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1 Preliminaries 

Flexibility is the paradigm of the vast majority of the current production systems. 
Today production systems must be able to manufacture different versions of a product 
without physical changes at modules or workstations and with negligible setup times 
between different-type consecutive units; furthermore, they must respond quickly to 
any variation in the production plan. For this reason flexibility is what makes it im-
portant the sequencing problem.   

This flexibility is crucial at many manufacturing sectors, such as the Automotive, 
where production is carried on mixed-model assembly lines and the product mix 
changes frequently. This leads to the two main problems of this type of assembly 
lines: the balancing problem and the sequencing problem.  

Balancing problem appears in first place and it consists of assigning efficiently the 
set of assembly tasks for a product into the set of workstations arranged in series. The 
resulting line’s configuration must meet the coherent order of tasks, and the set of 
restrictions linked with the task-attributes, such as the processing time, the required 
space and the involved risk [1]. 

Once the line is configured and the demand plan is defined, the sequencing prob-
lem appears. This problem focuses on determining the manufacturing order of prod-
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ucts according to different criteria, such as the production maximization given the 
available time to carry out the all demand plan [2].  

As has already been evoked, the sequencing problem can respond to different pro-
ductive concerns [3]; among the most common, we find the following: 

o1. Maximizing the completed product units at the assembly line, reducing sim-
ultaneously, the useless time of operators, the unnecessary waiting and the 
production loses caused by the over workloads at the workstations [4]. 

o2. Minimizing the number of broken restrictions by the sequence –solution– 
given several determinants of technological and ergonomic nature that may 
affect some especial components of the assembling [5]. 

o3. Maintaining the manufacturing-product and component-consumption rates as 
constant as possible in order to minimize the maximum stock levels of com-
ponents [6]. 

In view of the most common objectives for sequencing problem and taking as ref-
erence the work by Bautista, Alfaro-Pozo and Batalla (2016) [7], this paper lies in a 
specific sequencing problem, the MMSP-W (Mixed Model Sequencing Problem with 
Workload Minimization).  

The problem aims to establish a bijective application between the elements of a set, 
named Τ, of manufacturing cycles (which are enumerated !   ! = 1, . . ,! ), and the 
elements of a set, named Ψ,  of products (with ! products). The elements of Ψ can be 
grouped in exclusive classes that are denoted as  !! and they meet the following: 
Ψ = !!!∈!  and !! ∩ !!! = ∅,∀ !, !! ∈ !; where I is the set of product types (which 
are enumerated as !  (! = 1, . . , !)).  

To complete each product type, ! ∈ !, it is required a processing time, !!,!  (! ∈
!, ! ∈ !), that is measured at normal activity or work pace (activity factor:  !! = 1), 
at each workstation, !,  from the set of workstations of the assembly line, !, (which is 
enumerated as !  (! = 1, . . ,!)).  

Obviously, differences between classes, !!, (SUVs –Sport Utility Vehicle–, vans, 
trucks…) mean heterogeneous processing times, !!,!. However, the time allowed for 
processors (operators and robots) to perform any operation corresponding to any 
product type and carried out at any workstation is always the same. This time is 
named cycle time, it is denoted as ! and it is also measured at normal activity.  

Discrepancies between the cycle time and the processing times lead to two possible 
situations for the processors of workstations: 

s1. Standby status with useless time: downtime between the finalization instant 
of one operation and the start of the next operation because the product is not 
ready.  

s2. Lock status by work overload: processors do not have enough time to com-
plete the operation.  

The last situation, s2, may be occasionally moderated at the !  (! = 1, . . ,!) work-
station by granting a time greater than the cycle time, !, to each processor, i.e., by 
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allowing a time window, !!  (!! > !), to complete the product unit. Obviously, the 
said concession will reduce the available time of the operator to work on the next 
product unit. And, accordingly, the available time to work at the next workstation 
(! + 1) on the retained product unit, after its release, will decrease. 

Despite processors dispose of the time window, the time may not enough to com-
plete the operation and therefore, the operation should be interrupted. This interrup-
tion on an unfinished product unit can be made in two ways: 

i1. Forced interruption: it occurs when the operator reach the time window limit, 
!!, at its workstation without completing the corresponding processing time.   

i2. Free interruption: it occurs when the product unit is released even though the 
operation is not completed, before the operator reaches the limit of the time 
window. Obviously, if the time window limit is reached the operation is also 
interrupted.  

In either case, forced or free interruption, the final purpose of the MMSP-W is to 
obtain a sequence of products that minimizes the total work overload of the assembly 
line or, alternatively and equivalently, maximizes the total completed work (see Theo-
rem 1 in [3]). 

In addition to the heterogeneous processing times of operations, the mix of product 
types or models also produces variations in the consumption of components. These 
variations are an undesirable aspect in production systems governed by the Just in 
Time –JIT– [6] ideology, as occurs in the automotive sector, where manufacturing 
sequences with regular consumption of components are desirable. This desirable regu-
larity property in JIT environments is favored by the objective (o3) of sequencing 
problems, which focuses on reaching sequences with constant production and compo-
nent-consumption rates.  

Based in this premise, we address a variant of the MMSP-W that combines the ob-
jectives o1 and o3 in order to adapt the problem to real world environments. Accord-
ingly, we study a mixed-model sequencing problem with the objective of maximizing 
productivity, reducing the useless time of operators and regularizing the production 
by means of preserving the production mix in the manufacturing sequence (pmr). 
Besides, unlike [7], in this paper the operations can be freely interrupted (i2). Specifi-
cally, the objective o.1 is represented by the objective functions (work overload, W, 
and useless time, U), the objective o.3 is incorporated into the problem by production 
mix restrictions (pmr) and, finally, the condition i2 is considered by the introduction 
of some inequalities. This variant of the sequencing problem is called MMSP-
W/pmr/free.  

Keeping in mind the application of the MMSP-W/pmr/free problem through a case 
study that is inspired in the BCN Nissan’s Engine Plant, a linear programing-assisted 
hybrid algorithm is implemented. Particularly, a GRASP algorithm (Greedy Random-
ized Adaptive Search Procedure) to obtain sequences with minimum work overload 
and a linear program to include regularity and free interruption of operations are de-
signed and implemented in this paper.  Besides, in order to assess the performance of 
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the proposed hybrid procedure the results are compared with those obtained in previ-
ous researches that are the state of art of the problem under study: the Bounded Dy-
namic Programming with linear programing assistance  (BDP-2) [10] and with Mixed 
Integer Linear Programming (MILP) [9]. 

Accordingly, the paper is structured as follows: the MMSP-W/pmr/free is formu-
lated in section 2; section 3 describes the GRASP algorithm and the linear program 
that assists GRASP and improves the solution given by the first; the case study is 
presented in section 4, showing the results given by the three assessed procedures; 
finally, the conclusions are collected in section 5.    

2 The MMSP-W with production mix preservation and free 
interruption of operations  

Given: 
a. The sets type of products !: ! = 1, . . , !  and workstations !: ! = 1, . . ,! . 
b. The cycle time, !, the temporal windows, !!  (! ∈ !), the number of processors 

assigned to each workstation, !!  (! ∈ !), and the processing times, !!,!  (! ∈ ! ⋏
! ∈ !) of operations, at normal activity. 

c. The demand plan ! = !!,… ,!! , where !! is the amount of units of type ! ∈ !; 
and the production mix vector, ! = !!,… , !! , where !! is the proportion of the 
model ! ∈ ! in the plan, fulfilling: ! = ! ! y ! ≡ ! = !!∀! . 

We formulate the basic MMSP-W/pmr/free as follows: 

 ! ! ! = !!!!,! !!!
!!!

!
!!!  (1) 

 ! ! ! = !!!!,! !!!
!!!

!
!!!  (2) 

 0 ≤ !!,! !! ≤ !"# 0, !!,! !! + !!!,! − !!,! !!       ∀! ∈ !  ∀! ∈ Τ   (3) 

 !!,! !! = !!,! !! − !!,!!! !!!!         ∀! ∈ !  ∀! ∈ Τ (4) 

 !!,!(!!) = !"# !!,!!!(!!!!), !!!!,! !! , ! + ! − 2 !     ∀! ∈ !  ∀! ∈ Τ (5) 
 !!,! !! = !!,! !! + !!!,! − !!,! !!     ∀! ∈ !  ∀! ∈ Τ   (6) 

 !!,! !! ≤ ! + ! − 2 ! + !!    ∀! ∈ !  ∀! ∈ Τ (7) 
 !!,! !! = !!,! !! = 0      ∀! ∈ !  ∀! ∈ Τ (8) 
 !!! ≤ !!,! ≤ !!! , !!,! = !!     ∀! ∈ !  ∀! ∈ Τ (9) 

The problem consists on obtaining a sequence of products, ! ! = (!!,… ,!!), 
with the following properties: (i) minimum work overload !, (ii) minimum useless 
time !, (iii) demand plan satisfaction, !, (iv)  production mix preservation constraints 
satisfaction, and (v) free interruption of operations. 

In the formulation, definitions (1) and (2) determine, respectively, the work over-
load, !, and the useless time, !,  generted by the sequence,  ! ! . The inequalities 
(3) bounds the partial work overload at all workstation, !, and all cycle, !, allowing 
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the free interruption of any operation between its start instant and its completion in-
stant or the instant that is fixed by the temporal window: ! + ! − 2 ! + !!. The 
equalities (4) define the partial useless time at each workstation and cycle regarding 
the sequence, ! ! .  Equations (5) determine the minimum start instants, !!,!, while 
6), (7) and (8) determine the minimum finish instants, !!,!, for the !×! operations. 
Finally, conditions (9) force to preserve the production mix in all cycle and to meet 
the demand plan, !.  

In order to formulate the production mix preservation, we use the variables !!,! that 
symbolize the amount of units of type ! ∈ !  contained in the partial sequences: 
! ! ≡ !!,… ,!! ⊆ ! !    ∀  ! = 1, . . ,! . 

3 Hybrid algorithm GRASP-LP 

GRASP is a multi-start meta-heuristic algorithm [11] whose procedure is based on the 
construction of an initial solution and the improvement of this solution through the 
iterative application of an embedded local search, whose objective is to reach a local 
optimum in a specific neighborhood.   

On the other hand, the linear programming is a classic optimization technique that 
allows modeling and solving problem with linear objective functions and constraints, 
by means of exact algorithms [12].    

The nature of the MMSP-W/pmr/free problem leads to the application of both reso-
lution techniques: GRASP is centered on the combinatory aspect of the problem ob-
taining the best sequence, ! ! = (!!,… ,!!), with forced interruptions; and the LP 
is focused on the optimization of the continuous variables, minimizing the functions 
(1) and (2). Specifically, the procedure GRASP-LP, proposed by us to solve the 
MMSP-W/pmr/free problem consists of two different stages: the first corresponds to 
the GRASP and provides the best sequence with forced interruptions after a pre-fixed 
number of iterations (construction and improvement phases); and the second corre-
sponds to a linear program that minimizes the overall work overload and useless time 
given by the sequence resulting from the first stage but considering free interruptions.   

3.1 Phase 1:  Sequence construction 

A sequence ! ! = (!!,… ,!!)  is progressively built by assigning, at each  
!  (! = 1,… ,!)  stage a product from the list of candidates to occupy the ! position of 
the sequence –this list is named !"(!)–. Therefore, when the ! stage is reached, a 
product ! ∈ !"(!) is incoporated into the ! ! − 1 = !!,… ,!!!!   secuence already 
consolidated (see scheme in table 1). 

The product ! ∈ !"(!) must meet two conditions to access the list: 

(c.1) The amount of units, !!,!!!, of type ! ∈ !, in the sequence, ! ! − 1 , must 
be lower than its demand in the production plan: !!,!!! < !!. 



Postprint : Bautista, J. & Alfaro-Pozo, R. Prog Artif Intell (2017). doi:10.1007/s13748-017-0110-z  
 

 6 

(c.2) The production of the ! product until the period ! (!!,! = !!,!!! + 1) of the 
sequence must satisfy the production mix restrictions: !!! ≤ !!,! ≤ !!! . 
That is, the !!! unit of type ! ∈ ! (!!) must be manufactured at !!! cycle of 
the interval !!"# !! , !!"#(!!) ,   fulfilling: !!"# !! ≤ !!! ≤ !!"# !! ,
  ∀!! = 1, . . ,!! . 

If the !"(!) list becomes empty by imposing the conditions, (c.1) and (c.2), the 
condition (c.1) will be maintain while (c.2) will be relaxed.  

Subsequently, the candidate products, ! ∈ !" ! ,  at the stage ! are sorted. This sort-
ing responds to two hierarchical priority indices. 

The first one related to the work overload generated by the sequence, !! ! ≡
! ! − 1 ∪ ! , which results from adding the product ! ∈ !!(!) at the sequence 
! ! − 1 . That is:  

!!
! = ! !!(!) = ! !(! − 1) + !!!!,!(!)!

!!!    
 ∀! ∈ !" ! ⋏ ∀! = 1, . . ,!  (10) 

where !!,! !  is the partial work overload burden borne by the processor of the work-
station  ! ∈ ! when the !!! product unit is type !. This work overload, with forced 
interruptions, is determined according to equation (11): 

!!,! ! = !"# 0, !!,! ! +!!,! − ! + ! − 2 ! − !!  (11) 

In (11), !!,! !   is the start instant of the operation at the ! workstation when a 
product type ! occupies the !!! position of the sequence. This instant depends on both 
the start of the !!! manufacturing cycle at the ! workstation and the finish instant of 
operations in progress at the ! and ! − 1 stations.  Considering the rule for the forced 
interruption and the initial condition !!,! ! = 0  ∀! ∈ !, the start and finish instants of 
operations are determined as follows:   

 !!,!(!) = !"# !!,!!!(!!!!), !!!!,! ! , ! + ! − 2 !  (12) 
 !!,!!!(!!!!) = !!,!!! !!!! + !!!!!,! − !!,!!!(!!!!) (13) 

 !!!!,!(!) = !!!!,! ! + !!,!!! − !!!!,!(!) (14) 

The second index (dependent to the first) attends to obtain sequences that minimize 
the useless time at workstations. That is:  

 !!
! = ! !! ! = ! ! ! − 1 + !!!!,! !!

!!!    
 ∀! ∈ !" ! ⋏ ∀! = 1, . . ,!  (15) 

where !!,! !  is the useless time available for the processor of the ! station between 
the instants !!,!!! !!!!  and !!,! ! . Consequently:  

 !!,!(!) = !!,!(!) − !!,!!!(!!!!) (16) 

The indices !!
!  and !!

!  allow sorting in ascending order the elements of the 
!" !  list resulting in the !" !  list. It should be noted that the useless time, !!

! , 
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only affects this sorting of elements whether there are tie in the work overload values, 
!!
! , because the indices are hierarchically applied.  

After the sorting, the !" !   list is reduced by the admission factor Λ (percentage of 
products that will be sorted among the best candidates). This reduction gives rise the 
restricted list, !"# !,Λ , that is equal than the !" !  list when Λ = 100%. 

The table 1 shows the scheme for the implemented GRASP constructive phase.   

Table 1. GRASP constructive phase for a sequence with forced interruption of operations, with 
minimum work overload and useless time and with production mix preservation.  

0. Initialization: 
Input: Λ, !,!,!, !, !! , !!,! , !!   ∀! ∈ !  ∀! ∈ ! 
Initialize: ! = !, ! = 0,! ! = ∅ , (!! = 0, !! = !! !)  ∀! ∈ ! 

1. Creation of the set of candidate product types: 
! ← ! + 1 
Let !" !   = ! ∈ !: (!! < !!) ⋏ (!!"#(!! + 1) ≤ ! ≤ !!"#(!! + 1))  
- If !" ! = ∅ ⇒ !" ! = ! ∈ !:  !! < !!  

2. Assessment of candidate product types:  
∀! ∈ !" ! , by: (10) - (16), determine: 
 !!

! = ! !! ! = ! ! ! − 1 + !!!!,! !
!
!!!    

 !!
! = ! !! ! = ! ! ! − 1 + !!!!,! !

!
!!!    

3. Sorting of candidate product types:  
Let !" ! = !!,… , ! !"#(!)  be the sorted list of candidate products, 
- It will be met: !"# !,!" ! < !"# !!,!" !     ∀ !, !! ⊆ !" ! , if the 
condition is satisfied:   
   !!

! < !!!
! ⋎ !!

! = !!!
! ⋏ !!

! < !!!
!  

4. Selection of the product type from the restricted list !"# !,Λ ⊆ !" ! : 
- Let  !"#∗ = −!"# −Λ ∙ !" ! ∙ !"#  be the selected position, then, it is 
selected the product type !∗ that is in the said position:  

!∗ = !!"#∗ ∈ !"# !,Λ = !!,… , ! !"# !,!   con  !"# !,Λ ⊆ !" !  
5. Update:  

!!∗ ← !!∗ + 1  ;     !(!) ≡ !(! − 1) ∪ !∗  
6. Finalization test: 

if ! < ! go to step 1 
else, END  

 

The sequence of tasks, ! ! , resulting from the GRASP constructive phase, can 
break the preservation condition of the production mix when the !" !  list is empty at 
the step 1 of any execution stage of the algorithm. When this occurs, all products with 
pending demand are considered. Indeed, an Exchange procedure is activated in order 
to solve a maximum constraint satisfaction problem !!"# !! ≤ !!! ≤ !!"# !! ,
∀  !! = 1, . ,!!:  ! ∈ !  that transforms the original sequence, ! ! , in other sequence, 
!(!), that satisfies the preservation constraints.  
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3.2 Phase 2: Solution improvement by local search  

Similar to [7], the local improvement phase begins with the !(!) sequence, which 
satisfies the conditions (9). This phase consists of executing four descent algorithms 
on four neighborhoods consecutively and repetitively until none of them improves the 
best-obtained solution while the iteration.  

The descent algorithms are based on exchange and insertion of products (see [7]) 
and they are address to exploring sequence cycles in both increasing and decreasing 
direction. Such procedures are: (i) forward exchange (figure 1), (ii) backward ex-
change (figure 2), (iii) forward insertion (figure 3), and (iv) backward insertion (fig-
ure 4).  

Figure 1. Forward exchange. Given the ! position of the sequence !(!) is searched the next 
position with the same product type, !!(!! > !) or, otherwise, !! = ! + 1; defined the range 
! + 1, !! − 1  the contained product types are exchanged from one position to another in the 

upwards direction in order to improve the solution. The example shows how product type 9 can 
be exchanged with product type 3 or 4.  

 

 

 

Figure 2. Backward exchange. This procedure is like the forward exchange but in downwards 
direction. In this case the range of exchange elements is defined by !! + 1, ! − 1 , where !! 
may be !! = 0 whether there is no previous product type. In the example, we can see how 

product type 2 is exchanged with product type 5 that is in a previous position in the sequence,  
and similarly, product type 6 with the 3 one.  
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Figure 3. Forward insertion.  Similar to the forward exchange, once the range ! + 1, !! − 1  
with !!(!! > !) is defined the intermediate elements are inserted to improve the solution in 

other later positions of the sequence but within the range. If solution improves, the insertion in 
consolidated. In the scheme, product type 9 located in position ! + 1 is inserted in position 

!! − 4, causing the movement of product type 7 from position ! + 2 to ! + 1.  

 
 
 

Figure 4. Backward insertion.  Given the range !! + 1, ! − 1  the intermediate elements are 
inserted in previous positions from the partial sequence in order to improve the solution. In the 
example, it is show how product type 6, initially located in ! − 2 is moved to positions !! + 2 

or !! + 5 to asses if there is improvement.  

 
 

To select the best solution it should be noted that in case of two sequences with 
production mix preservation, the sequence with less total work overload,  ! ! ! , 
will be preferred, and, in the event of a tie in the work overload, the sequence with 
less useless time, ! ! ! , will be the selected.  

Finally, the results of this second phase will be the !∗ ! = (!!∗,… ,!!∗ ) sequence.  

3.3 Phase 3: Overall Work Overload Minimization by Linear Programming 

After the GRASP improvement phase, the !∗ ! = (!!∗,… ,!!∗ ) sequence with the 
least amount of work overload is used as input for a linear program, LP-W, whose 
objective is to minimize the overall work overload by means of allowing the free 
interruption of operations.  

Let LP-W be:                     min! = !!!!,!
!
!!!

!
!!!  (17) 

Subject to: 
!!,! + !!,! = !!!∗,!                   ∀! = 1, . ,!;   ∀! = 1, . ,! (18) 

!!,! ≥ ! + ! − 2 !                    ∀! = 1, . ,!;   ∀! = 1, . ,! (19) 
!!,! ≥ !!,!!! + !!,!!!                     ∀! = 1, . ,!;   ∀! = 2, . ,! (20) 
!!,! ≥ !!!!,! + !!!!,!                     ∀! = 2, . ,!;   ∀! = 1, . ,! (21) 
!!,! + !!,! ≤ ! + ! − 2 ! + !!     ∀! = 1, . ,!;   ∀! = 1, . ,! (22) 
!!,! ,!!,! ≥ 0                      ∀! = 1, . ,!;   ∀! = 1, . ,! (23) 
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where !!,!, !!,! and !!,! are real variables that represent the start instant, the complet-
ed work and the work overload of the !!!  operation at the ! workstation, respectively.  

By using the LP-W, the GRASP-LP hybrid procedure is place on a equal footing to 
compete on the problem resolution with other procedures from the literature: MILP 
[9] y BDP-2 [10]. 

4 Computational experiment. Case study 

The computational experience is focused on analyzing the performance of GRASP-
LP against other procedures in regard with the quality of the solutions and CPU times. 
Specifically, we compare the results obtained by: 

− BDP-2: BDP algorithm with production mix preservation. We take into account 
the two versions of this algorithm according to the pseudo-dominances of vertices, 
the 2/1 and the 2/2, (see [10]).   

− MILP: 4 ∪ 3_!"# model (see [9]) 
− GRASP-LP: procedure presented in this paper.  

Like [7], this comparison between the performances of all procedures is made 
through a case study linked with the Nissan’s Engine Plant in Barcelona.  

The case study consists of an assembly line where different types of engines are as-
sembled and where 42 operators work with a cycle time of 175 seconds. The line 
assembles nine types of engines, which are grouped into three families (SUVs –Sport 
Utility Vehicle–, Vans and Trucks). 

Specifically, the main characteristics of the case study are the following: 

− Number of workstations: ! ≡ ! = 21. 
− Number of product types:  ! = 9  (! = 1, . . ,9). 
− Cycle time: ! = 175  !., and temporal window: !! = 195  !. ∀! = 1, . . ,21 . 
− Number of homogeneous processors (considering each processor as a team of two 

operators with the same skills): !! = 1   ∀! = 1, . . ,21 . 
− Processing times !!,!  (∀! ∈ !,∀! ∈ !) by product and workstation. The set of 

processing times are compressed between 89  !. and 185  !. At normal activity (see 
[3]: Table 5).  

− Number of demand plans: Ε = 23     ! = 1, . . ,23 . All plans have the same daily 
demand (see [3]: Table 6, Block I, NISSAN-9ENG). 

− Daily demand:  ! ≡ !! = 270 units ∀! = 1, . . ,23 . 

Once the codes of procedures were compiled, they have been run on an iMac (Intel 
Core i7 2.93 GHz, 8 GB de RAM). Mainly, the three procedures have the following 
characteristics: 

− BDP-2: (i) maximum number of transitions from each vertex equal than the num-
ber of products types ! = 9 ; (ii) there are different window widths, ! =
1, 36, 81, 126 , for all 23 demand plans (which implies running 184 the algo-
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rithm, taking into account the two versions); (iii) initial solution, !!, for !! equal 
to best solution obtained with !!!!, except for !! = 1, and where !! → ∞; (iv) 
the average CPU time by demand plan is 5026.6 s.; and (v) the production mix 
preservation and the free interruption of operations have been introduced by the 
linear programming assistance (Gurobi solver).   

− MILP: (i) mathematical model compiled and run on the Gurobi solver v4.5.0; (ii) 
maximum CPU time available to run each demand plan equal to 7200 s. (23 exe-
cutions), and average time used by demand plan equal to 6605.1 s.; and (iii) pro-
duction mix restrictions and free interruption of operations.  

− GRASP-LP: (i) maximum number of iterations by demand plan equal to 10; (ii) 
three possible values for the admission factor Λ = (25%, 50%, 100%) (690 solu-
tions in 69 executions); (iii) average CPU time per demand plan consumed by the 
two GRASP phases equal to 425.3 s.; (iv) production mix restrictions and free in-
terruption of operations are introduced through the use of linear programming af-
ter the GRASP execution; (v) linear programming run on an iMac (Intel Core 2 
Duo 2.33 GHz, 3 GB de RAM) with only one processor and on the CPLEX solver 
v11.0. 

Table 2 provides the best results given by BDP-2 (see table 3 in [10]), MILP (see 
column 4 ∪ 3_pmr in Table 3 from [9]) and GRASP-LP (this paper), in regards with 
the work overload, !, of the 23 demand plans, ! ∈ !. The table also shows the algo-
rithm that wins at each demand plan and the unity gains of GRASP-LP against BDP-2 
(∆!"#), GRASP-LP against MILP (∆!"#) and BDP-2 against MILP (∆!"#). These 
unity gains are determined as follows: 

∆!"!! ! =
! ! !! −! ! !

!"# ! ! !! ,! ! !
   

 ∀! ∈ Ε, ∀! ∈ !,! ,∀!′ ∈ !,!  (24) 

From the analysis of table 2, we can state: 

− Regarding the best solutions, the winning procedure is BDP-2 with 12 best solu-
tions out of 23 demand plans; the second best procedure is GRASP-LP, which ob-
tains best solution in 7 occasions (demand plans: 1, 7, 8, 10, 12, 17 and 23), while 
MILP is in the last position with 5 best solutions (3, 10 , 19, 21 and 22). MILP and 
GRASP-LP obtain the same solution in plan 10, and MILP demonstrates the opti-
mum solutions for the demand plans 10 and 19. 

− GRASP-LP wins BDP-2 on 10 occasions out of 23. The average unity gain of 
BDP-2 against GRASP-LP is 15%, when BDP-2 is the winner. On the other hand, 
when GRASP-LP wins, the unity gain of GRASP-LP against BDP-2 is 11%. On 
global average, the unity gain of BDP-2 against GRASP-LP is only by 4%. 

− GRASP-LP wins MILP in 12 plans and ties in plan 10. The overall average unity 
gain of GRASP-LP against MILP is around 6%. At length, GRASP-LP wins 
MILP with a partial average unity gain of 22%, and MILP wins partially GRASP-
LP with a gain of 12% approximately. 

− BDP-2 wins MILP on 16 times out of de 23. The partial average unity gain when 
BDP-2 wins MILP and vice versa, is equal to 13% and 1%, respectively. On over-
all, BDP-2 wins MILP with a gain of 9%.  



Postprint : Bautista, J. & Alfaro-Pozo, R. Prog Artif Intell (2017). doi:10.1007/s13748-017-0110-z  
 

 12 

− BDP-2, MILP and GRASP-LP required 5026.6 s, 6605.1 s and 426.6 s, on aver-
age, respectively, to confirm their best solution at all demand plans.   

Table 2. For each plan ! ∈ Ε, work overload, !, given by each procedure 
(! ! !,  ! ! ! ,! ! !), unity gain between pair of procedures (∆!"#,∆!"#,∆!"#), best 

solution, ! ! ∗, in terms of work overload and winning algorithm. 

! ∈ Ε ! ! ! ! ! ! ! ! !  ∆!"# ∆!"# ∆!"# ! ! ∗ !"##$% 
1 166 186 98 0.69  0.90  0.12  98 GRASP-LP 
2 318 383 342 -0.08  0.12  0.20  318 BDP-2 
3 444 423 430 0.03  -0.02  -0.05  423 MILP 
4 305 307 419 -0.37  -0.36  0.01  305 BDP-2 
5 633 661 662 -0.05  -0.00  0.04  633 BDP-2 
6 428 478 525 -0.23  -0.10  0.12  428 BDP-2 
7 740 731 728 0.02  0.00  -0.01  728 GRASP-LP 
8 112 160 92 0.22  0.74  0.43  92 GRASP-LP 
9 739 751 911 -0.23  -0.21  0.02  739 BDP-2 

10 1209 1208 1208 0.00  0.00  -0.00  1208 GR/MILP 
11 92 122 96 -0.04  0.27  0.33  92 BDP-2 
12 293 287 268 0.09  0.07  -0.02  268 GRASP-LP 
13 277 336 294 -0.06  0.14  0.21  277 BDP-2 
14 381 423 397 -0.04  0.07  0.11  381 BDP-2 
15 422 442 429 -0.02  0.03  0.05  422 BDP-2 
16 216 251 227 -0.05  0.11  0.16  216 BDP-2 
17 466 488 464 0.00  0.05  0.05  464 GRASP-LP 
18 610 619 698 -0.14  -0.13  0.01  610 BDP-2 
19 949 945 948 0.00  -0.00  -0.00  945 MILP 
20 129 150 169 -0.31  -0.13  0.16  129 BDP-2 
21 565 561 725 -0.28  -0.29  -0.01  561 MILP 
22 991 984 987 0.00  -0.00  -0.01  984 MILP 
23 111 121 107 0.04  0.13  0.09  107 GRASP-LP 

Average - - - -0.04  0.06  0.09  - - 

It should be noted that all sequences given by the three procedures (BDP-2, MILP 
and GRAS-LP) satisfy the production mix preservation property (pmr), which has 
been established through the restrictions (9) from the MMSP-W/pmr/free model. Ac-
cordingly, all sequences fulfill: !!,!! ≤ !!,!,! ≤ !!,!! , !!,!,! = !!,!     ∀! ∈ !,∀! ∈
!,∀! ∈ !, where: 

− !!,!: is the demand of units type ! ∈ ! in the plan ! ∈ Ε 
− !!,!: the proportion of units type ! ∈ !  in the plan ! ∈ Ε; that is: !!,! = !!,! !  

∀! ∈ !,∀! ∈ Ε 
− !!,!,!: Real production associated with the partial sequence !! ! . That is: the units 

of type ! ∈ ! that contains the partial sequence !! ! = !!,!,… ,!!,! ⊆ !! !  of 
the plan ! ∈ Ε.  
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Therefore, all sequences have the same quality in regard with the production mix 
preservation criterion defined by the pmr restrictions (9). For that reason, we resort to 
the non-regularity functions from typical problems of the manufacturing ideology JIT 
[6, 8], such as the Product Rate Variation Problem (PRVP) or the Output Rate Varia-
tion Problem (ORVP). This allows us to obtain a metric that enables to discriminate 
solutions regarding the production regularity.  

Specifically, to measure the production non-regularity of a sequence !! ! , we use 
the sum of the quadratic discrepancies between the ideal production of each product at 
each manufacturing cycle and at each demand plan (i.e.: !!,!! ∀! ∈ !,∀! ∈ !,∀! ∈ !) 
and the real production of the partial manufacturing sequence (i.e.: !!,!,!). According-
ly: 

!! !, ! = !!,!,! − !!,!!
!

!

!!!

!

!!!

    ∀! ∈ ! (25) 

Table 3. For all demand plan ! ∈ Ε, value of Δ!(!, !) function by procedure 
(Δ!(!, !)!,  Δ!(!, !)!,  Δ!(!, !)!), unity gain between pair of procedures 

(∆!"#,∆!"#,∆!"#) and the best solution value Δ!(!, !)!"# . 

! ∈ Ε Δ!(!, !)!  Δ!(!, !)!  Δ!(!, !)!  ∆!"# ∆!"# ∆!"# Δ!(!, !)∗ !"##$% 
1 400.0 400.0 400.0 0.00  0.00  0.00  400.0 All 
2 327.9 423.5 397.0 -0.21  0.07  0.29  327.9 BDP-2 
3 340.7 408.5 380.6 -0.12  0.07  0.20  340.7 BDP-2 
4 333.6 421.3 396.4 -0.19  0.06  0.26  333.6 BDP-2 
5 352.1 394.7 429.0 -0.22  -0.09  0.12  352.1 BDP-2 
6 388.5 420.0 395.7 -0.02  0.06  0.08  388.5 BDP-2 
7 423.6 396.0 403.4 0.05  -0.02  -0.07  396.0 MILP 
8 347.6 448.1 414.0 -0.19  0.08  0.29  347.6 BDP-2 
9 360.7 411.2 394.8 -0.09  0.04  0.14  360.7 BDP-2 

10 330.8 381.1 415.5 -0.26  -0.09  0.15  330.8 BDP-2 
11 384.1 447.3 429.0 -0.12  0.04  0.16  384.1 BDP-2 
12 385.5 410.2 416.2 -0.08  -0.01  0.06  385.5 BDP-2 
13 334.5 436.4 419.8 -0.25  0.04  0.30  334.5 BDP-2 
14 353.9 414.9 408.9 -0.16  0.01  0.17  353.9 BDP-2 
15 378.1 445.2 401.1 -0.06  0.11  0.18  378.1 BDP-2 
16 340.0 404.9 388.1 -0.14  0.04  0.19  340.0 BDP-2 
17 370.2 415.3 391.6 -0.06  0.06  0.12  370.2 BDP-2 
18 336.3 419.6 402.6 -0.20  0.04  0.25  336.3 BDP-2 
19 412.2 412.3 373.5 0.10  0.10  0.00  373.5 GRASP-LP 
20 342.6 393.6 386.5 -0.13  0.02  0.15  342.6 BDP-2 
21 384.8 404.2 409.8 -0.07  -0.01  0.05  384.8 BDP-2 
22 317.7 395.8 382.7 -0.20  0.03  0.25  317.7 BDP-2 
23 309.2 385.6 377.1 -0.22  0.02  0.25  309.2 BDP-2 

Average - - - -0.12  0.03  0.16  - - 
 

Table 3 summarizes the values of the irregularity function Δ!(!, !) for the best so-
lutions from the set of Nissan-9Ing’s instances, in regard with the work overload !:  
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− Δ!(!, !)!: Production non-regularity of best solutions in work overload, !, given 
by BDP-2 for the ! demand plan. 

− Δ!(!, !)!: Production non-regularity of best solutions in work overload, !, given 
by MILP for the ! demand plan. 

− Δ!(!, !)!: Production non-regularity of best solutions in work overload, !, given 
by GRASP-LP for the ! demand plan. 

Table 3 also indicates the winning algorithm for each demand plan and the unity 
gains obtained by GRASP-LP versus BDP-2 (∆!"#), GRASP-LP versus MILP 
(∆!"#) and BDP-2 versus MILP (∆!"#). These gains are calculated in accordance 
with: 

∆!"!! ! =
Δ!(!, !)!! − Δ!(!, !)!

!"# Δ!(!, !)!! ,Δ!(!, !)!
   

∀! ∈ Ε, ∀! ∈ !,! ,∀!′ ∈ !,!     (26) 

From table 3, we can denote: 

− BDP-2 is the winning procedure with 20 best solutions out of the 23 demand 
plans.  

− GRASP-LP reaches one best solution (plan 19). 
− MILP obtains one best solution (plan 7). 
− BDP-2, MILP and GRASP-LP give the same solution in plan 1.   
− The average unity gain from BDP-2 against GRASP-LP is by 15%, when BDP-2 

is the winner. However, when GRASP-LP wins, the gain of GRASP-LP versus 
BDP-2 is by 8%. Considering the overall average the unity gain is 12 % in favor 
of BDP-2 and against GRASP-LP.  

− The overall average unity gain of GRASP-LP against MILP is only 3%. Specifi-
cally, GRASP-LP wins MILP with a partial average reduction of the non-
regularity by 5%; and MILP wins GRASP-LP with a partial gain around 4%.  

− In terms of partial averages, when BDP-2 wins MILP, and vice versa, the unity 
gains are 17% and 7% respectively. On the other hand, BDP-2 wins MILP with a 
gain by 16%, in overall terms.  

− Finally, in accordance with the hierarchy criteria and subordinating the minimum 
non-regularity to the minimum work overload, the tie between MILP and GRASP-
LP in the demand plan 10 is broken in favor of MILP; in particular !!(!, 10)! =
381.1 and !!(!, 10)! = 415.5. 

To summarise the above results (tables 2 and 3) we analyse statistically by a box 
plot (Figure 5) the variation range of the unity gain functions, ∆GvB, ∆GvM and 
∆BvM, both for the work overload function, ! !  (equation (24)), and for the func-
tion of non-regularity of production, Δ!(X, !) (equation (26)). 
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Figure 5. Box-plot for unity gains between two different procedures (∆!"#,∆!"#,∆!"#) 
regarding the work overload !  and the non-regularity of production !!(!)  functions. The 
abbreviations !, ! and ! indicate the GRASP-LP, BDP-2 and MILP procedures respectively. 

 

From the Box-plot we can state the following: 

− Concerning the non-regularity of production Δ!(!) , all unity gain values 
(∆!"#,  ∆!"#,∆!"#) are between the normal boundaries established by 1.5 
times the interquartile range or the minimum and maximum values of each da-
taset. Therefore the unity gains (columns ∆!"#,  ∆!"#  !  ∆!"# from Table 3) do 
not present outliers for no comparison between BDP-2, MILP and GRASP-LP.  

− According the Δ!(!) metric and assessing GRASP-LP against MILP (column 
∆!"# in Table 3), we can see a very narrow the interquartile range and a clearly 
biased value distribution. 

− The Δ!(!) metric when the BDP-2 procedure is assessed against MILP and 
GRASP-LP has made evident the superiority of BDP-2 against the other two pro-
cedures. In this case the value distributions are centred and the interquartile ranges 
are similar (columns ∆!"# and ∆!"# in Table 3). 

− Regarding work overload, ! (columns ∆!"#,  ∆!"#  !"#  ∆!"# in Table 2) the 
Box-plot shows outliers at all the procedure comparisons. Indeed, comparing 
GRASP-LP versus BDP-2 we have the outlier 0.69 that corresponds to demand 
plan #1; comparing GRASP-LP versus MILP we have two outliers, 0.9 and 0.74, 
for the demand plans #1 and #8, respectively; and comparing BDP-2 versus MILP 
we have the outlier 0.43 that corresponds to the plan #8. 

− Finally, the comparison between BDP-2 against the other two procedures presents 
similar ranges and opposed biased distributions in accordance with the work over-
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load values. However, the gain of GRASP-LP against MILP offers a centred dis-
tribution of values but with a greater range that the previous two.  

5 Conclusions 

This paper presents the mixed-model sequence with work overload minimization 
considering that processors can interrupt operations at any time before the end of the 
time available to work on the product unit (temporal window). Together with the 
work overload minimization, the problem proposed in this paper seeks to obtain regu-
lar sequences in terms of production by addressing the principles from the Just-in-
Time ideology.  

As resolution procedure for the problem, we present a hybrid procedure that com-
bines a GRASP metaheuristic with a linear program, LP. This procedure together with 
two other procedures, MILP and BDP-2, are assessed by means of a case study linked 
with a real manufacturing environment.  

After the computational experience, we have able to highlight the strengths and 
weaknesses of all procedures used (GRASP, BDP and MILP). To that end we focus 
on five qualities: (I) Guarantee of achieving the optimum, (ii) memory requirement, 
(iii) ease of implementation, (iv) quality of solutions and (v) speed. 

As for the guarantee of optimal solution, MILP has an advantage over GRASP, be-
cause it is an exact procedure that explores the whole set of solutions. The weakness 
of MILP is the time required to complete the exploration of highly combinatory prob-
lems with industrial dimensions, such as our case study. For its part, BDP, in its ver-
sion as an exact procedure, is also an exploration algorithm (in stages), therefore it 
presents the same advantages and disadvantages that MILP. Finally, GRASP is a 
heuristic procedure, whose purpose is not to guarantee optimum, but to obtain quality 
solutions in acceptable time. 

In accordance with the memory requirements GRASP is undoubtedly the most ap-
propriate procedure: GRASP allows to treat instances of industrial dimensions with-
out great difficulty. Something similar happens with BDP when we limit the number 
of vertices to be explored in each stage, but in this case BDP becomes a heuristic and 
loses its strength. By its iterative performance, MILP needs in memory all the infor-
mation of the mathematical model and it may be out of memory when the dimension 
of set of vertices to explore is very large. Accordingly, MILP is the worst procedure 
in regard with the memory characteristic, and it should be noted that GRASP is the 
simplest method to implement, and that both GRASP and BDP are more versatile 
than MILP. 

Given the quality of solutions, the winning procedure, and therefore, state of art of 
the problem, is BDP with assistance of linear programming, in terms of work over-
load values. The second position is for GRASP, also with linear programming assis-
tance, with only a difference by 4% in regard with the overall unity gain of BDP. 
However, GRASP-LP wins MILP by a work overload improvement of 6%.  Consid-
ering the production regularity criteria and subordinating this to the work overload, 
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the winning procedure is also BDP. GRASP continues in second position worsening 
the regularity of sequences by 12% on average, with respect to BDP. In this case, the 
difference between quality of results given by MILP and GRASP is only by 3% being 
worst MILP.  

Regarding CPU times, GRASP is the fastest, being 11.8 and 15.54 times faster 
than BDP and MILP, respectively; this is important in our case study because one 
minute of line stop means a cost of 137.14€.  

Finally, as a general conclusion, the great strength of GRASP procedure studied in 
this paper has been to achieve high-quality solutions using the twelfth of the time that 
BDP used. 

As future works, it is our goal to extend the proposed method to Beam Search and 
Ant Colony Algorithms. Similarly we want to compare results in case of prioritizing 
the regularity criteria against the work overload.   
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