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ABSTRACT 

A NOISE ESTIMATION SCHEME FOR BLIND SPECTRUM 

SENSING USING EMD  

by 

Amr Nasr 

University of New Hampshire, May 2017 

The scarcity of spectral resources in wireless communications, due to a fixed 

frequency allocation policy, is a strong limitation to the increasing demand for higher data 

rates. One solution is to use underutilized spectrum. Cognitive Radio (CR) technologies 

identify transmission opportunities in unused channels and avoid interfering with primary 

users. The key enabling technology is the Spectrum Sensing (SS). Different SS 

techniques exist, but techniques that do not require knowledge of the signals (non-

coherent) are preferred. Noise estimation plays an essential role in enhancing the 

performance of non-coherent spectrum sensors such as energy detectors. In this thesis, 

we present an energy detector based on the behavior of Empirical Mode Decomposition 

(EMD) towards vacant channels (noise-dominant). The energy trend from the EMD 

processed signal is used to determine the occupancy of a given band of interest. The 

performance of the proposed EMD-based detector is evaluated for different noise levels 

and sample sizes. Further, a comparison is carried out with conventional spectrum 

sensing techniques to validate the efficacy of the proposed detector and the results 

revealed that it outperforms the other sensing methods. 



 

Chapter 1 

Introduction 

 

1.1 Motivation 

Although frequency spectrum is considered a limited natural resource due to near 

total allocation, measurements show that often there are moments when it is underutilized 

[1]. Additionally, with the increasing emergence of new wireless products and the 

explosive development of mobile internet applications, the demands on RF spectrum 

have been constantly increasing. In recent years, it has become evident that there will not 

be enough spectrum exclusively available for all wireless systems currently under 

development; the Spectrum Policy Task Force (SPTF) within the Federal 

Communications Commission (FCC) has reported that localized temporal and geographic 

spectrum utilization efficiency ranges from 15% to 85% [2]. In another experiment as 

shown in Figure 1.1, the maximal occupancy of the spectrum from 30 MHz to 3 GHz (in 

New York city) has been reported to be only 13.1%, with average occupancy (over six 

locations) of 5.2% [3].  
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Figure 1.1 Spectrum occupancy measurement results averaged over six locations [3]. 

 

The fact that the spectrum is under-utilized opens the possibility that technologies 

could be created to use frequency spectrum more efficiently. To address this issue, 

regulatory entities are now considering more flexible spectrum management policies than 

traditional fixed frequency allocations [4]. These policies give Secondary Users (SU) 

opportunities to access the spectrum of incumbents, also called Primary Users (PU), and 

can then improve the spectrum usage efficiency. 

Cognitive Radio (CR) is a technology whose primary purpose is to equip the radio 

terminal with some form of artificial intelligence. The artificial intelligence will allow the CR 

to autonomously detect which is the best service the user needs and what radio resources 

to use based on the context of utilization.  
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One promising application of cognitive radio is dynamic spectrum access, in which a 

CR utilizes information about the spectrum usage to access empty spectrum. To achieve 

this goal without causing harmful interference to the PUs, Spectrum Sensing (SS) plays 

a key role in detecting the holes (vacant channels) for a given band [5]. There are various 

kinds of SS techniques i.e. Energy Detection (ED) which is used widely for spectrum 

sensing purposes due to its non-coherent nature and low computational complexity [6]. 

Energy Detectors (ED) work by comparing the energy of the channel under test to a 

predefined threshold to determine if the channel is occupied [7]. However, the ED 

threshold is a function of noise power which is assumed at a prior time or estimated 

through measurements in nearby channels. Consequently, misestimating the noise 

power might result in a severe degradation in the detector performance [8]. In practical 

scenarios, noise variance can vary over wireless channels and, coupled with thermal 

noise at the receiver front-end, lead to what is called noise uncertainty [9].  

More recently, Empirical Mode Decomposition (EMD) has been proposed as a 

detection method for wireless applications [10,11, 12]. EMD is an adaptive and blind 

technique that decomposes time-series signals into a set of modes called Intrinsic Mode 

Functions (IMFs) [13]. Like ED, EMD techniques behave require no prior information 

about the signal characteristics for detection and decomposition respectively. 

Roy and Doherty used EMD, in general, to enhance the detection of weak signals in 

the presence of noise [14]. This technique is dependent on a characteristic of EMD that 

would require calculations that may not make it practical for real-time sensing.  
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To detect non-stationary and non-linear signals, Bektas et al. proposed a spectrum 

sensing algorithm using relative entropy [15]. However, this method also requires many 

calculations to determine the classifier for separating a signal from noise.  

Based on previous work, one single detector technique that has the best performance 

for all scenarios is a bit challenging research topic. In this thesis, we address this problem 

by proposing, that has better performance than other existing detection techniques 

without requiring prior information of the transmitted signal. 

 

1.2 Thesis Objective 

Vast segments of the frequency spectrum are reserved for primary (licensed) users. 

These legacy users often underutilize their reserved spectrum thus causing bandwidth 

waste. The unlicensed (secondary) users can take advantage of this fact and exploit the 

spectral holes (vacant spectrum segments). Since spectrum occupancy is transient in 

nature it is imperative that the spectral holes are identified as fast and accurate as 

possible. 

The problem with the most spectrum detection techniques i.e. with the energy 

detector (ED), is that it requires the knowledge of the noise variance to correctly set the 

test threshold to meet a selected false-alarm probability. In practice, the noise variance 

must be estimated by some estimation procedure, which is subject to various errors that 

are introduced by the detection device and environment, e.g., temperature, humidity, 

device aging, radio interference, etc. It has been found that the ED is sensitive to the 

accuracy of the estimated noise variance [16]. 
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Our goal is to enhance the performance of the non-coherent spectrum sensors such 

as energy detectors. Thus, the major focus of this thesis is to evaluate and implement a 

method that can result in better estimation of the received signal’s noise energy which is 

essential for energy detection based schemes. 

Our proposed method exploits the ability of EMD to decompose a signal in to 

components, which can be analyzed for channel detection.  

 

1.3 Thesis Outline  

The remainder of this thesis is organized as follows: In Chapter 2 the structure, 

functionalities, and potential applications of cognitive radios are presented. Traditional 

blind spectrum sensing techniques in the literature are introduced, and the advantages 

and disadvantages are summarized.  

In Chapter 3, our proposed method “energy detector based on the behavior that 

Empirical Mode Decomposition (EMD)” is presented. But first, we provide background on 

the EMD operation and a description of the system model. Further, a comparison is 

carried out with conventional spectrum sensing techniques to validate the efficacy of our 

proposed method. Finally, Chapter 4 concludes the dissertation and present the future 

work. 
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Chapter 2 

Literature Review  

In this chapter, an overview of spectrum sensing, which is one of the fundamental 

prerequisites for the successful deployment of cognitive radio networks, is presented 

along with background of the related technologies. Cognitive Radio (CR) networks enable 

secondary users to monitor the spectrum usage of the primary user and utilize the 

spectrum when it is not used. A review of blind spectrum sensing in cognitive radio is 

addressed in this chapter. Emphasis is put on performance in the low signal to noise ratio 

range. In this Chapter, it is shown how methods relying on traditional sample-based 

estimation methods, such as the energy detector, suffer at low SNRs. The end of the 

chapter includes a comparative analysis of the fundamentals of spectrum blind sensing 

techniques along with their performance results. 

 

2.1 Background  

The goal of new wireless technologies is to increase the capacity and speed of the 

transmission data due to the high demand (see Sec 1.1). Another important feature of 

these new technologies is that they improve the spectrum efficiency by adapting to 

changes in the transmission conditions. To fulfill these needs and requirements, the idea 

of Cognitive Radio (CR) was born. 
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2.1.1 Cognitive Radio 

“Cognitive radio is viewed as a novel approach for improving the utilization of a 

precious natural resource: the radio electromagnetic spectrum.” -S. Haykin [9]  

To improve spectrum utilization and provide high bandwidth to mobile users, the next 

generation communication networks (xG) [2] program was developed to implement 

spectrum policy intelligent radios, also known as cognitive radios [17],  

 

Figure 2.1 Illustration of spectrum holes and the concept of dynamic spectrum access 

[18]. 
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by dynamic spectrum access techniques as shown in Figure 2.1. Furthermore, the IEEE 

has organized a new working group, known as the Wireless Regional Area Network, 

(WRAN, IEEE 802.22), for cognitive radio techniques to allow sharing of geographically 

unused television (TV) spectrum on a non-interfering basis [19, 39]. 

 

2.1.1.1 Cognitive Radio Functionalities 

The term cognitive radio was first coined by Mitola in [17] and has the following formal 

definition as [9]: “Cognitive radio is an intelligent wireless communication system that is 

aware of its surrounding environment (i.e. outside world), and uses the methodology of 

understanding-by-building to learn from the environment and adapt its internal states to 

statistical variations in the incoming RF stimuli by making corresponding changes in 

certain operating parameters (e.g., transmit power, carrier-frequency, and modulation 

strategy) in real-time, with two primary objectives in mind: 

• highly reliable communications whenever and wherever needed; 

• efficient utilization of the radio spectrum. ”-S. Haykin 

From the definition, the two main characteristics of cognitive radio can be 

summarized as cognitive capability and reconfigurability [2]. The former enables the 

cognitive radio to interact with its environment in a real-time manner and intelligently 

determine appropriate communication parameters based on Quality of Service (QoS) 

requirements. 
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Figure 2.2 The cognitive capability of cognitive radio enabled by a basic cognitive cycle 

[2]. 

These tasks can be implemented by a basic cognitive cycle: spectrum sensing, 

spectrum analysis, and spectrum decision as shown in Figure 2.2 [2].  

• Spectrum sensing: either by cooperating (using more than one sensing technique) or 

not, the cognitive radio nodes regularly monitor the RF environment. To improve the 

spectral usage efficiency, cognitive radio nodes should not only find spectrum holes by 

sensing some particular spectrum, but also monitor the whole spectral band. 

• Spectrum analysis: the characteristics of the spectral bands that are sensed through 

spectrum sensing are estimated. The estimation results, e.g., capacity, and reliability, will 

be delivered to the spectrum decision step. 
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• Spectrum decision: according to the spectrum characteristics analyzed above, an 

appropriate spectral band will be chosen for a particular cognitive radio node. Then the 

cognitive radio determines new configuration parameters, e.g., data rate, transmission 

mode, and bandwidth of the transmission. 

 

2.1.1.2 Potential Applications 

Since cognitive radio is aware of the RF environment and is capable of adapting its 

transmission parameters to the RF spectrum environment, cognitive radios and the 

concepts of cognitive radio can be applied to a variety of wireless communication 

environments, especially in commercial and military applications. A few of applications 

are listed below: 

• Coexistence of wireless technologies [21]: Cognitive radio techniques were primarily 

considered for reusing the spectrum that is currently allocated to the TV broadcast 

service. WRAN users can take advantage of broadband data delivery by the opportunistic 

usage of the underutilized spectrum. Additionally, the dynamic spectrum access 

techniques will play an important role in full interoperability and coexistence among 

diverse technologies for wireless networks.  

• Military networks [20, 21]: In military communications, bandwidth is often at a 

premium. By using cognitive radio concepts, military radios can not only achieve 

substantial spectral efficiency on a noninterfering basis, but also reduce implementation 

complexity for defining the spectrum allocation for each user. Furthermore, military radios 

can obtain benefits from the opportunistic spectrum access function supported by the 
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cognitive radio [21]. For example, the military radios can adapt their transmission 

parameters to use Global System for Mobile (GSM) bands, or other commercial bands 

when their original frequencies are jammed. 

• Heterogeneous wireless networks [21, 22]: From a user’s point of view, a cognitive 

radio device can dynamically discover information about access networks, e.g. WiFi and 

GSM, and makes decisions on which access network is most suitable for its requirements 

and preferences. Then the cognitive radio device will reconfigure itself to connect to the 

best access network. When the environmental conditions change, the cognitive radio 

device can adapt to these changes. The information as seen by the cognitive radio user 

is as transparent as possible to changes in the communication environment. 

With Cognitive Radio being used in several applications, the area of spectrum 

sensing has become more important. Spectrum sensing is responsible for detecting holes 

in the spectrum while simultaneously taking advantage of the opportunity without causing 

interference to PUs. 

 

2.1.2 State of the Art Spectrum Sensing Techniques 

One of the most prominent features of CR networks will be the ability to switch 

between radio access technologies, transmitting in different portions of the radio spectrum 

as unused frequency band slots become available [2, 9]. This spectrum sensing feature 

is one of the fundamental requirements for transmitters to adapt to varying channel 

quality, network congestion, interference and service requirements [2,9]. Sensing 

techniques are further broken down into four broad categories. The first two broad 
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categories are coherent and non-coherent [2]. In coherent detection, prior knowledge of 

the PU signals is needed. In non-coherent detection, prior knowledge of PU signals is not 

required [2]. The other categories, based on the bandwidth requirements for sensing, are 

the narrowband and wideband detection techniques. The classifications of spectrum 

sensing techniques are shown in Figure 2.3 [23].  

 

2.2 The General Spectrum Sensing Problem 

There are several algorithms available for spectrum sensing, each with its own set of 

advantages and disadvantages that depends on the specific scenario. Ultimately, a 

spectrum sensing device must be able to give a general picture of the medium over the 

entire radio spectrum. This allows the CR network to analyze all degrees of freedom (time, 

frequency and space) to predict the spectrum usage. 
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Figure 2.3 Flow chart of the classification of spectrum sensing techniques. 

(The focus will be on the non-coherent detection techniques) 
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2.2.1 Fundamentals of Spectrum Sensing Techniques 

Spectrum sensing is essentially wireless signal detection. In a nutshell, signal 

detection can be described as a method for identifying the presence of a signal in a noisy 

environment. Analytically, signal detection can be reduced to a simple identification 

problem, formalized as a hypothesis test [7]: 

 

 

 

 

 

 

 

Figure 2.4 Hypothesis test statistics with all possible outcome. 

x(k) =  {
n(k),                         H0

h(k) s(k) + n(k),   H1
 

where x(k) refers to the complex received signal at time k, s(k) the signal to be detected, 

h(k) represents the channel response and n(k) is additive white Gaussian noise (AWGN) 

in the channel. H0 refers to the null hypothesis which represents the sensed channel with 

the absence of the primary user signal. H1represents the presence of the signal. The 

outcome of spectrum sensing techniques is the hypothesis and the probabilities of 

detection and false alarm can be determined from this framework. 
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2.2.2 Performance Criteria 

The performance of spectrum sensing techniques can differ in different scenarios. 

Hence, it is imperative to evaluate and chose the most adequate scheme for a given 

scenario. Different characteristics that can be used to evaluate the sensing algorithms 

are discussed in this section. 

• Probability of false alarm: It is the probability that the detector declares the 

presence of the PU, when the PU is absent. Considering a binary hypothesis test. There 

are two types of errors that can be made, type I and type II errors, respectively. A type I 

error is made if H1 is accepted when H0 is true. The probability of making a type I error is 

often called the probability of false alarm (Pfa= Prob {Decision= (H1/ H0)}), which is a 

significant design parameter since false alarms lead to missing spectral opportunities. 

Therefore, controlling the probability false alarm is crucial for efficient spectrum usage. 

• Probability of missed detection: It is the probability that the detector declares the 

absence of PU, when the PU is present. A type II error is made if H0 is accepted when 

H1 is true. Missed detection probability (Pm= Prob {Decision= (H0/ H1)}) also, called type 

II error, comes about because of the probability of missed detection and can lead to 

collisions with the PU transmission and hence, reduced rate for both the PU and SU, 

respectively. Establishing distributions of decision statistics helps in controlling the 

probabilities of missed detection and false alarm. 
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Based on the previous stated two points, it worth mention that on the whole, a CR 

system ought to satisfy constraints on both the false alarm and missed detection 

probability [24]. Designing a detection rule brings about a trade-off between both 

probabilities. Nevertheless, if the detectors behave reasonably, as the number of samples 

increases, both constraints may be satisfied by selecting the number of samples to be big 

enough [25]. For implementation, it is advantageous to have the schemes whose 

threshold and performance may be set analytically. In a practical scenario, the probability 

of detection and the samples required to achieve a given detection probability will have 

to be determined experimentally because of variables, such as the fading channel, 

channel errors, and noise power uncertainty affecting their observations [25]. 

• Signal-to-Noise-Ratio (SNR): Type I and type II errors are linked to each other 

through sensing time, SNR, and detection threshold. The SNR at the SUs depends on 

the PU transmitted power and the spectrum environment. The detection performance 

improves with an increase in the SNR. 

 

2.3 Spectrum Sensing Techniques 

Different sensing techniques are designed to overcome many of the obstacles that 

make the detection process difficult. For example, this obstacle could be: the typical low 

signal to noise ratio (SNR) in the transmissions; fading and multi-path in wireless 

communications; the unstable noise level in the channel; the need of a low sensing time, 

and more. Many detection methods exist, but not all of them are independent from these 



17 
 

factors so they cannot be efficacious. In this section the most important blind detection 

techniques are presented. 

 

2.4 Energy Detector (ED) 

2.4.1 Introduction  

The Energy Detection (ED) technique is a popular narrow band detection method that 

is widely employed in the literature. ED compares the signal energy received in a certain 

frequency band to a properly set decision threshold. If the signal energy lies above the 

threshold, the band is declared to be occupied. Otherwise, the band is assumed to be idle 

and could be accessed by secondary users. 

Owing to the generality of its operating principle, the performance of energy detection 

would not be expected to depend on the type of primary signal being detected, thus it is 

known as non-coherent spectrum sensing [9, 21, 26]. The major drawback of this method 

is that it has poor detection performance under low SNR scenarios and cannot 

differentiate between the signals from PUs and the interference from other cognitive 

radios. In following section, we will focus on a brief background of the ED, but we will 

elaborate more on those recent research activities and their associated problems and 

solutions. 

 

2.4.2 Literature Review ED 

In the initial ED presentation by Urkowitz in his classical article [7], the author 

discussed ED as a binary hypothesis test for signal detection in white Gaussian noise 
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environments. Digham et al [27] further investigated Urkowitz’s work for unknown 

deterministic signals received over Rayleigh and Nakagami fading channels. 

The main goal of ED-based detection is to decide between two hypotheses: H1 

indicates the presents of a signal and  H0  indicates its absence. The rest of the major 

outlines of the ED characteristics were presented by Urkowitz and Digham et al [27] and 

they are: 

   I. ED is a blind detection technique, therefore any prior information related to the 

desired signal to be detected is not required. Some information is assumed to be 

known such as the spectral region, specified by central frequency ( fc) and 

bandwidth (B), to which the transmitted signal is confined but any distinguishing 

parameters / factors are not provided. 

  II. The reconstruction of the received signal during a specific sensing duration time 

(T) is based on the finite number of the collected samples of a bandlimited signal. 

The measured energy from the received signal is then normalized by the noise 

power spectral density (N0/2) to provide a dimensionless test metric.  

The primary signal presence or absence is determined based on the comparison between 

the test metric and a specific threshold. 

In their work, Urkowitz et al assumed the noise is white Gaussian and that the noise 

Power Spectral Density (PSD) is known. This is a drawback of ED, and in some papers 

ED is considered a semi-blind sensing technique. All the previous stated fundamental 
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assumptions have been further investigated in recent literature from various points of 

view.   

In the next section, a brief description of the conflicts in the reported papers and 

journals are presented and the important assumptions in ED are highlighted. In addition, 

a representation of the unsolved problems regarding the validity of a Gaussian 

approximation to test statistic distribution is discussed [28]. 

 

2.4.2.1 Different Approaches in Determining Test Statistic  

The decision metric in ED is based on the energy content of the received signal at 

CR. The problem lies in the ambiguity in defining the exact test statistic for ED in the 

literature. 

To establish the test statistic some researchers, such as Urkowitz [7] and Digham 

et al [27], use a specific technique which normalizes energy in the received samples by 

the noise variance. Others like Zeng et al [29] and Zhuan et al [30] calculate the average 

energy of the received signal by scaling the energy in the received samples by the number 

of the observed samples so a decision on the presence or absence of desired signal could 

be made. Another method of calculating the test statistics is shown in the work of 

Sonnenchein and Fishman [31]. It is based on the unscaled version of energy content in 

the received samples.  

The various methods of determining the probability of detection and probability of 

false alarm are often a source of confusion for any new researchers starting in this field. 
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2.4.2.2 Spectrum Sensing in Special Conditions  

During the performance analysis of any spectrum sensing technique, the source of 

uncertainties is usually due to the channel fading effect and noise uncertainty. Getting 

exact and accurate knowledge of noise power level is extremely difficult because the 

noise power is frequently changing with time and location. The assumption that the exact 

noise power σn
2  ̂  is already known or can be calculated is not realistic. A more appropriate 

method is to estimate the noise variance σn
2  ̂ using this relation  σn

2  ̂= α σn
2 . α represents 

the noise uncertainty factor with a given upper bound B (in dB), given that B=sup {10 log 

α} defines the noise uncertainty bound. This was defined in the literature as “energy 

detector’s inherent noise uncertainty” until Tandra and Sahai [8, 32] identified it as SNR 

wall. 

In the literature, various noise uncertainty models have been presented. For 

example, Sonnenchein and Fishman [31] tried to find the minimum required SNR by using 

peak to peak uncertainty in the noise power to achieve given detection and false alarm 

probabilities. Zeng et al [36] assumed that noise uncertainty factor (in dB) is uniformly 

distributed. The effect of the noise uncertainty on the reliability of ED-based sensing was 

studied at very low SNR values. At the end of the Zeng et al paper, a cooperative sensing 

technique was proposed to increase the performance efficiency. 

As evident from above, the literature has covered large area of the noise uncertainty 

problem in ED as well as proposing some solutions. Most of the work has a detailed 

discussion on the ED performance over fading channels; others proposed cooperative 

sensing to improve the detection performance in a fading environment. 
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2.4.3 ED Structure  

Figure 2.5 shows an energy detector block diagram. Initially, the received signal 

passes through a band-pass filter to remove all out-of-band signals based on the 

frequency of interest, which is centered around fc and spanning over bandwidth W. Then 

x(t) (the filtered signal) is sampled/digitized by an Analog to Digital Converter (ADC). At 

the next stage, a simple squaring device followed by an accumulator gives the energy 

content in N samples of x(k), which represents the test statistic for ED. Finally, the 

calculated energy content of the received signal (decision metric u) is compared with a 

threshold, λ, to decide if the sensed frequency band is vacant (H0) or occupied (H1). 

 

Figure 2.5 ED block diagram. 

 

2.4.3.1 The Limitation on The Performance of ED  

As shown in Section 2.2, the performance of any spectrum sensing detector can be 

measured by the probability of detection and the probability of false alarm. The probability 

of detection, Pd, is given by  

                                       Pd= Pr (signal is detected / H1) = Pr(u > λ / H1)  
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                  = ∫ f(u
∞

λ
/ H1) du                                                               (2.1) 

The probability of false alarm, Pfa , is given by  

Pfa= Pr (signal is detected / H0) = Pr(u > λ / H0) 

      = ∫ f(u
∞

λ
/ H0) du                                                               (2.2) 

where f(u / Hi) refers to the Probability Density Function (PDF) of the test statistic under 

hypothesis  Hi with i =  0,1. Based on the above equations (2.1) and (2.2), increasing the 

ED performance can be done by maximizing  Pd while minimizing Pfa. A method to clarify 

the relationship between  Pd& Pfa would be to plot  Pd vs  Pfa using Receiver Operating 

Characteristics (ROC), which is considered an important performance indicator. ROC is 

a graphical plot that clarifies the performance of a detector as its threshold is varied.  

When using the ROC method, caution is necessary when determining the threshold 

λ. For further clarification, to obtain the minimum Pfa, the threshold λ should be kept high 

but that will end up in a greatly decreased Pd. Similarly, to obtain maximum Pd, threshold  

λ should be kept low but that will end up in Pfa exceeding the acceptable limits. 

Thus, this tradeoff will be handled very carefully while setting the ED threshold. In 

practice, if a certain spectrum re-use probability of unused spectrum is targeted,  Pfa  is 

fixed to a small value (e.g. ≤5%) and  Pd  is maximized. This is referred to as the Constant 

False Alarm Rate (CFAR) detection principle. However, if in CR it is required to guarantee 
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a given non-interference probability, Pd is fixed to a high value (e.g. ≥95%)) and  Pfa  is 

minimized. This requirement is known as Constant Detection Rate (CDR) principle. 

 

2.4.3.2 Mathematical Ground for 𝐏𝐟𝐚 

To have an accurate calculation for  Pfa and Pd, it is necessary to have the exact 

test statistic distribution (Pfa& Pd depend on the conditional PDFs of the test statistic) 

[28]. 

To calculate Pfa the first step is to start from the null hypothesis (see Sec (2.1)):  

H0: (
1

σn
2

) u =  ∑ (
1

σn
2

 n(k))
2

N

k=1

 

                 =∑ ( y(k))2N

k=1
 where y(k)~N(0,1)                                     (2.3) 

~xN
2  

Where n(k) refers to Gaussian with zero mean, σn
2  refers to the variance. The result of 

the summation of squares of N random variables will give the test statistic u.  

When u is divided by σn
2  it is said to have a central Chi-square distribution with N degrees 

of freedom. The Pfa equation can be reformulated using the fact that f ((
1

σn
2) u/ H0) = xN

2  

and λ refers to the threshold  

Pfa = Pr((
1

σn
2) u >  (

1

σn
2) λ/H0)  
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                                                      = ∫ f ((
1

σn
2) u/H0)

∞
λ

σn
2

du   

                                 = QxN
2 (

λ

σn
2)                                                                    (2.4) 

QxN
2 (

λ

σn
2) represents the right-tail probability for a xN

2  random variable as given by Kay in 

[33]. From the PDF of xN
2 , the exact expression for Pfais 

 

Pfa = ∫ f (x
N

2
−1 ∗

e
−x
2

(x
N
2       Γ(

N

2
))

)
∞
λ

σn
2

du                                            (2.5) 

For simplicity assume 
N

2
 = m, 

x

2
= y. From the definition of incomplete Gamma function 

                                      Γ(α, β) =  ∫ xα−1∞

β
e−x dx                                                        (2.6) 

will get 

      Pfa = 1/Γ(m)  ∫ (ym−1 ∗ e−y)
∞
λ

σn
2

dy =  Γ(m,
λ

σn
2)/ Γ(m) 

         = Fm(
λ

2σn
2)                                                                          (2.7) 

The final output matches what was derived by Digham et al in [27], and by Ghasemi and 

Sousa in [34], with a slight difference that both used the scaled ED test statistic as 

                                                                 uscl =  
u

σn
2 
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2.4.3.3 Mathematical Background for ED Threshold 

From the previous Pfa equation (2.7), The ED threshold for constant false alarm rate 

can be derived: 

                                                     λ = 2σn
2  Fm

−1(Pfa)                                                          (2.8) 

 

From this equation (2.8), the threshold will have a variable value which is a function 

of noise variance (σn
2), number of observed samples, N, and the targeted constant false 

alarm probability.  

 

2.4.4 Pros and Cons of Energy Detectors   
 

From the comparison in Table 2.1 is clear that the simplicity and low computational 

complexity of ED are its key favorable aspects that have motivated most of the recent 

work in Spectrum Sensing (SS) for CR toward enhanced energy detection techniques 

[35]. ED needs to estimate only the noise power to set its threshold and does not require 

any information on primary user transmission characteristics. This makes energy 

detection a semi-blind technique. Besides that, it is shown to be an optimal technique for 

detecting Independent Identically Distributed (IID) primary user transmissions especially 

when PU signal features are unknown to CR. 
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Table 2.1 Comparison of advantages and disadvantages of energy detector techniques. 

 

Pros Cons 
 

+ Implementation simplicity 
 
+ Low computational complexity  
 
+ Optimal for detecting IID primary 
signals 
 
+ Semi-blind (No a priori PU signal 
information required) 
 

– Non-robust (Threshold strongly 
depends on noise uncertainties) 
 
– Low accuracy/reliability 
• Unable to differentiate interference from 
PU signal and noise 
• Poor performance under low SNR (due 
to shadowing and multipath fading) 
• Inability to detect spread spectrum 
signals 
 
– Inefficient for detecting correlated 
primary signals 
 
– More susceptible to hidden terminal 

problem 

 

On the other hand, ED faces some problems which are addressed in [8] and some 

hidden assumptions in conventional ED are unveiled more recently in [28]. The main 

problem of ED is uncertainty in the decision threshold that produces optimal sensing 

results, since it depends on the accurate estimation of the noise power which changes 

temporally and spatially. Sensing results based on ED have limited reliability as energy 

observations are unable to differentiate between primary and secondary user signals, 

which appears as a cost of semi-blind signal detection. This may result in false detection 

of PU signal triggered by other unintended signals. All these factors characterize ED with 

less robustness and low accuracy/reliability. 
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2.5 Eigenvalues Based Detection  

2.5.1 Introduction to Eigenvalue Detection 

Covariance Based Detection (CBD) is a group of narrowband spectrum sensing 

techniques that exploit aspects of statistical covariance matrixes; a received signal and 

noise can have different characteristics [36, 34, 37]. The distinguishing properties can be 

used to detect whether a primary user’s signal exists or not. From the CBD a new 

detection technique was born known as Eigenvalue Based Detection (EBD). EBD is 

based on the analysis of eigenvalues of the covariance matrix and its key aspect that it 

can reduce the computational complexity, as compared to other blind algorithms [38, 33, 

52]. Different EBD schemes use different characteristics of the covariance matrix 

eigenvalues. 

EBD techniques are blind because they do not require any a priori information of PU 

signals and/or the transmission channel. Thus, it overcomes problematic noise 

uncertainty encountered by other detectors. The different detection methods are: 

1. Max-min eigenvalue detection in which the test statistic is defined as ratio of 

maximum to minimum eigenvalues of the received signal covariance matrix.  

2. Energy with min eigenvalue, in which the test statistic is defined as ratio of 

average power of received signal to the minimum eigenvalue of the covariance 

matrix.  

3. Max eigenvalue detection, in which the test statistic is given by the maximum 

eigenvalue of the signal covariance matrix. 
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In Figure 2.6 the main components of the EBD method is illustrated. The sampled 

signal comes from the radio system interface, from which the covariance matrix is 

calculated. The eigenvalues of the matrix and subsequent-maximum-minimum ratios are 

determined; 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Eigenvalue-based spectrum sensing technique flow chart. 

The next section will cover the eigen-analysis of the covariance matrix, which 

includes further explanation of the covariance. The analysis of EBD along with its 

mathematical model are presented.  



29 
 

 2.5.2 Eigen-Analysis of the Autocovariance Matrix 

The eigenvalue analysis of the autocovariance matrix is necessary to better explain 

the detection algorithm.  

It is assumed that a random process x(n) is wide-sense stationary and is a linear 

combination of m basic components si(n) is given by 

                   x(n) = ∑  ai si(n),m
i=1                                                    (2.9) 

Since the sequence observed is y(n) = x(n) + w(n), where w(n) is a complex 

additive white Gaussian noise sequence with spectral density σ2 , the M×M 

autocovariance matrix for y(n) can be expressed as 

                     Cyy = Cxx + σw
2 I                                                    (2.10) 

where Cxx is the autocovariance matrix for the signal x(n) , σw
2 I is the autocovariance 

matrix for the noise and M is the dimension of the covariance matrix. 

Note that if M > m , then Cxx  which is of dimension M×M is not of full rank. 

Now, let us perform an eigen-decomposition of the matrix Cyy . Let the eigenvalues 

be ordered in decreasing value with λ1 ≥ λ2 ≥ ⋯ ≥ λM and let the corresponding 

eigenvectors be denoted as {vi  , i = 1, … , M}. It is assumed that the eigenvectors are 

normalized so that vi
H∙vi = δij  (H denotes the conjugate transpose). In the absence of 

noise, the eigenvalues λi , i = 1, 2…, m are nonzero while λm+1 = λm+2 = ⋯ = λM = 0. 

Thus, the eigenvectors vi  , i = 1, 2…, m span the signal subspace.  
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These vectors are called principal eigenvectors and the corresponding eigenvalues are 

called principal eigenvalues. 

In the presence of noise, the eigen-decomposition separates the eigenvectors in two 

sets. The set vi  , i = 1, 2…, m, which are the principal eigenvectors, span the signal 

subspace, while the set vi  , i = m+1, …, M, which are orthogonal to the principal 

eigenvectors, are said to belong to the noise subspace. It follows that the signal x(n) is 

simply linear combinations of the principal eigenvectors. 

Finally, the variances of the projections of the signal on the principal eigenvectors are 

equal to the corresponding eigenvalues of the covariance matrix. So, the principal 

eigenvalues are the power factors in the new signal space. 

 

2.5.3 Data / Mathematical Model 

During a particular time interval, the frequency band may be occupied by only one 

primary user. The frequency band of interest has a central frequency fc  and bandwidth 

W. In this thesis, a non-cooperative spectrum sensing scheme is considered where the 

sensing work is completed by only one secondary user (only one transmitting source, only 

one receiver). 

For signal detection, two hypotheses H1 & H0 given as (see Sec 2.2.1) 

       H0 : x(n) = w(n), n = 0,1, …                                                       (2.11) 

                           H1 : x(n) = h(k) s(n − k) + w(n),                                       (2.12) 
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where x(n) denotes the discrete signal at the secondary receiver, s(n) is the primary 

signal seen at the receiver, h(k) is the channel response and w(n) are the noise 

samples. 

Considering a sub-sample M of consecutive outputs and defining 

x̂(n) =  [x(n) , x(n − 1), … x(n − M + 1)]T                             (2.13) 

                  ŵ(n) =  [w(n) , w(n − 1), … w(n − M + 1)]T                          (2.14)                

ŝ(n) =  [s(n) , s(n), … s(n − N1 − M + 1)]T                             (2.15) 

Now, from the previously given equation the estimated received signal at the SU 

receiver can be written as  

                              x̂(n) = H ŝ(n) +  ŵ(n)                                              (2.16) 

where H is the channel response matrix of size M× (N + M), defined as 

                                H = [
h(0) ⋯ h(Nj) 0

⋮ ⋱ ⋮
0 ⋯ h(0) h(N)

]                                                (2.17) 

Considering the statistical properties of the transmitted signal and channel noise, let 

us assume that the noise is white and that the noise and the transmitted signal are 

uncorrelated. 

Let R be the sample correlation matrix of the received signal, that is  

                           R = (1/Ns) ∑  x̂(n) x̂T(n)  
M−1+Ns 

n=M
                                      (2.18) 
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where Ns is the number of collected samples at the receiver side. If Ns is large, based 

on the assumptions made earlier (see eq. (2.10) and (2.16)), the sample covariance 

matrix (R) can be written as  

                    R ≈ E [ x̂(n) x̂T(n)] = H RsHT +  σw
2 IM                                 (2.19) 

where Rs is the statistical correlation matrix of the input signal, Rs  ≈ E [ ŝ(n) ŝT(n)], 

σw
2  is the variance of the noise, IM denotes an M×M identity matrix. 

 

2.5.3.1 Mathematical Model of MME and MAE 

From the sample covariance matrix Rs (see eq. (2.18)), Zeng et .al [39] proposed two 

detection methods, one based on the ratio of the Maximum eigenvalue to Minimum 

Eigenvalue (MME); the other is based on the ratio of the Average Eigenvalue to Minimum 

eigenvalue (MAE). 

Let λ̂max and λ̂min be the maximum and the minimum eigenvalues of R , and  ρ̂
max

 

and  ρ̂
min

 be the maximum and the minimum eigenvalues of H RsHT.  

Then, in this case 

λ̂max =   ρ̂max +  σw
2                                              (2.20) 

                             λ̂min =   ρ̂min +  σw
2                                               (2.21) 
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Obviously,  ρ̂min can equal  ρ̂max only if HRsHT equal δIM where δ is a positive 

number. In practice, when signal is present, it is very unlikely that H RsHT = δIM  (due to 

dispersive channel and/or oversampling and/or correlation among the signal samples). 

Hence, from the equations in (2.20) & (2.21), and if there is no signal, the ratio of (
λ̂max

λ̂min
) 

will equal 1, otherwise, (
λ̂max

λ̂min
) will be greater than 1. Therefore, finding the ratio (

λ̂max

λ̂min
) is 

considered the core idea of the Maximum-Minimum Eigenvalue (MME) based detection 

technique. 

Note that: The max to min eigenvalue ratio of covariance matrix serves as the test 

statistic, which is then compared to a threshold to form decisions. In the eigenvalue-based 

methods, the expression for the decision threshold has been derived based on random 

matrix theory to make a hypothesis test for signal detection. In most of the eigenvalue-

based detection schemes proposed so far in the literature, both the threshold value and 

the probabilities of detection and false alarm are calculated based on the asymptotical 

(limiting) distributions of eigenvalues that is mathematically tractable and less complex. 

 

2.5.4 Pros and Cons of Eigenvalue-Based Detection 

Since the statistical covariance matrices of the received signal and noise are usually 

different, eigenvalue-based detection technique makes full use of this property to detect 

whether the primary user exists or not.  
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The performance of such detectors was measured against the ED and has shown 

significant performance gains. These methods overcome the noise uncertainty problem 

and perform globally better than ED in both AWGN and Rayleigh faded channels. 

Table 2.2 Comparison of advantages and disadvantages of eigenvalue-based detection 

technique 

 

Pros:  
 

Cons:  
 

+ Non-coherent   
 
+ Sensing performance is highly reliable, 
can detect signals with low SNR.   
 
+ Robust to noise uncertainty  
 

- Moderate computational complexity.  
 
- Performance degrades for uncorrelated 
PU signals  
 

 

Favorable aspects of eigenvalue-based detection: Generally, EBD does not require 

any information about the primary signal or noise. However, if some a priori information 

about primary signal correlation becomes available, this may assist in choosing 

corresponding elements in the sample covariance matrix thus making the decision test 

statistic more efficient. Most importantly, EBD does not need noise power estimation as 

the threshold is related to  Pfa and sample size N of the received signal at the CR only.  It 

achieves better performance for highly correlated signals. 

Limitations of EBD: Performance of covariance-based detection strongly depends 

on the statistics of the received primary signal, which degrades if the primary signal tends 

to be uncorrelated. 
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To sum up, it is obvious from the discussion on advantages and disadvantages of 

the ED and eigenvalue-based detection techniques that no single detector has the best 

performance for all scenarios. 

 

2.6 Empirical Mode Decomposition (EMD) 

In the next section, we will introduce details of the Empirical Mode Decomposition 

(EMD) to give theoretical background for our proposed method presented in Chapter 3. 

We will explain the method of applying EMD to a signal, we accompany that with an 

example and at the end of the section a comparison analysis of the EMD vs. Wavelet is 

presented.  

 

2.6.1 Introduction to EMD 

EMD algorithm (also known as Hilbert Huang Transform (HHT)) is a method of 

deconstructing a signal in the time domain. It can be compared to other analysis methods 

like Fourier Transforms and wavelet decomposition. But, in contrast to other common 

transforms, EMD is an empirical algorithm, which is applied to a data set, rather than a 

theoretical function. 

EMD filters out functions (also known as oscillatory modes) which form a complete 

and nearly orthogonal basis for the original signal. The functions, known as Intrinsic Mode 

Functions (IMFs), are therefore sufficient to describe the signal, even though they are not 

necessarily orthogonal. The reasons are described in Huang et al, "...the real meaning 
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here applies only locally. For some special data, the neighboring components could 

certainly have sections of data carrying the same frequency at different time durations. 

But locally, any two components should be orthogonal for all practical purposes" [40]. 

Obtaining IMFs from real world signals is important because natural processes often 

have multiple causes, and each of these causes may happen at specific time intervals. 

This type of data is evident in an EMD analysis, but quite hidden in the Fourier domain or 

in wavelet coefficients. 

 

2.6.2 Sifting Process 

The essential step of the Empirical Mode Decomposition is the sifting process shown 

in Figure 2.7. The sifting process basically extracts scales of the signal. Assume a signal 

with Q minima and P maxima. The sifting process starts with determining the extrema of 

the signal, x(t), where Smax represents the sets of points which are interpolated to form 

the upper envelope of the signal, x̂max. Similarly, the minima of the signal, Smin are 

interpolated to form the minimum envelope  x̂min. 
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Then the average envelope is calculated, (x̂max + x̂min) / 2, and later this envelope 

is subtracted from the original signal x(t) giving the first iteration of the sifting process 

known as xj
k(t) where k refers to the iteration, and k = 1 for the first iteration. 

 

Figure 2.7 Sifting process (Basic idea) [45]. 

The iteration on k is continued until  < xj
k >= 0 and the number of extrema of xj

k 

should not be less than the number of zero-crossing. For simplicity, it possible to drop the 

term K and write the resulting function as xj. Figure 2.8 represents an example for this 

case. The output from the first sifting process is the first IMF, where j = 1. Based on this, 

the function x1
r = x(t) −  x1(t) is created, and the sifting process is repeated, giving x2(t), 

which is the second IMF. The IMF's are generated until the residue signal.       

    xj
r = x(t) −  ∑ xj(t)

n=j
n=1  
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The functions xj(t), j = 1,2, … . , N, resolve the frequencies from the received signal x(t) 

such that they are nearly orthogonal to one another. 

 

Figure 2.8 Example of sifting process, showing steps of getting IMF1 and residual 

signal [46]. 

From Figure 2.9 the flow chart of the EMD algorithm is introduced. As explained 

before, at each IMF there is only one extrema point between any two successive zero 

crossings. The frequency of the signal could be directly deduced/presumed by measuring 

the distribution of the zero crossings of the signal. Further, the IMFs have symmetric 

envelopes and a zero-mean value. Because of these characteristics, the IMF's are 

referred to as being mono-component.  



39 
 

 

                          

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Flowchart of the EMD.  

 

Practically, the EMD has been shown to be very efficient in extracting relevant 

components in many different applications including non-stationary signals. There are 

many examples to demonstrate the effectiveness of EMD, for example, processing audio 

signals [41], GPS (Global Position System) signals [42], gravitational waves [43], seismic 

signals [44], etc. 
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2.6.3 Generation of The IMFs for Noise Signal 
 

One of the important features of EMD is that it behaves like a dyadic filter for a white 

noise input signal. The decomposition process of a white noise signal gives the frequency 

of the IMFs which in turn follows an exponential trend. The first IMF represents the fastest 

modes of oscillation (highest frequency) in the received signal, and with following IMFs, 

the frequency, as measured by the number of zero crossings, decay exponentially as the 

index of the IMF. 

To explain this point more clearly, the first IMFn, where n=1, represents the 

highest frequency in the received signal. The second IMF2 will represent the second 

highest frequency and as the number n increases, the following IMFs will have lower 

frequency than preceding ones.  

The final IMF, always has just one zero crossing. Based on the simulation results, a 

relationship between the IMF and the zero crossing is found [40]. In this relation, the 

number of zero crossings in an intrinsic mode function is proportional to e−0.6n, where n 

is the index of the IMF. In the same way, the energy of the IMFs also reduces according 

to an exponential rule. Figure 2.10 represents the simulation results of the first 7 IMFs of 

the EMD decomposition of a white noise waveform [40]. 
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Figure 2.10 Energy distribution across IMFs. (C stands for component). 

 

2.6.4 EMD in Comparison to Wavelets 

In this section, a comparison between EMD and its closest competitor (Wavelet 

method) is discussed. 

A wavelet is a mathematical function used to divide a given function or continuous-

time signal into different scale components. Usually one can assign a frequency range to 

each scale component. Each scale component can then be studied with a resolution that 

matches its scale. 

 

 



42 
 

To clarify the difference [40]:  

At the beginning, the signal considered in this example is formed from the summation 

of three signals. The first signal x1(t) is a triangular wave with a maximum amplitude of 

1 and its minimum is 0. The second signal is given as x2(t) = 0.3 x1(10t), and finally the 

third signal is given as  x3(t) = 0.1 sin (2 πft), where f is roughly in the same range as 

the fundamental frequency of the first signal x1(t). The three signals are plotted in Figure 

2.11 Where z(t) represents the summation of the three signals as z(t) =  x1(t) +

 x2(t) +  x3(t).  

                            

 

 

 

 

 

Figure 2.11 Plotting signal z(t) = x1(t) + x2(t) + x3(t). 
 
 

This example can easily be applied in any physical system, simply z(t) could be 

considered as two triangular waves which represents x1(t) and x2(t) and a sinusoidal 

wave x3(t), where the chosen signal waves represent the physically meaningful 

components of z(t). Harmonic decomposition techniques such as wavelets fail to give 



43 
 

such a physically meaningful decomposition because of the implicit assumption that a 

signal is formulated of harmonic oscillatory components. 

A wavelet decomposition is primarily dependent on successively passing any 

received signal through low-pass and high-pass time-invariant filters. The scales that the 

signal is divided into are determined iteratively by pre-determined high-pass and low-pass 

filters. One main advantage of the sifting process over wavelets is the adaptive 

decomposition which implies that EMD is not affected by the local features of a given 

signal, and does not depend on predefined filters or windows. Figure 2.12 represents the 

three most significant IMFs that result from applying EMD to z(t).  

 To sum it up, because of the ability of EMD to adapt to the local features of the 

surrounding/sensed environment that makes the EMD algorithm more practical in 

decomposition of z(t).    

 

 

 

 

 

 

 

Figure 2.12 The IMFs components resulting from applying EMD to z(t). 
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Chapter 3 

A Blind Energy Detection Scheme Using 

EMD for Spectrum Sensing 

Noise estimation plays an essential role in enhancing the performance of non-

coherent spectrum sensors such as energy detectors. If the noise power is misestimated, 

detector performance may deteriorate. In this chapter, we present an energy detector 

based on the behavior that Empirical Mode Decomposition (EMD) has towards vacant 

channels (noise-dominant).  

 

3.1 Introduction 

Based on the definition of the EMD in chapter 2 (see Sec (2.6)), the EMD algorithm 

can be outlined as follows [13]: 

1) Identify all extrema points (local maxima and minima) of input signal y(n) and 

interpolate them (cubic spline interpolation) to find the upper and lower envelopes 

emax(n) and emin(n) respectively. 

2)  Find the local mean: m(n) =  (emin(n) +  emax(n))/2 

3)  Extract the detailed signal: h(n)  =  y(n) –  m(n) 
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4)  If h(n) does not satisfy the stoppage criteria then the process is repeated and 

 h(n) is the input to step (1). Otherwise, h(n) is the ith IMF and the residue is 

r(n) = y(n) −  h(n) will be processed as input signal (steps 1-4). 

 

The original input signal can be reconstructed as follows: 

                       ŷ(n) =  ∑ Mi(n) + R(n)
k

i=1
                                              (3.1) 

where ŷ(n) is the reconstructed signal, n is the sample index, K is the total number of 

IMFs, Mi(n) is the ith mode (IMF), and R(n) is the trend of ŷ(n).  

One characteristic of EMD is that the sum of all IMFs (see equation (3.1)) results in 

the original signal, which shows the additive reconstructive nature of IMFs in 𝑙1-norm 

sense.The IMFs are also additive in the 𝑙2-norm sense. The sum of IMFs powers 

approximates the power of the processed signal, y(n) and resemble the outputs of a 

dyadic filter bank [47]. Also, the sample size plays an essential role in the behavior of the 

EMD sifting performance as EMD was designed originally to process continuous signals. 

Therefore, oversampling is required to capture all possible extrema, whereas, 

missing an extrema during the sifting process might result in losing an oscillation (or 

produce false envelopes) and hence the reconstructed signal, ŷ(n) will not represent the 

original signal [49].  

Conversely, uncorrelated noise samples will not be influenced by missing extrema 

as the resulting envelopes will reflect the highest frequency content and thus get sifted 

largely by the first few modes. 
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3.2 Proposed Scheme 

In this section, an EMD-based spectrum sensing approach is presented. The basic 

idea is that if the IMF energies deviate from the monotonically decreasing trend, this will 

result in the decision of occupancy. 

 

3.2.1 EMD Characteristics of Noise-Dominant Channels  

In Section 3.1, it was shown that the IMFs resemble the output characteristics of 

dyadic filter. For a time-series signals contaminated with uncorrelated noise, the EMD 

sifting process extracts the noise components (fast oscillations) in the lower IMF indices 

and the signal components (slow oscillations) in the higher ones (see Sec (2.6.3)).  

The energy of these IMFs reflects the contributions of both noise and signal components 

to the total energy of the input noisy signal. Herein, if the noise contribution of the input 

noisy signal was much higher than the signal, or the noise-dominant signal is presented, 

then the IMF energies will follow a decreasing trend (exponential decay). 

To understand this characteristic more clearly, we present figure 3.1 which shows 

how the IMF energies behave when a received signal is noise-dominant (vacant channel) 

or noisy signal (occupied channel) at SNR = -5 dB. 

From this figure, it is shown that the energy of IMF3 (in black solid line) deviates 

from the vacant channel model (in grey dashed line). The justification of such deviation is 

due to the presence of PU, where the contribution of signal is added to the noise leading 

to non-decreasing trend of the IMF energies and hence provide an indication of 

occupancy. The monotonic decreasing trend of IMF energies is exploited in this thesis to 

set a null hypothesis test for spectrum sensing purposes. 
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Figure 3.1 A comparison of IMF energies for an occupied and vacant channel. 

 

3.2.2 EMD-Based Detection Scheme 

The received signal y(n) is the time series representation of a given band under test. 

Applying EMD approach on y(n) will result in a set of IMFs (see Sec 3.1). The energy of 

the ith IMF is given as follows: 

 

                                                               Wi =  ∑ Mi
2(n)

N

n=1
                                                       (3.2) 

The detection decision is made upon a simple test of the IMF energies given in (3.2), in 

which the channel vacancy is decided if the following condition is met: 
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                                   log2(Wi) >  log2(Wi+1)        , i = 1 … … K − 1                            (3.3) 

Consequently, if the condition in (3.3) is not satisfied, a possible channel occupancy 

is declared. However, and due to the non-linear filtering nature of EMD, relying on the 

condition (3.3) might result in false detection especially in low SNR regimes. 

To cope with the problem of false detection, an energy model with confidence 

interval limit can be utilized based on the work in [50]. Ideally, the energy model with 

confidence interval is based on the noise-dominant model, which requires the knowledge 

of the received signal’s noise. The noise dominant energy model of the ith IMF can be 

given as follows: 

 

                               Wî =  W ∗ 2−i   , i ≥ 2                                                     (3.4) 

where Wî is the ith estimated noise-dominant IMF energy, W is the energy of the total 

actual noise in the received signal, and the based 2 exponents refers to the energy 

decreasing rate of IMFs conducting the findings that EMD behaves like a dyadic filter [47]. 

Practically, the model in (3.4) requires a knowledge of noise energy (W), which is 

unknown, hence estimating the noise energy plays an essential role in this respect. 

In [50], for a noisy signal, the first IMF, M1(n), is assumed to be dominated mostly by 

noise, hence a noise-dominant energy model based on the use of M1(n) can be utilized 

to set a statistical boundary limit. The noise-dominant energy model is given as follows: 

 

                                       Wî = (√ρ ∗  W1) ∗  2−i   , i ≥ 2                                               (3.5) 
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where W1 is the energy of the first IMF, and √ρ is a scaling factor. In (3.5), the term 

(√ρ ∗  W1) is the estimation of the received noise energy. However, in [50], the scaling 

factor (√ρ) is a fixed scale thus, the noise estimation will be a function of the first IMF 

energy only.  

In this thesis, we propose an adaptive scaling factor that can result in better 

estimation of the received signal’s noise energy.  Figure 3.2 illustrates the relationship 

between the number of samples (base 2) and β, where β is the ratio of the energy of the 

first IMF to the total energy of the received signal’s noise and is given as follows: 

                                       β =  W1/W                                                              (3.6) 

Figure 3.2 The relationship between the number of samples log2(N) of the first IMF 

and β (dashed line).  
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From Figure 3.2, it is shown that β decreases as N increases with an approximate 

slope denoted by S, where S = - 0.0125. Compared to the best fit model (solid line) using 

least-squares fit polynomial coefficients, the figure is generated by averaging 5000 trials. 

The empirical relationship between N and β can be modeled by a linear fit: 

 

                                                     β(N) = S log2(N) + β(0)                                                     (3.7) 

where β(0) is the y-intercept of the linear fit. Based on (3.7), eq. (3.4) can be re-written 

as follows: 

 

                 Wî = ((S log2(N) + β(0)) ∗  W1) ∗  2−i   , i ≥ 2                    (3.8) 

From (3.8), the estimated noise model will be a function of N and the first IMF energy. 

Subsequently, the energy model with a confidence interval that is based on the noise-

dominant model (Wî) can be written as follows: 

 

                                           log2(Ti) =  2ai+b +  log2(Wî)   , i ≥ 2                                      (3.9) 

where Ti is the ith IMF energy at a given confidence interval (α), and a and b are the 

fitting polynomial parameters for the noise-dominant model (3.4) and these parameters 

are given in [51], Table 3.1] for both  α = 95% and 99%. 

The energy model, (3.9), is used as an adaptive threshold to discriminate the IMFs 

that have a high signal contribution from the ones of noise-dominant contributions. In that 

sense, and for spectrum sensing purposes, the designed probability of false alarm of the 

proposed energy detector is denoted by  Pfa =  1 −  α .  
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On the other hand, the probability of detection (denoted by Pd) is the probability that 

at least one of the IMF energies in (3.2) exceeds the energy model in (3.9) such as: 

 

                            Pd =   Prob (∃( log2Wi >   log2Ti)) , i ≥ 2                             (3.11) 

 

3.3 Simulation Results 

In this section, single channel detection is performed to determine occupancy for 

different SNR and sample size scenarios. A baseband OFDM modulated signal with an 

observation period (T) is used with different sampling sizes; N = 1000, 2000, and 4000. 

The channel is assumed to be flat and additive white Gaussian noise and the noise power 

is varied base on a range of SNR values. In this section, Monte Carlo simulations are 

carried out, where all results are the average of 5000 trials. 

Three different energy models, known noise model (3.4), fixed scale model (3.7), and 

proposed adaptive scale model (3.8), are used to evaluate the model in (3.9) in which 

these models have significant effect on the overall performance of the proposed detector. 

The known noise model refers to the assumption that the noise is known a-priori, and that 

is not valid practically, but used here for demonstration purposes. The fixed scale model 

refers to the fact that the energy of the first IMF is scaled by a fixed quantity (√ρ). 
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Figure 3.3 shows the mean squared error of both fixed scale and proposed scale with 

respect to known noise model (the noise power is unity). 

 

To compare the proposed scale model versus the fixed scale model, the Mean 

Squared Error (MSE) between the models and the known noise is compared over  

different sample sizes (N). Figure 3.3 illustrates the MSE of both fixed and proposed scale 

models about the known noise model. From that figure, it is obvious that the proposed 

scale is more comparable to the known noise than the fixed scale model. 

The justification of that is due to the adaptive scaling of the first IMF energy (function of 

sample size) that results in better modelling for the total noise energy estimation of the 
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received signal. However, the use of a fixed scale model (√ρ) yields in a misestimation 

of the noise energy and hence more deviation from the known noise model.  

Next, the performance of the EMD-based energy detector is examined for each of 

the models (known noise, fixed scale, proposed scale) for different sample size and SNR 

values. The EMD-based detector is designed for two different probability of false alarms, 

 Pfa(designed) = 0.05  for α = 0.95, and  Pfa(designed) = 0.01  for α = 0.99. But 

remember: EMD is designed for continues signal, which means in our case (discreet 

signal) EMD needs to have enough samples to give the desired performance. So, the 

best noise model is the one that can achieve the desired  Pfa using a fewer number of 

samples than the other noise models. 

In figure 3.4 (a-c), increasing the number of samples from (N =  1000 to 2000) has a 

significant effect on making the proposed EMD based detector achieve the designed / 

desired probability of false alarm. Also it is clear that the proposed scale model performs 

closely to the known noise model. But on the other hand, the fixed scales model cannot 

achieve the designed Pfa, it requires higher sample size at least double the number of 

samples (N =  4000) to satisfy the designed false alarm rate for  Pfa (designed) = 0.01. 
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           (a) N = 1000                   (b) N = 2000 

 

 

 

 

 

 

 

 

         (c) N = 4000  

 

Figure 3.4 illustration of the probability of false alarm for different SNR values and sample 

sizes for the known noise, fixed, and proposed scale energy models. 

 



55 
 

On the other hand, figure 3.5 illustrates the detector performance (for 0.01 and 0.05 

designed  Pfa) in terms of probability of detection ( Pd) for different scenarios. The  Pd 

of the proposed scale model performs tightly to the known noise model and that 

performance is enhanced as the sample size increases. However, it is shown that the 

fixed scale model performs better than the other two models but that is jeopardized to its 

high false alarm rate exhibited in Fig 3.4.  

 

For further explanation, there is a relation between  Pd &  Pfa ( Pd= 1- Pfa), that means to 

check any detector performance it is important to check simultaneously both its  Pd &  Pfa. 

As an example, in figure 3.5 (b) at SNR = -12 the fixed scale model achieves 0.9 of 

detection and in the same case our proposed model achieves same detection percent at 

SNR=-11. But, if we look at the figure 3.4(b) at the same SNR value the fixed scale model 

will have 0.03 of false alarm, but our proposed model will have only 0.01 false alarm. 

To conclude, the proposed scale model shows higher ability to estimate the noise of 

the received signal than the fixed scale model, and hence reveals better tradeoff between 

the  Pd and Pfa. 
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                (a) N = 1000                   (b) N = 2000 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 illustration of the probability of detection for different SNR values and sample 

sizes for the known noise, fixed, and proposed scale energy models. 
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Finally, the proposed scale model is selected to build an EMD-based energy detector 

and compared to other known techniques such as the Energy detector model (ED) in [31], 

and Maximum-Minimum Eigenvalue detector (MME) [36]. In this comparison, the 

designed  Pfa  for all techniques is set to 0.01. Both MME and the proposed method are 

blind and adaptive in terms of setting the detection threshold, unlike the ED which is 

sensitive to noise uncertainty [32]. Furthermore, both MME and the proposed method 

requires no prior knowledge about the noise power, where MME is independent in its 

decision of noise power, while the proposed method estimates it adaptively. In figure 3.6, 

the comparison between the techniques show that ED performs better than all other 

techniques. However, in the presence of noise uncertainty (1dB), the performance of ED 

deteriorates significantly. The proposed method outperforms both MME (with a smoothing 

factor = 8) and the ED with noise uncertainty by a gain of 2 and 3 dB respectively  

at  Pd = 1. 

(Note: In figure 3.6 the relative performance maintained for different number of samples 

(N=2000, 4000).   
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                             (a) N = 2000     (b) N = 4000          

Figure 3.6 A comparison of the probability of detection of the proposed method versus 

ED and MME for N = 2000, 4000. 
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Chapter 4 

Conclusion and Future Work 

 

4.1 Conclusion  

The major focus of this work was to present a detection scheme that can allow for 

estimation of noise in the presence of the signal which is essential for energy detection 

based schemes. 

In chapter 2, we focused on the operation principle of the cognitive radio and the 

theoretical side of spectrum sensing. An overview of various detection methods and 

standalone spectrum sensing techniques along with their classifications was given, and 

their suitability to different use cases was discussed. Two detection algorithms, Energy 

Detector (ED) and Eigenvalue based detection were introduced in detail in order to give 

theoretical background for the implementations presented in chapter 3. 

Clearly, each of the detection algorithms is fit for a purpose and has their pros and 

cons. For example, ED is fast, computationally simple and energy efficient compared to 

other alternatives. However, ED threshold is a function of noise power which is in turn 

assumed at a prior time or estimated through measurements. Consequently, 

misestimating the noise power might result in a severe degradation in the detector 

performance. 
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In chapter 3, we presented our method which is an energy detector based on the 

behavior that Empirical Mode Decomposition (EMD) has towards vacant channels. This 

method exploits the ability of EMD to decompose a signal into IMFs in which the energy 

of these modes can be utilized for channel detection. The energy of the first IMF is scaled 

to evaluate the noise-dominant model which is used to obtain a detection threshold at 

some confidence interval (α).  

Next, the performance of the EMD-based energy detector was examined for each of 

the models (known noise, fixed scale, proposed scale) at different sample sizes and SNR 

values. The proposed scaling model exhibited better performance than the fixed scale 

model in terms of  Pd and  Pfa. Further, the proposed scale model was selected to build an 

EMD-based energy detector and compare it to other known techniques such as the 

Energy detector model (ED) and Maximum-Minimum Eigenvalue detector (MME). 

Simulation results indicated the EMD-based energy detector (built upon the use of the 

proposed scale model) outperforms both ED (with a noise uncertainty) and MME over a 

range of SNR values. 

Hence, if we employ our proposed technique to sense the signal in a cognitive 

environment, better results could be achieved, thereby making a way towards efficient 

spectrum utilization. 

 

4.2 Future Work  

As an empirical approach, EMD can be investigated for the future work as follows: 

- EMD is difficult to model mathematically, because its algorithm procedure consists 

of ad-hoc steps and because of its non-linear sifting process. Thus, investigating 
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a mathematical framework will make the algorithm more solid and easier to 

analyze. 

- The EMD is based on an iterative use of spline interpolation, therefore it is 

computationally expensive. To be applied effectively as an online processor, more 

efficient sifting approaches must be researched.  
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