
1
	

Multi-Objective Discrete Particle Swarm Optimisation Algorithm for

Integrated Assembly Sequence Planning and Assembly Line Balancing

Mohd Fadzil Faisae Ab Rashid1, 2, Windo Hutabarat1 and Ashutosh Tiwari1

1 Manufacturing and Materials Department, Cranfield University, Bedford, UK

2 Faculty of Mechanical Engineering, University Malaysia Pahang, Pahang, Malaysia

Abstract

In assembly optimisation, Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB)

have been extensively studied because both activities are directly linked with assembly efficiency that

influences the final assembly costs. Both activities are categorised as NP-hard and usually performed

separately. ASP and ALB optimisation presents a good opportunity to be integrated, considering the

benefits such as larger search space that leads to better solution quality, reduces error rate in planning

and speeds up time-to-market for a product. In order to optimise an integrated ASP and ALB, this

work proposes a Multi-Objective Discrete Particle Swarm Optimisation (MODPSO) algorithm that

used discrete procedures to update its position and velocity in finding Pareto optimal solution. A

computational experiment with 51 test problems at different difficulty levels were used to test the

MODPSO performance compared with existing algorithms. A statistical test of the algorithm

performance indicates that the proposed MODPSO algorithm presents significant improvement in

terms of the quality of the solution set towards the Pareto optimal set.

Keywords

Integrated assembly sequence planning and assembly line balancing; Particle Swarm Optimisation;

Multi-objective optimisation; Discrete Particle Swarm Optimisation

Mohd Fadzil Faisae Ab Rashid, Windo Hutabarat, Ashutosh Tiwari, Multi-Objective Discrete Particle Swarm Optimisation Algorithm for Integrated Assembly Sequence Planning and Assembly Line Balancing, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Published online first 24th October 2016.

Published by Sage. This is the Author Accepted Manuscript. This article may be used for personal use only. The final published version (version of record) is available online at http://dx.doi/org/10.1177/0954405416673095. Please refer to any applicable publisher terms of use.

2
	

1. Introduction

In the recent years, various multi-objective optimisation techniques have been proposed to solve

assembly optimisation problems [1]–[3]. This trend shows the attention given by researchers to

assembly optimisation activities because of their complexity and relevance of the actual industrial

problems. The research in assembly optimisation can be classified according to product development

and production stage [4]. Although there are many activities classified in the assembly optimisation,

Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) are the most prominent

because they are directly linked with assembly efficiency.

ASP refers to a task for which planners, usually based on their particular heuristics in

assembling all the components of a product, arrange a specific collision-free assembly sequence

according to the product design description [5], [6]. Figure 1 shows a common assembly

representation using a precedence graph. From this graph, numerous feasible assembly sequences can

be generated such as {1 6 7 2 4 3 5}, {1 7 3 6 5 4 2} or {1 6 2 7 4 3 5}. Based on this example, ASP is

about determining the most optimum sequence to assemble a product from all feasible assembly

sequences.

Figure 1: Assembly representation using precedence graph

Once the optimum assembly sequence has been determined from ASP activity, the assembly jobs will

be assigned to workstations, so that every workstation will have equal or almost equal work load. The

assembly job assignment activity refers to ALB that is defined as the decision problem of optimally

3
	

partitioning assembly work among stations with respect to some objectives and constraints [7], [8].

For example, let the optimum assembly sequence from ASP is {1 6 2 7 4 3 5} and this assembly jobs

will be assigned to three workstations. There are many possible assembly job assignment

combinations such as {(1 6), (2 7 4), (3 5)} or {(1 6 2), (7 4), (3 5)} or {(1 6 2 7), (4 3), (5)}. In this

process, ALB will determine the best assembly job combination which comes out with equal or

almost equal workload between workstations.

Figure 2: Main assembly optimisation activities in product development and production stages

Figure 2 shows the main assembly optimisation activities in every product development and

production stages. Based on this figure, ASP and ALB activities are performed individually because

they take place in different stages of the product development process. ASP is located in the

production planning while ALB is in the manufacturing process stage [4]. However, current global

market drives a demand for shorter product life-cycles and also for products to be more competitive in

terms of time-to-market, quality and also manufacturing cost. One approach to stay competitive is by

integrating manufacturing activities across the different stages [9]. From the aspect of assembly

optimisation, the ASP and ALB optimisation activities present a good integration opportunity with

various potential benefits to the manufacturer.

Manufacturing	
Processes	

Production	
Planning	

Product	
Conception	
and	Design	

Design	for	
Assembly	

ASP	

ALB	

Product	Development	
and	Production	Stages	

Assembly	Optimisation	Activity	

4
	

The main benefit of using an integrated ASP and ALB is that the quality of assembly plans

could be improved as the search space of the integrated problem would become larger than when

optimising each problem sequentially. Besides, the integrated ASP and ALB could reduce the rate of

errors in both planning and costing during the manufacturing stages [5]. At the same time, the

integrated optimisation also speeds up the aspect of time-to-market for a product.

In ASP and ALB optimisation, several objectives have been used to determine the optimal

solution for the problem. When an optimisation problem involves more than one objective, this

problem is known as multi-objective optimisation [10]. Traditionally, the simplest way to optimise

multi-objective problem is to bundle all the objectives into a single fitness using some kind of

weighted assignment. However, this approach requires high prior knowledge on the importance of one

objective over another. Therefore, instead of focusing on one single optimum point, the researchers

might be interested in all the best options available, which are known as Pareto optimal solutions [11].

Furthermore, by having a set of optimum solutions, the decision makers in the industry are offered

more flexibility in selecting the solution that is deemed suitable with a variety of preferences.

Although various optimisation algorithms have been developed and used to optimise different

multi-objective problems, to the best of the authors’ knowledge, only techniques based on Genetic

Algorithm (GA) and Ant Colony Optimisation (ACO) have been proposed to optimise integrated ASP

and ALB [1], [12], [13]. Chen proposed a hybrid Genetic Algorithm to optimise integrated ASP and

ALB, where GA is combined with heuristic search [14]. The objectives were to minimise cycle time,

maximise workload smoothness, minimise tool changes, minimise the number of tools, and minimise

the total penalty of assembly relations. Although this paper does not clearly state the integration of

ASP and ALB, this relationship was acknowledged following the optimisation objectives.

Tseng and Tang studied combining ASP together with ALB based on assembly “connectors”

(i.e. the connector basis) by using Genetic Algorithm. In their work, optimisation was conducted in

three stages. First, each part was assigned to a specific connector type. Then, the algorithm generated

the assembly planning based on connectors. Finally, the algorithm assigned the connectors to stations

5
	

and selected proper types of stations. Meanwhile, in the second and third stages, GA was applied to

generate connector-based assembly in a sequential order, as well as to determine the suitable station

types for the sequential order. However, when using this approach, whenever the number of

connectors is increased, a few of the parameters that govern GA performance need to be reset [5].

Another work by Tseng et al. on integrated ASP and ALB was done in 2008. This work

adopted the Hybrid Evolutionary Multi-objective Algorithms (HEMOA) that was based on GA [15].

On the basis of multi-objective optimisation, the Pareto optimal approach was adopted in this study.

However, the weighted sum approach was employed to obtain a better solution, instead of measuring

the solution crowding that has been frequently used in recent multi-objective algorithm.

Another integrated ASP and ALB optimisation work was also formulated based on assembly

connectors [16]. In this work, the Guided-modified weighted Pareto-based multi-objective genetic

algorithm (G-WPMOGA) had been proposed to optimise the integrated ASP and ALB problem with

two, three, and four objectives. The proposed algorithm displayed better performance in the problem

with two and four objectives, but not in the problem with three objectives.

In the recent optimisation work of integrated ASP and ALB, the GA-based algorithms

performed well in optimising the problem with low and medium difficulties. However, the

performance of GA-based algorithms did not last when optimising high difficulty problem, especially

the problem with a large number of tasks [17]. On the other hand, the researcher also concluded that

the different GA-based variants should be used in order to optimise the problem with a different

number of criteria [16].

Besides GA-based algorithm, the researcher implemented Ant Colony Algorithm to optimise

the integrated ASP and ALB problems [12], [13]. In [12], they proposed an optimisation model to

implement ACO for integrated ASP and ALB without numerical experiment. Meanwhile in [13], the

authors optimised several objectives such as line efficiency, smoothness index, assembly time and

number of workstations. However, the problem was treated as single objective, by combining all the

6
	

objectives. In order to overcome the limitation, a new algorithm to optimise integrated ASP and ALB

problems is needed.

In many different works that compare algorithm performance, Particle Swarm Optimisation

(PSO) has shown strong performance compared with competing algorithms. This algorithm is popular

due to its simplicity and ability to quickly converge to a reasonably good solution [18]. PSO is a

population-based stochastic optimisation technique that was developed by Kennedy and Eberhart in

1995. In PSO, the potential solutions, called particles, ‘fly’ through the problem space by following

the current optimum particles [19]. In micro-assembly sequence planning, PSO was found to provide

less computational time compared with other considered algorithms [20]. PSO was shown to

outperform GA and Simulated Annealing in scheduling problems in the majority of applications by

considering computation efficiency, optimality and robustness [21]. In another research, PSO was

found to perform better than GA, Memetic Algorithm, Shuffled Frog Leaping and Ant Algorithm in

solving continuous and discrete optimisation problems [22]. PSO algorithm also performs better

compared with commercial software for robotic assembly line balancing problem [23].

Even though several researches on ASP and ALB implemented PSO, they were independent

works [24]–[27]. At this point, no existing works are using PSO algorithms to optimise the integrated

ASP and ALB problems. In this paper, the Multi-Objective Discrete PSO (MODPSO) to optimise

integrated ASP and ALB is proposed. In comparison with [28]–[30] that used continuous encoding in

PSO, the proposed algorithm implemented discrete encoding to match with discrete combinatorial

optimisation problem. On the other hand, different from Discrete PSO as found in [31]–[34], the

proposed algorithm implemented non-dominated sorting concept to deal with multi-objective. The

proposed MODPSO algorithm also integrates the Crowding Distance concept from Elitist Non-

Dominated Sorting Genetic Algorithm (NSGA-II) [35] to determine the leaders (Pbest and Gbest).

This work was motivated by the benefits of integrating ASP and ALB, and also the expected

performance gained through using PSO in optimising multi-objective problems to overcome

limitation of GA-based algorithms. Section 2 explains the problem representation for integrated ASP

7
	

and ALB. Section 3 details the proposed MODPSO algorithm, followed by experimental strategy and

set up in Section 4. Section 5 presents the results and Section 6 discusses result of experiments that

deploy various algorithms to optimise multi-objective ASP and ALB problems. Finally, Section 7

concludes the finding from the proposed MODPSO algorithm.

2. ASP and ALB Problem Representation

In order to incorporate ASP and ALB optimisations into a single integrated optimisation, a

clear prerequisite is the availability of an integrated ASP and ALB representation. For this purpose, an

integrated assembly task-based representation scheme is used to represent both ASP and ALB

problems [36]. In this scheme, the assembly plan is represented by a precedence graph (Figure 3) and

the assembly data is presented in a data matrix (Table 1). Each node in the precedence graph

represents an assembly task, while the connecting arc represents assembly precedence.

Figure 3: Example of precedence graph

Table 1: Data matrix

Task Direction Tool Time

1 +x T1 4

2 -x T2 12

3 +x T1 7

4 -x T3 4

5 +x T1 12

6 +x T1 5

7 -x T2 12

	

7	

5	

1	

6	3	

4	

2	

8
	

However, the precedence graph used to represent the assembly plan needs to be coded into a

numerical format for computational application. For this purpose the precedence matrix is used to

characterise assembly precedence graph. Precedence matrix is an n×n matrix that consists of 0 and 1

value. The precedence matrix in Table 2 represents the assembly precedence graph in Figure 3. In this

matrix, the value 0 shows no precedence relation between task i and task j, while the value 1 shows

that the task i must be performed prior to task j.

Table 2: Precedence matrix

i
j

1 2 3 4 5 6 7

1 0 1 1 1 0 0 0

2 0 0 0 0 1 0 0

3 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 1

6 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0

	

2.1 Objective Function

Various objective functions have been designed and used to optimise ASP and ALB

problems. A prior literature survey has collated objective functions that have been used by researchers

in both problems [1]. This survey also found that the most frequently used ASP optimisation

objectives are to minimise assembly direction change and number of tool change. In ALB works, even

though there were various objectives such as maximising worker efficiency and equipment [37], the

dominant optimisation objectives are to minimise cycle time, number of workstation and workload

variance.

Number of assembly direction change (ndc) is counted when the next assembly task requires a

different assembly direction compared with the present assembly task. In Eq. 1 and 2, s refers to the

position of a task in a feasible assembly sequence.

9
	

!"# = %&; 							%& = 	1		if	direction	3 ≠ direction	3 + 1	
0		if	direction	3 = direction	3 + 1

	789
&:9 Eq. 1

Number of assembly tool change (ntc) is also counted when the next assembly task requires a different

assembly tool compared with the present assembly task.

!;# = <&; 										<& =
1				if	tool	3 ≠ tool	3 + 1
	0				if	tool	3 = tool	3 + 1

789
&:9 Eq. 2

Cycle time (ct) is the time intervals at which product units must be finished in order to meet demand

[38]. In this case, ct for particular assembly sequence is the highest processing time among all

workstations. Processing time (pt) refers to the total assembly time in a particular workstation. Once

the total processing time for the current workstation is larger than maximum allowable cycle time

(ctmax), the present assembly task will be assigned to the next workstation. Normally, ctmax is

determined from the number of demand or required output in the assignment period.

Number of workstation (nws) can be determined after all the assembly tasks were assigned to

workstations. Once completed, the number of generated workstation is used as the fourth objective.

The number of workstation depends on the cycle time where larger cycle time leads to a smaller

number of workstation and vice versa.

Workload variation (v) calculates the average of idle time in workstations. In this case, a smaller

workload variation shows that the assembly line has an almost equal load between workstations.

 Eq. 3

3. Proposed Multi-objective Discrete PSO (MODPSO)

Various version of PSO algorithm has been proposed to optimise multi-objective problems

for independent ASP and ALB [28], [30], [33], [39], [40]. One of the PSO versions for optimising

multi-objective problems is known as Discrete PSO (DPSO) that was first proposed by Rameshkumar

nws
ptct

v
nws

i iå =
-

= 1
)(

10
	

for scheduling problem [31] and later adopted to optimise ASP problem [40]. However, in these

works, the multi-objective problem was handled by bundling all objectives into a single objective that

leads to only one solution. This approach required high-quality prior knowledge and experience on the

importance of an objective compared with others. Another PSO version called Multi-Objective PSO

(MOPSO) was proposed by Coello and Lechuga with the objective to extend the application of PSO

for multi-objective problem [29]. This algorithm uses the original PSO operators for generating new

particle position and velocity, but uses the non-dominated approach to find the set of optimum

solutions.

In order to treat the problem as real multi-objective optimisation, this work proposed to apply

the Pareto-based approach in the proposed algorithm. In PSO, the potential solution is represented by

a particle, which brings three important vectors; particle position (Xi), particle velocity (Vi) and

particle best solutions (Pbest). Figure 4 shows the working flow of Multi-Objective DPSO

(MODPSO) algorithm.

11
	

Figure 4: Flow chart of the MODPSO

3.1 Initialisation

The number of particle (npar) and maximum number of iteration (itermax) was set in this step.

Then the initial population known as swarm was produced by generating the npar set of initial

position (X) and velocity (V) that consists of permutation of integer from 1 to n in random orders.

Next, the swarm was decoded to generate feasible sequences according to the precedence constraint

	

End	

Start	

No	

Yes	

Initialisation	

Evaluation		

Update	Pbest	and	Gbest		

Update	position	and	velocity	

Generate	initial	position	and	
velocity	
Decode	the	particle	position	

Calculate	objective	functions	
	Apply	non-dominated	sorting	

Update	Pbest	based	on	Crowding	
Distance	of	particle	
Update	Gbest	based	on	Crowding	
Distance	of	non-dominated	
solutions	

Update	position	and	velocity	
using	discrete	position	and	
velocity	update	procedure	

Max	iteration	achieved?	

12
	

using topological sort procedure. Topological sort is an approach to establish feasible sequence by

selecting only one available assembly task in each iteration. The topological sort procedure is

presented as follow [41].

Procedure: Topological Sort

Begin

 n; number of tasks

 st = 0; number of selected task

 While st ≤ n

o Establish available set

o st = st +1

o Select one task from available set and place in stth position of feasible sequence

o Remove all outgoing arcs from selected task

o Eliminate selected task from precedence graph

 End While

End Procedure

In the procedure above, the available set consists of tasks without incoming arc. Then, one of

the tasks in available set was selected using a predetermined selection rule. There are a few selection

rules regularly used such as random selection, weight-based selection and ordered-based selection.

Next, all the outgoing arcs from selected task were removed and the selected task was eliminated from

the graph to avoid selecting similar task. In this work, the selection rule for topological sort was set to

follow the ordered-based selection. It means that the first available task found in the particle order will

be selected to be placed in the feasible sequence.

3.2 Evaluation

In this step, the decoded feasible sequence was evaluated by using the predefined objective

functions. The objective functions were calculated using procedures and formulas in Eq. 1 - 3. Next,

the non-dominated sorting was applied to establish the Pareto set solution. This approach is adopted

from Deb in 2002 [10]. The Pareto set was updated in every iteration by evaluating each particle with

solution in the Pareto set.

13
	

3.3 Update Pbest and Gbest

 Pbest is the best personal particle solution while Gbest is the best solution for all particles.

To evaluate and determine the Pbest and Gbest, a mechanism to select the best solution within all

particles is needed. For this purpose, Crowding Distance (CD) that provides the estimation of

solutions density surrounding that solution was used. For Pbest, the CD was calculated within the

solution in the swarm, whereas the CD for Gbest was calculated within the Pareto set. The following

algorithm was used to calculate the CD of each point in the set R [10].

Crowding Distance Calculation Procedure:

Step 1 Call the number of the solution in R as Ɩ = │R│. For each i in the set, assign di = 0.

Step 2 For each objective function m = 1, 2,…, M, sort the set in a descending order of rm.

Step 3 For m = 1, 2,…, M, assign maximum (maxm) and minimum (minm) value for each objective m.

Step 4 Calculate %>
? for each objective m for solution i.

 %>
? =

@
ABC
D 8@

EFGC
D 	

?HID8?>7D
 Eq. 4

Step 5 Calculate summation of	%>
?.

JK> = %>
?L

?:9 Eq. 5

In Eq. 4, MNOC
? is the nearest upper mth objective value for solution i. Meanwhile, MPQRC

?

represents the nearest lower mth objective value for solution i. In this case, if the objective value is

located at the first or last place in the rm, the maxm and minm value is used to replace the nearest value

respectively.

For Pbest, if the current particle has larger CD compared to the existing Pbest, the Pbest is

replaced with the current position; otherwise, the existing Pbest is reused. Meanwhile, Gbest was

selected as the highest CD among all Pareto solutions. In the proposed MODPSO, Gbest does not

14
	

represent the most optimum solution as in traditional PSO, but it will be the leader to update the

swarm position and velocity for the next iteration.

3.4 Update Position and Velocity

The final step in MODPSO is to update swarm position and velocity. The purpose of this step

is to establish new swarm set that follows the current Pbest and Gbest. In the original PSO, the

position and velocity are updated using the following formulas:

S>
;T9 = S>

; + U>
;T9 Eq. 6

U>
;T9 = V9U>

; + VW XYZ3<>
; − S>

; + V\(^YZ3<; − S>
;) Eq. 7

All the operations in Eq. 6 and 7 can be easily performed for the continuous problem. However, for

the discrete problem, the following discrete position and velocity update procedure were proposed to

replace the original operations [31], [33].

Subtraction operator (position – position): This operation was found in Eq. 7, XYZ3<>
; − S>

;

and	(^YZ3<; − S>
;) and produced the velocity. Let X1

t= [x1,1 , x1,2 , x1,3 , x1,4 , x1,5 , x1,6 , x1,7], X2
t= [x2,1 ,

x2,2 , x2,3 , x2,4 , x2,5 , x2,6 , x2,7] and V1
t = X1

t - X2
t. In this case, if x1 and x2 in the jth position are equal,

then the v1 = 0. Otherwise, v1 = x1.

Addition operator (position + velocity): For the addition of position and velocity in Eq. 6, if the jth

element of velocity (vj) is equal to zero, the jth position value (xj
t) is inserted into the jth element of the

new position (xj
t+1). In the meantime, if vj is nonzero and does not appear in the new position, then

xj
t+1 = vj. Otherwise, xj

t+1 is equal to zero.

Multiplication operator (coefficient + velocity): This operation was performed to make an

adjustment on the influence of Pbest and Gbest on the new velocity. This operation can be represented

as V2 = c × V1, where coefficient c ∊ [0, 1] is used to control the effect of V1 that inherit in V2. For this

purpose, a random number, rand ∊ [0, 1] is generated. If rand < c, v2 = v1, or else, v2 = 0. In this work,

the coefficient c1, c2 and c3 were set at 0.7.

15
	

Addition operator (velocity + velocity): This operation was performed to sum up the velocities in

Eq. 7. For new velocity, V = V1 + V2, the jth element of V can be derived as follows:

ab =

a9,b	if	a9,b ≠ 0, aW,b = 0
a9,b	if	a9,b ≠ 0, aW,b ≠ 0, d < Vf

aW,b	otherwise
 Eq. 8

In Eq. 8, r is a random number between 0 and 1, while cp ∊ [0, 1] is inheriting constant that influences

either v1 or v2 into new velocity.

 Table 4 presents the comparison of the proposed MODPSO with NSGA-II, DPSO and

MOPSO algorithms in terms of major algorithm stages. In general, the MODPSO algorithm applied

similar strategies with NSGA-II for Initialisation, Evaluation and Selection stages, but different in

Regeneration stage. The MODPSO Regeneration strategy used discrete position and velocity update

procedure that was adopted from DPSO algorithm. Meanwhile, indifferent with MOPSO, the

proposed MODPSO used different Selection and Regeneration strategies to handle multi-objective

problem.

Table 3: Comparison of the NSGA-II, DPSO, MOPSO and the proposed MODPSO

Algorithm
stage NSGA-II DPSO MOPSO MODPSO

Initialisation Random initial
population

Random initial
particles Random initial particles Random initial

particles

Evaluation Individual fitness
evaluation

Weighted based
evaluation

Individual fitness
evaluation

Individual fitness
evaluation

Selection

Best Crowding
Distance of non-
dominated
solution

Best weighted
fitness

Random selection from
less density hypercube of
non-dominated solution

Best Crowding
Distance of non-
dominated solution

Regeneration
Crossover and
mutation
operators

Discrete PSO
procedure to update
position and
velocity

Standard PSO operators
to update position and
velocity

Discrete PSO
procedure to update
position and velocity

	

16
	

4. Experimental Design

In order to test the proposed MODPSO, the experimental design was set up. The main purpose of this

experiment was to test the performance of the proposed MODPSO compare with other algorithms

using a set of wide range of problem difficulties. In previous work, a tuneable test problem generator

for ASP and ALB has been developed [17]. The results indicate that the ASP and ALB problem

difficulties can be increased using larger number of tasks (n), lower Order Strength (OS), lower Time

Variability Ratio (TV) and higher Frequency Ratio (FR).

For experimental purpose, each of input variables was divided into five levels from low to

high difficulty as in Table 5. Then a reference variable setting (datum) was selected as a baseline,

while the rest of the problem variable setting were generated by changing only one variable value at a

time. In total, there were 17 test problems (including reference setting) generated from one reference

variable setting. In order to confirm algorithm performance, three different reference variable settings

were used (Level 1, 3 and 5). Therefore, the complete number of test problem that involved in this

experiment was 51 problems as shown in Table 6. The bolded problem setting (Problem 1, 18 and 35)

represented the reference variable setting for Level 1, 3 and 5 respectively.

Table 4: Level of tuneable input setting

Level n OS TV FR

1 15 0.6 8 0.2

2 20 0.5 6 0.3

3 40 0.4 4 0.4

4 60 0.3 3 0.6

5 80 0.2 2 0.8

	

	

	

17
	

Table 5: Experimental design for integrated ASP and ALB

Test Problem Variable for
Reference Setting at Level 1

Test Problem Variable for
Reference Setting at Level 3

Test Problem Variable for
Reference Setting at Level 5

Problem n OS TV FR Problem n OS TV FR Problem n OS TV FR

1 15 0.6 8 0.2 18 40 0.4 4 0.4 35 80 0.2 2 0.8
2 20 0.6 8 0.2 19 15 0.4 4 0.4 36 15 0.2 2 0.8
3 40 0.6 8 0.2 20 20 0.4 4 0.4 37 20 0.2 2 0.8
4 60 0.6 8 0.2 21 60 0.4 4 0.4 38 40 0.2 2 0.8
5 80 0.6 8 0.2 22 80 0.4 4 0.4 39 60 0.2 2 0.8
6 15 0.5 8 0.2 23 40 0.6 4 0.4 40 80 0.6 2 0.8
7 15 0.4 8 0.2 24 40 0.5 4 0.4 41 80 0.5 2 0.8
8 15 0.3 8 0.2 25 40 0.3 4 0.4 42 80 0.4 2 0.8
9 15 0.2 8 0.2 26 40 0.2 4 0.4 43 80 0.3 2 0.8

10 15 0.6 6 0.2 27 40 0.4 8 0.4 44 80 0.2 8 0.8
11 15 0.6 4 0.2 28 40 0.4 6 0.4 45 80 0.2 6 0.8
12 15 0.6 3 0.2 29 40 0.4 3 0.4 46 80 0.2 4 0.8
13 15 0.6 2 0.2 30 40 0.4 2 0.4 47 80 0.2 3 0.8
14 15 0.6 8 0.3 31 40 0.4 4 0.2 48 80 0.2 2 0.2
15 15 0.6 8 0.4 32 40 0.4 4 0.3 49 80 0.2 2 0.3
16 15 0.6 8 0.6 33 40 0.4 4 0.6 50 80 0.2 2 0.4
17 15 0.6 8 0.8 34 40 0.4 4 0.8 51 80 0.2 2 0.6

The MODPSO for integrated ASP and ALB problem was coded using MATLAB software.

For the performance comparison purpose, six other algorithms used to optimise integrated ASP and

ALB are as follows.

i. Ant Colony Optimisation (ACO): This algorithm that has been used for simple assembly line

balancing problem in Bautista and Pereira [42]. On the other hand, the ACO algorithm also has been

used in integrated ASP and ALB [13]. This algorithm was selected based on its popularity.

ii. Hybrid Genetic Algorithm (HGA): HGA has been proposed by Chen and selected based on citation

popularity for integrated ASP and ALB optimisation [14].

iii. Multi-Objective Genetic Algorithm (MOGA): This algorithm used in [43] to optimise ASP

problem was chosen because genetic algorithm is one of the most frequently used algorithms for

solving and optimising ASP problems [1]. In common with this work, it used task-based

representation for ASP problem.

18
	

iv. Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II): NSGA-II was introduced by Deb

et. al in 2002 [35]. This algorithm was selected because of its popularity in multi-objective

optimisation.

v. Multi-Objective Particle Swarm Optimisation (MOPSO): The MOPSO acronym was introduced by

Coello and Lechuga to extend the PSO application for Pareto-based multi-objective optimisation

instead of weighted-based approach in earlier version [29].

vi. Discrete Particle Swarm Optimisation (DPSO): DPSO proposed by Rameshkumar for discrete

problem. Instead of using normal mathematical operation to update position and velocity in PSO, this

algorithm introduced special procedure to incorporate the discrete problem [31].

The originality of all the above algorithms was retained, as proposed by the researchers. For

example, the HGA and the MOGA that were previously encoded by using permutation chromosome

had been directly applied to the integrated ASP and ALB. Meanwhile, the ACO algorithm functioned

by constructing the assembly sequence according to the pheromone level. Hence, different assembly

sequences were generated by controlling the amount of pheromone level. Therefore, no modification

was required to suit the algorithm to be integrated with ASP and ALB. Besides, the DPSO was also

directly implemented because it was purposely proposed to address combinatorial problem.

On the other hand, the NSGA-II and the MOPSO were originally proposed to combat the

continuous optimisation problem. In order to fit both algorithms to be integrated with ASP and ALB,

the continuous value of chromosome/particle position had been defined as weight to determine the

sequence of assembly task. For instance, the particle positioned at X1 = [0.35, 7.27, 2.41, 6.38, 2.12]

was decoded into X1’ = [2 4 3 5 1], giving priority to the larger position value. With this approach, the

originality of NSGA-II and MOPSO had been successfully preserved since the original

chromosome/particle was directly evaluated.

In this work, the population or swarm size was set at 20 with 500 iterations. For each

problem, 30 simulation runs with different random seeds were performed and the output from each

run was gathered and filtered to get the non-dominated solution.

19
	

4.1 Performance indicators

To evaluate the performance of each algorithm when dealing with different complexity

problems, the following performance indicators adopted from [10] and [44] were used.

i. Number of non-dominated solution in Pareto optimal, ῆ: Show the number of non-dominated

solution generated by each algorithm in Pareto solution. The higher ῆ shows better algorithm

performance.

ii. Error Ratio, ER: ER count the number of solution which is not members of the Pareto optimal set

divide with number of solution that generated by algorithm q. Smaller ER shows better algorithm

performance.

iii. Generational Distance, GD: GD finds an average distance of solution with the nearest Pareto

optimal solution. Smaller GD provides better algorithm performance.

^Kj =
"C

kl
Cmn

&l
 Eq. 9

sq – number of solution generated by algorithm q

%> = op!q:9
r (s?

(>) − s?
∗(q))WL

?:9 Eq. 10

Where fm
(i) is mth objective function value of solution i and fm

*(k) is the mth objective function value of

kth member of Pareto optimal.

iv. Spacing: This indicator measures the relative distance between each solution.

ufvVp!w = 9

x
(%> − %)W

&l
>:9 Eq. 11

where %> is the distance between solution i and the nearest solution, while % is the average of all %>.

The smaller Spacing index shows better solution and has better space between each solution.

20
	

v. Maximum Spread, Spreadmax: Measures the spread of solution found by each algorithm. The larger

maximum spread is the better.

ufdZv%?HI = (min s> − max s>)WL
>:9 Eq. 12

5. Experimental Results

Figure 5 shows the number of the non-dominated solution in Pareto optimal (ῆ) for all test problems

using different algorithms. This figure shows that the proposed MODPSO performed better than other

algorithms in all test problems. In the majority of test problems, there was a significant gap between

MODPSO and other algorithms in term of ῆ found. According to the output pattern, larger problem

size will come out with broader gaps between MODPSO and other algorithms.

Figure 5: Number of non-dominated set throughout test problems

The Error Ratio (ER) for all algorithms is presented in Figure 6. From 51 test problems,

MODPSO algorithms performed better in 82% of the problems. While the remaining 18% of

problems was led by NSGA-II, where most of these problems involved larger task numbers (60 and

80 tasks). However, the mean of ER using MODPSO for all test problems remained the smallest

(0.34) compared with NSGA-II (0.57) and other algorithms (between 0.81-0.93).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0

50

100

150

200

250

300

Problem Number

Nu
m

be
r o

f n
on

do
m

in
at

ed
 s

ol
ut

io
n

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

Reference
setting
at Level 5

Reference
setting
at Level 3

Reference
setting at
Level 1

21
	

Figure 6: Error ratio throughout test problems

Meanwhile, Figure 7 presents the Generational Distance (GD) for algorithms throughout the

test problems. For this indicator, MODPSO also performed better in 82% of the problems in almost

similar problems as in ER. This is because the GD was measured between the solutions with the

nearest Pareto solution. When the number of the non-Pareto solution increased (higher ER), the

average of distance to Pareto solution would also increase. However, it still depends on how far the

distance of non-Pareto with the Pareto solution. For example in problem 22, although the ER using

MODPSO was better than other algorithms, the GD using this algorithm was in the third position after

MOGA and ACO. It shows that the distance of non-Pareto solution in MODPSO was relatively larger

than MOGA and ACO, since these algorithms also produced good ῆ for a particular problem.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0

0.2

0.4

0.6

0.8

1

Problem Number

Er
ro

r R
at

io

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

Reference
setting at
Level 1

Reference
setting at
Level 3

Reference
setting at
Level 5

22
	

Figure 7: Generational distance throughout test problems

Figure 8 shows the performance of Spacing indicator that leads to different algorithms. For

this indicator, MOPSO algorithm performed better in 37% of test problems. Then it was followed

with MODPSO (22%), HGA (18%), DPSO (15%), MOGA (6%) and ACO (2%).

Figure 8: Solution Spacing throughout test problems

For Maximum Spread (Spreadmax) in Figure 9, all algorithms show almost similar graph

pattern with small gaps between one another. For this indicator, MODPSO algorithm performed better

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Problem Number

G
en

er
at

io
na

l D
is

ta
nc

e

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

Reference
setting at
Level 1

Reference
setting at
Level 3

Reference
setting at
Level 5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Problem Number

Sp
ac

in
g

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

Reference
setting at
Level 3

Reference
setting at
Level 5

Reference
setting at
Level 1

23
	

in 71% of test problems. In this case, MODPSO achieved better performance in the problem with the

larger number of tasks, as it performed better in all test problems with 60 and 80 tasks.

Figure 9: Maximum spread throughout test problems

Figure 10 shows the average CPU time to complete 500 iterations for different algorithms.

Based on the results, NSGA-II consistently required the highest computational time compared with

other algorithms. This is related with NSGA-II feature which combined the parent and offspring

chromosomes in the evaluation stage. In other words, the number of evaluated chromosomes in

NSGA-II was doubled compared with other algorithms. On the other hand, MOPSO algorithm was

the fastest due to the basic updating procedures implemented in this algorithm. The proposed

MODPSO meanwhile, was the second highest computational time behind the NSGA-II. Besides

implementing the discrete updating procedure, the proposed algorithm also required additional time to

adopt the non-dominated sorting concept and calculate Crowding Distance for the leaders.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
30

40

50

60

70

80

90

Problem Number

M
ax

im
um

 S
pr

ea
d

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

Reference
setting at
Level 1

Reference
setting at
Level 3

Reference
setting at
Level 5

24
	

Figure 10: Average CPU time

6. Discussion of Results

Table 6 presents the mean of performance indicators obtained using different reference variable

settings. The number in bracket presents the algorithm ranking based on the mean of each indicator.

According to this table, the MODPSO algorithm consistently performed better in ῆ, ER, GD and

Spreadmax for all the reference settings. Meanwhile, for Spacing indicator, HGA and MOPSO

algorithms showed better performance than MODPSO. Based on this table, the proposed MODPSO

algorithm came out with better performance in all indicators except in Spacing indicator.

15 20 40 60 80
NSGA-II 142.13 267.43 1379.92 3999.78 8280.54
MOGA 101.59 158.48 850.91 2332.59 4856.55
ACO 25.87 56.17 358.08 1308.42 3208.65
HGA 89.35 166.07 804.12 2290.26 4811.02
MOPSO 23.27 50.47 346.36 1296.91 3099.97
DPSO 86.57 142.88 717.22 1924.48 3927.47
MODPSO 103.78 192.27 941.37 2368.87 5038.00

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CP
U	
Ti
m
e	
(s
)

Problem	Size

25
	

In Spacing indicator, all non-dominated solutions found by the particular algorithm were

taken into account, regardless of Pareto or non-Pareto solutions. This indicator showed the uniformity

of the space between one solution and the nearest other. Thus, the algorithm that generated more non-

dominated solutions has greater chances to produce better (smaller) Spacing. However, the solution

distribution is more important in achieving better Spacing. This is because the solutions that are only

distributed to particular side/s of solution space will have better Spacing compared with solutions that

are distributed uniformly over the entire solution space, even though the number of non-dominated

solution is much smaller. As an example in problem 3, the number of non-dominated solution found

using MODPSO and MOGA were 152 and 84 respectively, but MOGA came out with better Spacing

compared with MODPSO. Figure 11 shows the scatter-plot matrix for problem 3 using both

algorithms. From these figures, the MODPSO solution was distributed in larger solution space

compared with MOGA.

26
	

0
5

10
10

20
30

40
20

40
60

80
10

20
30

40
10

15
20

25
30

35
0 5 10 10 20 30 40 20 40 60 80 10 20 30 40

0 10 20 30 40

M
O

DPSO
M

O
G

A

No. of direction
change

No. of tool change

Cycle tim
e

No. of workstation

W
orkload variation

Figure 11: Scatter plot m
atrix for problem

 3 using M
O

G
A

 and M
O

D
PSO

 algorithm
s

27
	

Table 6: Mean of performance indicators by the different reference setting

*(Number in bracket shows algorithm ranking based on mean indicator value)
Reference
setting

Indicator
Algorithms

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

Level 1

ῆ
14.0000 5.5882 15.4118 15.7059 4.8235 5.3529 57.2353

(4) (5) (3) (2) (7) (6) (1)

ER
0.7530 0.8906 0.6901 0.5386 0.9034 0.9504 0.2174

(4) (5) (3) (2) (6) (7) (1)

GD
1.3890 1.9020 1.2328 0.9307 1.9463 2.1462 0.4029

(4) (5) (3) (2) (6) (7) (1)

Spacing
1.5743 1.6869 1.2509 2.2123 1.2932 1.3366 1.2690

(5) (6) (1) (7) (3) (4) (2)

Spreadmax
43.2394 43.0415 43.2337 42.2759 43.7500 43.8658 44.1101

(4) (6) (5) (7) (3) (2) (1)

Level 3

ῆ
25.7059 25.5882 14.4706 27.1176 6.2941 11.6471 164.6471

(3) (4) (5) (2) (7) (6) (1)

ER
0.8419 0.8210 0.9222 0.6531 0.9647 0.9544 0.3533

(4) (3) (5) (2) (7) (6) (1)

GD
1.9089 1.8061 2.3055 1.4281 2.7429 2.5469 0.7438

(4) (3) (5) (2) (7) (6) (1)

Spacing
1.5697 1.5558 1.3120 2.0204 1.2011 1.3345 1.3033

(6) (5) (3) (7) (1) (4) (2)

Spreadmax
52.9868 52.4293 52.9695 51.8761 52.8396 52.9752 54.5288

(2) (6) (4) (7) (5) (3) (1)

Level 5

ῆ
27.9412 36.7059 18.9412 36.7647 9.5882 23.1765 152.7059

(4) (3) (6) (2) (7) (5) (1)

ER
0.8076 0.7638 0.8756 0.5318 0.9247 0.8939 0.4460

(4) (3) (5) (2) (7) (6) (1)

GD
2.1575 1.8858 2.4961 1.3660 2.9583 2.4755 1.0768

(4) (3) (6) (2) (7) (5) (1)

Spacing
1.8601 1.8992 1.5246 2.5535 1.4429 1.5062 1.5530

(5) (6) (3) (7) (1) (2) (4)

Spreadmax
64.8871 63.9614 64.8369 64.4443 64.8487 65.2652 67.2345

(3) (7) (5) (6) (4) (2) (1)

Based on the means of the performance indicator, the algorithms with the basis of Genetic

Algorithm (GA) showed good performance behind the proposed MODPSO. The NSGA-II

consistently showed impressive performance in three indicators behind MODPSO although did not

perform well in Spacing and Spreadmax indicators. Meanwhile, the MOGA algorithm showed medium

performance in most of the indicators for all reference setting. By the calculated mean, this algorithm

was located between the third and fourth rank. However, HGA showed inconsistent performance from

one reference setting level to another. For the reference setting at Level 1, HGA shows quite good

28
	

performance at the third ranking. But when the reference setting was changed to Level 3 and 5, the

HGA mean ranking dropped to the fourth and fifth position respectively.

On the other hand, the ACO algorithm showed improvement from one reference setting the

level to another for ῆ, ER and GD. On average, the ACO was placed in the fifth rank among all

algorithms. The remaining two algorithms, DPSO and MOPSO were placed in the sixth and seventh

ranks according to the indicator means. Both algorithms did not perform well in ῆ, ER and GD but

showed quite impressive performance in Spacing and Spreadmax indicators.

The performance of DPSO showed that the algorithm designed with weighted objective

functional approach was unsuitable for finding a non-dominated solution although it used an efficient

Regeneration procedure as in MODPSO. Meanwhile, the MOPSO’s performance showed that the

original PSO operator to update position and velocity was not good enough for the discrete problem.

On the other hand, the NSGA-II that performed efficiently in three indicators showed that the

Selection strategy based on Crowding Distance of non-dominated solution worked effectively, since

the MODPSO that adopted similar strategy also did well. Based on the performance of NSGA-II and

DPSO algorithms, the proposed MODPSO algorithm has inherited good features from NSGA-II and

DPSO because the MODPSO algorithm mainly adopted strategies from these algorithms.

The results in Table 7 also indicate that the proposed MODPSO consistently performed better

than GA-based algorithms (i.e. MOGA, HGA and NSGA-II) for all the indicators except Spacing in

all reference settings. It shows that the MODPSO was able to optimise integrated ASP and ALB

problem from various difficulty levels efficiently compared with GA-based algorithms.

6.1 Statistical Tests

To test the significance of the results, statistical tests were performed. In this case, ANOVA

test was carried out to test if there was any significant difference between results obtained by an

algorithm compared with other algorithms. The null hypothesis stated that there was no significant

difference among all algorithm means. When the null hypothesis was accepted, it means that there

29
	

was no significant improvement achieved by any algorithms. The summary of ANOVA test is

presented in Table 8.

In order to accept the null hypothesis, the calculated f-value must be smaller than the critical

f-value (f*). The f* obtained from f-distribution table at 0.05 confidence interval was 3.86 [45]. Based

on Table 8, only the f-value for Spreadmax fulfilled the requirement to accept the null hypothesis.

Meanwhile, the f-values for ῆ, ER, GD and Spacing indicators showed larger values compared with f*.

It means that four out of five performance indicators rejected the null hypothesis which brought the

meaning that there were significant differences between algorithms. In this case, it shows that there

were significant improvements achieved at least by one algorithm compared to others. Meanwhile, the

acceptance of null hypothesis by Spreadmax indicator shows that all algorithms were able to explore

the extreme minimum and maximum values in the search space.

Table 7: Summary of ANOVA test

 ῆ ER GD Spacing Spreadmax
SSB 512147.60 14.30 121.93 35.03 183.90
SSW 301524.1 8.1442 137.805 74.207 72260.1
MSB 85358 2.38395 20.3224 5.83856 30.648
MSW 861.5 0.02327 0.3937 0.21202 206.457
f* 3.68 3.68 3.68 3.68 3.68
f 99.08 102.45 51.62 27.54 0.15

SSB: Sum of square between groups f*: critical f-value
SSW: Sum of square within groups f: calculated f-value
MSB: Mean squares between groups
MSW: mean squares within groups

However, the ANOVA test did not tell us the exact algorithms that have significant mean

differences. Therefore, a posteriori test known as the Tukey’s Honestly Significant Different test

(Tukey’s HSD test) was performed to identify if there was any significant improvement achieved by

the proposed MODPSO compared to other algorithms. The Tukey’s HSD test was only conducted for

the performance indicators that rejected the null hypothesis (ῆ, ER, GD and Spacing) since only these

groups showed the significant difference between algorithms. The summary of the Tukey’s HSD test

is presented in Table 8.

30
	

Table 8: Summary of Tukey’s HSD test

 Absolute Mean Different Between MODPSO and

Algorithm

Indicator

(HSD*)

ῆ

(11.102099)

ER

(0.089074)

GD

(0.366382)

Spacing

(0.268868)

Algorithm

MOGA 102.313725 0.461927 1.077286 0.292912

ACO 102.235294 0.486218 1.123465 0.338841

HGA 108.588235 0.490418 1.270296 0.012637

NSGA-II 98.3333333 0.235592 0.500439 0.886947

MOPSO 117.960784 0.592025 1.807975 0.062702

DPSO 111.470588 0.593996 1.648349 0.017292

	

Table 8 presents the absolute mean difference between MODPSO and other algorithms. The

number in bracket shows the critical HSD value (HSD*) that was calculated based on the Tukey’s

table [45]. When the absolute mean different between MODPSO and the particular algorithm is larger

than HSD*, it means that the significant improvement has been identified between these two

algorithms. Based on Table 8, the significant improvement was achieved by the proposed MODPSO

compared with all other algorithms for ῆ, ER and GD indicators. In the meantime, the significant

Spacing improvements were observed between MODPSO and MOGA, ACO and NSGA-II, but not

with HGA, MOPSO and DPSO. This result was consistent with earlier finding in Figure 8 and Table 6

that prioritised the HGA, MOPSO and DPSO algorithms together with MODPSO for Spacing

indicator.

The Tukey’s HSD test result explained that the proposed MODPSO performed well to

converge to Pareto optimal solutions since the indicators that directly linked with it (ῆ, ER and GD)

showed significant improvement compared with other algorithms. On the other hand, the MODPSO

only showed significant improvement in some cases in terms of uniformity of the found solution.

Meanwhile, no significant improvement was found for the solution spreading although small

difference as presented in Figure 9 was notified.

The proposed MODPSO algorithm showed better performance because of the fine tuning

feature towards the end of iterations. This feature is important in ASP and ALB, where small changes

31
	

may lead to sudden improvement in results. The discrete updating procedure in MODPSO was

designed to enable fine tuning towards the end of iterations. In PSO, all particles moved towards

personal and global best solutions. According to the discrete updating procedure (Subtraction operator

(Xi-Xj)) in MODPSO, zero velocity was given when similar elements in Xi and Xj were found (this is

the case when all particles move towards the best solution at the end of iterations). When majority of

velocity elements were zero, only small changes occurred in assembly sequence as presented by

Addition operator (Xi+Vi). This feature allowed fine tuning of the assembly sequences in MODPSO.

7. Conclusions

In this work, a Multi-Objective Discrete Particle Swarm Optimisation (MODPSO) algorithm was

proposed to optimise an integrated ASP and ALB problems. Indifferent with the existing algorithms,

MODPSO that used Pareto-based approach to deal with multi-objective problem, adopted discrete

procedure instead of standard mathematical operators to update its position and velocity. A set of 51

test problems with different range of difficulties was used to test the performance of MODPSO

compared with other algorithms.

The results show that the MODPSO performed better in all test problems in finding a non-

dominated solution (ῆ), 82% in Error ratio (ER), 82% in Generational Distance (GD), 22% in Spacing

and 71% in Maximum Spread. Meanwhile, the result in Table 7 presents that the MODPSO performed

better in four out of five performance indicators in all difficulty levels. This result shows the proposed

MODPSO successfully overcame the underperformance of GA-based algorithms for the test problem

with a larger number of tasks.

A statistical test was conducted to identify any significant improvement achieved by the

proposed MODPSO. The statistical test concluded that the MODPSO showed significant

improvement compared with other algorithms to converge to Pareto optimal solutions. In terms of

solution uniformity, the significant improvement achieved by MODPSO was only applied to certain

32
	

comparison algorithms. Furthermore, no significant improvement was achieved for the solution

spreading using the MODPSO. Therefore, it can be concluded that the proposed MODPSO has shown

good performance in terms of solution quality towards Pareto optimal solutions.

Instead of specific application to optimise integrated ASP and ALB problem, the proposed

MODPSO also can be used to optimise other types of discrete problems represented using precedence

graph. This includes the traveling salesman problem and vehicle routing problem with precedence

constraint. However, the proposed MODPSO has limited performance in terms of solution uniformity

as attained by Spacing indicator. Besides that, the CPU time for MODPSO is also among the highest

within the comparison algorithms.

In future, an extensive effort to improve the solution uniformity and spreading is proposed to

improve the quality of the overall solution. This might be achieved by hybridising the MODPSO with

different algorithm with better solution spread. Besides, the MODPSO algorithm could be tested with

higher complexity assembly problems, such as mixed-model, as well as two-sided and parallel lines,

in order to better understand the behaviour of the algorithm at varied complexity levels. Furthermore,

the application of the algorithm to the industrial problem is also suggested.

References

[1] M. F. F. Rashid, W. Hutabarat, and A. Tiwari, “A review on assembly sequence planning and

assembly line balancing optimisation using soft computing approaches,” Int. J. Adv. Manuf.

Technol., vol. 59, no. 1–4, pp. 335–349, Aug. 2011.

[2] N. Hamta, M. A. Shirazi, and S. F. Ghomi, “A bi-level programming model for supply chain

network optimization with assembly line balancing and push-pull strategy,” Proc. Inst. Mech.

Eng. Part B J. Eng. Manuf., vol. 230, no. 6, pp. 1127–1143, Feb. 2016.

[3] M. Li, Y. Zhang, B. Zeng, H. Zhou, and J. Liu, “The modified firefly algorithm considering

fireflies’ visual range and its application in assembly sequences planning,” Int. J. Adv. Manuf.

Technol., vol. 82, no. 5–8, pp. 1381–1403, Jul. 2015.

[4] R. M. Marian, “Optimisation of Assembly Sequences using Genetic Algorithm,” University of

33
	

South Australia, 2003.

[5] H.-E. Tseng and C.-E. Tang, “A sequential consideration for assembly sequence planning and

assembly line balancing using the connector concept,” Int. J. Prod. Res., vol. 44, no. 1, pp. 97–

116, Jan. 2006.

[6] S. S. Ghandi and E. Masehian, “A breakout local search (BLS) method for solving the

assembly sequence planning problem,” Eng. Appl. Artif. Intell., vol. 39, pp. 245–266, Mar.

2015.

[7] C. Becker and A. Scholl, “A survey on problems and methods in generalized assembly line

balancing,” Eur. J. Oper. Res., vol. 168, no. 3, pp. 694–715, Feb. 2006.

[8] B. Sungur and Y. Yavuz, “Assembly line balancing with hierarchical worker assignment,” J.

Manuf. Syst., vol. 37, pp. 290–298, Oct. 2015.

[9] M. Haddadzade, M. R. Razfar, and M. H. F. Zarandi, “Multipart setup planning through

integration of process planning and scheduling,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.,

vol. 230, no. 6, pp. 1097–1113, 2016.

[10] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms. Sussex, United

Kingdom: John Wiley & Sons, 2002.

[11] S. Luke, Essentials of Metaheuristics, 1st Editio. California, USA: Lulu, 2010.

[12] Z. Yang, C. Lu, and H. W. Zhao, “An Ant Colony Algorithm for Integrating Assembly

Sequence Planning and Assembly Line Balancing,” Appl. Mech. Mater., vol. 397–400, pp.

2570–2573, Sep. 2013.

[13] C. Lu and Z. Yang, “Integrated assembly sequence planning and assembly line balancing with

ant colony optimization approach,” Int. J. Adv. Manuf. Technol., vol. 83, no. 1, pp. 243–256,

2016.

[14] R. Chen, K. Lu, and S. Yu, “A hybrid genetic algorithm approach on multi-objective of

assembly planning problem,” Eng. Appl. Artif. Intell., vol. 15, no. 2002, pp. 447–457, 2003.

[15] H.-E. Tseng, M.-H. Chen, C.-C. Chang, and W.-P. Wang, “Hybrid evolutionary multi-

objective algorithms for integrating assembly sequence planning and assembly line balancing,”

Int. J. Prod. Res., vol. 46, no. 21, pp. 5951–5977, Nov. 2008.

[16] H. S. Wang, Z. H. Che, and C. J. Chiang, “A hybrid genetic algorithm for multi-objective

product plan selection problem with ASP and ALB,” Expert Syst. Appl., vol. 39, no. 5, pp.

5440–5450, Apr. 2012.

[17] M. F. F. Ab Rashid, W. Hutabarat, and A. Tiwari, “Development of a tuneable test problem

generator for assembly sequence planning and assembly line balancing,” Proc. Inst. Mech.

34
	

Eng. Part B J. Eng. Manuf., vol. 226, no. 11, pp. 1900–1913, Aug. 2012.

[18] Z. Xinchao, “A perturbed particle swarm algorithm for numerical optimization,” Appl. Soft

Comput., vol. 10, no. 1, pp. 119–124, Jan. 2010.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. ICNN’95 - Int. Conf. Neural

Networks, vol. 4, pp. 1942–1948, 1995.

[20] B. Shuang, J. Chen, and Z. Li, “Microrobot based micro-assembly sequence planning with

hybrid ant colony algorithm,” Int. J. Adv. Manuf. Technol., vol. 38, no. 11–12, pp. 1227–1235,

Sep. 2007.

[21] J. Gao, L. Sun, L. Wang, and M. Gen, “An efficient approach for type II robotic assembly line

balancing problems,” Comput. Ind. Eng., vol. 56, no. 3, pp. 1065–1080, Apr. 2009.

[22] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five evolutionary-based

optimization algorithms,” Adv. Eng. Informatics, vol. 19, no. 1, pp. 43–53, Jan. 2005.

[23] J. Mukund Nilakantan and S. G. Ponnambalam, “Robotic U-shaped assembly line balancing

using particle swarm optimization,” Eng. Optim., vol. 48, no. 2, pp. 231–252, 2015.

[24] C. Y. Liu and H. J. Wen, “Application of Multi-Objective Culture Particle Swarm

Optimization in Complex Product Assembly Line Balancing,” Adv. Mater. Res., vol. 694–697,

pp. 3526–3530, May 2013.

[25] M. Li, B. Wu, Y. Hu, C. Jin, and T. Shi, “A hybrid assembly sequence planning approach

based on discrete particle swarm optimization and evolutionary direction operation,” Int. J.

Adv. Manuf. Technol., vol. 68, no. 1–4, pp. 617–630, Feb. 2013.

[26] N. Hamta, S. M. T. Fatemi Ghomi, F. Jolai, and M. Akbarpour Shirazi, “A hybrid PSO

algorithm for a multi-objective assembly line balancing problem with flexible operation times,

sequence-dependent setup times and learning effect,” Int. J. Prod. Econ., vol. 141, no. 1, pp.

99–111, Jan. 2013.

[27] Y. Xing and Y. Wang, “Assembly sequence planning based on a hybrid particle swarm

optimisation and genetic algorithm,” Int. J. Prod. Res., Nov. 2012.

[28] A. C. Nearchou, “Maximizing production rate and workload smoothing in assembly lines

using particle swarm optimization,” Int. J. Prod. Econ., vol. 129, no. 2, pp. 242–250, Feb.

2011.

[29] C. A. Coello Coello and M. S. Lechuga, “MOPSO: a proposal for multiple objective particle

swarm optimization,” in Proceedings of the 2002 Congress on Evolutionary Computation.

CEC’02 (Cat. No.02TH8600), 2002, vol. 2, pp. 1051–1056.

[30] Y.-J. Tseng, J.-Y. Chen, and F.-Y. Huang, “A particle swarm optimisation algorithm for multi-

35
	

plant assembly sequence planning with integrated assembly sequence planning and plant

assignment,” Int. J. Prod. Res., vol. 48, no. 10, pp. 2765–2791, May 2010.

[31] K. Rameshkumar, R. K. Suresh, and K. M. Mohanasundaram, “Discrete Particle Swarm

Optimization (DPSO) Algorithm for Permutation Flowshop Scheduling to Minimize

Makespan,” Adv. Nat. Comput., vol. 3612, pp. 572–581, 2005.

[32] D. Jianping, S. Chun, and L. Jun, “A Discrete Particle Swarm Optimization Algorithm for

Assembly Line Balancing Problem of Type 1,” 2011 Third Int. Conf. Meas. Technol.

Mechatronics Autom., pp. 44–47, Jan. 2011.

[33] H. Lv and C. Lu, “An assembly sequence planning approach with a discrete particle swarm

optimization algorithm,” Int. J. Adv. Manuf. Technol., vol. 50, no. 5–8, pp. 761–770, Jan.

2010.

[34] Y. Wang and J. H. Liu, “Chaotic particle swarm optimization for assembly sequence

planning,” Robot. Comput. Integr. Manuf., vol. 26, no. 2, pp. 212–222, Apr. 2010.

[35] K. Deb, A. Member, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist

Multiobjective Genetic Algorithm :,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,

2002.

[36] M. F. F. Rashid, A. Tiwari, and W. Hutabarat, “An Integrated Representation Scheme for

Assembly Sequence Planning and Assembly Line Balancing,” in Proceedings of the 9th

International Conference on Manufacturing Research ICMR 2011, 2011, no. September, pp.

125–131.

[37] S. Qu and Z. Jiang, “A memetic algorithm approach for batch-model assembly line balancing

problem of sub-block in shipbuilding,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 228,

no. 10, pp. 1290–1304, Jan. 2014.

[38] D. E. Whitney, Mechanical Assemblies: Their Design, Manufacture, and Role in Product

Development, Volume 1. Oxford University Press, 2004.

[39] H. Yu, J. P. Yu, and W. L. Zhang, “An Particle Swarm Optimization Approach for Assembly

Sequence Planning,” Appl. Mech. Mater., vol. 16–19, pp. 1228–1232, Oct. 2009.

[40] H. G. Lv, C. Lu, and J. Zha, “A hybrid DPSO-SA approach to assembly sequence planning,”

2010 IEEE Int. Conf. Mechatronics Autom., pp. 1998–2003, Aug. 2010.

[41] C. Moon, J. Kim, G. Choi, and Y. Seo, “An efficient genetic algorithm for the traveling

salesman problem with precedence constraints,” Eur. J. Oper. Res., vol. 140, no. 3, pp. 606–

617, Aug. 2002.

[42] J. Bautista and J. Pereira, “Ant algorithms for a time and space constrained assembly line

36
	

balancing problem,” Eur. J. Oper. Res., vol. 177, no. 3, pp. 2016–2032, Mar. 2007.

[43] Y.-K. Choi, D. M. Lee, and Y. Bin Cho, “An approach to multi-criteria assembly sequence

planning using genetic algorithms,” Int. J. Adv. Manuf. Technol., vol. 42, no. 1–2, pp. 180–

188, Jul. 2008.

[44] A. Yoosefelahi, M. Aminnayeri, H. Mosadegh, and H. D. Ardakani, “Type II robotic assembly

line balancing problem: An evolution strategies algorithm for a multi-objective model,” J.

Manuf. Syst., vol. 31, no. 2, pp. 139–151, Apr. 2012.

[45] F. L. Coolidge, Statistics: A Gentle Introduction. London: SAGE Publication, 2000.

