3,137 research outputs found

    Performance Evaluation of Cognitive Radio Spectrum Sensing Techniques through a Rayleigh Fading Channel

    Get PDF
    In recent years, there has been a steep rise in the demand for bandwidth due to a sharp increase in the number of devices connected to the wireless network. Coupled with the expected commercialization of 5G services and massive adoption of IoT, the upsurge in the number of devices connected to the wireless network will continue to grow exponentially into billions of devices. To accommodate the associated demand for wireless spectrum as we step into this new era of wireless connectivity, traditional methods of spectrum utilization based on fixed and static allocation are no longer adequate. New innovative forms that support dynamic assignment of spectrum space on as-per-need basis are now paramount. Cognitive radio has emerged as one of the most promising techniques that allow flexible usage of the scarce spectrum resource. Cognitive radio allows unlicensed users to opportunistically access spectrum bands assigned to primary users when these spectrum bands are idle. As such, cognitive radio reduces the gap between spectrum scarcity and spectrum underutilization. The most critical function of cognitive radio is spectrum sensing, which establishes the occupation status of a spectrum band, paving the way for a cognitive radio to initiate transmission if the band is idle. The most common and widely used methods for spectrum sensing are energy detection, matched filter detection, cyclostationary feature detection and cooperative based spectrum sensing. This dissertation investigates the performance of these spectrum-sensing techniques through a Rayleigh fading channel. In a wireless environment, a Rayleigh fading channel models the propagation of a wireless signal where there is no dominant line of sight between the transmitter and receiver. Understanding the performance of spectrum sensing techniques in a real world simulation environment is important for both industry and academia, as this allows for the optimal design of cognitive radio systems capable of efficiently executing their function. MATLAB software provides an experimental platform for the fusion of various Rayleigh fading channel parameters that mimic real world wireless channel characteristics. In this project, a MATLAB environment test bed is used to simulate the performance for each spectrum sensing technique across a range of signal-to-noise values, through a Rayleigh fading channel with a given set of parameters for channel delay, channel gain and Doppler shift. Simulation results are presented as plots for probability of detection versus signal-tonoise ratio, receiver operating characteristics (ROC) curves and complementary ROC curves. A detailed performance analysis for each spectrum sensing technique then follows, with comparisons done to determine the technique that offers the best relative performance

    Wideband Spectrum Sensing for Dynamic Spectrum Sharing

    Get PDF
    The proliferation of wireless devices grows exponentially, demanding more and more data communication capacity over wireless links. Radio spectrum is a scarce resource, and traditional wireless networks deployed by Mobile Network Operators (MNO) are based on an exclusive spectrum band allocation. However, underutilization of some licensed bands in time and geographic domains has been reported, especially in rural areas or areas away from high population density zones. This coexistence of increasingly high data communication needs and spectrum underutilization is an incomprehensible scenario. A more rational and efficient use of the spectrum is the possibility of Licensed Users (known as Primary Users – PU) to lease the spectrum, when not in use, to Unlicensed Users (known as Secondary Users – SU), or allowing the SU to opportunistically use the spectrum after sensing and verifying that the PU is idle. In this latter case, the SU must stop transmitting when the PU becomes active. This thesis addresses the spectrum sensing task, which is essential to provide dynamic spectrum sharing between PUs and SUs. We show that the Spectral Correlation Function (SCF) and the Spectral Coherence Function (SCoF) can provide a robust signal detection algorithm by exploiting the cyclostationary characteristics of the data communication signal. We enhance the most used algorithm to compute de SCF - the FAM (FFT Accumulation Method) algorithm – to efficiently compute the SCF in a local/zoomed region of the support ( ; ) plane (frequency/cycle frequency plane). This will provide the quick identification of spectral bands in use by PUs or free, in a wideband sampling scenario. Further, the characterization of the probability density of the estimates of the SCF and SCoF when only noise is present, using the FAM algorithm, will allow the definition of an adaptive threshold to develop a blind (with respect to the noise statistics) Constant False Alarm Rate (CFAR) detector (using the SCoF) and also a CFAR and a Constant Detection Rate (CDR) detector when that characterization is used to obtain an estimate of the background noise variance (using the SCF).A proliferação de dispositivos sem fios cresce de forma exponencial, exigindo cada vez mais capacidade de comunicação de dados através de ligações sem fios. O espectro radioelétrico é um recurso escasso, e as redes sem fios tradicionais implantadas pelos Operadores de Redes Móveis baseiam-se numa atribuição exclusiva de bandas do espectro. No entanto, tem sido relatada a subutilização de algumas bandas licenciadas quer ao longo do tempo, quer na sua localização geográfica, especialmente em áreas rurais, e em áreas longe de zonas de elevada densidade populacional. A coexistência da necessidade cada vez maior de comunicação de dados, e a subutilização do espectro é um cenário incompreensível. Uma utilização mais racional e eficiente do espectro pressupõe a possibilidade dos Utilizadores Licenciados (conhecidos como Utilizadores Primários – Primary Users - PU) alugarem o espectro, quando este não está a ser utilizado, a Utilizadores Não Licenciados (conhecidos como Utilizadores Secundários – Secondary Users - SU), ou permitir ao SU utilizar oportunisticamente o espectro após a deteção e verificação de que o PU está inativo. Neste último caso, o SU deverá parar de transmitir quando o PU ficar ativo. Nesta tese é abordada a tarefa de deteção espectral, que é essencial para proporcionar a partilha dinâmica do espectro entre PUs e SUs. Mostra-se que a Função de Correlação Espectral (Spectral Correlation Function - SCF) e a Função de Coerência Espectral (Spectral Coherence Function - SCoF) permitem o desenvolvimento de um algoritmo robusto de deteção de sinal, explorando as características ciclo-estacionárias dos sinais de comunicação de dados. Propõe-se uma melhoria ao algoritmo mais utilizado para cálculo da SCF – o método FAM (FFT Accumulation Method) - para permitir o cálculo mais eficiente da SCF numa região local/ampliada do plano de suporte / (plano de frequência/frequência de ciclo). Esta melhoria permite a identificação rápida de bandas espectrais em uso por PUs ou livres, num cenário de amostragem de banda larga. Adicionalmente, é feita a caracterização da densidade de probabilidade das estimativas da SCF e SCoF quando apenas o ruído está presente, o que permite a definição de um limiar adaptativo, para desenvolver um detetor de Taxa de Falso Alarme Constante (Constant False Alarm Rate – CFAR) sem conhecimento do ruído de fundo (usando a SCoF) e também um detetor CFAR e Taxa de Deteção Constante (Constant Detection Rate – CDR), quando se utiliza aquela caracterização para obter uma estimativa da variância do ruído de fundo (usando a SCF)

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    A NOISE ESTIMATION SCHEME FOR BLIND SPECTRUM SENSING USING EMD

    Get PDF
    The scarcity of spectral resources in wireless communications, due to a fixed frequency allocation policy, is a strong limitation to the increasing demand for higher data rates. One solution is to use underutilized spectrum. Cognitive Radio (CR) technologies identify transmission opportunities in unused channels and avoid interfering with primary users. The key enabling technology is the Spectrum Sensing (SS). Different SS techniques exist, but techniques that do not require knowledge of the signals (non-coherent) are preferred. Noise estimation plays an essential role in enhancing the performance of non-coherent spectrum sensors such as energy detectors. In this thesis, we present an energy detector based on the behavior of Empirical Mode Decomposition (EMD) towards vacant channels (noise-dominant). The energy trend from the EMD processed signal is used to determine the occupancy of a given band of interest. The performance of the proposed EMD-based detector is evaluated for different noise levels and sample sizes. Further, a comparison is carried out with conventional spectrum sensing techniques to validate the efficacy of the proposed detector and the results revealed that it outperforms the other sensing methods

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    A comparative analysis of local and global adaptive threshold estimation techniques for energy detection in cognitive radio

    Get PDF
    In this paper, we compare local and global adaptive threshold estimation techniques for energy detection in Cognitive Radio (CR). By this comparison, a sum-up synopsis is provided regarding the effective performance range and the operating conditions under which both classes best apply in CR. Representative methods from both classes were implemented and trained using synthesized signals to fine tune each algorithm’s parameter values. Further tests were conducted using real-life signals acquired via a spectrum survey exercise and results were analyzed using the probability of detection and the probability of false alarm computed for each algorithm. It is observed that while local based methods may be adept at maintaining a low constant probability of false alarm, they however suffer a grossly low probability of detection over a wide variety of CR spectra. Consequently, we concluded that global adaptive threshold estimation techniques are more suitable for signal detection in CR than their local adaptive thresholding counterparts.Research data for this article is available at https://data.mendeley.com/datasets/nyvcpv4s8k/1http://www.elsevier.com/locate/phycom2019-08-01hj2018Electrical, Electronic and Computer Engineerin

    Bayesian approach for the spectrum sensing mimo-cognitive radio network with presence of the uncertainty

    Get PDF
    A cognitive radio technique has the ability to learn. This system not only can observe the surrounding environment, adapt to environmental conditions, but also efficiently use the radio spectrum. This technique allows the secondary users (SUs) to employ the primary users (PUs) spectrum during the band is not being utilized by the user. Cognitive radio has three main steps: sensing of the spectrum, deciding and acting. In the spectrum sensing technique, the channel occupancy is determined with a spectrum sensing approach to detect unused spectrum. In the decision process, sensing results are evaluated and the decision process is then obtained based on these results. In the final process which is called the acting process, the scholar determines how to adjust the parameters of transmission to achieve great performance for the cognitive radio network

    A Framework to Analyze Energy Efficiency of Multi-Band Spectrum Sensing Algorithms

    Get PDF
    Cognitive radio (CR) is a device which can detect wireless communication channels that are not in use and adapt its parameters intelligently. Networks with CRs use the available frequency bands much more efficiently and hence have higher data rates compare to traditional radios. Spectrum sensing is the class of techniques used by CRs to understand its wireless environment. Recent research on evaluating multi-band spectrum sensing algorithms is limited to only algorithm complexity and optimization; therefore, the primary goal of the study is to devise a novel framework that analyzes a multi-band spectrum sensing algorithm in terms of energy consumption and algorithm efficiency. The proposed structure leads to a comparison and evaluation of a large class of multi-band spectrum sensing algorithms. Multi-band spectrum sensing search methods such as linear, random and binary are evaluated for energy loss and detection performance using the proposed framework
    corecore