36 research outputs found

    Nonlinear dynamics and chaos in an optomechanical beam

    Get PDF
    [EN] Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, for instance, the relative detuning between an optical resonance and the excitation laser. Here, we exploit these nonlinearities and their intercoupling with the mechanical degrees of freedom of a silicon optomechanical nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser we demonstrate accurate control to activate two-and four-dimensional limit cycles, a period-doubling route and a six-dimensional chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between two-and four-dimensional limit cycles, between different coherent mechanical states and between four-dimensional limit cycles and chaos. Our findings open new routes towards exploiting silicon-based optomechanical photonic crystals as a versatile building block to be used in neurocomputational networks and for chaos-based applications.This work was supported by the European Comission project PHENOMEN (H2020-EU-713450), the Spanish Severo Ochoa Excellence program and the MINECO project PHENTOM (FIS2015-70862-P). DNU, PDG and MFC gratefully acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392), a Beatriu de Pinos postdoctoral fellowship (BP-DGR 2015 (B) and a Severo Ochoa studentship, respectively. We would like to acknowledge Jose C. Sabina de Lis, J.M. Plata Suarez, A. Trifonova and C. Masoller for fruitful discussions.Navarro-Urrios, D.; Capuj, NE.; Colombano, MF.; García, PD.; Sledzinska, M.; Alzina, F.; Griol Barres, A.... (2017). Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications. 8. https://doi.org/10.1038/ncomms14965S8Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press (2014).Lorenz, E. N. Deterministic nonperiodic ow. J. Atmos. Sci. 20, 130–141 (1963).Sparrow, C. The Lorenz Attractor: Bifurcations, Chaos and Strange Attractors Springer (1982).Aspelmeyer, M., Kippenberg, T. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).Krause, A. G. et al. Nonlinear radiation pressure dynamics in an optomechanical crystal. Phys. Rev. Lett. 115, 233601 (2015).Metzger, C. et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008).Bakemeier, L., Alvermann, A. & Fehske, H. Route to chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015).Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015).Williams, C. R. et al. Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013).Sciamanna, M. Optomechanics: vibrations copying optical chaos. Nat. Photon. 10, 366–368 (2016).Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016).Wu, J. et al. Dynamical chaos in chip-scale optomechanical oscillators. Preprint at https://arxiv.org/abs/1608.05071 (2016).Navarro-Urrios, D., Tredicucci, A. & Sotomayor-Torres, C. M. Coherent phonon generation in optomechanical crystals. SPIE Newsroom, doi:10.1117/2.1201507.006036 (2015).Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5, 15733 (2015).Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006).Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18, 094006 (2016).Kemiktarak, U., Durand, M., Metcalfe, M. & Lawall, J. Mode competition and anomalous cooling in a multimode phonon laser. Phys. Rev. Lett. 113, 030802 (2014).Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993).Sprott, J. C. Chaos and Time-Series Analysis Vol. 69, Citeseer (2003).Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).Hoppensteadt, F. C. & Izhikevich, E. M. Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, Reg. Papers 48, 133–138 (2001).Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011).Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014).Johnson, S. G. et al. Perturbation theory for Maxwells equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).Pennec, Y. et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics 3, 413–440 (2014)

    On the role of oscillatory dynamics in neural communication

    Get PDF
    In this Thesis we consider problems concerning brain oscillations generated across the interaction between excitatory (E) and inhibitory (I) cells. We explore how two neuronal groups with underlying oscillatory activity communicate much effectively when they are properly phase-locked as suggested by Communcation Through Coherence Theory. In Chapter 1 we introduce the Wilson-Cowan equations (WC), a mean field model describing the mean activity of a network of a single population of E cells and a single popultation of I cells and review the bifurcations that give rise to oscillatory dynamics. In Chapter 2 we study how the oscillations generated across the E-I interaction are affect by a periodic forcing. We take the WC equations in the oscillatory regime with an external time periodic perturbation. We consider the stroboscopic map for this system and compute the bifurcation diagram for its fixed and periodic points as the amplitude and the frequency of the perturbation are varied. From the bifurcation diagram, we can identify the phase-locked states as well as different areas involving bistablility between two invariant objects. Chapter 3 exploits recent techniques based on phase-amplitude variables to describe the phase dynamics of an oscillator under different perturbations. More precisely, the applications of the parameterization method to compute a change of variables that describes correctly the dynamics near a limit cycle in terms of the phase (a periodic variable) and the amplitude. The computational method uses the Floquet normal form to reduce the computational cost. This change provides two remarkable manifolds used in neuroscience: the sets of constant phase/amplitude (isochrons/isostables). Moreover, we compute the functions describing the phase and amplitude changes caused by a perturbation arriving at different phases of the cycle, known as Phase and Amplitude Response Curves, PRCs and ARCs, respectively. The computed parameterization provides also the extension of these curves outside of the limit cycle, defined as the Phase and Amplitude Response Functions, PRFs and ARFs, respectively. We compute these objects for limits cycles in systems with 2 and 3 dimensions. In Chapter 4 we apply the parameterization method to compute Phase Response Curves (PRCs) for a transient stimulus of arbitrary amplitude and duration. The underlying idea is to construct a particular periodic perturbation consisting of the repetition of the transient stimulus followed by a resting period when no perturbation acts. For this periodic system we consider the corresponding stroboscopic map and we prove that, under certain conditions, it has an invariant curve. We prove that this map has an invariant curve and we provide the relationship between the PRC and the internal dynamics of the curve. Moreover, we link the existence properties of this invariant curve as the amplitude of the perturbation is increased with changes in the PRC waveform and with the geometry of isochrons. Furthermore, we also provide algorithms to obtain numerically the PRC and the ARC. In Chapter 5 we study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation, where we assume the existence of a parameter uncoupling the system when it is equal to zero. Using a recently derived truncated normal form, we perform a theoretical dynamical analysis and study its bifurcations. Computing the normal form coefficients in the case of 2 coupled Wilson-Cowan oscillators gives an understanding of different types of behaviour that arise in this model of perceptual bistability. Notably, we find bistability between in-phase and anti-phase solutions. Using numerical continuation we confirm our theoretical analysis for small coupling strength and explore the bifurcation diagrams for large coupling strength, where the normal form approximation breaks down. We finally discuss the implications of this dynamical study in models of perceptual bistability.Aquesta Tesi estudia problemes relacionats amb les oscil·lacions de l'activitat cerebral. Explorem com dues poblacions neuronals en activitat oscil·latòria es comuniquen més efectivament quan estan lligades en fase, tal com suggereix la teoria de 'Comunicació a Través de la Coherència'. Al capítol 1 introduïm les equacions de Wilson-Cowan (WC), un model de camp mitjà que descriu l' activitat d'una xarxa de neurones excitatòries (E) i inhibitòries (I) i calculem les bifurcacions que generen cicles límit. Al capítol 2 estudiem com un cicle límit generat a través d'aquesta interacció E-I respon a un forçament periòdic. Considerem el model de WC en règim oscil·latori amb una pertorbació externa periòdica en el temps. Considerem el mapa estroboscòpic d'aquest sistema i calculem el diagrama de bifurcació dels seus punts fixos i òrbites periòdiques en funció de l'amplitud i la freqüència de la pertorbació. El diagrama de bifurcació ens permet identificar les àrees amb lligadura de fase, axí com diferents àrees on tenim coexistència de dos objectes invariants estables. Al capítol 3 utilitzem tècniques recents basades en les variables fase-amplitud per a descriure la dinàmica de fase d'un oscil·lador sota diferents pertorbacions. En particular, utilitzem el mètode de la parametrització per a calcular un canvi de variables que descriu correctament la dinàmica prop del cicle límit en termes de la fase (variable periòdica) i l'amplitud. Aquests càlculs estan basats en la forma normal de Floquet que en redueix el cost computacional. Aquest canvi de variables ens permet calcular dos varietats importants en neurociència: els conjunts de fase/amplitud constant (les isòcrones/isostables). A més a més, calculem les funcions que descriuen els canvis de fase i amplitud causats per una pertorbació que arriba a diferents fases del cicle, les Corbes de Resposta de Fase i Amplitud, (PRCs i ARCs), respectivament. El canvi de variables calculat proporciona també l'extensió d'aquestes corbes fora del cicle límit, definides com les Funcions de Resposta de Fase i Amplitud, (PRFs i ARFs). Calculem tots aquests objectes per a cicles límit en 2 i 3 dimensions. Al capítol 4 ens centrem en les aplicacions del mètode de la parametrització per calcular PRCs per a estímuls de duració i amplitud arbitraria. La idea bàsica del mètode és construir una pertorbació periòdica particular que consisteix en la repetició d'un estímul transitori seguit d'un període de relaxació en el qual no actua cap pertorbació. Per a aquest sistema periòdic considerem el seu corresponent mapa estroboscòpic i demostrem que sota certes condicions, té una corba invariant. Demostrem que aquesta aplicació té una corba invariant i donem la relació entre la PRC i la dinàmica interna d'aquesta corba. A més a més, relacionem les propietats d'existència d'aquesta corba quan l'amplitud de la pertorbació augmenta, amb els canvis a la PRC i a la geometria de les isòcrones. Finalment, presentem algoritmes per obtenir numèricament la PRC i la ARC. Al capítol 5 estudiem la dinàmica emergent quan s'acoblen dos oscil·ladors idèntics prop d'una bifurcació de Hopf, pels quals suposem l'existència d'un paràmetre que desacobla el sistema quan s'anul·la. Utilitzant una forma normal derivada recentment per a 2 sistemes idèntics prop d'una bifurcació de Hopf, fem una anàlisi teòrica i estudiem les seves bifurcacions. Identificant els coeficients de la forma normal per a un model de dos oscil·ladors de tipus WC acoblats, il·lustrem els resultats obtinguts en l'anàlisi teòrica en un model amb moltes aplicacions al camp de la percepció biestable. Un resultat important és la biestabilitat entre solucions en fase i en antifase. Utilitzant mètodes de continuacióPostprint (published version

    Tuning Methodology of Nonlinear Vibration Absorbers Coupled to Nonlinear Mechanical Systems.

    Get PDF
    A large body of literature exists regarding linear and nonlinear dynamic absorbers, but the vast majority of it deals with linear primary structures. However, nonlinearity is a frequency occurrence in engineering applications. Therefore, the present thesis focuses on the mitigation of vibrations of nonlinear primary systems using nonlinear dynamic absorbers. Because most existing contributions about their design rely on optimization and sensitivity analysis procedures, which are computationally demanding, or on analytic methods, which may be limited to small-amplitude motions, this thesis sets the emphasis on a tuning procedure of nonlinear vibration absorbers that can be computationally tractable and treat strongly nonlinear regimes of motion.The proposed methodology is a two-step procedure relying on a frequency-energy based approach followed by a bifurcation analysis. The first step, carried out in the free vibration case, imposes the absorber to possess a qualitatively similar dependence on energy as the primary system. This gives rise to an optimal nonlinear functional form and an initial set of absorber parameters. Based upon these initial results, the second step, carried out in the forced vibration case, exploits the relevant information contained within the nonlinear frequency response functions, namely, the bifurcation points. Their tracking in parameter space enables the adjustment of the design parameter values to reach a suitable tuning of the absorber.The use of the resulting integrated tuning methodology on nonlinear vibration absorbers coupled to systems with nonlinear damping is then investigated. The objective lies in determining an appropriate functional form for the absorber so that the limit cycle oscillation suppression is maximized.Finally, the proposed tuning methodology of nonlinear vibration absorbers may impose the use of complicated nonlinear functional forms whose practical realization, using mechanical elements, may be difficult. In this context, an electro-mechanical nonlinear vibration absorber relying on piezoelectric shunting possesses attractive features as various functional forms for the absorber nonlinearity can be achieved through proper circuit design. The foundation of this new approach are laid down and the perspectives are discussed

    7th International Conference on Nonlinear Vibrations, Localization and Energy Transfer: Extended Abstracts

    Get PDF
    International audienceThe purpose of our conference is more than ever to promote exchange and discussions between scientists from all around the world about the latest research developments in the area of nonlinear vibrations, with a particular emphasis on the concept of nonlinear normal modes and targeted energytransfer

    Semiconductor Laser Dynamics

    Get PDF
    This is a collection of 18 papers, two of which are reviews and seven are invited feature papers, that together form the Photonics Special Issue “Semiconductor Laser Dynamics: Fundamentals and Applications”, published in 2020. This collection is edited by Daan Lenstra, an internationally recognized specialist in the field for 40 years

    Contributions to three problems relevant to cavity quantum optics

    Get PDF
    En la primera parte, el tema de estudio son las fluctuaciones cuánticas en el Oscilador Óptico Paramétrico (OPO) de tipo II. En esencia, los OPOs son cavidades ópticas que contienen un cristal con una no linealidad de segundo orden. Cuando bombeamos con un laser de frecuencia 2w0, el OPO es capaz de generar frecuencias ws (señal) y wi (vago) de tal forma que ws+wi=2w0. Que el dispositivo sea de Tipo II hace referencia a que estos haces tienen polarizaciones ortogonales. En una descripción clásica, la generación de frecuencias requiere que el OPO sea bombeado por encima de un cierto valor umbral; sin embargo, cuánticamente las parejas de fotones señal-vago pueden ser generadas incluso por debajo de ese umbral, lo cual les confiere propiedades cuánticas muy interesantes. En particular, los OPOs de tipo I, en los cuales señal y vago tienen la misma polarización, mantienen el record de reducción de ruido en cuadraturas ("single-mode squeezing"), lo que se manifiesta en el modo degenerado de frecuencia ws=wi=w0; consistiendo el "squeezing" en reducir el ruido cuántico en un observable a costa de incrementarlo en su par canónico, preservando así el principio de incertidumbre, lo que permite, por ejemplo, realizar medidas ultraprecisas virtualmente libres de ruido cuántico. Por otro lado, los OPOs de tipo II además de proporcionar "squeezing" en la suma de fases de señal y vago (lo que no resulta detectable puesto que se trata de una cuadratura "mixta" que implica a dos modos de frecuencias y polarizaciones diferentes), tiene reducción completa de ruido en la resta de intensidades, lo cual quiere decir que sus amplitudes están perfectamente correlacionadas y los haces ¿entrelazados¿. Cuando dos sistemas están entrelazados, presentan correlaciones cuánticas no-locales que pueden explotarse para muchas aplicaciones impensables en el dominio clásico. Sin embargo, para la manipulación y detección de estos estados es muy conveniente que los campos generados estén degenerados en frecuencia ("locking"). Hasta ahora, las técnicas conocidas que consiguen "locking" deterioran los niveles de "squeezing" y entrelazamiento. La primera vez que fue propuesta una técnica de "locking" fue por Fabre y colaboradores. En esta parte de la tesis, nosotros proponemos una alternativa de conseguir degeneración a frecuencia w0. Mostramos que el "locking" puede ser conseguido en el OPO tipo II preservando buenos niveles de entrelazamiento. En la segunda parte de la tesis nos centramos en el estudio de simuladores cuánticos de la física de sistemas de muchos cuerpos. En particular, nos centramos en el estudio de colecciones ("arrays") de cavidades ópticas, cada una interactuando fuertemente con un emisor de dos niveles. Este tipo de sistemas han recibido una atención considerable en los últimos años. Se han descubierto fases coherentes fuertemente correlacionadas y se ha discutido sobre analogías con el efecto hall cuántico y con estados cuánticos topológicamente protegidos. En investigaciones anteriores el mecanismo de bombeo utilizado ha sido un bombeo coherente para cada cavidad, con lo que la relación de fase entre los campos de cavidades distantes podía ser atribuida, al menos en parte, a la relación de fase entre los campos coherentes bombeados. En este trabajo mostramos que la coherencia entre cavidades distantes puede construirse espontáneamente, provocada solo por los procesos físicos dentro del "array". De esta forma nos preguntamos si en estas estructuras se pueden desarrollar superfluidos fuera del equilibrio o condensados de Bose Einstein. Por este motivo, consideramos que el "array" de cavidades esta bombeado sólo de forma incoherente. Para una sola cavidad el sistema se reduce al láser de un solo emisor ("one- emitter laser"), ampliamente estudiado en trabajos anteriores. En nuestro análisis nos concentramos en las correlaciones en cavidades distantes, típicamente consideradas para investigar efectos de rango lejano y la emergencia de superfluidez. De hecho encontramos correlaciones colectivas cuando las cavidades se encuentran en régimen de emisión láser. Estas correlaciones decaen más rápido que ninguna potencia de la distancia cuando la distancia entre cavidades tiende a infinito para cualquier dimensión del "array". Como es de esperar, la longitud de correlación asociada aumenta al aumentar el acoplo entre cavidades. También encontramos propiedades intrínsecas del laser, como el típico espectro de fotoluminiscencia, el triplete de Mollow, el cual puede ser observado lejos de la resonancia entre emisor y cavidad debido a la aparición de modos fotónicos colectivos. La tercera parte de la tesis se centra en el estudio de cavidades optomecánicas, que son resonadores ópticos (dos espejos enfrentados, por ejemplo) iluminados por un láser, en los que se produce una interacción entre la luz y uno o varios sistemas mecánicos. Estos dispositivos pueden implementarse de varias formas, siendo la más sencilla la que asume que la luz ejerce una presión de radiación que puede modificar la posición de un espejo móvil. El uso de resonadores ópticos permite aumentar en varios órdenes de magnitud la intensidad de la luz en el interior de la cavidad, lo cual conduce a una mejora impresionante de la interacción. Las cavidades optomecánicas han sido implementadas usando diferentes osciladores mecánicos (OMs) como, por ejemplo, resonadores microtoroidales o membranas suspendidas en una cavidad. Desde el punto de vista cuántico, estos dispositivos también pueden proporcionar estados cuánticos de la luz como "squeezed" o entrelazados, así como enfriamiento del OM ("laser cooling"). El laser "cooling" es una técnica para enfriar el OM hasta su estado fundamental (el de mínima energía), punto de partida para estudiar la transición microscópica-macroscópica de las leyes mecano-cuánticas. El modelo propuesto en esta parte de la tesis, permite la coexistencia de muchos modos tanto mecánicos como ópticos (estamos entonces en presencia de un sistema intrínsecamente multimodo). A través del estudio de la estabilidad del sistema hemos obtenido que pueden coexistir dos soluciones homogéneas (biestabilidad) y que no solo existen inestabilidades temporales, sino que también pueden formarse estructuras espaciales disipativas. Por ejemplo, partiendo de una inyección plana (invariante bajo traslaciones) encontramos patrones hexagonales (que rompen espontáneamente la simetría espacial), y, en la zona de biestabilidad, donde los patrones coexisten con una solución homogénea, encontramos solitones de cavidad

    Complex Systems: Nonlinearity and Structural Complexity in spatially extended and discrete systems

    Get PDF
    Resumen Esta Tesis doctoral aborda el estudio de sistemas de muchos elementos (sistemas discretos) interactuantes. La fenomenología presente en estos sistemas esta dada por la presencia de dos ingredientes fundamentales: (i) Complejidad dinámica: Las ecuaciones del movimiento que rigen la evolución de los constituyentes son no lineales de manera que raramente podremos encontrar soluciones analíticas. En el espacio de fases de estos sistemas pueden coexistir diferentes tipos de trayectorias dinámicas (multiestabilidad) y su topología puede variar enormemente dependiendo de dos parámetros usados en las ecuaciones. La conjunción de dinámica no lineal y sistemas de muchos grados de libertad (como los que aquí se estudian) da lugar a propiedades emergentes como la existencia de soluciones localizadas en el espacio, sincronización, caos espacio-temporal, formación de patrones, etc... (ii) Complejidad estructural: Se refiere a la existencia de un alto grado de aleatoriedad en el patrón de las interacciones entre los componentes. En la mayoría de los sistemas estudiados esta aleatoriedad se presenta de forma que la descripción de la influencia del entorno sobre un único elemento del sistema no puede describirse mediante una aproximación de campo medio. El estudio de estos dos ingredientes en sistemas extendidos se realizará de forma separada (Partes I y II de esta Tesis) y conjunta (Parte III). Si bien en los dos primeros casos la fenomenología introducida por cada fuente de complejidad viene siendo objeto de amplios estudios independientes a lo largo de los últimos años, la conjunción de ambas da lugar a un campo abierto y enormemente prometedor, donde la interdisciplinariedad concerniente a los campos de aplicación implica un amplio esfuerzo de diversas comunidades científicas. En particular, este es el caso del estudio de la dinámica en sistemas biológicos cuyo análisis es difícil de abordar con técnicas exclusivas de la Bioquímica, la Física Estadística o la Física Matemática. En definitiva, el objetivo marcado en esta Tesis es estudiar por separado dos fuentes de complejidad inherentes a muchos sistemas de interés para, finalmente, estar en disposición de atacar con nuevas perspectivas problemas relevantes para la Física de procesos celulares, la Neurociencia, Dinámica Evolutiva, etc..
    corecore