given number of workstations [4]. Other two 

types of assembly line balancing problems in accordance with sought objective(s) are type-E and 

type-F. In type-E, both of the cycle time and total number of workstations are minimised while in 

type-F a feasible line balance is sought when both of the cycle time and number of workstations are 

given. 

Many studies on new problem concepts including new line configurations (e.g. parallel, U-shaped, 

two sided, etc.), flexibility considerations (e.g. parallel workstations, mixed-models etc.), job-

handling variations (e.g. manual or robotic lines, etc.), additional layout-based constraints (e.g. space 
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constraints, zoning constraints, etc.) and dynamism effects (e.g. changing model demands, learning 

effect, etc.) have been conducted for about six decades. However, hybrid configurations have become 

quite popular recently due to their advantages over individual configuration types because a hybrid 

line combines the advantages of both individual constituents. Moving from that point, we propose a 

hybrid line configuration, namely parallel U-shaped assembly line system, to increase resource 

utilisation and maximise line efficiency. Two U-shaped lines are located in parallel to each other to 

establish an assembly environment where operators located between two adjacent lines can handle 

tasks on both of the lines. The main contribution of this paper is that such a line system where a 

different model of a product is assembled on each of the U-shaped lines located in parallel is 

introduced for the first time in the literature. Each line may have a different cycle time from each 

other and the flexibility of the system increases even more by this way. Also, flexibility of the 

workstation utilisation in three different formats, i.e. (i) multi-line stations (between two adjacent 

lines), (ii) crossover stations (between front and back of the inner line) and (iii) regular stations (on 

only front or back of the inner line), help line managers move forward one step more towards 

successfully implemented JIT production systems. There is no doubt that the NP-Hard complexity of 

the problem makes its exact solution impossible using traditional techniques. For that reason, a new 

efficient heuristic algorithm is proposed to find well balanced solutions for parallel U-shaped 

assembly lines.  

The remainder of the paper is organised as follows. In Section 2, a comprehensive review of the 

literature is presented. The parallel U-shaped assembly line balancing problem is characterised and 

illustrated in detail in Section 3. Section 4 and Section 5 present the proposed heuristic algorithm 

stepwise and two numerical examples, respectively. Section 6 reports the results of the performed 

computational tests followed by the conclusions and suggestions for future work in Section 7. 

2. Review of the Literature 

The first U-shaped assembly line design was brought to the attention of the academia by Miltenburg 

and Wijngaard [5]. They described the simplest form of a U-shaped assembly line balancing problem 
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and illustrated the advantages of utilising U-shaped assembly lines over traditional straight assembly 

lines. They developed (i) a dynamic programming approach which can solve problems with up to 11 

tasks and (ii) a heuristic based technique for problems of larger size to minimise the number of 

workstations. This was followed by a series of publications. Table 1 presents a summary of the main 

contributions on U-shaped assembly lines in the literature. 

Some exact (e.g. an integer programming formulation by Urban [6], a branch and bound procedure by 

Scholl and Klein [7]) and heuristic/meta-heuristic (e.g. a simulated annealing approach by Erel et al. 

[8], a shortest route formulation by Gökçen et al. [9], a genetic algorithm approach by Hwang et al. 

[10] and an ant colony optimisation based approach by Sabuncuoglu et al. [11]) solution approaches 

were developed to solve the U-shaped assembly line balancing problem in its traditional form where 

there is only one line on which a single model is produced. Among these studies, Scholl and Klein [7] 

and Hwang et al. [10] also aimed at minimising cycle time and obtaining a smooth workload 

distribution, respectively, as well as minimising the number of workstations as a common objective. 

Large numbers of studies have been conducted on relatively more complex versions of U-shaped line 

balancing problems as well. Variability in processing times due to human factors (stochastic task 

times) on U-lines was studied by Chiang and Urban [12], Urban and Chiang [13] and Celik et al. [14]. 

Urban and Chiang [13] developed a chance-constrained piecewise-linear programme to optimally 

solve the U-shaped line balancing problem with stochastic task times. Hybrid heuristic and ant colony 

optimisation approaches were proposed by Chiang and Urban [12] and Celik et al. [14], respectively. 

While Chiang and Urban [12] aimed at minimising the number of workstations, Celik et al. [14] 

considered total cost of rebalancing as the primary goal. Learning effect in processing times is 

considered by Toksari et al. [15] when minimising the number of workstations. Kara et al. [16] and 

Jayaswal and Agarwal [2] proposed integer programming model and simulated annealing algorithm, 

respectively, to minimise operating costs. 

Table 1. Summary of the main contributions on U-shaped assembly lines 

Research Proposed Methodology 
Main Obj. Other Specifications 

K C O S M Explanation 

Miltenburg and 
Wijngaard ��� 

A dynamic programming approach 
for small-sized problems and a 

�� � � ��   
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Research Proposed Methodology 
Main Obj. Other Specifications 

K C O S M Explanation 

heuristic technique for problems of 
larger size 

Urban ��� Integer programming formulation �� � � �� �  

Scholl and Klein ��� Branch and bound procedure �� �� � �� � Type-1, type-2, type-E 

Erel et al. ���� Simulated annealing approach� �� � � �� � �

Gökçen et al. �	�� Shortest route formulation� �� � � �� � �

Gökçen and A�pak �
���Goal programming approach� �� �� �� �� � Number of tasks per 
workstations�

Urban and Chiang �
��� Chance-constrained piecewise-
linear programme�

�� � � �� � Stochastic task times�

Chiang and Urban �
��� Hybrid heuristic algorithm� �� � � �� � Stochastic task times�

Kim et al. �
�� Endosymbiotic evolutionary 
algorithm 

� � �� � �� S-LB/MS, ADW 

Kara et al. �
	� Simulated annealing algorithm 
based method 

� � �� � �� S-LB/MS, ADW, 
part usage rate, cost of 
setups 

Chiang et al. ��� Optimal solution methodologies �� �� � �� � Cost-minimisation 

Hwang et al. �
�� Multi objective genetic algorithm 
approach�

�� � �� �� � Workload variation�

Toksari et al. �
��� Heuristic approach� �� � � �� � Learning effect�

Kara et al. ��
� Binary fuzzy goal programming 
approach 

�� �� � �� � Two or more conflicting 
objectives 

Sabuncuoglu et al. �

�� An ant colony optimisation� �� � � �� � �

Yegul et al. ���� Multi-pass random assignment 
algorithm 

�� � � �� � U-shaped two-sided 
assembly line 

Kara et al. �
�� Integer programming formulation � � �� �� � Total operating cost, 
RDT 

Özcan et al. ����� Genetic algorithm approach� � � �� � �� S-LB/MS, ADW with 
stochastic task times�

Hamzadayi and Yildiz 
�����

Genetic algorithm based approach� �� � �� � �� S-LB/MS, workload 
smoothness, parallel 
workstations and zoning 
constraints�

Rabbani et al. ����� Genetic algorithm approach� �� �� � � �� Two-sided line with 
multiple U-shaped layout�

Hamzadayi and Yildiz 
�����

Simulated annealing algorithm 
(enhanced with tabu list)�

�� � � � �� S-LB/MS�

Manavizadeh et al. ���� Simulated annealing algorithm �� � � � �� Human efficiency, 
workload variations, 
permanent and temporary 
workers 

Battaïa and Dolgui ���� Taxonomy of line balancing 
problems & solution approaches 

� � � � � Review of the assembly 
line balancing literature 

Celik et al. �
�� Ant colony optimisation approach � � �� �� � Total cost of rebalancing, 
stochastic task times 

Jayaswal and Agarwal 
[2] 

Simulated annealing algorithm � � �� �� � Cost of workstation and 
resource utilization, RDT 

Dong et al. ��	� Simulated annealing-based 
algorithm 

� � �� � �� S-LB/MS, expectation of 
work overload time, 
stochastic task times 

K: number of stations, C: cycle time, O: other (see Explanation column), S: single model, M: mixed-model, RDT: resource 

dependent task times, S-LB/MS: simultaneous line balancing and model sequencing, ADW: absolute deviation of workloads 
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Also, to reflect real world conditions in industry, resource dependent task times for U-lines were 

considered in both studies. Manavizadeh et al. [27] considered human efficiency for mixed-model U-

shaped assembly lines and set labour assignment policy after balancing the line using simulated 

annealing algorithm based on two types of operators: permanent and temporary. Yegul et al. [22] 

proposed multi-pass random assignment algorithm for U-shaped two-sided assembly line balancing 

problem with the aim of minimising the number of workstations. To help multi-criteria decision 

making process Gökçen and A�pak [17] and Kara et al. [21] proposed goal programming and binary 

fuzzy goal programming approaches considering two or more conflicting objectives. In the former 

study, Gökçen and A�pak [17] also considered the number of tasks assigned to each workstation as an 

additional goal. 

Considering mixed-models on U-shaped lines requires extra care as it is possible that different model 

combinations can appear in the cross workstations depending on the model sequences produced on the 

line. Therefore, line balancing and model sequencing problems have been simultaneously considered 

by some of the researchers to find suitable balances for mixed-model U-lines. Kim et al. [18] and 

Hamzadayi and Yildiz [24] proposed evolutionary based algorithms while Kara et al. [19] and 

Hamzadayi and Yildiz [26] proposed simulated annealing algorithm based methods to solve the 

problem. Hamzadayi and Yildiz [24, 26] minimised number of workstations needed while Kim et al. 

[18] minimised absolute deviation of workloads (ADW) as primary goal. Hamzadayi and Yildiz [26] 

illustratively showed that ADW is an insufficient performance criterion for evaluating the 

performance of the solutions although it is a frequently used performance measure in the literature. 

Kara et al. [19] aimed at optimising part usage rate and cost of setups as well as ADW in a multi-

objective manner. Özcan et al. [23] and Dong et al. [29] proposed genetic algorithm and simulated 

annealing based approaches, respectively, to solve the mixed-model assembly U-line balancing 

problem with stochastic task times. While ADW is considered as the performance measure by Özcan 

et al. [23], Dong et al. [29] aimed at minimising expectation of work overload time. Please refer to 

Özcan et al. [23] for a detailed review of the literature on balancing and sequencing of mixed-models 
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on U-shaped lines. Also Battaïa and Dolgui [28] presented a taxonomy of line balancing problems and 

their solution approaches. 

Parallel line systems, a typical illustration of which is provided in Figure 2, have become quite 

popular recently (please see [30-33] for some real world examples). However, this concept – where 

two or more lines are located in parallel to each other – has not yet been studied for U-shaped lines, 

interestingly. Parallel line system was first proposed by Gökçen et al. [34] and have been hybridised 

with various types of other line configurations successfully; see for example Ozcan et al. [35], 

Kucukkoc and Zhang [36-38] and Kucukkoc et al. [39] for parallel two-sided lines; Özcan et al. [40] 

for parallel mixed-model lines; and Kucukkoc and Zhang [41-43] and Zhang and Kucukkoc [44] for 

mixed-model parallel two-sided lines. Gökçen et al. [34] showed that locating two straight lines in 

parallel to each other requires less number of workstations in comparison with performing the same 

tasks on individually balanced straight lines. Ozcan et al. [35] and Kucukkoc and Zhang [41] showed 

this advantage for the parallel two-sided lines and mixed-model parallel two-sided lines, respectively.  

 

Figure 2. Schematic view of a parallel line system 

Chiang et al. [20] introduced and formalised the multiple U-line balancing problem. They provided 

optimal solution methodologies for type-I, type-II and cost-minimisation assembly line balancing 

problems. Rabbani et al. [25] studied the mixed-model two-sided assembly line balancing problem 

with multiple U-shaped layout and proposed a genetic algorithm approach for the solution of the 

problem with the aim of minimising both the cycle time and the number of workstations. The most 

important advantage of the proposed parallel U-shaped assembly line configuration over these studies 
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is the flexibility of producing parts in different throughput rates. Also, the current work differs from 

these studies as stations may include tasks from multiple/independent lines, not adjacent lines as 

considered in the current work. This survey clearly contextualises the need for the current work to fill 

the gap in the literature. 

3. Problem Description 

U-shaped lines have emerged as a result of efforts on continuous improvement and cost reduction in 

just-in-time (JIT) production systems [21, 45]. The main reason lying behind this fact is that U-shaped 

lines provide more flexibility and possibility to assign tasks into workstations in many diversified 

groups or combinations. Thanks to crossover stations, tasks belonging to the front of the line can also 

be performed from the back of the line. Similarly, tasks belonging to the back of the line can be 

performed from the front of the line. This flexibility enables line managers to assign tasks into 

workstations in such a way that the utilisation of the line is maximised. It also helps obtain a smooth 

line balance where workload times are distributed among workstations as equally as possible.  

This paper proposes an improved design of the traditional U-shaped lines where two or more U-lines, 

represented by ����� � ��	 �
� are located in parallel to each other. Figure 3 represents a schematic 

view of the proposed parallel U-shaped assembly line system. As can be seen from the figure, 

working area is divided into zones (� � ���	 ��) and queues (� � ��� 	 � �; where � is the total 

number of queues or length of the lines). Workstations (symbolised with ���) located in between two 

adjacent lines are called multi-line stations (e.g. ����, ����, ����, etc.) and operators located in these 

workstations can perform their jobs on both of the lines. Workstations located in between front 

(beginning) and back (ending) of the inner line, which is Line-II in this representation, are called 

crossover stations (e.g. ������) and operators located in these stations can perform their jobs in either 

of the areas. There also are regular stations (e.g. ���� and ����), in which operators perform their 

jobs just for only one specific line and area (front or back).  

One different product model is produced on each of the U-shaped assembly lines (�� represents the 

model number produced on line ��). Each product model produced on each of the lines has its own 
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set of tasks, where a task is represented by ��� �� � ��	 � ���, performed according to predefined 

precedence relationships. There are certain precedence rules between the tasks and ���  represents the 

set of predecessors of task ��� for model ��. Each task ����� for model �� on line �� requires a 

certain amount of processing time������� to be processed.  

 

Figure 3. Schematic representation of the proposed parallel U-shaped assembly line system: a) zoning of 

the work area, b) allocation of the workstations 

Cycle time of line ��, represented by  �, is calculated through dividing planning horizon (�) to model 

demand (!�) produced on that particular line ( � � � !�" ). Each line may have different cycle time 
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and this is one of the major advantages of parallel U-shaped assembly lines, as each of the lines may 

have a different throughput rate in accordance with the demand of the model produced on that 

particular line. When parallel lines have different cycle times, a common cycle time should be used to 

allow operators work in multi-line stations with no conflict. Gökçen et al. [34] used the Least 

Common Multiple (LCM) approach, the main steps for which are given as follows: 

• Find the LCM of the cycle times. 

• Calculate the line divisors, #$� and #$� for Line-I and Line-II respectively, through dividing 

LCM by the cycle times of the Line-I and Line-II, respectively. 

• Modify the processing times of tasks performed on Line-I and Line-II multiplying by #$� and 

#$� values, respectively. 

• Consider the LCM as the common cycle time of all lines and balance the lines using modified 

processing times of tasks. 

Having different throughput levels for two U-shaped lines provides flexibility of easy adaptation to 

changing model demands. Establishing two U-shaped lines in parallel to each other also provides 

flexibilities for assigning tasks in different groups or combinations and provides more opportunities to 

obtain even better line balances. The main advantages of the parallel U-shaped assembly lines, which 

combine the advantages of both parallel lines [34] and U-shaped lines [5] configurations, over 

independently balanced U-shaped lines are as follows: 

• The flexibility in the throughput levels of the lines helps adapt changes in demands easily. 

• The increased possibility of grouping tasks into different workstation types in various 

combinations yields more efficient balancing solutions where the number of required 

workstations is always less or equal to that required in traditional forms. Thus, resource 

utilisation is maximised thanks to the multi-line stations and crossover stations. 

• Total number of required workers can be increased or decreased easily to adapt changes in 

demands. 
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• Work enrichment obtained through rotating operators between different working 

environments instead of repeating a single short cycle task increases the qualification of the 

operators and helps them stay more alert. 

• Length of the line is shortened. 

• Rotating operators between a wide range of working environments allows more workers to 

participate in efforts to improve the process. 

• In case of any problem, i.e. break downs, workstations can get help and support from their 

companions. 

• Multi-line and crossover workstations help increase communication skills between operators. 

The problem of assigning tasks to different workstation types explained above in such a way that the 

total number of workstations is minimised is called parallel U-shaped assembly line balancing 

problem. Cycle times of the lines, which are determined based on the model demands, are given as 

input to the system. As in other types of assembly line balancing problems, certain constraints need to 

be satisfied while doing this. Each task must be assigned to exactly one workstation and the 

precedence relationship constraints must be assured. Also, sum of processing times of tasks assigned 

to a workstation (regardless of from one line or both of the lines) cannot exceed the capacity (cycle 

time) designated for this workstation. The assumptions considered in the study are as follows: 

• Two U-shaped lines are located in parallel to each other. 

• Operators are multi-skilled and can perform their jobs on either of the lines. 

• Products (or product models) assembled on the lines carry one-sided assembly characteristics, 

i.e. there is no task which requires to be performed on a specific side. In our design, tasks on 

Line-I can be performed from only the inner side while tasks on Line-II can be performed from 

either of the sides.  

• Demands of the models and processing times of the tasks are deterministic and known for a 

pre-determined planning horizon.  
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• Two different models are produced on the lines, i.e. one on each of the lines, and each model 

has its own set of tasks. Precedence diagrams for each product model are known. 

• Operators can perform their jobs within designated area for themselves and walking times are 

ignorable. While operators located in multi-line stations (between two adjacent lines) can work 

on tasks for models assembled on both of the lines, operators in crossover stations can work on 

models assembled on front and back of the inner line (Line-II) only. The simplest version of the 

stations, regular station, is also allowed as can be seen from Figure 3.  

The following subsection provides the heuristic approach proposed for balancing the parallel U-

shaped assembly line system. 

4. Proposed Solution Method 

This section explains step-by-step the solution procedure of the Parallel U-line Heuristic (called PUH 

hereafter) developed to find well-balanced solutions for the parallel U-shaped assembly line balancing 

problem. To provide an overview, we first give the outline of the overall solution approach, and 

describe each of the steps in more detail. 

The proposed algorithm employs modifications of a well-known heuristic, namely Ranked Positional 

Weight Method [46], and a variant of another well-known heuristic, namely Maximum Number of 

Immediate Successors [47], in specific to the characteristics of the parallel U-shaped assembly line 

balancing problem. The logic lying behind the assignment procedure is based on determining 

available tasks for a specific workstation, and selecting and assigning tasks to this workstation 

considering their priority indexes %&��'(). The pseudo-code of the solution method is given as follows: 

�����������	�
	����������������������������&��'(�������		������������������������������
������	����
��������� ������ 	����� �*��� � ����*���� ������������������������ ����������	��� ���� ������
�
��
���������� � ������� � ���� ����!�������� � ����������� �"��#��������������������������
�
���$�#"����� � �� � 	 ������� � ��� 	���
������	�����		�#�������������!���%���� � +, �� � �� � 	 �, �� � ��� 	�)��������	���������������!�������		�
�������-���� � +, � � �� , �� � ��� 	 �����
%������������*��� . /����*��� . /�



14 
 

&�����#�������������� ����������!�����		� ����	��	�� ������ ���!���������������������#"���� 01��� 0� ����01��� 0�������������������	�����������!�������������������������������	��
%�������������"������������	��	�����������!��������������������1��� 0 . /���� 01��� . /��

��	������������������������!��"��1�������1������������������#��"��"���������	�������������
����
%�!�����"������������������!��"����	������
���������������	�����*��� 0���� 0*������
�����"������ �����"�������"�����!������"����������������'����"�����!����������������"��!���!
!����
�"�� ��		�#��� �#�� �������(� ��� �
!!������ ��� �"�� �
������ #����������� ��!�� %����)� ���� �"��
������������!������"�������������������������������
!!����������"�����	���������������!������"��
�������� ����� �-������ ���� �"�� ���������� ��!�� ��� �"�� �������� ����� ������(� ���� 2 ���� 3�4560���� 0� 0-���� 07��
)����������	��	��������	������1��� 0�����01����������"����#����
�������
�����"���������������������!��"������������"���������������	������"�������"��

)������-���� ���	
�����������!!��������
���������
��	�������"���������������������!��"�����������"���������������	������"�������"��

)������-���� ���	
�����������!!��������������������
�
�����

�
��������

���� 8 9��� � � 3 �$���"��#����� � ������� � � 3 ����
�
��������

 

As can be seen from the given pseudo-code, the algorithm starts with calculating task priority indexes 

(&��'(). The &��'( value of a task is calculated using its positional weight (����) and total number of 

successors (:���). The procedure followed when calculating the task priority indexes (&��'() of tasks 

are as follows: 

i. Calculate the positional weight of each task on the lines as follows: 

���� � ���� 3; ���<<=>?@ ����������������������������������������������������������������� 
where ��� represents the set of successors of task ��� on line ��. 

ii. On each of the lines, sequence all tasks in ascending order based on their ����  values, and 

assign ‘1’ to the positional weight index (&��'A) of task which has the lowest ����  value. Select 

the next task which has the second lowest ����  value and assign it positional weight index of 

2; and so on until all tasks are assigned a positional weight index. For example, if tasks 9 and 7 
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on Line-I have the lowest and the second lowest positional weights, respectively, then &�B'A �
� and &�C'A � . If there are tasks which have the same positional weights, they are assigned 

the same positional weight indexes. By this way, positional weight index of a task can be the 

total number of tasks on that line ���� at maximum. This is only possible when there are no 

tasks with the same positional weights at all. 

iii. Calculate the total number of successors of each task on the lines as follows:  

:��� � D4E$F���G������������������������������������������������������������������������� 
where D4E$F���G corresponds to the length of the set of successors of task ��� on line ��. 

iv. On each of the lines, sequence all tasks in ascending order based on their :��� values, and 

assign ‘1’ to the number of successors index (&��H>) of task which has the lowest :���  value. 

Select the next task which has the second lowest :���  value and assign its &��H> value ; and so 

on. For example, if tasks 8 and 9 on Line-II have the lowest and the second lowest total number 

of successors, then &�IH> � � and &�BH> � . Again, &��H> values of tasks with the same :��� 
values will be the same.  

v. Calculate the overall priority index for every task as follows: 

&��'( � &��'A J &��H>�K�����������������������������������������������������������������������9� 
After calculating task priority indexes, unassigned tasks lists and zone-queue indexes, which help to 

identify workstations, are initialised. Workload times of all workstations and earliest starting times of 

all tasks are set to zero. The assignment procedure starts from the workstation located in the first zone 

and first queue, ���. All available tasks from both of the lines are determined for the current 

workstation and available tasks lists ( 01��� 0 and 01��� 0) are constructed. The criteria checked to 

determine whether a task is available are as follows: 

• The task has not been assigned. 

• The task has no preceding (succeeding) tasks or all of its predecessors (successors) have 

already been assigned and completed if the task is assigned from the front (back) of the 

precedence relationships graph. 
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• Remaining capacity in the current workstation is large enough to perform the task.  

To check whether there is enough capacity, earliest starting times of all tasks are recorded because 

some of the predecessors (or successors) of a task can be completed from another workstation. 

Keeping this information and checking it during the assignment procedure are important to avoid 

infeasible balancing solutions. Therefore, as noted in the pseudo-code of the algorithm, this constraint 

is satisfied if the following expression is fulfilled:  L���� M ���� 3�4560���� 0� 0-���� 07.  
The -����  value of task ��� is determined by its predecessors (successors) if the task is assigned from 

the front (back) of the precedence relationships graph. To clarify, assigning a task from the front 

(back) of the precedence relationships graph means that the task assigned has no predecessors 

(successors) and is determined as ‘available’ and included in the available tasks list ( 01��� 0 or 01��� 0) 
based on this factor. For example, let us assume ��N � ��O = ��� and tasks ��N and ��O from the front of 

the precedence relationships graph are assigned to the current queue and are completed in the ninth 

and seventh time points in their workstations’ cycle time, respectively. Then task ��� can start in the 

current queue when both of the tasks are completed �-���� � P�. However, if ��N has been assigned 

to one previous queue than ��O and ���; then -���� value of task ��� would be 7, not 9 �-���� � Q� as 

task ��N would have already been completed in the previous queue. This situation would be subject to 

consideration for the predecessors of tasks ��N and ��O if they were being assigned from the back of 

the line. Please see the example given in Section 5. 

When the lists of available tasks are constructed, a task is selected and assigned to the current position 

%���) and the workstation time %����) is increased by the amount of assigned task’s processing time. 

Among the lists of available tasks from both of the lines, tasks are selected and assigned to the 

workstations in accordance with the designated task selection strategy. While selecting tasks from the 

available tasks lists, randomness is allowed to scan the search space more effectively and obtain more 

diversified solutions. Randomness is a commonly applied technique in assembly line balancing 

approaches when selecting tasks and allocating to workstations, especially in priority rule-based 

methods. As mentioned by Otto and Otto [48], the quality of the solutions obtained by a priority rule-
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based method can be improved by ‘applying several passes of this priority rule with some kind of 

random influence’. Therefore, a random number, E� = �+���, is determined by the algorithm. If this 

number is smaller than or equal to the randomness index, RS = T+��U, determined by the user at the 

beginning and given as an input to the algorithm �E� 8 RS�, a random task is selected among the 

available ones. If the random number determined by the algorithm is greater than the randomness 

index �E� V RS�, then the task which has the best priority index %&��'() among the available tasks is 

selected. Best priority index depends on the position of the available task. In other words, if the 

available task is from the back of the precedence relationships graph (regardless of Line-I or Line-II), 

the best priority index corresponds to minimum &��'(. However, if the available task is from the front 

of the precedence relationships graph (regardless of Line-I or Line-II), the best priority index 

corresponds to the maximum &��'( value.  

Another randomly determined number, E� = �+���, is used to decide on selecting task from which of 

the lists, i.e. 01��� 0 or 01��� 0. If the randomly determined number is equal to or lower than 0.5, i.e. 

E� 8 +KW, the algorithm tries to assign a task from 1���. If �E� V +KW�, the algorithm tries to assign a 

task from 1���. If the list the algorithm tries to assign a task from which is empty, then the task is 

selected from the other list. The task selection rule employed in this study can be expressed as 

follows: 

��� �
XYY
YZ
YYY
[�\]^_`a�b]cd�cefegbh`^� �i�E� 8 RS]\j �a]k���������������l?@=0mnop 0�F&��'(G � �i�E� V RS� q �E� 8 +KW� q ]cchj^h^j�]�b]cd�r\`a�r\`^b�`r�stu

]\j �ah^���������������l?@=0mnop 0�F&��'(G � �i�E� V RS� q�E� 8 +KW� q ]cchj^h^j�]�b]cd�r\`a�v]gd�`r�stu
]\j �a]k���������������l?@=0mnow 0�F&��'(G � �i�E� V RS� q �E� V +KW� q ]cchj^h^j�]�b]cd�r\`a�r\`^b�`r�stu
]\j �ah^���������������l?@=0mnow 0�F&��'(G � �i�E� V RS� q�E� V +KW� q ]cchj^h^j�]�b]cd�r\`a�v]gd�`r�stu

0 ����� ��� 

where PRG denotes the precedence relationships graph. The lists of available tasks (1��� and 1���) 

are updated every time when a new task is assigned. Afterwards, another new task is selected and 

assigned to the current workstation and this cycle continues until there is no task in either of the 1��� 

or 1��� lists. When both of these lists are empty, zone index is increased by one �� � � 3 �� if � 8
9. In case of � V 9, queue index is increased by one �� � � 3 �� and zone index is set to one �� �
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��. Again 1��� and 1��� are updated and new tasks are assigned to the current position and this 

cycle continues until all tasks belonging to Line-I and Line-II are assigned to exactly one workstation.  

The following section provides practical examples on how the proposed heuristic algorithm works to 

find balancing solutions for the proposed parallel U-shaped assembly line configuration. 

5. Numerical Examples 

5.1. Example 1 

Let us consider two different models of a product, Model-I and Model-II, assembled on a parallel U-

shaped assembly line system, i.e. Model-I on Line-I and Model-II on Line-II. The common 

precedence diagram of the models is given in Figure 4 while processing times of tasks are provided in 

Table 2 for both models. The cycle time is considered as 10 time units for both of the lines. 

 

Figure 4. Common precedence diagram of the models for the numerical example 

Table 2. Processing times of the tasks for the numerical example 

Task Number Model-I (in time units) Model-II (in time units) 
1 5 5 
2 2 2 
3 2 1 
4 5 5 
5 2 2 
6 3 3 
7 4 7 
8 7 4 
9 4 2 
10 4 4 
11 2 3 
12 3 3 
- x ����np�y� � �9  x ����nw�y� � ��  

3 

2 
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9 11 12 

8 10 

7 



19 
 

Table 3. Calculated priority indexes of tasks 

Task  
Number 

Model-I  Model-II ����  :��� &��'A &��H> &��'(  ����  :��� &��'A &��H> &��'( 
1 41 10 7 7 49  39 10 11 7 77 
2 18 5 6 6 36  20 5 10 6 60 
3 18 5 6 6 36  19 5 9 6 54 
4 18 4 6 5 30  20 4 10 5 50 
5 18 4 6 5 30  16 4 7 5 35 
6 16 4 5 5 25  18 4 8 5 40 
7 13 3 4 4 16  15 3 6 4 24 
8 16 3 5 4 20  14 3 5 4 20 
9 9 2 3 3 9  8 2 3 3 9 
10 9 2 3 3 9  10 2 4 3 12 
11 5 1 2 2 4  6 1 2 2 4 
12 3 0 1 1 1  3 0 1 1 1 

Table 4. Steps of the assignment procedure for the numerical example 

Step Workstation 1��� 1��� Selected Task ���� C-���� 

1  ���  1 1 1 = 1��� 5 5 
2  ���  2,3,4,5 1 3 = 1��� 7 3 
3  ���  2,5 1 2 = 1��� 9 1 

4  �����  4,5,6 1,12 1 = 1��� 5 5 

5  �����  4,5,6 2,3,4,5,12 5 = 1��� 7 3 

6  �����  5,6 2,3,12 12 = 1��� 10 0 

7  �����  12 11 12 = 1��� 3 7 

8  �����  11 11 11 = 1��� 5 5 

9  �����  9,10 11 11 = 1��� 8 2 

10  �����  4,5,6 2,3,4,8 2 = 1��� 2 8 

11  �����  4,5,6 3,4,8 4 = 1��� 7 3 
…  … … … … … … 
22  �����  7 8,9 9 = 1��� 2 8 

23  �����  7 8 8 = 1��� 6 4 

24  �����  7 - 7 = 1��� 10 0 

 

To start the algorithm, task priority indexes need to be calculated first. The calculated priority indexes 

of tasks for the given numerical example are given in Table 3. The randomness index �RS� is assumed 

RS � +KW to have a large variety of balancing solutions.  

The steps of the sample assignment procedure using the task selection rule given in the previous 

section are presented in Table 4. As can be seen from the table, the workload and the remaining 

capacity of the relevant workstation are also given after each new assignment. The algorithm starts 

assigning tasks from the first workstation after determining the available tasks for this position and 

continues by picking up and assigning one available task from the list of available tasks updated after 



20 
 

every task assignment. This cycle continues until there is no enough capacity in the current 

workstation. Afterwards, the algorithm moves to the next workstation and the assignment procedure 

continues by this way until all tasks belonging to both of the lines are assigned to a workstation. 

The final assignment configuration of tasks on the proposed line system is given in Figure 5. As can 

be distinguished, a total of 9 nine workstations (3 of which are multi-line stations and 2 of which are 

crossover stations) are utilised across the lines. Table 5 presents final assignment of tasks, and 

workloads - idle times of the workstations. 

 

Figure 5. Allocation of the tasks in the final balancing solution 

Table 5. Task assignments and idle times of the workstations  

Workstation 
Assigned Tasks ����  L���� 

Line-I Line-II 
 ���  1,3,2 - 9 1 
 �����  - 1,5,12 10 0 

 �����  12,11 11 8 2 

 �����  4,6 2 10 0 

 �����  - 3,4,10 10 0 
 ���  10,9 - 8 2 
 ���  5,8 - 9 1 
 ���  - 6,7 10 0 
 �����  7 9,8 10 0 

 

If these U-lines are balanced independently, not in parallel to each other, the theoretical minimum 

numbers of workstations ��z:�� 0 and 0�z:��� for independent balances of Line-I and Line-II, 

respectively, can be calculated as �z:�� � {x ����np�y�  " | � }�9~�+� � W and �z:�� �
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{x ����nw�y�  " | � }��~�+� � W, where the expression }�� corresponds to the smallest integer that is 

greater than or equal to �. In this scenario, a total of 10 workstations are needed to perform 24 tasks 

on both of the individual lines. That means one workstation more than the parallel U-shaped line 

configuration. Therefore, locating these U-lines in parallel to each other helps reduce the number of 

workstations at first glance. Other advantages of parallel U-shaped assembly lines have already been 

emphasised in Section 3. In addition, line efficiency values of Line-I and Line-II (�-� and �-�, 

respectively) can be calculated as �-� � %x ����np�y� )~� J �z:��� J �++ � ��� and �-� �
%x ����nw�y� )~� J �z:��� J �++ � �� in the individual balancing scenario. However, the line 

efficiency of the overall system is calculated as 93.3% when these two U-shaped lines are located in 

parallel to each other and are balanced together. Thus, an improvement of 11% is achieved in the 

efficiency of the overall line system over the arithmetic average of �-� and �-�. Please note that the 

comparison with the arithmetic average of �-� and �-� is valid only when the lines have the same 

cycle times. Please refer to Kucukkoc and Zhang [37] to find out more about calculating overall 

system efficiency of a parallel line system when the parallel lines have different cycle times. 

5.2. Example 2 

Another simple example is given here to exhibit the advantage of balancing two U-shaped assembly 

lines together over balancing two U-shaped assembly lines independently. Different from the 

numerical example given in Section 5.1; two different well-known test problems are considered on the 

lines, namely Jackson (11-tasks) on Line-I and Jaeschke (9-tasks) on Line-II, and the lines are 

balanced with different cycle times (please note that the test problems are taken from the type-I U-

shaped assembly line balancing problem data set available at [49]). Table 6 provides the tasks 

processing times and precedence relationships data for the problems considered. 

The cycle times are assumed 14 time units and 18 time units for Line-I and Line-II, respectively. 

Since different cycle times are considered for the lines, a common cycle time needs to be constructed 

for the utilisation of multi-line stations, as mentioned in Section 3. As explained, the LCM of the cycle 

times, and the line divisors are calculated �� z������� � ��,�#$� � �� ��" � P; and #$� �
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�� ��" � Q�; and the task times are normalised, i.e. processing time of each task on Line-I is 

multiplied by #$� and processing time of each task on Line-II is multiplied by #$�. The LCM value is 

considered as the common cycle time for both of the lines and the lines are balanced using the 

normalised task times. 

Table 6. Precedence relationships and task processing times for the numerical example 

Line-I (Jackson, 11-tasks)  Line-II (Jaeschke, 9-tasks) 

Task No 
Task Processing 

Time 
Immediate 
Successors 

 Task No 
Task Processing 

Time 
Immediate 
Successors 

1 6 2,3,4,5  1 5 2,3 
2 2 6  2 3 4 
3 5 7  3 4 4 
4 7 7  4 5 5,6,7 
5 1 7  5 4 8 
6 2 8  6 5 9 
7 3 9  7 1 9 
8 6 10  8 4 9 
9 5 11  9 6 - 
10 5 11  - - - 
11 4 -  - - - x ����np�y� � ��   x ����nw�y� � 9Q  
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Figure 6. Task assignments when the lines are balanced independently 

Figure 6 depicts possible line balancing solutions for the optimal number of workstations when the 

lines are balanced independently. We know that the solutions are optimal because the obtained station 

numbers for each problem are equal to their theoretical lower bounds (���) for total number of 
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required workstations (��� can be calculated for Line-I and Line-II as {x ����np�y� ~ �| � }9KP� � � 

and {x ����nw�y� ~ �| � }K+�� � 9, respectively). 

If the lines are balanced together as proposed in this study, a line configuration given in Figure 7 can 

be obtained this time. As distinguished from the figure, a total of 6 workstations are needed when the 

lines are balanced together by allowing the utilisation of multi-line stations between two adjacent 

lines. This proves that balancing U-shaped lines together help save number of workstations (or 

operators) in comparison with independent balancing which requires a total of 7 workstations. 

 

Figure 7. Task assignments when the lines are balanced together 

Calculation of ��� for each independent line balance was provided earlier. However, following 

equation can be used to calculate the ��� for total number of required workstations across the lines 

when the lines are balanced together: 

��� � �x %x ����n?�y� J  ~ �)��y�  � � �;�;����n?
�y� ~ ���

�y� ��������������������������������W� 
where   denotes the designated common cycle time � � � z� ��  ��� and }�� corresponds to the 

smallest integer that is greater than or equal to �.  

Regarding the example given here, ��� can be calculated simply as ��� � }WK9W� � � which means 

that the solution found when balancing the lines together is optimal. To remember, ��� was 
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calculated as }9KP� 3 }K+�� � Q when we balance the lines independently but it equals to }WK9W� �
� when we balance the lines together. It is apparent that balancing the lines together creates more 

opportunities for assigning tasks in various combinations and reduces ���. 

6. Experimental Tests 

A set of experimental tests are conducted to observe the effect of balancing lines together on total 

number of required workstations. The algorithm is coded in JAVA™ SE 7u4 environment and run on 

a 3.1 GHz Intel Core™ i5-2400 CPU computer. Test problems solved by Balakrishnan et al. [50] (and 

available at [49]) are taken as input data. In Balakrishnan et al. [50], one test problem is solved in 

each test case due to the nature of the assembly line structure. However, as we consider two U-shaped 

lines in parallel to each other, each test problem solved by Balakrishnan et al. [50] is accommodated 

on each of the parallel U-shaped assembly lines in our cases. Therefore, in this work, a pair of test 

problems -one on each of the lines- is solved at the same time for each test case.  

Table 7 gives the experimental design used for the computational tests and reports the comparison of 

the obtained results in this study against the quite competitive independent balancing solution results 

available in the literature. In the table, P and C columns present the test problem and cycle time 

considered on each particular line. For example, two different test problems, namely Jaeschke (9-

tasks) and Mertens (7-tasks), are considered on Line-I and Line-II, respectively, for test case #7 with 

the original cycle times of the lines (i.e.  � � � and  � � �). OPT column provides the optimal 

solutions of the test problems considered when two U-shaped lines are balanced independently where 

utilisation of multi-line stations between the lines is not allowed while utilisation of crossover 

workstations is allowed. Similarly, for each test problem, ULINO, CSBM, SABM and MAXRP report 

the independent balancing solutions available in the literature. Calculation of lower bound for total 

number of workstations when two parallel U-shaped assembly lines are balanced together was given 

in Equation 5 in Section 5. ��� column gives this value for each solved test case.  
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Table 7. Experimental design and computational results of the experimental study 
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9-

T
as

ks
 

6 
M

er
te

ns
  

7-
T

as
ks

 
6 14 14  11 4 13 3 12 

7 6 8 13 13  10 4 12 4 12 

8 7 8 12 12  9 4 12 3 11 

9 8 8 11 11  9 3 10 3 10 

10 18 15 5 5  4 2 5 1 4 

11 

Ja
es

ch
ke

 
9-

T
as

ks
 

6 

Ja
es

ch
ke

 
9-

T
as

ks
 

7 15 15  12 4 15 4 14 

12 6 8 14 14  11 4 13 4 13 

13 8 18 9 9  7 3 9 4 8 

14 

Ja
ck

so
n 

 
11

-T
as

ks
 

9 

Ja
es

ch
ke

  
9-

T
as

ks
 

6 14 14  12 4 14 4 13 

15 10 6 13 13  11 4 13 4 12 

16 14 8 10 10  8 3 9 3 9 

17 14 18 7 7  6 2 6 2 6 

18 21 18 6 6  5 2 5 2 5 

19 

Ja
ck

so
n 

 
11

-T
as

ks
 

9 

Ja
ck

so
n 

 
11

-T
as

ks
 

10 11 11  10 3 11 3 10 

20 10 14 9 9  8 3 9 3 9 
21 14 21 7 7  6 2 6 2 6 

22 

M
it

ch
el

l 
 

21
-T

as
ks

 14 

Ja
ck

so
n 

 
11

-T
as

ks
 9 14 14  13 5 14 5 14 

23 15 14 12 12  11 5 12 5 12 

24 21 10 10 11  10 3 11 3 10 

25 21 21 8 9  8 4 9 3 8 

26 

M
it

ch
el

l 
 

21
-T

as
ks

 

14 

M
it

ch
el

l 
 

21
-T

as
ks

 

15 16 16  15 4 16 4 16 

27 15 15 16 16  14 4 15 4 15 

28 15 21 13 14  12 4 14 4 13 

29 

H
es

ki
ao

ff
 

28
-T

as
ks

 138 

M
it

ch
el

l 
 

21
-T

as
ks

 15 16 16  15 4 15 4 15 

30 205 14 13 14  13 4 13 4 13 

31 205 21 10 12  10 3 11 3 10 

32 216 21 10 11  10 3 10 3 10 

33 

H
es

ki
ao

ff
 

28
-T

as
ks

 

138 

H
es

ki
ao

ff
 

28
-T

as
ks

 

205 13 14  13 4 13 4 13 

34 205 216 10 11  10 3 10 3 10 

35 216 324 9 9  8 2 8 2 8 

36 

K
il

br
id

ge
 

45
-T

as
ks

 

79 

H
es

ki
ao

ff
 

28
-T

as
ks

 

138 15 16  15 4 16 4 15 

37 110 205 11 12  11 3 11 3 11 

38 110 216 11 11  10 3 10 3 10 

39 

K
il

br
id

ge
 

45
-T

as
ks

 

57 

K
il

br
id

ge
 

45
-T

as
ks

 

79 17 18  17 5 18 5 17 

40 92 110 12 13  12 3 12 3 12 

41 110 110 12 12  11 3 11 3 11 

42 

T
on

ge
 

70
-T

as
ks

 364 

K
il

br
id

ge
 

45
-T

as
ks

 79 17 18  17 5 18 6 17 

43 410 79 16 17  16 5 17 4 16 

44 468 110 14 14  13 4 14 4 13 

45 527 110 13 13  12 4 13 3 12 
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Table 7 (continued). 

T
es

t 
C

a
se

 #
 

Line-I Line-II 

Balancing Independently 

(K value for L1+L2) 

 
Balancing Together (PUH) 

OPT
a
, ULINO

a
, 

CSBM
b
, SABM

c
 

MAXRP
d
 

 ���  

 0.0RI =   0.5RI =  

P C P C  LL K LL K 

46 

T
on

ge
 

70
-T

as
ks

 
364 

T
on

ge
 

70
-T

as
ks

 

410 19 19  19 5 19 5 19 

47 410 468 17 17  17 5 17 5 17 

48 468 527 15 15  15 4 15 4 15 

49 

A
rc

us
 

83
-T

as
ks

 

5048 
T

on
ge

 
70

-T
as

ks
 

364 26 26  25 8 26 8 26 
50 6842 468 20 20  19 6 20 6 20 
51 8898 527 16 16  16 5 16 4 16 

52 

A
rc

us
 

83
-T

as
ks

 6842 

A
rc

us
 

83
-T

as
ks

 7571 23 23  22 6 23 6 23 
53 7571 7571 22 22  20 6 21 6 21 

54 7571 8412 21 21  19 5 20 5 20 

55 8412 6842 22 22  21 6 21 6 21 

56 8898 8412 19 19  18 5 19 5 19 

* Please note that the results obtained from ULINO
a
, CSBM

b
 and SABM

c
 are presented in the same column with 

OPT
a
, as they give the same result. a: Scholl and Klein [7], b: A�pak et al. [51], c: Baykaso�lu [52], d: 

Balakrishnan et al. [50]. 

 

The results obtained using the parallel U-shaped line system and the heuristic proposed in this 

study are exhibited in PUH column for 0.0RI =  and 0.5RI = . When 0.0RI = , there is no 

randomness index considered in the task selection process and the tasks are selected purely 

based on their priority index values as explained in Section 4, so that, the effect of 

considering RI  on quality of the obtained solutions can be examined. PUH algorithm is run 

for 100, 150 and 200 iterations for test cases #1 – #20, #21 – #40 and #41 – #60, respectively, 

in both levels of RI  (i.e. 0.0RI =  and 0.5RI = ). For each test case considered, the solution 

giving the minimum number of workstations is favoured and taken as the best solution when 

the algorithm is terminated. Line length (total number of queues utilised) and total number of 

workstations of the obtained best solutions are given in LL and K columns, respectively.  

Table 7 shows the advantages of using the proposed parallel U-shaped assembly line 

configuration. To do so, the results obtained by PUH algorithm when 0.5RI =  should be 

compared with the optimal results of independent balancing solutions presented in OPT 

column.  The proposed line system helps save two workstations in two test cases, i.e. test 

cases #1 and #6; and one workstation for 28 test cases, i.e. test cases #2 – #5, #7 – #19, #21, 
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#27, #29, #35, #38, #41, #44, #45, and #53 – #55 (given in bold font in the table). It should 

be noted here that it is not possible to have a together balancing solution better than the 

independent balancing solution for 16 test cases. This situation is valid if the 
KLB  value of a 

test case is equal to the optimal result of independent balancing solution given in OPT 

column for this test case (i.e. see test cases #24, #30, #31, etc.). 

The computational results presented here provide a measure in terms of the quality of the 

solutions found by the proposed algorithm as well. As it is not possible to obtain a solution 

which gives less number of workstations in comparison to the 
KLB  value calculated for a test 

case, we can say that the solution found is optimal if the obtained K value for this test case is 

equal to its KLB  value (see test cases #1, #3, #5, #10, #17 – #19, #21, #24, #25, #29 – #48, 

#51, and #55 when 0.5RI = ). When the results presented in K ( 0.5RI = ) and KLB  columns 

are compared, it is clear that the algorithm proposed in this research finds optimal solutions 

for a minimum of 32 test cases out of 56 test cases. To provide a better understanding, these 

results are provided in italic font in the table.  

The results presented in the table also give an idea about the effect of considering RI  

parameter for the proposed PUH procedure developed in this research. Considering RI  

parameter as 0.5RI =  helps algorithm find better solutions in terms of K values for 22 test 

cases in comparison to results obtained when 0.0RI =  (e.g. see test cases 1# - 3 #, #5, #6, 

#8, #11, etc.). For seven test cases (e.g. see test cases #6, #8, #10, #25, etc.), the PUH 

algorithm finds better solutions when 0.5RI =  in comparison to the condition when 0.0RI =  

in terms of the LL values. Although it performs worse in terms of the LL values found for two 

test cases (see test cases #13 and #42), it is reasonable as the primary goal of the algorithm is 

to minimise the number of workstations. In accordance with these results, there is no doubt 

that the proposed algorithm finds quite promising results for the newly proposed line 

balancing system.  
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7. Conclusions and Future Work 

Although there is an increasing interest in parallelisation of production lines and an increasing trend in 

understanding about how beneficial they are, U-shaped lines have never been parallelised in the 

literature so far. Neither parallel U-shaped assembly lines nor their benefits have been brought to the 

attention of the academia in any research. As a pioneering research in this area, this paper proposes a 

new line system configuration which allows utilisation of multi-line stations between the adjacent 

outer and inner lines while allowing the utilisation of crossover workstations between the front and 

back of the inner line. The problem is described clearly and its characteristics are defined explicitly. A 

heuristic algorithm is proposed as a possible solution approach for the suggested line system. For this 

aim, modifications of two well-known line balancing heuristics are combined with the understanding 

of favouring the most suitable tasks based on the assignment position of the lines. Briefly, tasks 

having more positional weights and more number of successors are given priority while assigning 

tasks from the front of the precedence relationships graph however tasks having less positional 

weights and less number of successors are prioritised when assigning tasks from the back of the 

precedence relationships graph.  

To provide a better understanding on the advantage of the proposed parallel U-shaped assembly line 

system, two different examples are provided. The examples clearly illustrate the steps of the proposed 

algorithm and the advantages of balancing lines together. A comprehensive set of test problems 

available in the literature for single U-shaped lines are combined in pairs and used as test data for the 

proposed system and solution method (each test case is composed of a combination of two test 

problems). Results obtained from the proposed algorithm indicate that locating two U-shaped lines in 

parallel to each other helps minimise total number of required workstations. Thus, the benefit of the 

parallel U-shaped assembly line system over single U-shaped lines is explored and reported in this 

study. As the proposed algorithm finds optimal solutions for the majority of the test cases, the 

observed results also indicate that the proposed algorithm is competitive.  

From an industrial point of view, the system proposed in this research has promising practical 

application opportunities in almost any sector. Production line managers who wish to establish a new 
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line system or to improve their existing system can make use of the parallel U-shaped assembly line 

system proposed in this study. In this way, companies not only save total number of operators (or 

workstations) but also take advantage of other benefits explained clearly in this research.  

As the first research on parallel U-shaped assembly lines, this study can yield several research 

projects in this domain and be extended in several ways. First, an optimal solution algorithm can be 

developed after characterising the optimal solution properties. Second, the line system proposed in 

this study can be extended to the one with multiple product types. Third, resource dependent 

processing times can be considered for tasks performed on the lines. Finally, case studies can be 

conducted to show the applicability of the proposed line system. 
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Highlights 

• An innovative parallel assembly line configuration is proposed for U-shaped lines. 

• Parallel U-shaped assembly line balancing problem is introduced for the first time. 

• Advantages of the proposed system are presented using two numerical examples. 

• Modifications of two well-known heuristics are combined as a solution method. 

• Computational results demonstrate the validity of the proposed system and method. 
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