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ABSTRACT

A cognitive radio technique has the ability to learn. This system not only can observe

the surrounding environment, adapt to environmental conditions, but also efficiently use

the radio spectrum. This technique allows the secondary users (SUs) to employ the pri-

mary users (PUs) spectrum during the band is not being utilized by the user. Cognitive

radio has three main steps: sensing of the spectrum, deciding and acting. In the spec-

trum sensing technique, the channel occupancy is determined with a spectrum sensing

approach to detect unused spectrum. In the decision process, sensing results are evalu-

ated and the decision process is then obtained based on these results. In the final process

which is called the acting process, the scholar determines how to adjust the parameters

of transmission to achieve great performance for the cognitive radio network.

Cognitive radio processes are affected due to different conditions that have an effect

on the channel such as shadowing, multi-path fading, and uncertainty conditions. Thus,

the measurements obtained by the SUs through the sensing step could be uncertain data.

Decisions are determined according to observation at the secondary side utilizing knowl-

edge, which may have been affected by the uncertainty. For this reason, decisions can be

wrong. Therefore, the cognitive radio system can fall into the wrong actions. It’s clear

that uncertainty distribution directly influences cognitive radio’s achievement, and over-

coming it is considered a crucial process in this technique.

Wideband spectrum sensing is considered the principal challenge of the CR technique.

Existing spectrum sensing techniques can be attempted based on observations data sam-

pled by using an ADC at the Nyquist rate. Since there are hardware limitations are re-

grading the sampling technique, that approach can sense the spectrum only one spectrum

channel on time. Moreover, in order to perform the sensing of a wideband spectrum, the

spectrum needs to be split into multiple frequency narrow bands. On the SUs side, each

point of the spectrum is sensing constantly from the RF frontends, and this can be per-
xiii



formed at a fast time with computational complexity, and hardware cost.

To overcom this issue, the signal sampling time needs to be fast, even with high di-

mensional signals but the sensing step is still influenced by the uncertainty situation as

mentioned earlier. Spectrum sensing is proposed to solve the unuseful use of the spec-

trum in a low-cost solution with low processing time and increase the scanning process.

This spectrum sensing technique can be utilized with a low number of samples that are

required which can maintain the essential information. This dissertation aims to propose

an efficient and fast spectrum sensing technology to improve spectrum detection overus-

ing the sensing solutions. In this dissertation, a review of using the different spectrum

sensing techniques that can be utilized to sense the signal with fewer data samples, then

compare them with the proposed techniques in terms of the probability of detection and

the probability of false alarm. In this work, we propose the use of a Bayesian approach to

estimate the unknown parameters after numerically obtaining the threshold value to per-

form the detection technique. we also propose an approach that combines the framework

advantages of estimation and detection part using the Bayesian models to perform sens-

ing under uncertainty. In addition, a Bayesian sensing technique based on the maximum

posterior probability is proposed to handle the channel uncertainty and lately enhance

the spectrum sensing efficiency.

The estimation approach also use the convex optimization method using to estimate

the parameters of the wideband spectrum under certain uncertainty. All proposed ap-

proaches in this dissertation were simulated. Their results were compared to the existing

proper techniques based on a number of metrics, like probability of detection, probability

of false alarm, signal to noise ratio (SNR), number of samples, sensing threshold, required

number of measurements, the SNR, and complexity.

xiv



Chapter 1

Introduction

This chapter discusses the basic scope of the spectrum sensing concept for cognitive radio

networks under various settings and issues, as well as the spectrum sensing challenges for

various static spectrum allocations. We also discuss how we employed spectrum sensing

in collaboration with an estimation and detection approach to overcome some of these

challenges. The remainder of the chapter, however, can be structured as follows: section

1.1 and Section 1.2 shows the spectrum management issue as well as the cogni-

tive radio network; section 1.3 presents the MIMO wireless network; 1.4 describes the

cognitive radio steps; Section 1.5 describes the dissertation objectives; Section 1.6 and

Section 1.7 describes the different contributions with the list of all the published papers

in international conferences and indexed journals. Finally, the dissertation organization

is described in section 1.8 .

1.1 Spectrum Management in Cognitive Radio

One of the essential techniques is called the radio spectrum, which limited resources estab-

lished by regulations and approved by agencies, like the Federal Communications Com-

1



mission (FCC) and the national agency for the legalization of communications (ANRT)

that is located in the US. Modern spectrum management is assigning the channel spec-

trum to particular users with licenses to have particular wireless services and technolo-

gies. Information and wireless system traffic have recently increased rapidly over the past

decade, which ended in a critical need for resources of the signal spectrum [11][4]. To pre-

cisely share the spectrum sensing, the authorized users should have totally access to that

spectrum to send the data information, while other users are considered unauthorized

users and not allowed even though the spectrum hole is free [4].

In the United States, studies recently have shown that the spectrum utilization ranges

between 15%- 85% based on the used spectrum (FSA) policy[4]. FCC computations also

clarified the most part of the channels are heavily used, while the rest of the channel is

sparsely utilized as shown in Figure (1.1) [5].

Figure 1.1: Range of spectrum occupancy [4] [5]

Those studies show that allocated spectrum parts are not utilized all the time by the

users, this allocated user is called by the primary end-users (PUs) that can use the spec-

trum space. A white space, also named by spectrum hole, is a spectrum bandwidth that is2



allocated to an end-user but not being utilized at a certain location and at a specific time.

Thus, it can be seen that the radio frequency band in wireless communication is being

utilized in an inefficient way [12] [13][[8,9]. Therefore, the inefficiency use and scarcity

of the spectrum is required an urgent demand to achieve an enhancement for radio spec-

trum usage and consequently enhance the network achievement. A more reliable method to

defeat the spectrum deficiency is dynamically solved by involving unused spectrum to be

used by unlicensed users, secondary users (SUs), but these methods externally causes an

interference issue with the other PUs signals. Two different access are achieved, the first

method is known by opportunistic spectrum access (OSA), and the second is known by

dynamic spectrum access (DSA), those techniques are proposed to study the spectrum al-

location problems. Those techniques FSA and DSA allow that licensed and non-licensed

users can share the spectrum band. In other words, the spectrum should be allocated

into various bandwidths, then those spectrum bands are assigned to different dedicated

users[14] [15].

1.2 Cognitive Radio

According to this research paper "Mitola", cognitive radio [16][17] is a smart radio fre-

quency transceiver technique designed to recognize the available holes in a wireless spec-

trum and adjust parameters of the transmission, allowing more reliable communications

and promoting radio processing performance [14,15]. It is totally a new technique to im-

prove wireless networking. This technique allows the radio device to be awarded to its

environment and also provides the ability of the device system to adjust and achieve its

parameters autonomously. A cognitive radio network can be learned and can observe

from its around the environment to be adapted to the environmental situation, then make

decisions to establish an efficient use for the radio spectrum. the main point for this tech-

nique is to provide permission for the SUs to use the allocated radio spectrum of the PU
3



when it is temporally not being used as shown in Fig (1.2).

Figure 1.2: Dynamic band access [4][6]

Cognitive radio has been highlighted as a possible way to overcome spectrum re-

source constraints, which is a requirement of modern wireless communication technol-

ogy, such as the 5𝐺 wireless communication structure. Wireless communication systems

are among the 5𝐺 production. Wide wireless networks will be linked by providing reli-

able data rates and services. The IEEE 802.22 standard is defined as the first dependable

and high-performance cognitive radio network resolution to allow SUs to reuse TV white

spaces in the VHF and UHF spectrums, for example [2].

The rapid increase in the number of remote users in close proximity to the radio spec-

trum’s static management resulted in a lack of radio range [1]. Within the next five years,

almost fifty billion smart devices will be connected. Those devices are most likely re-

sponding to a desire for Internet access [2].

Themanagement of the radio spectrumwill not be adequate to enable get these devices

into the services. With this challenge, it can be seen that a few portions of the radio range4



are intensely utilizedwhereas a few others are seldom utilized. Sharing the radio spectrum

among users can lead to unwelcome benefit denial scenarios, but it’s to be expected that

there will be a number of issues that need to be resolved. The scarcity of radio range has

recently become one of themost urgent concerns, prompting future plans to enquire about

obtaining new algorithms to address the problems. As a result, new methodologies have

been implemented to overcome the spectrum difficulties. To solve this problem, several

ways are being investigated, one of which is the use of cognitive radio modification [3].

To achieve service quality criteria while consuming the least amount of energy, cog-

nitive radio innovation is used in wireless systems to assign user spectrum, take into

account the status of the channel spectrum range, and analyze communication parame-

ters [4]. These devices can now use unlicensed spectrum bands in addition to licensed

spectrum as long as their approved users are not active.

1.3 Multiple-Input Multiple-Output (MIMO)

Wireless network employs several transmitters and receivers to exchange more extra data

simultaneously, these devices can transfer data using multiple antennas on both sides like

MIMO technique [18] [19] as shown in Fig (1.3). TheMIMO technique supports all devices

with 802.11n standers to gain very high speed for sending and transmitting the data more

than outcomes without 802.11n. For implementing MIMO network, the network station

such as a mobile network devices or the access point (AP) should be supported by this

technique. To reach an optimal achievement and spectrum range, both networks such as

the station and AP should be sustain MIMO technology. In MIMO technology, the natural

radio wave aspect that is described by the multipath can appear. With multipath methods,

transmitted data suffering from ceilings, walls of the building, and another object coming

to the receiving antenna at different times and several points. Within the past, multipath

considered the main reason to cause interference and moderated down wireless signals.
5



In multipath, the MIMO innovation utilizes different intelligent transmitters and receivers

of the data with an included spatial measurement, expanding the range and the perfor-

mance of the method. [20] [21].

MIMO methods increment the observation signal because this technique allows the ra-

Figure 1.3: Multi-input and Multi-output [7]

dio to combine the receiving information from different places at different times. Smart

antennas utilize spatial differing qualities technology, which puts excess radio wires to

great use. When an antennas network has spatial streams, the smart antenna can add to

the receiver differences in order to raise the range. More antennas in the MIMO technique

have usually raised the speeds [22] [23]. MIMO technique is used to increase data trans-

fer speed. For example, the adapter with a certain number of the antennas like three can

increase the signal speed to 600 Mbps, while a wireless adapter with a specific number

can have a speed of 300 Mbps, two antennas in this case. MIMO technique can be also uti-

lized in router devices with the full support of all specialties of 802.11standers to possibly

reach the greatest speed. In addition, legacy wireless network usually apply Single Input

Single Output (SISO) method becuase this network can only send or receive one spatial6



data stream at the same time [7] [24].

1.4 Cognitive Radio steps

The cognitive radio framework shows a three-process cycle: spectrum sensing step, decid-

ing, and acting step. Fig. (1.4) shows the cognitive radio cycle[6]. The primary procedure

is crucial because it organizes the challenge, estimates the parameters, and performs spec-

trum detection. Since there are different conditions such as multipath fading, shadowing,

or changing channel like the channel uncertainty [25] [2], this step can be influenced

by these situations. Within the observation preparation step, measurements chosen by

the SUs are moreover unknown. Within the other method, SUs produce a choice based on

what must already be recognized according to the information source, and this case might

have been influenced by the uncertainty within the identified estimations, driving to the

off-base opportunities. In the final preparation, the uncertainty value increases during

the cognitive radio network cycle, and in some cases, incorrect actions are considered. In

this way, uncertainty distribution has impact over all the radio network spectrum steps

to decrease the cognitive radio achievement[3]. Therefore, this seems that the demand

process is required to handle the uncertain difficulties in the CR network by accurately

sensing the spectrum to reach the right activity.

1.5 Dissertation Objectives

This dissertation aims to develop efficient spectrum sensing based on a Bayesian an ap-

proach that can enhance the wideband radio spectrum scanning and deal with uncertainty

for the cognitive radio systems. To achieve the main goal, the following objectives were

pursued:

• Develop new techniques for efficient spectrum sensing in wireless communication.7



Figure 1.4: Cognitive radio cycle [6]

• Develop efficient estimation techniques for model parameters where few signal

samples are exits.

• Implement an extensive framework for estimation and detection of the proposed

techniques through simulations.

1.6 Dissertation Contributions

The contributions of the dissertation as:

1) First contribution: First assumption, the parameters of the noise are unknown. In this

part, the below contribution shows the steps that have been don for this assumption. This

work was published in the IET Journal, IEEE, Dec. 2018.

• We developed a method based on the Bayesian model and optimization methods.

The suggested method is performed and extensively tested. The simulation out-

comes are examined and analyzed to other techniques like the state-of-arts algo-
8



rithms such as energy detection. To assess the proposed method achievements,

multiple metrics used, data samples, the SNR required.

• Spectrum sensing techniques have been contributed in this work by proposing im-

proved new framework techniques based on dynamic sensing threshold to enhance

the sensor detection. This technique is evaluated and compared with the state-

of-the- arts techniques based on different values of SNR, sensing threshold, and a

number of samples. The approach of selecting the sensing threshold allows better

assessing the sensing method’s performance than with a fixed threshold.

• We showed deep research of this technique that handles an unknown parameters

issue in the cognitive radio. The proposed models and methods for dealing with

estimation noise parameters were presented. These methods were and carefully in-

vestigated in this technique for spectrum sensing in the meaning of cognitive radio

networks correlated with other state-of-the-arts techniques in spectrum sensing,

among them probabilistic theory such as the Bayesian theory.

• We provided deep research of optimization techniques that deal with parameters

estimation in the cognitive radio network. We examined several methods such as

convex optimization to deal with uncertainty. possibility theory like the Bayesian

theory is utilized to prov id the prior distribution for the unknown parameters.

These techniques were compared and deeply analyzed in the context of cognitive

radio networks. Metrics for this comparison include robustness to noise, complex-

ity.

• Second contribution: The second assumption is that neither the channel nor the

noise characteristics are known. The contribution below shows the procedures that

have been taken for this assumption. This paper was approved for publication in

the MDPI journal, Electronics, in 2021.
9



• We proposed a framework for estimation and detection methods using convex op-

timization for parameters estimation under this assumption. The proposed method

is executed and extensively examined. The simulation events are studied and com-

pared to the results of several state-of-the-art methodologies. Various metrics, such

as the likelihood of detection and the probability of misdetection in terms of sample

number, the SNR, and the accuracy of the proposed method are obtained. The total

number of receiving antennas as well as the total number of sending antennas.

• In this work, Spectrum sensing techniques are provided by proposing framework

techniques based on dynamic sensing threshold to enhance the sensor detection.

This technique is evaluated and compared with the state-of-the-arts techniques

based on different values of SNR, sensing threshold, and a number of samples.

The approach of selecting the sensing threshold allows better assessing the sensing

method’s performance than with a fixed threshold.

• We have performed a proposed approach to handles an uncertainty issue in the

cognitive radio. We presented a proposed model to deal with the noise and the

channel uncertainty. Again, using the probabilistic theory such as the Bayesian

theory to analyze the signal with the presence of the channel uncertainty. these

proposed approaches were and deeply analyzed in this technique for cognitive ra-

dio networks spectrum sensing compared with other state-of-the-arts techniques in

spectrum sensing.

• In this case, we implemented an extensive approach of optimization procedures that

can deal with the estimation of the parameters in the cognitive radio network. We

utilized convex optimization to deal with uncertainty. Since this problem is more

complicated to directly and can not be directly solved by using the convex opti-

mization. Thus, we perfomed an extensive mathematics contribution to solve this

optimization problem. These proposed approaches were are analyzed and simulated10



in the context of cognitive radio networks.
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1.8 Dissertation Organization

The remaining of this dissertation can be seen as follows.

1. In Chapter II, we present a deep review of statistical concepts, including techniques

of unknown parameters estimation and challenges. We also analyze the existing
11



assumption techniques that can be used in our approach in spectrum sensing andwe

compare their efficiencies such as proper prior distribution based on the Bayesian

approach.

2. In Chapter III, we propose a Bayesian sensing approach based on GLRT sensing.

We analyze and compare the efficiency of the proposed technique with the existing

techniques based on a number of samples that cover most of the GLRT sensing

aspects. We also present a deep review of sensing detectors including energy tests.

3. In Chapter IV, we propose a robust Bayesian-GLRT in spectrum sensing technique

with the presence of channel uncertainty detection with simulated threshold esti-

mation. We compare its efficiency to the existing spectrum sensing techniques.

4. In Chapter V, We conclude with the dissertation objectives and contributions and

highlight the dissertation’s future works. In Appendix A, we analyze the use of

Dirichlet-Multinomial for the Bayesian approach to dealingwith uncertainty in cog-

nitive radio networks. In Appendix B, we presented the derivation of estimation and

detection of the framework using a synthetic data set. In Appendix C, we provide a

general derivation of Bayesian-GLRT that is solved using optimization algorithms.

12



Chapter 2

Probability Processes and Bayesian
Inference

This chapter includes the following subjects:

• Probability Theory

• Theories and techniques of Bayesian inference.

• Bayesian theory testing and model identification.

• Bayesian computation via variations inference.

• Spectrum Sensing.

• Spatial Diversity

• Convex Optimization.

2.1 Probability Theory

Basic Definitions

A scientific set of numbers changes and a set of events sample space and appointed to

every event can be called the foundation of the probability hypothesis. The important

fact of the thought is the opportunities of the system of assignment. An event is a set of
13



sample points 𝜔𝑖 obtained by using algebraic laws incorporated with the Boolean algebra

rules is formally considered a sample space. Let us assume 𝐴 and 𝐵 important events, the

laws are displayed as follows [1],

𝐴 ∪ 𝐵 = {𝜔 : 𝜔 ∈ 𝐴 or 𝜔 ∈ 𝐵} (union)

𝐴 ∩ 𝐵 = {𝜔 : 𝜔 ∈ 𝐴 and 𝜔 ∈ 𝐵} (intersection)

𝐴 = {𝜔 : 𝜔 ∉ 𝐴} (complement)

𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵.

∅- considered the null set is recognized as the complement of Ω. The data samples are

assumed to be mutually exclusive [26][1] [27] when there is no part well-familiar to both

samples: 𝐴 ∩ 𝐵 = ∅. Pr[𝐴𝑖] is the measurements of the associated events with each event

𝐴 𝑗 , seldom described by 𝜋𝑖 , that follows the probability.

•Pr[𝐴 𝑗 ] ≥ 0

•Pr[Ω] = 1

• If 𝐴 ∩ 𝐵 = ∅, then Pr[𝐴U𝐵] = Pr[𝐴] + Pr[𝐵] .

The probabilities set Pr allocated to a data point, considered as the a priori probabilities.

According to assuming, Boolean expressions likelihood can be easily determined. Next,

The simple directions (𝐴 ∪ 𝐵 = 𝐴 ∪ (𝐴𝐵) and 𝐴𝐵 ∪𝐴𝐵 = 𝐵) direct to

Pr[𝐴U𝐵] = Pr[𝐴] + Pr[𝐵] − Pr[𝐴 ∩ 𝐵] .

Assume knowing that the likelihood of 𝐵 has occurred with Pr[𝐵] ≠ 0. ; what is then

the likelihood of event 𝐴 can occur? 𝐴 given event 𝐵, this consideration is identified

by the conditional probability and is indicated as Pr[𝐴|𝐵]. The conditional probabilities

can be completed, were considered a 𝐵 to be the sample space not only Ω. Obtaining a

14



distribution where these conditions are regular occurs with these probability assumptions

[26]. Then, it can be seen.

Pr[𝐴|𝐵] = Pr[𝐴 ∩ 𝐵]
Pr[𝐵] .

statistically independent of 𝐵 can be considered the event if Pr[𝐴|𝐵] = Pr[𝐴]: therefore

an existence of the 𝐵 event will not have an impact on the𝐴 likelihood . For an events are

independent, their intersection of the events Pr[𝐴∩𝐵] can be obtained by the multiplying

of the a priori probabilities [28] [29] of the events such that Pr[𝐴] · Pr[𝐵]. This most

importan feature , it is an enough for the independency of the several events. it can be

seen Pr[𝐵 |𝐴] = Pr[𝐴 ∩ 𝐵]/Pr[𝐴] and Pr[𝐴|𝐵] = Pr[𝐴 ∩ 𝐵]/Pr[𝐵] , the it can determine

the Bayes’ Rule.

Pr[𝐵 |𝐴] = Pr[𝐴|𝐵] · Pr[𝐵]
Pr[𝐴]

2.1.1 Probability Density Functions and Random Variables

The number distribution of each sample point (a real or complex) in sample scope can be

written by A random variable 𝑋 ; mathematically, 𝑋 : Ω ↦→ R. Thus, a function with a

set of domains that can describe a random variable is named as its range, and this will

be a subset of the real data. The discrete-valued presents the range also (particularly if

the domain Ω is assumed to be discrete). In this example, the symbolic-valued can be

the random variable, while in another case, the symbols are used to point to the integers.

Then, the random variable values can then be specified. This can have a continuous-

valued random variable when there is a continuous range of the information, it shows an

interval on the real-line data. In some situations, amixed randomvariable can be a random

variable value like continuous-valued. Thedistribution function or named cumulative can

be assigned for continuous, and in case as a discrete (when an ordering available), and

combined random variables such as [1] [26].
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𝑃𝑋 (𝑥) ≡ Pr[𝑋 ≤ 𝑥] .

Now, 𝑥 present the argument of the model distribution function while𝑋 presentes the

random variable. The Probability distribution functions can be raising the functions: if

𝐴 = {𝜔 : 𝑋 (𝜔) ≤ 𝑥1} and 𝐵 = {𝜔 : 𝑥1 < 𝑋 (𝜔) ≤ 𝑥2}, Pr[𝐴 ∪ 𝐵] = Pr[𝐴] + Pr[𝐵] ⇒

𝑃𝑋 (𝑥2) = 𝑃𝑋 (𝑥1) + Pr[𝑥1 < 𝑋 ≤ 𝑥2]∗ ,i.e, we means that 𝑃𝑋 (𝑥2) ≥ 𝑃𝑋 (𝑥1) , 𝑥1 ≤ 𝑥2.

When integrated used for the distribution function, it obtains the probability density

function 𝑝𝑋 (𝑥) as follows [1]:

𝑃𝑋 (𝑥) =
∫ 𝑥

−∞
𝑝𝑋 (𝛼)𝑑𝛼

The random variable is in both cases such as mixed, it can be as distribution functions to

be discontinuous. Furthermore, the density functions can non-negative because it has an

increasing integral

2.1.2 The Random Variable function

Assume [1] using a real-valued function when random variables (real). Let 𝑌 = 𝑓 (𝑋 ); in

particular, the sample maps can be considered 𝑓 : Ω ↦→ R ↦→ R similar to the transferring

from sample space Ω to the real line. Making to achieve that Y is a random variable

when using the map of this kind from the definition of a random variable. Now, the

problem can be for the 𝑌 ’s probabilistic characteristics function. The solution is to obtain

the probability density parameters by calculating of the mean and variance , using the

distribution function.

Now, [1] assuming that 𝑓 is a monotonical function, the probability distribution func-
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tion of 𝑌 is

𝑃𝑌 (𝑦) = Pr[Y ≤ 𝑦] (2.1)

= Pr[Y ≤ 𝑦]

= Pr[𝑋 ≤ 𝑓 −1(𝑦)]

= 𝑃𝑋 (𝑓 −1(𝑦))

Eq. (2.1) is the principal step; where, 𝑓 −1 is the inverse function. it can be seen from the

above question that the underlying part of sample range according to 𝑌 ≤ 𝑦 has to be

equal to that corresponding to 𝑋 ≤ 𝑓 −1(𝑦), since 𝑓 is a clearly monotonically function.

Thus, 𝑌 ’s function can be performed by abating the derivative.

𝑝𝑦 (𝑦) =
𝑑 𝑓 −1(𝑦)
𝑑𝑦

𝑃𝑥 (𝑓 −1(𝑦))

This derivation indicates the monotonically reducing functions. The variation is that the

set according to 𝑌 ≤ y now refer to the inverse function 𝑋 ≥ 𝑓 −1(𝑥) . Thus, 𝑃𝑌 (y) =

1− 𝑃𝑋 (𝑓 −1(𝑦)) . Developing of the probability density function a random variable can be

described as [30]:

𝑝𝑦 (𝑦) = | 1
𝑓 ′(𝑓 −1(𝑦)) |𝑃𝑥 (𝑓

−1(𝑦))

Therefore, 𝑋 is assumed to becomes an monotonically function such as exponential prob-

ability density: 𝑝𝑋 (𝑥) = 𝑒−𝑥u(𝑥) , where u(𝑥) is a unit-step function. By having 𝑌 = 𝑋 2,

it can be seen that

𝑝𝑌 (𝑦) =
1

2√𝑦𝑒
−√𝑦, 𝑦 > 0.

Over the positive real line [26], it can be square and also monotonic.
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2.1.3 Predicted Values

The random variable expected to value [31] 𝑋 can be assigned as

E[𝑓 (𝑋 )] =
∫ ∞

−∞
𝑓 (𝑥)𝑝𝑋 (𝑥)𝑑𝑥 .

It can be seen that there are Various important numbers considered as crucial values in

the density with specific information for the function 𝑓

•𝑓 (𝑋 ) = 𝑋 .

The value of the probability density center can be identified by expected value of a ran-

dom variable. It refers to the expected value such as𝑚𝑋 or𝑚 when the density function

distribution is clear. The main thing is that the expected value is a number that can not be

explained by (𝑝𝑋 (𝑚)) and the linearity represents a crucial feature of the expected value

linearity: E[𝑎𝑋 ] = 𝑎E[𝑋 ], 𝑎 where a scalar[32] [33].

•𝑓 (𝑋 ) = 𝑋 2.

Where E[𝑋 2] is the means squared value of 𝑋 , notifying the random variable power.

•𝑓 (𝑋 ) = (𝑋 −𝑚𝑋 )2.

This is considered the second characteristic of a random variable, known by the variance,

normally indicated by 𝜎2
𝑋
. This information for the variance can be considered as 𝜎2

𝑋
=

E[𝑋 2] − E2 [𝑋 ] that represents the variance data samples. The standard deviation is The

square root of the variance 𝜎𝑋 introduces the range of the variable distribution of 𝑋 .

(𝑋 −𝑐)2 is the second difference with the minimum value occurring at 𝑐 =𝑚𝑋 ( 𝑐 obtained

by evaluating the derivative and equal it to zero).

•𝑓 (𝑋 ) = 𝑋𝑛 .

E[𝑋𝑛] is expected value of the 𝑛𝑡ℎ represents the moment of the random variable, where

E[(𝑋 −𝑚𝑋 )𝑛] the 𝑛𝑡ℎ represents the value of the central moment.

•𝑓 (𝑋 ) = 𝑒 𝑗𝑢𝑋 .

The random variable The function is essentially form of the Fourier Transform for the
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likelihood density function.

E[𝑒 𝑗𝑣𝑋 ] ≡ Φ𝑋 ( 𝑗𝑣) =
∫ ∞

−∞
𝑝𝑋 (𝑥)𝑒 𝑗𝑣𝑥𝑑𝑥

The random variable values can be defined by deriving the characteristic function, and

then at the origin can be evaluated [34] [35].

E[𝑋𝑛] = 𝑗−𝑛
𝑑𝑛Φ𝑋 ( 𝑗𝑣)
𝑑𝑣𝑛

𝑣 = 0

2.1.4 Random Vectors

Random variables distribution can be defined as random vector X, X = co1[𝑋1, . . . , 𝑋𝐿].

The random variables density function is established similarly to the combinations of

random variables. Random vector elements can be presented as expected vector values as

shown [36]:

E[X] =
∫ ∞

−∞
x𝑝X(x)𝑑x = co1[E[𝑋1], . . . , E[𝑋𝐿]]

The covariance matrix K𝑋 is a square matrix including every possible variance between

each random vector’s sample. it can be described as:

K𝑋𝑖 𝑗 = cov[𝑋𝑖, 𝑋 𝑗 ] = E[𝑋𝑖𝑋 ∗
𝑗 ] − E[𝑋𝑖]E[𝑋 ∗

𝑗 ] 𝑖, 𝑗 = 1, . . . , 𝐿

According to the matrix representation [37], the distribution covariance matrix is repre-

sented as K𝑋 = E[(X−E[X]) (X-E [X])’ ]. it can be seen several points such as this covari-

ance matrix is an asymmetric matrix and, its value is positive-definite when the random

vector does not have a zero element. When the real-valued is assigned to the random vari-

able, the diagonal values of the matrix should be the same as the variances of the parts:
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K𝑋𝑖𝑖 = 𝜎2
𝑋𝑖
. When the Circular random vectors are generally considered to be real-values,

complex-values and uncorrelated with identical likelihood, then the E[|𝑋𝑖 |2] = 2𝜎2
𝑋𝑖

and

E[𝑋 2
𝑖 ] = 0. Generally , 𝜎2

𝑋𝑖
indicates the variance of the real (or imaginary) element. A

"real-values" specific function can be defined to be [35]

ΦX( 𝑗𝑣) = E[𝑒 𝑗𝑣𝑡X]

2.1.5 The Gaussian Random Variable

A random element named by Gaussian random 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒∗ [38] [39] and it will have a prob-

ability density function which can be determined as follows:

𝑝𝑋 (𝑥) =
1

√
2𝜋𝜎2

exp{− (𝑥 −𝑚)2

2𝜎2 }

Where 𝑚 is the mean of a distribution, while the variance of the distribution is defined

as 𝜎2. This information can be described as 𝑥 ∼∥ (𝑚, 𝜎2) . The principal function of a

Gaussian random element Φ𝑋 is provided as:

Φ𝑋 ( 𝑗𝑣) = 𝑒 𝑗𝑚𝑣 · 𝑒−𝜎
2𝑣2/2

Since this expression is totally dependent on the distribution parameters, Therefore no

specific expression for a Gaussian random variable. For example, when the mean is a zero

with a unit-variance such that Gaussian distribution ( Λ′(0, 1)) the probability exceed the

value 𝑥 , defined by 𝑄 (𝑥) .

Pr[𝑋 > 𝑥] = 1 − 𝑃𝑋 (𝑥) =
1

√
2𝜋

∫ ∞

𝑥

𝑒−𝛼
2/2𝑑𝛼 ≡ 𝑄 (𝑥)

A system of 𝑄 is shown in Fig. 2.1 [31]. Here, the Gaussian distribution where the mean

is a real value, and also the variance of the distribution is real values "non-unit", generally
20



the distribution probability can be given as follows in terms of 𝑄

Pr[𝑋 > 𝑥] = 𝑄 (𝑥 −𝑚
𝜎

) , 𝑋 ∼ Λ′(𝑚, 𝜎2)

by Integrating the above equation with 𝑄 is bounded (for 𝑥 > 0) , it can be rewritten

1
√

2𝜋
· 𝑥

1 + 𝑥2𝑒
−𝑥2/2 ≤ 𝑄 (𝑥) ≤ 1

√
2𝜋𝑥

𝑒−𝑥
2/2 (2.2)

Note, the Gaussian distribution is well identified by normal random distribution.

Figure 2.1: The function 𝑄 is described in logarithmic spaces. this function reduces quite
rapidly [4]

2.1.6 The Central Limit Theorem

Assuming random variable sequence are an independent sequence of the elements, iden-

tically distributed, with zero means and finite variances ( 𝜎2), then the Central Limit The-

orem can be utilized to explain that the sum
𝐿∑︁
𝑙=1

𝑋𝑙/
√
𝐿 converges into a random with
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Gaussian distribution [40] [9].[19]

1
√
𝐿

𝐿∑︁
𝑙=1

𝑋𝐿→∞
𝑙→ N(0, 𝜎2)

Generally, this theory is normally applied to simplify computations including finite quan-

tities of all random variables except Gaussian random variable. However, this concept is

rarely given to the close to the CL rate.

Theorem. Kolmogorov theory , the important currently mathematician theory, is ap-

proved that, “The Central Limit Theorem is a active rule for the of studies.

Let 𝜎2equal to 1, the significant conclusion is that the magnitude difference for the

𝑃 (𝑥), determined to be the probability of the sum values that exceed 𝑥 and 𝑄 (𝑥). The

probability distribution for the variables with a unit-variance passes 𝑥 , can be contained

a number that is inversely related to the square root values of 𝐿 [41] [37].

|𝑃 (𝑥) −𝑄 (𝑥) | ≤ 𝑐 · E[|𝑋 |3]
𝜎3 · 1

√
𝐿

The constant 𝑐 is identified to be about 0.8 [41]. The skew is defined to be the ratio of the

third absolute value of the 𝑋𝑙 over standard deviation (cube value), and these values are

assigned by 7𝛼 , which is totally affected by the distribution of 𝑋𝑙 and is not subject to the

scale.

As 2.2 can be seen, the right side in Fig. 2.2 , of this equation that is presented as

monotonical function. For more detail about the derivation please see.
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Figure 2.2: The validity limitions for applying the Central Limit Theorem [4]

Figure 2.2 presents the boundaries of valid quantity for implementing the central the-

orem, where the limited information of the destiny range. To explore the limited numbers,

the quantity 𝐿𝜖2/2𝜋𝑐2𝛾𝑋 is calculated in [42], where 𝜖 symbolizes the desired approximate

percentage error in this Theorem with the number of observations 𝐿. This value is ob-

tained on the vertical axis and set the value of 𝑥 maintaining it, but still be obtained as

the normalized value with upper limit on an 𝐿-term, means (𝑥 = 1 implies unit variance).

Now, a curve progression can be noticed. In this case, to have an accurate approximation,

huge amounts of data are expected.

2.2 Bayesian inference

Bayesian Inference definition, to understand the definition, it can be seen that two critical

methods for the statistical signal processing: classical methods named by Frequentist and

Bayesian approach. To be clear, it is very necessary to state both methods. The difference

can be seen as below:

Frequentist method versus Bayesian approach [34] [1]

• In the first approach, the probabilities are determined based on the large-run fre-
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quencies. Thus, The principal purpose is to plan systems, which should have long-run

frequency guarantees.

• In the Bayesian method, the probability is qualified as subjective degrees of knowl-

edge (believe). The principal purpose is to explain and clarify the expectations.

Morever, the differences between the Bayesian and frequentist methods can be seen

are as follows:

Frequentist Bayesian
Probability is: Limiting Relative Frequency Degree of Belief

Parameter \ is a: Fixed Constant Random Variable
Probability statements are about: Procedures Parameters

Frequency guarantees? Yes No

Table 2.1: Frequentist versus Bayesian Methods [1]

To show the difference, assume that [38] the following example. Consider that𝑋1, . . . , 𝑋𝑛 ∼

𝑁 (\, 1) . Then, it needs to clarify the interval of the estimated values 𝐶 for \ . In the Fre-

quentist method, the interval of the confidence means as follows [43] [44]:

𝐶 = [𝑋𝑛 −
1.96
√
𝑛
, 𝑋𝑛 +

1.96
√
𝑛
]

Then

P\ (\ ∈ 𝐶) = 0.95 for every \ ∈ R.

The variable interval 𝐶 is the subject of the probability information. Because it’s still a

data function, the interval can be random as well. The parameter \ is recognized as a

fixed value, despite the fact that it should be unknown. 𝐶 can find the real value with a

probability of 0.95, according to the statement.

Furthermore, imagine repeating this experiment a number of times. In fact, it allows users

to alter \ at any time. This is how it looks in this case: Natural choose \2 → can provide

𝑛 data points from 𝑁 (\2, 1) → Statistician calculates 𝐶2 confidence interval

Now, the interval𝐶 𝑗 is assigned for the following parameter \ 𝑗 , 95 percent of the time.
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lim
𝑛→

inf
∞

1
𝑛

𝑛∑︁
𝑖=1

𝐼 (\𝑖 ∈ 𝐶𝑖) ≥ 0.95 (2.3)

almost for any sequence \1, \2, . . . .

Bayesian Approach. The Bayesian treats likelihood and it is not depending on

frequencies. The unknown parameter \ states the prior distribution 𝜋 (\ ) describing this

subjective beliefs about \ . After observing the data 𝑋1, . . . , 𝑋𝑛 , then determines the pos-

terior distribution for \ given the data applying Bayes theory [45][46]:

𝜋 (\ |𝑋1, . . . , 𝑋𝑛) ∝ L(\ )𝜋 (\ ) (2.4)

where L(\ ) is the likelihood function. Next, it can be found an interval 𝐶 such that

∫
𝐶

𝜋 (\ |𝑋1, . . . , 𝑋𝑛)𝑑\ = 0.95.

With,

P(\ ∈ 𝐶 |𝑋1, . . . , 𝑋𝑛) = 0.95.

This is a degree-of-belief probability description of the \ presented in the data. the re-

sults seem not the same as2.3. If it is replicated within this experiment several times, the

confidence intervals will not catch the true value of 95 percent.

At described schemes with frequency, the frequentist technique [40] [47]is obtained.

The Bayesian approach is concerned with stating and constructing the beliefs of objects.

When employing 𝐹 (𝐶) to indicate frequency probability and express degree-of-belief, a

portion of the confusion is to be eliminated. These are two distinct entities, and there’s no

reason to think its the same. Strangely, it is common to use the same symbol to indicate

both types of probability, such as P, which may also cause confusion.

Summary[48] [16]: The Frequentist approach gives plans with a probability of fre-

quency, but Bayesian inference is a mechanism for sustaining and regenerating beliefs.
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The confidence interval 𝐶 can satisfy the following conditions:

inf
\
P\ (\ ∈ 𝐶) = 1 − 𝛼

where the probability designate to a unplanned interval 𝐶 . its call inf
\
P\ (\ ∈ 𝐶) the

coverage of the interval 𝐶 . A Bayesian confidence interval 𝐶 satisfies

P(\ ∈ 𝐶 |𝑋1, . . . , 𝑋𝑛) = 1 − 𝛼

where the probability points to \ . Following, concrete instances can be provided wherever

the posterior probabilities are very different.

Note, There are several characteristics of subjective Bayesians who define probability

surely as individual belief levels. Objective Bayesians attempt assumes the prior distribu-

tions indicate unitywith the information that the posterior is, in some cases. The empirical

Bayesians approach obtained the prior distribution from the observations data. When the

statistics indicate that the posterior has a greater frequency behavior than the frequency,

Bayesians frequently use the Bayesian approaches separately. As a result, the compari-

son between the "Bayesian" and "frequentist" approaches can be a little ambiguous. The

aforementioned leads to serious misunderstandings in statistics, machine learning, and

mathematics [49].

2.2.1 The Mechanics of Bayesian Inference

Let𝑋1, . . . , 𝑋𝑛 be 𝑛 observations data sampled from a probability density 𝑝 (x|\ ) . It can be

denoted 𝑝 (x|\ ) where assuming \ to a random variable, while a 𝑝 (x|\ ) is considered to be

the conditional probability of 𝑋 given \ . Howevere, this can be write 𝑝\ (x) if viewing \

as a deterministic variable. Bayesian approach usually can be executed as following [50]

[51] :
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Bayesian Procedure [42] [49]

1. The probability density can be defined as 𝜋 (\ ) – announced the prior distribution.

This represents the beliefs for the parameter \ before takign any observation data.

2. then, a statistical model 𝑝 (x|\ ) need to be defined to reflects the expectation for the

x condition of \ .

3. After observing the data D𝑛 = {𝑋1, . . . , 𝑋𝑛}, expectation is updated, and the pos-

terior distribution 𝑝 (\ |D𝑛) can be calculated. By using the Bayes’ method, the posterior

probability distribution is redefined as:

𝑝 (\ |𝑋1, . . . , 𝑋𝑛) =
𝑝 (𝑋1, . . . , .𝑋𝑛 |\ )𝜋 (\ )

𝑝 (𝑋1, .., 𝑋𝑛)
=
L𝑛 (\ )𝜋 (\ )

𝑐𝑛
∝ L𝑛 (\ )𝜋 (\ ) (2.5)

where L𝑛 (\ ) =
𝑛∏
𝑖=1

𝑝 (𝑋𝑖 |\ ) is the likelihood function and

𝑐𝑛 = 𝑝 (𝑋1, . . . , 𝑋𝑛) =
∫

𝑝 (𝑋1, . . . , 𝑋𝑛 |\ )𝜋 (\ )𝑑\ =

∫
L𝑛 (\ )𝜋 (\ )𝑑\

this constant is the normalizing value, it is also named by the evidence. Utilizing a Bayesian

estimation by measuring the center of the posterior, it also could be done by using the

mean or mode of the posterior distribution, which can be shown in the following [20]

[52].

\𝑛 =

∫
\𝑝 (\ |D𝑛)𝑑\ =

∫
\L𝑛 (\ )𝜋 (\ )𝑑\∫
L𝑛 (\ )𝜋 (\ )𝑑\

.

A Bayesian interval estimate then can determined. For example, for 𝛼 ∈ (0, 1) ,it can

get 𝑎 and 𝑏 such that

∫ 𝑎

−∞
𝑝 (\ |D𝑛)𝑑\ =

∫ ∞

𝑏

𝑝 (\ |D𝑛)𝑑\ = 𝛼/2.
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Let 𝐶 = (𝑎, 𝑏) . Then

P(\ ∈ 𝐶 |D𝑛) =
∫ 𝑏

𝑎

𝑝 (\ |D𝑛)𝑑\ = 1 − 𝛼,

so 𝐶 is a 1 − 𝛼 this named by credible interval or Bayesian posterior interval. If the

parameter \ has multi dimensions, the case is simple and straightforward and a credible

region can obtained . Moreover, let D𝑛 = {𝑋1, . . . , 𝑋𝑛} where 𝑋1, . . . , 𝑋𝑛 ∼Bernoulli (\ ) .

Assume we have the uniform distribution 𝜋 (\ ) = 1 as a prior, then the posterior [53] is

𝑝 (\ |D𝑛) ∝ 𝜋 (\ )L𝑛 (\ ) = \𝑆𝑛 (1 − \ )𝑛−𝑆𝑛 = \𝑠𝑛+1−1(1 − \ )𝑛−𝑆𝑛+1−1

where 𝑆𝑛 =
𝑛∑︁
𝑖=1

𝑋𝑖 is the successes number. Again, a random variable \ within the random

interval (0, 1), means, this parameter consist of a Beta distribution with sub parameters 𝛼

and 𝛽 as following [54]:

𝜋𝛼,𝛽 (\ ) =
Γ(𝛼 + 𝛽)

I⌝ (𝛼)Γ1(𝛽)
\𝛼−1(1 − \ )𝛽−1

after simplifying the above expression, It can be seen that the posterior distribution for \

can be a Beta function with parameters 𝑆𝑛 + 1 and 𝑛 − 𝑆𝑛 + 1. which is,

𝑝 (\ |D𝑛) =
Γ(𝑛 + 2)

Γ1(𝑆𝑛 + 1)Γ(𝑛 − 𝑆𝑛 + 1)\
(𝑆𝑛+1)−1(1 − \ ) (𝑛−𝑆𝑛+1)−1

it can be addressed as

\ |D𝑛 ∼ Beta(𝑆𝑛 + 1, 𝑛 − 𝑆𝑛 + 1) .

Later then [42] [55], it have been reached out the normalizing fixed without correctly

explaining the integral
∫

L𝑛 (\ )𝜋 (\ )𝑑\ . Since a density function combines to one, we

can see, ∫ 1

0
\𝑆𝑛 (1 − \ )𝑛−𝑆𝑛 =

Γ1(𝑆𝑛 + 1)Γ(𝑛 − 𝑆𝑛 + 1)
Γ(𝑛 + 2) .
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The Beta distribution mean (𝛼, 𝛽) is 𝛼/(𝑐ℓ + 𝛽). Thus, the Bayes posterior estimator can

be:

\ =
𝑆𝑛 + 1
𝑛 + 2 .

It is common to write \ as

\ = _𝑛\̂ + (1 − _𝑛)\

where \̂ = 𝑆𝑛/𝑛 is themaximum estimation of the likelihood , \ = 1/2 is the prior mean

and _𝑛 = 𝑛/(𝑛 + 2) ≈ 1. A 95 posterior interval percent can be obtained by numerically

calculating 𝑎 and 𝑏 such that
∫ 𝑏

𝑎

𝑝 (\ |D𝑛)𝑑\ = .95.

Now, assuming utilizing a nonuniform prior, using the prior \ ∼ Beta(𝛼, 𝛽) . If the

steps above are repeated, then it can be found that \ |D𝑛 ∼ Beta(𝛼 +𝑆𝑛, 𝛽 +𝑛−𝑆𝑛) , means

this flat prior distribution is a special case has equality between 𝛼 𝛽 =1. The posterior

mean for this case can be shown as following:

\ =
𝛼 + 𝑆𝑛
𝛼 + 𝛽 + 𝑛 = ( 𝑛

𝛼 + 𝛽 + 𝑛 )\̂ + ( 𝛼 + 𝛽
𝛼 + 𝛽 + 𝑛 )\0

where \0 = 𝛼/(𝛼 + 𝛽) is the prior mean.

A representation of this model is shown in Figure 12.1. It can be seen the Bernoulli

model to create 𝑛 = 15 data with parameter \ = 0.4. it can be realized that 𝑠 = 7. Thus,

maximum likelihood estimation is \̂ = 7/15 = 0.47, which is higher than the true parame-

ter value that is 0.4. Figure 12.1, on the left, shows a prior Beta distribution of (4, 6) with a

posterior mode of 0.43, whereas Figure 12.1, on the right, shows a prior Beta distribution

of (4, 2) with a posterior mode of 0.67.

In this diagram, the prior distribution is indicated by the red-solid, the likelihood func-

tion is indicated by the blue-dashed, and the posterior distribution is indicated by the

black-dashed. The true parameter value \ = 0.4, which is shown by the vertical line, can

be observed.

Let’s see another example, 𝑋 ∼ Multinomial (n, \ ) where \ = (\1, . . . , \𝐾 )𝑇 be a 𝐾-
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Figure 2.3: Example of Bayesian inference using the Bernoulli data that have different
priors [8] [9]

dimensional space parameter (𝐾 > 1) . A Dirichlet prior is designedwith themultinomial,

which is recognized as a generalized model of the Beta prior for the Bernoulli distribution

to the previous example. The Dirichlet model for𝐾 events is notified to be the exponential

family distribution on the 𝐾 − 1 dimensional probability single △𝐾 given by

𝜋𝛼 (\ ) =
Γ(∑𝐾

𝑗=1 𝛼 𝑗 )∏𝐾
𝑗=1 Γ(𝛼 𝑗 )

𝐾∏
′,𝐽=1

\
𝛼 𝑗−1
𝑗

The probability simplex △𝐾 can be defined as

△𝐾 = {\ = (\1, . . . , \𝐾 )𝑇 ∈ R𝐾 |\𝑖 ≥ 0 for all 𝑖 and
𝐾∑︁
𝑖=1

\ i = 1}.

where 𝛼 = (𝛼1, . . . , 𝛼𝐾 )𝑇 ∈ R𝐾+ is a positive values of computing components , which

are the model parameters. instantly, The sample space of the multinomial with 𝐾 events,

as the group of vertices elements of the 𝐾- multidimensional hypercube H𝐾 , may be ob-

served to consist of vectors with 1 and the remainder elements 0:

Let 𝑋𝑥 = (𝑋𝑖1, . . . , 𝑋𝑖𝐾 )𝑇 ∈ H𝐾 . If 30



\ ∼ Dirichlet(𝛼) and 𝑋] ′ |\ ∼ Multinomial(\ ) for 𝑖 = 1, 2, . . . , 𝑛,

The posterior satisfies [56] [42]

𝑝 (\ |𝑋1, . . . , 𝑋𝑛) ∝ L𝑛 (\ )𝜋 (\ ) ∝
𝑛∏
𝑖=1

𝐾∏
𝑗=1

\
𝑋𝑖 𝑗

𝑗

𝐾∏
𝑗=1

\
𝛼 𝑗−1
𝑗

=

𝐾∏
𝑗=1

\
∑𝑛

𝑖=1 𝑋𝑖 𝑗+𝛼 𝑗−1
𝑗

It should be noted that the posterior is a Dirichlet distribution as well [49]:

\ |𝑋1, . . . , 𝑋𝑛 ∼ Dirichlet(𝛼 + 𝑛𝑋 )

where 𝑋 = 𝑛−1
𝑛∑︁
𝑖=1

𝑋𝑖 ∈ △𝐾 .

For the Dirichlet distribution mean 𝜋𝛼 (\ ) can be represented by

E(\ ) = ( 𝛼1∑𝐾
𝑖=1 𝛼𝑖

, . . . ,
𝛼𝐾∑𝐾
𝑖=1 𝛼𝑖

)𝑇

Then, the multinomial posterior mean with Dirichlet prior distribution showing as:

E(\ |𝑋1, . . . , 𝑋𝑛) = (
𝛼1 +

∑𝑛
𝑖=1𝑋𝑖1∑𝐾

𝑖=1 𝛼𝑖 + 𝑛
, . . . ,

(𝑦𝐾 + ∑𝑛
𝑖=1𝑋𝑖𝐾∑𝐾

𝑖=1 𝛼𝑖 + 𝑛
)𝑇

The posterior mean is shown as giving around the maximum likelihood estimation by

choosing some designed probability size for the low-frequency analyses. The parameters

𝛼1, . . . , (𝑦𝐾 seem as practical counts”, which is not the same as the preserved data.

Remark, [57] From the earlier examples, a Dirichlet distribution is prior and poste-

rior. Note, When the case that has the prior and the posterior are in the same family, it

can be seen that the prior is conjugate concerning;

2.2.2 Improper,Flat, and Noninformative’s Priors

[34][35]
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How does the subjective offer the prior 𝜋 (\ )? This is a main key in the Bayesian

technique. first, subjective estimations of 𝑡ℎ𝑒𝑡𝑎 that the prior distribution can be con-

sidered the object attitude about (before collecting the data). This method is suitable in

some situations, but it is challenging in others, particularly when essential parameters

are needed. In addition, including subjective opinion into the evaluation as a means of

developing scientific ideas as exactly as possible.

To clarify some of noninformative prior, A simple example for a noninformative dis-

tribution prior can be used to achieve a flat prior 𝜋 (\ ) ∝ constant. For example, in the

Bernoulli case, taking 𝜋 (\ ) = 1, leads to \ |D𝑛 ∼ Beta(𝑆𝑛 + 1, 𝑛 − 𝑆𝑛 + 1) as it can be seen

earlier, which seems fair. But the unfettered control of flat priors suggests some cases.

Improper Priors. Let 𝑋 ∼ 𝑁 (\, 𝜎2) with 𝜎 known. it can justify D𝑛 = {𝑋1, . . . , 𝑋𝑛}

as the known data. Choosing a flat prior 𝜋 (\ ) ∝ 𝑐 where 𝑐 > 0 is to be a constant values.

Note that
∫

𝜋 (\ )𝑑\ = ∞ so this is not a valid probability density, it can tell such a prior

an improper prior. Although, by establishing the prior and the likelihood, it may still

employ the Bayes’ theorem to estimate the posterior density function [35]:

𝑝 (\ |D𝑛) ∝ L𝑛 (\ )𝜋 (\ ) ∝ L𝑛 (\ ) .

Let 𝑋 =

𝑛∑︁
𝑖=1

𝑋𝑖/𝑛. This gives \ |D𝑛 ∼ 𝑁 (𝑋, 𝜎2/𝑛) , this provide a Bayesian point and

confidence interval match accompanied by equality of the frequentist. Generally, unuseful

priors are not a hard situation in case the final posterior is defined by the probability

distribution.

This flat prior shows the reduction of details of \ before doing the experiment. Now

let 𝜓 = log(\/(1 − \ ), this is a change of \ and can be determined the final distribution

for𝜓 , namely

𝑝 (𝜓 ) = 𝑒𝜓

(1 + 𝑒𝜓 )2 ,

It seems that this prior is not flat. But\ is uninformed, then it would also be confused about
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the 𝜓 , so utilizing a flat prior for 𝜓 is demand. Since a flat before reaching a parameter

does not represent a flat prior to a changing characteristic of this parameter, the concept

of a flat prior is incorrectly set.

Jeffreys’ Prior . Harold Jeffreys brightened upwhomakes it a rule by defining the prior

parameter range can set priors distribution, which is invariant transformation. These

parameters need to be compatible with the Fisher information, which means the square

root of the determinant.

𝜋 (\ ) ∝
√︁
|𝐼 (\ ) | where 𝐼 (\ ) = −E[ 𝜕

2 log𝑝 (𝑋 |\ )
𝜕\𝜕\𝑇

\ ] is the Fisher information.

There are several reasons to believe that this prior distribution can be beneficial prior,

however no characteristics are required here. It gives the feature of transformation in-

variant in the next theory.

Theorem The Jeffreys’ prior [56] is transformation invariant.

Proof: Providing the probability function be 𝑝 (x|\ ), then 𝜓 match a conversion of \ ,

it experience that 𝜋 (𝜓 ) ∝
√︁
|𝐼 (𝜓 ) |. This is a simple conclusion based on the variable

exchange theory. The fact that the matrix product determinant is the same as the deter-

minant outcome [58].

To state this case, assuming the model of Bernoulli (\ ).

𝐼 (\ ) = 1
\ (1 − \ ) .

Jeffreys’ rule uses the prior

𝜋 (\ ) ∝
√︁
𝐼 (\ ) = \−1/2(1 − \ )−1/2

From above it can be seen that a Beta (1/2,1/2) density, which is totally according to a

uniform distribution. From those, it can be concluded that Jeffreys’ prior is invariant

transformation, not expect this is noninformative” more further studies have tried to pro-

duce further satisfactory noninformative priors such as in reference priors [9, 7]. When
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the model has only one parameter, the reference prior matches Jeffrey’s prior. Others can

be challenging for popular multi-parameter models.

2.2.3 Conjugate Priors

It can previously be identified about the conjugate priorsmodel, with themultinomial/Dirichlet

families and the binomial/Betas. Here, the first form at conjugacy frommore further com-

mon characteristics, and followed by additional examples [26] [59] [58].

Note, A prior distribution is conjugate prior as long as it is achieved below the sam-

pling method. Supposing that P is a set of the prior distributions, in which each \ has a

𝑝 (·|\ ) ∈ F over a sample space X is ready, the posterior distribution is:

𝑝 (\ |x) = 𝑝 (x|\ )𝜋 (\ )∫
𝑝 (x|\ )𝜋 (\ )𝑑\

it is beforehand given that the family P should be within sampling distributions F when

it takes a conjugate. Note, the group P is adequately unsatisfactory including it typically

supposed to be a demanding parametric group.

The conjugate priors for general exponential family representations are taken into

consideration. Considering that 𝑝 (·|\ ) is a natural exponential model, with ` as a positive

measure, the former as shown [41] [60]:

𝑝 (x|\ ) = exp(\𝑇X −𝐴(\ )) (2.6)

where the parameter \ ∈ R𝑑 is 𝑑-dimensional, and as well as the parameter space Θ ⊂ R𝑑

is accessible, with ∫
exp(\𝑇x −𝐴(\ ))𝑑` (x) < ∞.

The producing result by taking the logconstant𝐴(\ ), then normalizing is shown as follows
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[26]:

𝐴(\ ) = log
∫

exp(\𝑇x −𝐴(\ ))𝑑` (x) .

The density can be found where a conjugate prior belong to the exponential family: 2.6

𝜋x0,𝑛0 (\ ) =
exp(𝑛0x𝑇0\ − 𝑛0𝐴(\ ))∫
exp(𝑛0x𝑇0\ − 𝑛0𝐴(\ ))𝑑\

where x0 ∈ R𝑑 is a vector and also 𝑛0 ∈ R is a scalar.

Then the conjugate can be,

𝑝 (x|\ )𝜋x0,𝑛0 (\ ) = exp(\𝑇x −𝐴(\ )) exp(𝑛0x𝑇0\ − 𝑛0𝐴(\ ))

= exp((x + x0)𝑇\ − (1 + 𝑛0)𝐴(\ ))

= exp((1 + 𝑛0) (
x

1 + 𝑛0
+ 𝑛0x0

1 + 𝑛0
)𝑇\ − (1 + 𝑛0)𝐴(\ ))

∝ 𝜋 x
1+𝑛0

+
𝑛0X0
1+𝑛0

,1+𝑛0
(\ ) .

Assuming [39] that the prior is as incorporating 𝑛0 observations (virtual)which can be

scalar x0 ∈ R𝑑 , Then the posterior parameters can be obtained after imagination one not

virtual ” observation x are then 𝑛′0 = 1 + 𝑛0 and

x′0 =
x

1 + 𝑛0
+ 𝑛0x0

1 + 𝑛0

This seems that it is a combination of real and virtual observations. Frequently, if there is

𝑛 observations 𝑋1, . . . , 𝑋𝑛 , then the posterior becomes the form

𝑝 (\ |𝑋1, . . . , 𝑋𝑛) = 𝜋 𝑛𝑋
𝑛+𝑛0

+
𝑛0X0
𝑛+𝑛0

,𝑛+𝑛0
(\ )

∝ exp((𝑛 + 𝑛0) (
𝑛𝑋

𝑛 + 𝑛0
+ 𝑛0x0
𝑛 + 𝑛0

)𝑇\ − (𝑛 + 𝑛0)𝐴(\ )) ,
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where𝑋 =

𝑛∑︁
𝑖=1

𝑋𝑖/𝑛. Thus, the parameters of the posterior are 𝑛′0 = 𝑛+𝑛0 and the mixture

x′0 =
𝑛𝑋

𝑛 + 𝑛0
+ 𝑛0x0
𝑛 + 𝑛0

.

Now, let 𝜋x0,𝑛0 be defined by

𝜋x0,𝑛0 (\ ) = exp(𝑛0x𝑇0\ − 𝑛0𝐴(\ )) ,

so that

∇𝜋x0,𝑛0 (\ ) = 𝑛0(x0 − ∇𝐴(\ ))𝜋x0,𝑛0 (\ ) .

Since ∫
∇𝜋x0,𝑛0 (\ )𝑑\ = ∇(

∫
𝜋x0,𝑛0 (\ )𝑑\ ) = 0,

from which it follows that

E[∇𝐴(\ )] =
∫

∇𝐴(\ )𝜋x0,𝑛0 (\ )𝑑\ = x0 −
1
[]0

∫
∇𝜋x0,𝑛0 (\ )𝑑\ = x0,

where the expectation is with respect to 𝜋x0,𝑛0 (\ ) . More generally

E[∇𝐴(\ ) |𝑋1, . . . , 𝑋𝑛] =
𝑛𝑋

𝑛0 + 𝑛
+ 𝑛0x0
𝑛0 + 𝑛

.

According to proper consistency conditions, so the linearity of

E(∇𝐴(\ ) |𝑋1, . . . , 𝑋𝑛)

This is suitable for conjugacy; Diaconis (1979) results in the continuous case.

Theorem[39] [61] Considering a Θ ⊂ R𝑑 is not limited, then assume that 𝑋 be a size

sample to be one from the exponential group 𝑝 (·|\ ), a` has an open interval. Now assume
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that \ has a prior probability 𝜋 (\ ) with only a use single point. Then the posterior mean

of ∇𝐴(\ ) provided only one observation 𝑋 which is a linear,

E(∇𝐴(\ ) |𝑋 ) = 𝑎𝑋 + 𝑏,

if and only if the prior 𝜋 (\ ) is given by

𝜋 (\ ) ∝ exp( 1
𝑎
𝑏𝑇\ − 1 − 𝑎

𝑎
𝐴(\ ))

A similar result holds when the ` is supposed to be a discrete value, as clarified in the

multinomial family

Both continuous and discrete distributions’s models and conjugate priors can be pro-

vided in the table. 2.2 and table. 2.3.

Sample Space Sampling Dist. Conjugate Prior Posterior
X = {0, 1} Bernoulli(\ ) Beta(𝛼, 𝛽) Beta(𝛼 + 𝑛𝑋, 𝛽 + 𝑛(1 − 𝑋 ))
X = Z+ Poisson (_) Gamma(𝛼, 𝛽) 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑛𝑎𝑚𝑒𝐺𝑎𝑚𝑚𝑎(𝛼 + 𝑛𝑋, 𝛽 + 𝑛)
X = Z++ Geometric (\ ) Gamma(𝛼, 𝛽) Gamma(𝛼 + 𝑛, 𝛽 + 𝑛𝑋 )
X = H++ Multinomial (\ ) Dirichlet (\ ) Dirichlet(𝛼, 𝑛𝑋 )

Table 2.2: Conjugate priors for discrete exponential family distributions[2] [3].

Sampling Dist. Conjugate Prior Posterior
Uniform (\ ) Pareto (a0, 𝑘) Pareto

(
max

{
a0, 𝑋(𝑛)

}
, 𝑛 + 𝑘

)
Exponential (\ ) Gamma(𝛼, 𝛽) Gamma(𝛼 + 𝑛, 𝛽 + 𝑛𝑋 )

𝑁
(
`, 𝜎2) , known 𝜎2 𝑁

(
`0, 𝜎

2
0
)

𝑁

((
1
𝜎2

0
+ 𝑛
𝜎2

)−1 (
`0
𝜎2

0
+ 𝑛𝑋

𝜎2

)
,

(
1
𝜎2

0
+ 𝑛
𝜎2

)−1
)

𝑁
(
`, 𝜎2) , known ` InvGamma(𝛼, 𝛽) InvGamma

(
𝛼 + 𝑛

2 , 𝛽 +
𝑛
2 (𝑋 − `)2

)
𝑁

(
`, 𝜎2) , known ` ScaledInv- 𝜒2 (

a0, 𝜎
2
0
)

ScaledInv- 𝜒2
(
a0 + 𝑛,

a0𝜎2
0

a0+𝑛 +
𝑛(𝑋−`)2

a0+𝑛

)
𝑁 (𝝁,Σ), known Σ 𝑁 (𝝁0, 𝚺0) 𝑁

(
K

(
𝚺
−1
0 `0 + 𝑛𝚺−1𝑋

)
,K

)
,K =

(
𝚺
−1
0 + 𝑛Σ−1)−1

𝑁 (𝝁,Σ), known 𝝁 InvWishart (a0, S0) InvWishart
(
a0 + 𝑛, S0 + 𝑛S

)
, S sample covariance

Table 2.3: Conjugate priors for some continuous distributions [2][3].
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2.2.4 Bayesian Hypothesis Testing

Supposing need to check the current hypothesis [62] [45]:

𝐻0 : \ = \0 versus 𝐻1 : \ ≠ \0

where \ ∈ R. The Bayesian method to measure with putting a prior on 𝐻0 include the

parameter \ , then finding P(𝐻0 |D𝑛). This method is to utilize the prior P(𝐻0) = P(𝐻1) =

1/2 (although this is not necessary). Under 𝐻1, it wants a prior distribution for \ , which

is expressed by 𝜋 (\ ) .Then, the prior model is assumed to have a point mass 0.5 at \0and

associated with a continuous function. Now, Bayes’ theorem can be given as:

P(𝐻0 |D𝑛) =
𝑝 (D𝑛 |𝐻0)P(𝐻0)

𝑝 (D𝑛 |𝐻0)P(𝐻0) + 𝑝 (D𝑛 |𝐻1)P(𝐻1)

= 𝑝 (D𝑛 |\0)

𝑝 (D𝑛 |\0) + 𝑝 (D𝑛 |𝐻1)

𝑝 (D𝑛 |\0)

𝑝 (D𝑛 |\0) +
∫

𝑝 (D𝑛 |\ )𝜋 (\ )𝑑\

L(\0)

L(\0) +
∫

L(\ )𝜋 (\ )𝑑\

The frequentist and Bayesian approaches [61] [42] achieved similar results in the estimate

context where the prior is not necessary. This is true not only in hypothesis testing, but

also in measurement, because an incorrect prior results in an infinite value in the denom-

inator of the above experiment. If Bayesian measurement is applied, then it requires very

precisely determine the prior 𝜋 (\ ).
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2.2.5 Bayesian Linear Models

Following a Bayesian framework, a number of frequentist techniques are used as the max-

imal a posterior (MAP) estimator. Gaussian linear regression is a prime example [63]:

𝑌 = 𝛽0 +
𝑑∑︁
𝑗=1

𝛽 𝑗𝑋 𝑗 + 𝜖, 𝜖 ∼ 𝑁 (0, 𝜎2) .

Here consider that 𝜎 is given. Let D𝑛 = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)} be observation data

samples. Then, The conditional density of 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑑)𝑇 as

L(𝛽) =
𝑛∏
𝑖=1

𝑝 (𝑦𝑖 |𝑥𝑥 ′, 𝛽) ∝ exp(−
∑𝑛
𝑖=1(𝑦𝑖 − 𝛽0 −

∑𝑑
𝑗=1 𝛽 𝑗𝑥𝑖 𝑗 )2

2𝜎2 ) .

Using a Gaussian prior 𝜋_ (𝛽) ∝ exp(−_∥𝛽 ∥2
2/2) , the posterior of 𝛽 can be written as

𝑝 (𝛽 |D𝑛) ∝ L(𝛽)𝜋_ (𝛽) .

The MAP estimator 𝛽MAP takes the form

𝛽MAP = arg𝛽 max𝑝 (𝛽 |D𝑛) = arg min
𝛽

{
𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝛽0 −
𝑑∑︁
𝑗=1

𝛽 𝐽 ′𝑋𝑖 𝑗 )2 + _𝜎2∥𝛽 ∥2
2}.

This is the same the regression system, specially when the regularization parameter _′ =

_𝜎2 is used. Adopting the Laplacian prior 𝜋_ (𝛽) ∝ exp(−_∥𝛽 ∥1/2) , then Lasso framework

estimator can be determined.

𝛽MAP = arg min
𝛽

{
𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝛽0 −
𝑑∑︁
𝑗=1

𝛽 𝑗𝑋𝑖 ′
𝐽
)2 + _𝜎2∥𝛽 ∥1}.

A Bayesian examination of the entire posterior probability distribution 𝑝 (𝛽 |D𝑛) is used

instead of the MAP estimation approach. Because 𝑝 (𝛽 |D𝑛) does not have an analytic

pattern, the simulation approach is used to approximate the posterior in this scenario
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[64].

2.3 SPECTRUM SENSING

2.3.1 MIMO Model

Spectrum sensing, which can be accomplished by a cognitive radio network, is one of the

most important activities. This approach allows end-users (SUs) to obtain radio network

circumstances by determining the availability of PU signals using one or more processes

and selecting the frequency band to send the data samples [11]. This general model can

be obtained as:

𝑦 (𝑛) =

𝑤 (𝑛) H0 : PU is absent

ℎ ∗ 𝑥 (𝑛) +𝑤 (𝑛), H1 : PU is present
(2.7)

where 𝑦 (𝑛) is the SU received signal and 𝑛 = 𝑙 . . . 𝑁 is the number of points in the

signal. 𝑁 denotes the data sample, 𝑥 (𝑛) represents the PU signal, 𝑦 (𝑛) represents the

SU received signal, 𝑥 (𝑛) represents the PU signal, ℎ represents the sensing channel gain,

and𝑤 (𝑛) represents the additive white Gaussian noise (AWGN), which has the zero mean

and variance. 𝐻0 and 𝐻1 indicate sequentially whether PU is exists with the network or

not. The signal detection of the PU band can be performed by utilizing spectrum sensing

approach to select one of the hypotheses𝐻0 and𝐻1. This can also determined by using the

test statistic method, related to a threshold values to obtain the decision of the sensing in

order to find the presence of observated data. The sensing decision is achieved as follows:


if 𝑇 ≥ 𝛾, 𝐻1

if 𝑇 < 𝛾, 𝐻0

(2.8)

Where 𝛾 notes the sensing threshold and 𝑇 indicates the test statistic of the detector.
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The SU can locate the PU channel as long as the PU signal is absent. Otherwise, the end-

user cannot select that channel on time. Fig. (2.4) performs the common spectrum sensing

model [3] [44].

Figure 2.4: The steps of the spectrum sensing network [10]

As mentioned, these techniques can be divided into two categories: cooperative sens-

ing and non-cooperative sensing. in Fig. (2.5) [10][29].

Each end-user makes their own decisions in the non-cooperative method, recom-

mended local sensing, which may subsequently be transferred to an account for other

users. To put it another way, because there is no communication among the multiple SUs

seeking to detect the same frequency band, spectrum sensing decisions are made locally.

This strategy is not only not required for high-complexity hardware components, but it

also saves time. This method, however, is sensitive to inaccuracies due to fading, shad-

owing, noise uncertainty, and interference. It’s frequently utilized when only one sensing

limit user is available or when secondary users have no way of communicating.

The SUs can coordinate and cooperate with one another using an account of the ob-

jectives in the cooperative spectrum sensing approach, and each SU can finalize shared41



Figure 2.5: Spectrum sensing classification [29]

decision within the same account. This cooperative approach among various SUs can be

classified into two types: shared and centralized systems. SUs displace their own local

observations and then deliver the results in the distributed or shared technique. Each SU

performs its own decision based on the situation of the other SUs in the same frequency

band. Because the final decision will be managed by the SUs, no public infrastructure

is necessary for this strategy. A centralized system, in which all SUs transmitting their

sensing findings should send to a central unit, is another technique. The fusion center is

the term of this unit, as depicted in Fig.(2.6).

Spectrum access-based can be decided the fusion center regrading to the received

observations data. The decision can be one of the different ways hard or soft utilizing

AND/OR laws. Under the final spectra sensing classes selected by the fusion center, SUs

can make the sensing utilizing a spectrum sensing. [65][30][10].

42



Figure 2.6: Centralized Cooperative spectrum sensing [25]

2.3.2 Spectrum Sensing Methods

In cognitive radio, several spectrum sensing approaches are proposed to verify for the

presence of the transmitted user PU signal. These strategies allow SUs to use additional

spectrum while maintaining the PU signal’s, in case need to sharing the same spectrum.

Models of these techniques are presented in Fig. (2.7) shows briefly description for the

model of approaches, namely energy, Euclidian distance, autocorrelation model, wavelet

based sensing, and matched filter [65].

2.3.3 Energy detection

The energy detector is considered the simplest sensing method compared with other ap-

proaches since it does not need any data about the PU signal to proceed with the sensing

spectrum. This process starts with examining the observed data energy and analyzing it

with a threshold value. The threshold can be obtained corresponding only to the noise

power. In this technique, the statistic decision of can be obtained from the squared mea-
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Figure 2.7: Examples of spectrum sensing techniques [13]

sure of the FFT divided by r 𝑁 samples of the observation signal "SU received signal", as

illustrated in Fig. (2.8) [65][3] [44].

Figure 2.8: Energy detection approach[17]
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The detector decision is obtained according to the received signal energy is given by

TED =

N∑︁
n=0

y(n)2 𝑛 = 𝑙 . . . .𝑁 (2.9)

Where 𝑦 (𝑛) is considered as the SU of the received data, 𝑁 is the number of the data

sample, and𝑇𝐸𝐷 represents the test method. Thus, the energy detector can be obtained as:


If 𝑇𝐸𝐷 ≥ _, PU signal is present

If𝑇𝐸𝐷 < _𝑙 PU signal is absent
(2.10)

The detecting threshold value is indicated by _. A Gaussian random distribution is

assumed for the signal received. As mentioned earlier in this chapter in the central limit

theorems, if the number of data samples reaches or exceeds 250 (𝑁 > 250), the statistic

detector will have a central chi-square distribution with degrees of freedom 𝑁 for the null

hypothesis𝐻0, but a non-central chi-square model with 𝑁 degrees of freedom for the𝐻11

hypothesis [28]. As a result, the approximated test statistic, 𝑇𝐸𝐷 , can be generated by:


𝐻0 : 𝑇𝐸𝐷 ∼ N(𝑁𝛿2

𝑤′2𝑁𝛿4
𝑤 )

𝐻1 : 𝜏𝐸𝐷 ∼ N(𝑁 (𝛿2
𝑤 + 𝛿2

𝑠 ), 2𝑁 (𝛿2
𝑤 + 𝛿2

𝑠 )2)
(2.11)

Where 𝛿2
𝑠 indicators PU signal variance, 𝛿2

𝑤 indicates the variance of the noise distribution

and the normal distribution. can be considered by N. The evaluation metrics such as

detection probability, 𝑃𝑑 , and probability of false alarm, 𝑃𝑓 𝑑 for AWGN channel is defined

respectively as:

𝑃𝑑 = 𝑄 (
_ − N((62

w + 62
s))√︁

2N((𝛿2
w + 𝛿2

s ))2
), 𝑃 𝑓 𝑑 = 𝑄 (

_ − N62
w√︁

2N𝛿4
w
) (2.12)

Where𝑄 (·) indicates𝑄-function and _ denotes the threshold [25][30]. 𝑃𝑑 and 𝑃𝑓 𝑑 are

formulated as a function of SNR
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𝑃𝑑 = 𝑄 (_ − 𝑁 (1 + 𝛾)√︁
2𝑁 (1 + 𝛾)2

) (2.13)

𝑃 𝑓 𝑑 = 𝑄 (
_ − N𝛿2

]v√︁
2N𝛿4

w
)

where 𝛾 denotes to the 𝑆𝑁𝑅 while _ denotes the average threshold value, _ = _/𝛿2
𝑤 .

Here, the threshold value is related the noise power calculation, and this values can be

expressed for a target 𝑃𝑓 𝑑 as:

_ = (𝑄−1(𝑃𝑓 𝑑)
√

2𝑁 + 𝑁 )𝛿2
𝑤 (2.14)

Each threshold value related to a pair of (𝑃𝑑 , 𝑃𝑓 𝑑) ,which can be used to describe a

receiver’s operating curve (ROC). For various threshold settings, this curve represents

the graphing of true probability in terms of false detection values. [45][66] [67][58][68]

[69].

The threshold value for this type of energy detector is a critical parameter; if a detec-

tor cannot correctly retrieve its real threshold values, its performance for the spectrum

sensing problem decreases. [64][70] [71] [72] [73] [74] [75] [57][38-44]. Since the error

of the noise power significantly impacts the sensing achievement, changing estimation

methods for the noise power is suggested in [64]. These suggested several ways: Adap-

tive threshold methods are achieved with the linear arrangement on the threshold based

on SINR. This method achieves a better SU rather than the static threshold way but it

continues undesirable outcomes of false alarms [71]. [72] presented an adaptive method

to obtain the threshold value when unknown AWGN distribution and the false alarm rate

assumed to be under any noise level. According to dedicated noise estimating, this tech-

nique means the SUs obtain only noise. Enhancing the energy detector is introduced in

[73] where misdetection of PU observation signal is available because of an unexpected
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decrease in the power of the PU signal, which is managed by using an additional renewed

list of the fixed number of sensing events. This approach is appropriated to obtain an av-

erage test statistic value. A double-threshold approach is suggested in [74] [75] with the

additional goal of acquiring and restricting the detection framework where narrowband

signals exist. Another method is proposed for sensing signal power levels across various

frequency ranges, improving SU’s opportunistic throughput while reducing interference

to PU., this approach is based on wideband spectrum sensing.

Since the error of the noise power significantly impacts the sensing achievement,

changing estimation methods for the noise power is suggested in [64]. These suggested

several ways: Adaptive threshold methods are achieved with the linear arrangement on

the threshold based on SINR. This method achieves a better SU rather than the static

threshold way but it continues undesirable outcomes of false alarms [71]

2.4 MIMO Channel State Information(CSI)

MIMO starts a new era in wireless communication systems by developing the quality

of service and the data rate at the end-users[76], which can maintain the high-quality

multimedia transmission audio and video as well as support internet services. The MIMO

enhances these new applications due to the main two essential characteristics contributed

by MIMO technology which are [58]

2.4.1 Spatial Multiplexing

With this advantage, MIMO can transmit multiple streams of data simultaneously instant

by same frequency within the same phase through several transmit antennas and can be

received by several receiving antennas. This innovation develops the capacity of the wire-

less communication system and leads to meaningful improvement in data rate because the47



data rate is directly proportional to the system capacity

C = Blog2(1 + 𝑆𝐼𝑁𝑅) (2.15)

Where Cis the system capacity, B is the system bandwidth that is related to the system

rate, and SINR is the signal to inference noise ratio at the receiver.

2.4.2 Spatial Diversity

Determining the proper antenna geometry at the transmitter and the receiver sides can

significantly diminish the effect of correlation between the instantaneous channel coeffi-

cient seen by the transmitters, and this step can improve the signal quality at the receiver

side. With the reduction in channel correlation and applies some advanced techniques,

the signals at the receiver sides can be easily separated, which is one of the essential appli-

cations ofMIMO technology. orthogonally polarizing the antenna at both the receiver and

transmitter can reduce the effect of correlation between channel coefficients. The chan-

nel state information (CSI) severely affects the MIMO system’s performance. To attain a

relabel and an efficient algorithm in the MIMO system for efficient utilization of MIMO

benefits, a rigid design of the MIMO channel should be specified. The MIMO channel for a

wireless communication system with M transmit and N receive antenna can be described

mathematically by[76]:

H =



h11 · · · · · · · · · h1𝑀

h21
. . .

. . .
. . . h21

...
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

h1𝑀
. . .

. . .
. . . h𝑁𝑀


(2.16)

Where h𝑛𝑚 represent the channel gain between the mth transmute antenna and nth re-48



ceive antenna as shown in the above matrix. The received signal vector at the receiver is

given by:

y = Hx + 𝑛 (2.17)

Where y ∈ C𝑁×1 is the received signal vector at the receiver, H ∈ C𝑁×𝑀 is is the

channel matrix, and n ∈ C𝑁×1is the noise vector. Because of its essential of CSI a lot

of techniques and algorithms has been investigated to estimate it and the most popular

approach to estimate the CSI are: 1) Training based CSI acquisition:

In this process, the transmitter and/or receiver send a pilot signal to the receiver and re-

ceive feedback from the receiver. This method is used in a conventional wireless network

and the secondary network in the wireless cognitive network. This method cannot esti-

mate the CSI between the secondary and primary users in the cognitive network if there is

no agreement between the primary and secondary users. Different algorithms have been

requested using this method[77, 56, 78, 79, 80].

2) Blind CSI acquisition:

In this method, the secondary user in the cognitive network recognizes the control sig-

nal sent by the primary user and estimates some related CSI between the secondary and

primary user. This method is appropriate if the primary user performs CDMA, HSDPA,

Wi-Fi, and LTE-A. as a part of its operations [81, 46].

The CSI can be estimated deterministically or statistically. The deterministic estima-

tion is applicable if themeasurement or estimation time is small as comparedwith channel

coherence time[82, 83, 52]. The deterministic estimation is suitable for slow fading chan-

nels. In fast fading channel, the statistical CSI estimation are used where themeasurement
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over a long time is averaged [84]

2.5 CSI Uncertainty

Due to channel estimation error, limited feedback, and/or the instantaneous nature of the

wireless channel, the estimated CSI is subject to error [85, 29, 28] this led to an inefficient

gain of MIMO benefit. The error in CSI can be mathematically represented as:

H = Ĥ + ∆H (2.18)

Where H is the actual CSI,Ĥ is the estimated CSI, and ∆H is the error in CSI. The error or

which is normally described as the uncertainty can bemodeled stochastically or determin-

istically. The designer seeks to develop the outage probability in stochastic representation

and reduce the uncertainty effect through some sophisticated mathematical processes. In

a deterministic model, the quality of service should be improved either by maintaining a

specific signal-to-noise ratio at the receiver side and minimizing the transmitter’s trans-

mitted power or improving the signal to interference noise ratio at the receiver for some

limited transmitted power by the transmitter. In deterministic models, which of concern

in this work, different mathematical set are available such as:

1) Polyhedron set.

2) Ellipsoid, spectral, and Frobenius norm sets.

3) Schatten norm and unitary-invariant sets.

H = Ĥ + ∆H (2.19a)

50



∥H∥𝐹 ≤ 𝜖 (2.19b)

Where 𝜖 represents the error in value in CSI and must be limited to be not more than one.

2.5.1 Interweave Cognitive Network

In this mode [86], the cognitive network sensing the spectrum holes and using some so-

phisticated signal processing algorithm to use one of the holes. In this mode, the network

continuously observes the primary user to release the used frequency to the primary user

when it restarts to utilize it. Various works have been achieved to create suitable algo-

rithms for spectrum sensing in a cognitive wireless network.

2.5.2 Underlay Cognitive Network

In this mode of hierarchical sharing network, the secondary user shares the same fre-

quency used by the primary user instantaneously under the rule that the interference

from the secondary user to the primary user is under a small predefined level. In this

mode, the secondary user must know the interference CSI between the second user and

the primary user in order not to affect the quality of service of the primary user.

Using the MIMO technique can significantly improve hierarchical sharing in a wireless

network. Precisely, applying MIMO to the secondary user in cognitive overlay networks

achieves rigid spectrum sensing by investing in spatial diversity. Also, using MIMO to the

primary user does not need to know the CSI between the primary and secondary users. A

cognitive network involving MIMO [2] at the secondary user can significantly decrease
51



the secondary user’s interference power to the primary user in an underlay method. In an

underlay cognitive network, the secondary user needs to estimate the CSI [30] from the

secondary transmitter to the secondary receiver and the CSI from the secondary trans-

mitter to the primary receiver if the primary transmitter resides in the other network.

2.5.3 CSI Accuracy

Different techniques are used to estimate CSI, and different algorithms were invoked for

each technique. For an actual CSI estimation equation, multiple simple approaches can be

directly used to determines the channel gain matrix. But due to the practical limitations

such as the dynamic characteristics of the channel(estimation time larger than the coher-

ence time), limited feedback, and/or estimation error, the gathered CSI is subjected to the

error that can be modeled using different mathematical models. In the case that the esti-

mated CSI is not accurate, the conventional methods cannot apply directly to determine

the channel gain matrix. Thus, in the channel error technique, two types of solution were

developed, which are: 1) Sub-optimal solution: in this solution, the channel gain vectors

are extracted under worst-case conditions (lowest quality of service at the receiver) but

with less computational complexity [34]. 2) Robust solution: in this solution, the channel

uncertainty vectors are extracted robustly by mitigating the effect of CSI error through

some sophisticated math manipulations. In this solution, the rapidly generated variable

can achieve a better quality of service at the receiver, but the method requires high com-

putational complexity than the sub-optimal method.

2.6 Convex Optimization

Convex optimization is a mathematical topic because of the integration of three mathe-

matical subjects [87]: 52



1) Convex analysis [88, 89].

2) Optimization [41, 90].

3) Numerical computation [60, 60]

Now it considers as an important tool in Engineering where it can be used to find an ef-

ficient and reliable solution for large problems.

The formal problem in convex optimization takes the form:

minimize.
𝑥

f0(𝑥) (2.20a)

s.t.f𝑖 (𝑥) ≤ 0∀𝑖 = 1, . . . ,𝑚 (2.20b)

f𝑘 (𝑥) = 0∀𝑘 = 1, . . . , 𝑛 (2.20c)

Where x is the variable vector need to find ,f0(𝑥) is the objective function andf𝑖 (𝑥) ≤ 0∀𝑖 = 1, . . . ,𝑚

and f𝑘 (𝑥) = 0∀𝑘 = 1, . . . , 𝑛 is the inequality and equality constraints.

Suppose the objective function and the inequality constraints are convex functions and

the equality constraints are affine. In that case, the optimization problem is called a convex

optimization problem in the condition that the setting in which the optimization variable

lie is a convex set.

The set is convex if a line segment whitens; it contains all the points of the line as shown

in figure 2.9. for more details, see [91]

2.7 Successive Convex Approximation

The function is convex if it satisfy the following criteria:

f (_x1 + (1 − _)x2) ≤ _f (x1) + (1 − _)f (x2) (2.21)
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Figure 2.9: Convex and Non-convex set[59].

Where _ ∈ [0, 1] as shown in figure

A function can be concave, and if f1 is concave, then -f1 is convex for more details see [?]

2.8 Lagrange duality

Lagrange duality is a method to solve an optimization problem by finding a solution to an

equivalent problem. The first problem is known as the primal problem, while the second

is called the dual problem [41]. This procedure is followed when there is difficulty in

solving the primal problem.

minimize.f0(𝑥) (2.22a)

s.t.f𝑖 (𝑥) ≤ 0
∀𝑖∈(1,...,𝑚)

(2.22b)

f𝑘 (𝑥) = 0
∀𝑘∈(1,...,𝑛)

(2.22c)
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Where f0(𝑥) is the objective function, f𝑖 (𝑥) is the inequality constraint , and f𝑘 (𝑥) is

the quality constraint. The above is the primal problem, and the equivalent dual problem

is:

d(𝑥, _, `) = inf(f0(𝑥) +
𝑚∑︁
𝑖=1

_𝑖f𝑖 (𝑥) +
𝑛∑︁
𝑘=1

_𝑖

∀𝑖∈(1,...,𝑚),∀𝑖∈(1,...,𝑚)

f𝑘 (𝑥)) (2.23)

Where _𝑖∀𝑖 ∈ (1, . . . ,𝑚)and `𝑘∀𝑘 ∈ (1, . . . , 𝑛) are the Lagrange multiplier associated with

inequality and equality constraints, respectively

The resultant dual function is always convex, even if the original primal function is

not convex. Depending on the resultant optimal value from the dual function(d) and the

actual optimal value of the primal function(p) there are two types of duality [48]:

1) Strong duality.

2) Weak duality.

These kinds of duality depend on the duality gap between the dual value(d) and primal

value(p). If the duality gap is more extensive than or equal to zero (i.e., the objective value

of the dual problem is less than or equal to the objective value of the primal problem), then

the situation has weak duality; otherwise, if the objective value of the dual and simple

problems are the same, then the problem has strong duality as shown in figure 2.10.

2.9 Successive Convex Approximation

Several obstacles in engineering are formulated as non-convex where the objective func-

tion is non-convex, and the constraints are convex or non-convex but, most of them ob-

taining the global solution are computationally expensive since they have no closed-form

55



Figure 2.10: strong and weak duality explanation[60].

solutions are available. The goal is to find a method that can be proved to be simple and

easy to implement. The successive convex approximation (SCA) method is a powerful

method to solve such a problem [92].

The militarization-minimization structure is a remarkable example of the SCAmethod

and can be considered the base to design the SCA method. In this problem, the general is

to consider the following non-convex optimization problem.

minimize.f0(𝑥) + g0(𝑥)
x

(2.24a)

s.t.f𝑖 (𝑥) + g𝑖 (𝑥)
∀𝑖∈(1,...,𝑚)

(2.24b)

The function f𝑖 (𝑥) is non-convex while g𝑖 (𝑥) is convex. The above problem can be solved

using Successive convex approximation method algorithm [21].

For more details about the assumption that needs to be satisfied by the above algo-
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Figure 2.11: convergence of successive convex approximation method[20].

rithm please refer to [32].

2.10 bisection search method

The synonym of this method is the binary search method, interval halving, or dichotomy

[33]. The method is a numerical method to find the roots of continuous non-linear func-

tion by splitting the interval of the function in half iteratively, as shown in the figure2.12.

the main advantages of this method are:

1) It has high speed as compared with another numerical method because it halves the

interval each time of iteration.

2) It has higher accuracy in determining the roots of the polynomial as compared with

the incremental method.

On the other side, the disadvantages of this method are: 1) If the roots’ function is deter-

mined are of complex values, then the method fails to estimate these roots.57



Figure 2.12: Bisection search method starting interval[63].

2) If the roots of a function to be determined lie on the axis the method fails to determine

these roots.

3)If the function to which the roots have to be determined is a singularity function, the

bisection search method falls to estimate the exact or approximate roots.

The method divides the intervals of a polynomial iteratively to extract the roots, the final

intervals should shrine to zero to estimate the exact roots, but this means that the number

of iteration must go infinite. To avoid an infinite number of iterations, the iteration must

be stopped when the interval reaches a small predefined value, as shown in the figure,

2.13or the number of iteration reach a maximum predefined value.

the method work as follows[93]:

1) let we have function F(x) as shown in figure below:

2)Chose two value F(x1) and F(x2) such that the gap between x1 and x2 are large enough.

3) Determine 𝐹 (x3) such that:
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Figure 2.13: Bisection search end interval[64].

x3 =
x1 + x2

2 (2.25)

4) If 𝐹 (x3) is equal to zero, then the method fails to determine the roots it must restart

again by going to step 2 otherwise:

a) If 𝐹 (x3) < 𝐹 (x2)then x2 = x3

b)If x1 < x3then x1 = x3

5) If 𝐹 (x3) is less than or equal to the predefined error or the number of iteration reaches

the maximum number of iteration stop the algorithm or go to step 3 and repeat.

59



Chapter 3

Spectrum sensing based on Bayesian
generalised likelihood ratio for
cognitive radio systems with multiple
antennas

3.1 Introduction

We solve the spectrum sensing problem in cognitive radio systems by deploying multiple

antennas when the noise and the principal user signal are independent. We look at the

problem of optimal detection and provide an estimating framework where the principal

user signal is a complex zero-mean Gaussian distribution. We investigate the general-

ized likelihood ratio detector (GLRT) in a multiantenna framework using received signal

statistics, channel information, and noise prior information to design the optimal GLRT

detector for the spectrum sensing problem. The scenario assumes that the noise variance

is unknown, but that the secondary user’s channel matrix gain is known (SU). The sim-

ulation results show that even with a limited number of samples, the proposed Bayesian

GLRT detector is optimal, and we show that it outperforms existing state-of-the-art de-
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tectors.

Index Index Terms: Bayesian generalized likelihood ratio test (B-GLRT), Bayesian

generalized likelihood ratio test (B-GLRT), Bayesian generalized likelihood ratio test (B-

GLRT), Bayesian generalized likelihood ratio test (BG-MIMO).

3.2 Literature Review

The GLRT detector is recognized as one of the most critical solutions to the hypothesis

testing issue of eq. (3.10).However, only when a sample is a large number, the GLRT

give an optimal asymptotically clarification. For reaching a robust test for limited sample

size, we succeed [25] which links the Bayesian procedure in the estimation of the model

parameters based on the Neyman-Pearson (NP) lemma. The resulting detector is known as

the Bayesian GLRT (B-GLRT), and it is a reliable solution for solving problems involving

a finite number of samples. 𝑓 (Y|Θ0) and 𝑓 (Y|Θ1) denote the density model under 𝐻0

and 𝐻1, respectively, whereΘ0 and Θ1 are the unknown model parameters. Furthermore,

assuming that the unknown distribution parameters have previous distributions of 𝑓 (Θ0)

and 𝑓 (Θ1). The framework of the detection estimation problem is illustrated following

[25] as

b =
{
𝛿 (𝐻1 |Y), 𝛿 (𝐻0 |Y), 𝑓 (Θ̂1 |Y, 𝐻1), 𝑓 (Θ̂0 |Y, 𝐻0)

}
, (3.1)

where 𝑓 (Θ̂0 |Y, 𝐻0) and 𝑓 (Θ̂0 |Y, 𝐻0) define the probability density functions for the the

two hypotheses 𝐻0 and 𝐻1 respectively. The b is recognized the discriminator between

the two hypotheses 𝛿 (𝐻1 |Y), 𝛿 (𝐻0 |Y) and the two density functions 𝑓 (Θ̂1 |Y), 𝑓 (Θ̂0 |Y).

Now let 𝑐ji(Θ̂j,Θi) clarify the cost of estimating the distribution parameters using Θ̂j (i.e

we favor 𝐻 𝑗 when the true values are Θi that is, 𝐻𝑖 is the true state of the nature). Then

the conditional risk for each hypothesis is designated as the average
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Z (b |𝐻𝑖) =
∫ (

𝛿 (𝐻0 |y)
∫

𝑓 (Θ̂0 |y)A0𝑖 (Θ̂0, y)𝑑Θ̂0

)
𝑑y+∫ (

𝛿 (𝐻0 |y)
∫

𝑓 (Θ̂1 |y)A0𝑖 (Θ̂1, y)𝑑Θ̂1

)
𝑑y. (3.2)

where

A 𝑗𝑖 (Θ̂ 𝑗 , y) =
∫

𝐶 𝑗𝑖 (Θ̂ 𝑗 ,Θ𝑖) 𝑓 (y|𝐻𝑖,Θ𝑖) 𝑓 (Θ𝑖)𝑑Θ𝑖 . (3.3)

Following [29], the cost function can be defined as follows:

𝐶01(Θ̂0,Θ1) = 𝐶10(Θ̂1,Θ0) = 1;

𝐶00(Θ̂0,Θ0) = 𝐶11(Θ̂1,Θ1)

=


0

Θ𝑖 − Θ̂
2 ≤ Δ << 1

1 otherwise
.
ª®®¬ (3.4)

consequently, the optimization problem can be clarified as follows.

inf
b
Z (b |𝐻1), subject to Z (b |𝐻1) ⩽ 𝛼, (3.5)

where 𝛼 is the maximum of type I error, reaches to a B-GLRT which uses the MAP tech-

niques to estimate the model parameters (instead of Maximum Likelihood Estimation

(MLE)) and is considered as an optimal method under a finite sample size. In particu-

lar, the B-GLRT is given by [25]

LR =

𝑓

(
y|𝐻1, Θ̂𝑀𝐴𝑃1

)
𝑓

(
Θ̂𝑀𝐴𝑃1

)
𝑓

(
y|𝐻0, Θ̂𝑀𝐴𝑃0

)
𝑓

(
Θ̂𝑀𝐴𝑃0

) 
𝐻0 <

𝐻1 ≥
[ (3.6)

where Θ̂𝑀𝐴𝑃0 and Θ̂𝑀𝐴𝑃1 denote the MAP estimators of the parameters under 𝐻0 and 𝐻1,

respectively. They are defined as
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Θ̂𝑀𝐴𝑃0 = argmax
Θ0

𝑓 (Y/𝐻0,Θ0) 𝑓 (Θ0),

Θ̂𝑀𝐴𝑃1 = argmax
Θ1

𝑓 (Y/𝐻1,Θ1) 𝑓 (Θ1),
(3.7)

denote the MAP technique of the parameters estimation under 𝐻0 and 𝐻1, respectively.

The MAP method are the modes of the following posterior distributions:

𝑓

(
Θ̂𝑀𝐴𝑃0 |Y, 𝐻0

)
∝ 𝑓𝐻0

(
Y|Θ̂𝑀𝐴𝑃0

)
𝑓

(
Θ̂𝑀𝐴𝑃0

)
, (3.8a)

𝑓

(
Θ̂𝑀𝐴𝑃1 |Y, 𝐻1

)
∝ 𝑓𝐻1

(
Y|Θ̂𝑀𝐴𝑃1

)
𝑓

(
Θ̂𝑀𝐴𝑃1

)
. (3.8b)

In the next section, we derive the optimal values of the unknown model parameters in

order to obtain the finite-sample optimal detector based on the Bayesian GLRT approach,

when the variance of the noise is unknown for the SU.

The expanding request for great quality and reliable high-speed information admin-

istrations which is required by users has displayed numerous challenges that got to be

illuminated in arrange to realize the details for the end client. For more details see [94].

The obvious shortage of the wireless spectrum in expansion to the foremost designated

spectrum bands being seldom utilized, propel finding modern innovation which is called

the Cognitive Radio (CR) paradigm [95][2].

CR [86] [96] [97] [98] [99] is a novel and attractive technology for wireless commu-

nications, which can be utilized to improve the allocation of valuable natural resources

by exploiting the spectrum band efficiently and actively[100] [95]. In cognitive network,

the end user may avoid interference with the essential user by altering the parameter of

the transmission or gathering of the cognitive radio to perform dependable communica-

tion, and CR is considered as the most critical development in wireless communications

that can be utilized to move forward spectrum utilization for future wireless frameworks

[101]. Moreover, CR approach facilitate amazing spectrum sensing [102] [103][104] [105]

[106], which is a essential step in the process to detect a free spectrum band that can be
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filled by a secondary user (SU) [16].

For spectrum sensing, many different approaches have been proposed in [4]. Energy

detector (ED) is considered one of the most critical spectrum sensing detectors, which is

affected by the error of the noise parameters such as the variance. From ED, it can be seen

that the signal to noise ratio (SNR) must be more than a specific threshold to provide a

credible performance for primary signal signal detection. This serious challenges was ad-

dressed by obtaining an approach that significantly overcome the noise uncertainty [25].

In this method, sharing multiple antennas at the SU’s side has become one of the most

important methods to establish a reliable approach in signal transmission and spectrum

sensing. Moreover, using the sharing methods for multiple antennas is considered the

best promising method that can utilized to achieve a good performance for the spectrum

sensing, instead of trying to reduce the noise uncertainty by exploiting the free band of

observations in a specific domain. In other words, sharing of the spectrum can utilize the

multi input and multi output (MIMO) network that has been used by multiple authors

in spectrum sensing research area, such as in [107], beside using the optimal Neyman

Pearson (NP) and sub-optimal GLRT detectors that are derived for orthogonal frequency

division multiplexing (OFDM) method from multiple antennas process.

In [59], the researcher unitized an orthogonal frequency-divisionmultiple access (OFDMA

) design with the presence of a varied number of affected eavesdroppers in cognitive radio

networks (CRNs). In this paper, an assumption is considered, in which each frame-based

transmitted signal is split into two consecutive slots each has an equal duration of time.

It can be shown from the first time slot, the eavesdroppers and secondary users (SUs) are

observing and listing for the primary base station (PBS) transmission, while in the second

time slot, the primary users (PUs) receive PBS signal from the selected SUs. This problem

is described as an optimization point and the simulation begins with the proposed strategy

to appear expanded secondary normal secrecy rate compared to the conventional method.
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In [108] authors present a good performance of the energy detector when usingMIMO

-CRs compared with applying the single receiving e antenna.

Moreover, [108] shows that the use of MIMO base CRs has a credible performance at

low SNRs when compared to the use of a single antenna scheme. In [101], the authors

proposed a approach for both signal detection and estimation of the parameters for the

secondary user signal in a combined MIMO-CR approach based on Hypothesis testing

(HT).

When there are more than two statistical models available in a situation, the HT ap-

proach can be used to determine which model best describes the observed data. HT has

been proposed by a number of authors for a variety of purposes, including spectrum sens-

ing [109], linear regression [110], and many more. The test statistic of the HT is simply

known the detector.

The main point of the detector is for raising the probability of detection compared

with reducing the probability of false alarm. Several detectors can be used in HT, such as

generalized likelihood ratio test (GLRT) [111].

In GLRT-based detectors, the problem of detection consists of two frames; the first

one involves the estimation of the unknown parameters and the second frame is usually

proposed to detect the derivation signal. Since the estimation and the signal detection sub-

problems of the GLRT detector has to the optimal solutions , the GLRT detector becomes

one of the best detectors for spectrum sensing using HT approach [47].

In the GLRT of [101] and [112], most of the model parameters can be unknown. Con-

sequently, we require to obtain a proposal that can be a framework to estimate the ob-

servation parameters. The Bayesian approach is a recent way for estimating these pa-

rameters, as shown in [12], where the authors utilize the Bayesian approach to explain

the unknown model parameters by selecting prior distributions for these parameters and

then using the estimated values to form the mathematical test. Combing the GLRT and

the Bayesian framework is proposed by various authors in determining the signal such
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as in [104]. In those articles, the authors proposed the analytical method of the B-GLRT

scheme to detect observation signal and estimated the parameters that are obtained by

using the Bayesian technique for the given prior distributions related to these parame-

ters.

Valuable detectors according to the B-GLRT approach can be simply created depend-

ing on the choice of an appropriate prior model [26]. Prior distribution option is supposed

to be a additional step in any Bayesian analysis, since prior distribution consist of enter-

tained a priori statistical information for unknown parameters, In the presence of such

information about the distribution parameters we can use non-informative priors [54]

[113].

In [112], the authors have considered that the B-GLRT utilizing prior knowledge on

the unknown model parameters to detect the signal, for two separate scenarios. In the

first scenario, only the unknown parameter to the secondary user is channel gain to the

SU, while in the second scenario, the model noise variance is unknown to SU. In [104],

the authors derived a mathematical approach of the B-GLRT technique for the signal de-

tection and parameter estimation based on binary hypothesis testing, where the Gaussian

distribution is considered for the observation data point under two different cases. Maxi-

mum a posteriori probability (MAP) method has been proposed to estimate the unknown

parameters. MAP is considered one of the best methods in spectrum sensing problem

when the secondary use receive small number of signal samples [114].

In comparison with art of state methods in the literature, this chapter makes the fol-

lowing contribution: the assumption of this work consider that the noise vector is as-

sumed to be a complex Gaussian distribution with a zero-mean. In addition that a diag-

onal covariance matrix is defined unknown values. This is a main point of the different

assumption from the typical one, namely, that the noise covariance matrix is eaqual to to

𝜎2𝐼 , where 𝜎2 is the noise variance and 𝐼 is the identity matrix, eg. [112]. The channel gain

vallues that is used in our approach is a matrix rather than a vector as assumed defined
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Figure 3.1: MIMO system on the uplink with N transmitting antennas and M receiving
antennas

in [104] [112].

3.3 System Model and Problem formulation

In this section, it is assumed that the SU is associated with M receiving user antennas and

L is considered samples for each antenna. We define a sequence of i.i.d. data point where

each y( 𝑗) is considered a vector of complex numbers, means that Y = [y(1), . . . , y(L)]

∈ CM×L represent the data point as a complex matrix that consist of the data values at

the receiving M antennas. This work further assume that the noise distribution and the

primary user (PU) signal are independent.

Since the channel gain can be directly affected by scaling of the signal for primary user

, without loss of generality, we consider that the PU signal has unit power. In the HT

technique we assume below, the presence and absence of the PU signal is defined by 𝐻0

and 𝐻1, respectively. Thus, the following binary hypothesis detector of the MIMO PU
67



spectrum sensing detection can be shown as:

y =


n 𝐻0

Hx + n 𝐻1

(3.9)

Where H ∈ CM×N present the channel gain, which is complex values between the trans-

mitter and receiver users, x ∈ CN×1 is the data samples of the transmitted signal, and

n ∈ CM×1 is the values of additive noise samples which is considered to be a zero-mean

complex Gaussian distribution with covariance diagonal matrix Σ0. As in [12] [25], we as-

sume x is independently distributed from n. Moreover, x is complex random vector with

a zero-mean and the identity covariance matrix for the PU signal. These are the essen-

tial assumptions in this chapter that can be utilized to lead to tractable results, i.e., it is

straightforward to find the optimal detector under 𝐻0 and 𝐻1.

As a result, the received data sample under each hypothesis can be written as.

𝐻0 : y ∼ CN(0,Σ0)

𝐻1 : y ∼ CN(0,Σ1)
(3.10)

where CN is assigned to be the complex Gaussian distribution.

3.4 ProposedB-GLRTdetectorwithunknownnoise vari-
ance

Here the channel gain matrix is assumed to be known and the noise variance is assumed

to unknown for the SU. However, we assume that the SU has entree to the prior sta-

tistical distribution of the noise variance. In particular, assume a diagonal matrix Σ0 =

𝑑𝑖𝑎𝑔(𝜎2
0,1, . . . , 𝜎

2
0,M), and assume the conjugate prior distributions for 𝜎2

0,𝑖 , 𝑖 = 1, . . . ,M .

More precisely, 𝜎2
0,𝑖 is modeled a priori by an Inverse-Gammamodel with the shape param-

eter 𝛼𝑖 and the scale parameter 𝛽𝑖 . That is, 𝜎2
0,𝑖 follows an Inv-Gamma(𝛼𝑖 ,𝛽𝑖 ), 𝑖 = 1, . . . ,M
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as clarified in next section.

MAP estimation under 𝐻0

In this section, the joint conjugate prior distribution of the unknown parameters is con-

sidered for the spectrum sensing hypothesis. For more elastic calculation, we choose the

joint prior for the noise variance given by

𝑓

(
𝜎2

0,1, . . . , 𝜎
2
0,M

)
= 𝑓 (Σ0)

=

M∏
𝑖=1

𝛽
𝛼𝑖
𝑖

Γ (𝛼𝑖)
(
𝜎2

0,𝑖
)−𝛼𝑖−1 exp

(
−𝛽𝑖
𝜎2

0,𝑖

)
, (3.11)

In order to determine the B-GLRT detector of eq. (4.23), we require the MAP estimator of

the noise variance parameters under 𝐻0, that is,

ΣMAP0 = argmax
Σ0

[log(𝑓 (Y|𝐻0,Σ0)) + log(𝑓 (Σ0))] . (3.12)

The received data sample vector y = [𝑦1, . . . , 𝑦M]𝑇 has zero-mean circular complex normal

distribution as shown as follows,

𝑓𝐻0 (y|Σ0) = 𝜋−M ��Σ−1
0

�� exp
{
−y𝐻Σ−1

0 y
}

(3.13)

= 𝜋−M
(

M∏
𝑖=1

𝜎2
0,𝑖

)−1
exp

{
−

M∑︁
𝑖=1

𝑦∗𝑖 𝑦𝑖

𝜎2
0,𝑖

}
, (3.14)

Since Σ−1
0 = diag(1/𝜎2

0,1, . . . , 1/𝜎2
0,M), the data matrix Y has density :
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𝑓𝐻0 (Y|Σ0) =
L∏
𝑗=1

𝑓𝐻0 (y 𝑗 |Σ0)

= 𝜋−ML

(
M∏
𝑖=1

𝜎2
0,𝑖

)−L
exp

{
−

M∑︁
𝑖=1

L∑︁
𝑗=1

𝑦∗𝑖 𝑗𝑦𝑖 𝑗

𝜎2
0,𝑖

}
= 𝜋−ML

M∏
𝑖=1

[
(𝜎2

0,𝑖)−L exp
{
−1
𝜎2

0,𝑖

L∑︁
𝑗=1
𝑦∗𝑖 𝑗𝑦𝑖 𝑗

}]
(3.15)

where y 𝑗 = [𝑦1 𝑗 , . . . , 𝑦𝑀 𝑗 ]𝑇 . As a result the MAP method of 𝜎2
0,𝑖 is obtained by maximizing

the function:

log(𝜎2
0,𝑖) = −L log(𝜎2

0,𝑖) −
1
𝜎2

0,𝑖

L∑︁
𝑗=1
𝑦∗𝑖 𝑗𝑦𝑖 𝑗 + log 𝑓 (𝜎2

0,𝑖 |𝛼𝑖, 𝛽𝑖) (3.16)

with respect to 𝜎2
0,𝑖 > 0, 𝑖 = 1, . . . , 𝑀 . Thus, it is straightforward to see that the MAP of

𝜎2
0,𝑖 is given by.

𝜎2
0,𝑖 =

1
L + 𝛼𝑖 + 1

(
L∑︁
𝑗=1
𝑦∗𝑖 𝑗𝑦𝑖 𝑗 + 𝛽𝑖

)
, (3.17)

for 𝑖 = 1, . . . ,M (See Appendix 1 for the proof).

Map estimation under 𝐻1

The received data point vector under 𝐻1 is considered to be complex normal with zero

mean and covariance matrix Σ1 = HH𝐻 + Σ0, where Σ0 = 𝑑𝑖𝑎𝑔(𝜎2
01, . . . , 𝜎

2
0𝑀 ) and Σ0 is

modeled a priori using eq. (4.16), following the approach of the previous section. Now the

distribution of y is given by
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𝑓𝐻1 (y|Σ0) = 𝜋−M |Σ1 |−1 exp
{
−y𝐻Σ−1

1 y
}

= 𝜋−M ��HH𝐻 + Σ0
��−1

× exp
{
−y𝐻 (HH𝐻 + Σ0)−1y

}
, (3.18)

So that the gain matrix under 𝐻1 has distribution

𝑓𝐻1 (Y|Σ0) = 𝜋−M ��HH𝐻 + Σ0
��−L

× exp
{
−

L∑︁
𝑗=1

y𝐻𝑗 (HH𝐻 + Σ0)−1y 𝑗

}
= 𝜋−M ��HH𝐻 + Σ0

��−L 𝑒𝑡𝑟 {
−R(HHH + Σ0)−1} , (3.19)

where R =
∑L
𝑗=1 y 𝑗y𝐻𝑗 . Now the MAP estimator of the noise variance under𝐻1 is given by

solving the following optimization problem:

𝑃1 : Σ𝑀𝐴𝑃1 = argmax
Σ1

[
log(𝑓𝐻1 (Y|Σ1)) + log(𝑓 (Σ0))

]
= argmax

Σ0:𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
(𝑔(Σ0)), (3.20)

where:

𝑃1 : 𝑔(Σ0) = argmax
Σ0

[
log 𝑓𝐻1 (𝑌 |Σ1) + log 𝑓 (Σ0)

]
= argmax

Σ0:𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
(L log

��Σ−1
1

�� − 𝑡𝑟 [RΣ−1
1 ]

+ (𝛼 + 1) log
��Σ−1

0
�� − 𝑡𝑟 [BΣ−1

0 ]), (3.21)

where B = 𝑑𝑖𝑎𝑔(𝛽1, . . . , 𝛽M) is the diagonal matrix for the hyperparameters of the con-
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jugate priors and (𝛼1 = . . . = 𝛼M = 𝛼) are the hyperparameters of the conjugate priors. P1

is appeared as convex problem and Y is perfectly known for the secondary user. Reach-

ing the solution to P1 is straightforward by using a numerical Semidefinite programming

(SDP) optimization package such as CVX [30].

For more details see Appendix 2.

Value of the B-GLRT detector

After finding Σ𝑀𝐴𝑃0 and Σ𝑀𝐴𝑃1, the LR function can be calculated using

LR =
𝑓𝐻1

(
Y|Σ𝑀𝐴𝑃1

)
𝑓

(
Σ𝑀𝐴𝑃1

)
𝑓𝐻0

(
Y|Σ𝑀𝐴𝑃0

)
𝑓

(
Σ𝑀𝐴𝑃0

) ,
or in the log-scale:

LLR = log(𝑓𝐻1

(
Y|Σ𝑀𝐴𝑃1

)
𝑓

(
Σ𝑀𝐴𝑃1

)
)

− log(𝑓𝐻0

(
Y|Σ𝑀𝐴𝑃0

)
𝑓

(
Σ𝑀𝐴𝑃0

)
),

where

𝑓𝐻0 (Y|Σ̂0) 𝑓 (Σ̂0) =
1��Σ̂0
��L L∏

𝑗=1
exp(−y𝐻𝑗 Σ̂−1

0 y 𝑗 )
��Σ̂0

��−(𝛼+1)

𝑒𝑡𝑟 (−BΣ̂−1
0 ) (3.22)
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𝑓𝐻1 (y 𝑗 |Σ̂1)𝑃 (Σ̂1) =
1��Σ̂1
��L L∏

𝑗=1
exp(−y𝐻𝑗 Σ̂−1

1 y 𝑗 )
��Σ̂1

��−(𝛼+1)

𝑒𝑡𝑟 (−BΣ̂−1
1 ) (3.23)

By taking the logarithms of eq. (3.22) and eq. (3.23) we have

log(.) |𝐻0 = −(L + 𝛼 + 1) log(
��Σ̂0

��)
+ 𝑡𝑟 (−RΣ̂−1

0 ) − 𝑡𝑟 (BΣ̂−1
0 ) (3.24)

and

log(.) |𝐻1 = −(L + 𝛼 + 1) log(
��Σ̂1

��)
+ 𝑡𝑟 (−RΣ̂−1

1 ) − 𝑡𝑟 (BΣ̂−1
1 ) (3.25)

and the detector is given by

LLR = −(L + 𝛼 + 1) log(
��Σ̂1

����Σ̂0
�� ) + 𝑡𝑟 (−RΣ̂−1

1 )

−𝑡𝑟 (−RΣ̂−1
0 ) − 𝑡𝑟 (BΣ̂−1

1 ) + 𝑡𝑟 (BΣ̂−1
0 ) (3.26)

3.5 SIMULATION RESULTS

In this section, we clarify the simulation study that demonstrates the performance of the

proposed scheme of the GLRT spectrum sensing algorithm. The detector in the previ-

ous section is specified for MIMO in CR networks in terms of the primary user detection

probability versus average SNR. Assume that the SU is running in a CR network under
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a primary network that has a single PU. In the MIMO technique, there are multiple an-

tennas that can be used for wriless communication between the SU and the PU and the

SU can use the free spectrumwhen the PU is not using the spectrum, by applying its peers.

First, we explain how the prior information of the noise parameters affects the per-

formance of the GLRT algorithms, and then provide performance comparisons to other

sensing algorithms. We evaluate the performance of the schem detector when the noise

is uncorrelated and the unknown noise variance is excited. In other words, the variance

of the noise under 𝐻0 is Σ0 which is a diagonal matrix.

In this simulation results, the number of receiving antennas is considered to be M =

3, and they receive a number of samples L = 25, and transmitting antennas number is

assumed to be N=2. The channel gain H is known and the noise variance is simulated

from the assumed prior distributions of Section 3. Practically, the model parameter values

of the prior distributions are set to be 𝛼1 = . . . = 𝛼𝑀 = 2, B = diag[1.5, 2, 2.5] for the

hyperparameter values. The realizations number that is used to generate the probability of

false alarm and the probability of detection in order to clarify the performance of detection

is 105.

The signal-to-noise ratio (SNR) is defined in the detection problem at the SU by,

𝑆𝑁𝑅 = 10log
(
𝑡𝑟 (HH𝐻 )
𝑡𝑟 (Σ0)

)
. (3.27)

In Fig. 2, we illustrate the probability ofmissed detection (Pm) of the several detectors. The

maximum tominimum eigenvalue (MME)𝜐𝑀𝑀𝐸 and the energywithminimum eigenvalue

(EME) 𝜐𝐸𝑀𝐸 are considered the heuristic detectors [31] given by
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𝜐𝐸𝑀𝐸 =
_1(S)
_M (S) , (3.28)

𝜐𝐸𝑀𝐸 =
_1(S)
_M (S) , (3.29)

where _1(S) and _M (S) are the minimum and maximum eigenvalues of the sample covari-

ance matrix S ∈ R𝑀×𝑀 which is defined as.

S =

L∑︁
𝑗=1

(
y 𝑗 − ȳ 𝑗

)𝐻 (
y 𝑗 − ȳ

)
, (3.30)

and the sample mean ȳ ∈ R𝑀×1 is defined as

ȳ =
1
L

L∑︁
𝑗=1

y 𝑗 (3.31)

We also make a comparison between the performance of the Hadamard ratio test, the

Sphericity test with the proposed detector, as well as other aforementioned detectors. The

Hadamard ratio test and Sphericity tests are defined in [13] by:

𝜐𝐻𝑅 =

∏𝑀
𝑖=1 S𝑖𝑖
|S| , (3.32)

𝜐𝑆𝑇 =

∑𝑀
𝑖=1 S𝑖𝑖/𝑀
|S|1/𝑀

, (3.33)

Fig. 2 represents the achievement of all detectors when the SNR is developed at a

probability false alarm Pfa = 10−2, and L = 25. It can be shown that all detectors improve

in achievement as the average SNR is increased. Moreover, it can be seen that the proposed

optimal detector considerably outperforms the EME and the MME detectors and we can

see that the proposed B-GLRT detector has great achievement when matched with the

Hadamard ratio test and the Sphericity test.
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Figure 3.2: Probability of missed detection of different detectors against average SNR for
𝑃 𝑓 𝑎 = 10−2, M = 3 and L = 25.

In Fig. 3 we show the detector respective operating characteristic curves (ROC). In

other words, this Figure displays the performance of all detectors in terms of the ROC

curves at a false alarm rate of Pfa = 10−2, and an average SNR of -3 dB. We can observe

that the proposed B-GLRT schme with the prior that is assumed has ideal performance

corresponded with other detectors, such as the EME and MME. The threshold of the case

is obtained numerically. Moreover, we can see that the proposed optimal B-GLRT detector

defeats the Hadamard ratio test and the Sphericity test.

Next, we study the performance of the proposed detector and the other detectors,

when the number of samples of the transmitted signal is changed.

In Fig. 4, we evaluate the probability of missed detection (Pm) for each detector in terms

of the number of samples L, at a false alarm rate of Pfa = 10−2,M = 3 and the average SNR

of -3 dB. From this Figure, we can see that the probability of missed detection Pm of the

detectors has an exponential relationship with the number of samples, and also it can be

seen that the performance is improved by increasing the number of samples. Moreover,
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Figure 3.3: Theoretical and simulated ROC performance of the proposed B-GLRT as-
sumed prior at SNR = -3 dB.,M = 3 and L = 25.

the proposed B-GLRT detector performs better than all the other detectors.
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Figure 3.4: Probability of missed detection of the proposed detectors against L for Pfa =
10−2, average SNR = -3 dB.
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Fig. 5 shows the performance of all detectors versus the SNR at a probability false

alarm Pfa = 10−2, L = 25 and when the hyperparameters have the same values, that is, the

shape 𝛼 = 2 and scale 𝛽 = 2 for all the hyperparameters. Moreover the noise variance has

the same values, i.e. 𝜎2
0,1 = 𝜎

2
0,2 =, . . . ,= 𝜎

2
0,M , where 𝜎

2
0,1 ∼ inv-gamma(𝛼, 𝛽). It can be seen

that our proposed detector still has a good performance compared with other detectors.

Generally, most of the detectors have improved in their performance as the average SNR

increased and in comparison with the previous case when noise variance had different

values and also B were different values.
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Figure 3.5: Probability of missed detection of the proposed detectors against L when the
𝛽1 = 𝛽2 =, . . . ,= 𝛽M is the same, 𝜎2

01 = 𝜎
2
02 =, . . . ,= 𝜎

2
0M is the same, Pfa = 10−2 and average

SNR = -3 dB
.
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3.6 Conclusion

In this paper, we show a composite hypothesis problem for spectrum sensing in CR sys-

tems by using multiple antennas at the SU. In the presence of unknown model parameters

with a finite number of samples, the GLRT is applied to obtain the optimal detectors in

the spectrum sensing obstacle, when we need to identify the free spectrum by using the

statistics of the obtained signal and conjugate priors for the unknown model parameters

of the noise in the presence of the hypothesis test problem. We have derived in detail the

correspondingGLRT sensing algorithm cognitive radio. Amazingly, the proposed B-GLRT

sensing algorithm offers the best performance under the aforementioned assumptions for

unknown parameters of the noise distribution where a small number of signal samples

are available. The proposed B-GLRT detector significantly exceeds several state-of-the-

art spectrum sensing techniques, such as the EME and the MME, as well as the Hadamard

ratio test and the Sphericity detector.
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Chapter 4

Robust Spectrum Sensing Detector
Based on MIMO Cognitive Radios
with Non-Perfect Channel Gain

4.1 Introduction

The spectrum has increasingly become occupied by various wireless technologies. For

this reason, the spectrum has become a scarce resource. In the prior chapter 3, we have

addressed the spectrum sensing problem by using multi-input and multi-output (MIMO)

in cognitive radio systems. We considered the detection and estimation framework for

MIMO cognitive network where the noise covariance matrix is unknown with perfect

channel state information. In this chapter, we propose a generalized likelihood ratio test

(GLRT) for the spectrum sensing problem in cognitive radio where the noise covariance

matrix is unknown with non-perfect channel state information. Two scenarios are exam-

ined in this study: (i) in the first scenario, the sub-optimal solution of the worst case of

the system’s performance is considered; (ii) in the second scenario, we present a robust

detector for the MIMO spectrum sensing problem. For both scenarios, the Bayesian ap-

proach with a generalized likelihood ratio test based on the binary hypothesis problem is
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utilized. From the results, It can be seen that our approach provides the best performance

in the spectrum sensing problem under specified assumptions. The simulation results also

demonstrate that our approach significantly outperforms other state-of-the-art spectrum

sensing detectors when the channel uncertainty is addressed.

4.2 Background

Recently, high-speed data services with high quality of service (QoS) are responding to

increasing demand by end users and this leads to many challenges in establishing re-

liable services in current 3G/4G wireless communication systems[115]. Since the spec-

trum has become a valuable resource for communication applications, it has also become

very important to use the spectrum in efficient ways. However, McHenry et al. [115]

report an extremely low efficiency for spectrum utilization on the geographic and tem-

poral RF spectrum, and for that reason the demand for a good utilization of RF spec-

trum has increased and motivated researchers to find the best solutions for this prob-

lem. The most important motivation to solve the inefficient spectrum use is the cogni-

tive radio (CR), in which the spectrum will be assigned to the licensed primary user. CR

[116, 16, 86, 96, 106, 99, 100, 8] is a attractive and novel communications technology which

can be used to enhance the valuable natural resources by efficient use the spectrum. In

a cognitive radio network, the spectrum is usually managed by the Federal Communica-

tion Commission (FCC) and can be shared between licensed primary users and unlicensed

secondary users [62, 50, 117, 118, 119].

Spectrum sensing[120, 121, 122, 123, 124] is considered the operation’s key in which

the secondary user can identify whether or not the licensed primary user (PU) is using

a wireless communication channel in CR networks. A credible spectrum sensing step is

a very important stage in detecting a spectrum period that can be subsequently filled by

the secondary user (SU). In this case, many different techniques have been produced to
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sense the spectrum. Reusing the unoccupied licensed spectrum by unlicensed users in

cognitive radio requires an efficient technique to detect the presence of free spectrum

without causing interference between the users, as explained with more detail in [125,

63]. Achieving reliable communication also requires an efficient technique for avoiding

interference between the unlicensed user and the licensed user. This can be established

by adjusting the parameters of the transmission or reception of the cognitive radio [100,

101, 126].

Because of the importance of the problem of spectrum sensing in cognitive radio,many

researchers have recently studied this problem. Based on these studies in spectrum sens-

ing, many techniques have been proposed; the most important technique is the energy

detector (ED) which represents a simple signal detector in spectrum sensing in cogni-

tive radio [127]. However, ED’s performance is still inefficient where there is an error in

noise or in channel state information (CSI) compared with other techniques. ED is also

considered one of the techniques that depends on hypothesis test (HT)[103, 126].

In spectrum sensing, two or more phases have to be obtained to recognize the signal,

so a hypothesis test such as ED is very important in this problem. HT can also be involved

in many applications such as multiple model order selection [111, 128, 129, 130, 131], non-

linear regression [110], and many others. Use of a suitable statistic test is considered to be

a very important step in HT, i.e. the main goal in achieving an efficient detector is to in-

crease the probability of detection such as [112, 42] in wireless communication. Wireless

communication techniques continue to produce the highest data rates. Using multiple

transmit and receive antennas can raise the channel capacity without the need for addi-

tional power or bandwidth [132]. The first studied was in [53] which clarifies the capacity

issue for a single-user MIMO with a Gaussian channel, and then in [133] multiple users

has been proposed. In fact, MIMO has recently become the most important technique to

achieve good accuracy between users in spectrum sensing wireless transmission and also

has widely been exploited in wireless communication [134, 127]. Transmitting a signal
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over multiantenna wireless links is affected by an additive interfering signal. Especially

when the interferer is found near the transmitter, interference will remain an unknown

source for the receiver even though it is learned by the transmitter. Moreover, if there

is perfect CSI between the transmitter and receiver, then this technique is well known

as Dirty Paper Coding (DPC) in which the interference can be significantly decreased

[135, 136, 137, 138].

In this paper [139], a number of optimal detectors have been proposed for non-antipodal

signaling spectrum sensing based multiple-input multiple-output cognitive radio (CR)

considering uncertainty in the channel. Channel coefficients are modeled as ellipsoidal

uncertainty sets while considering the nominal channel estimates as the center of the el-

lipsoidal. In this case, the detection problem of PU’s spectrum is formulated as a second

order cone program (SOCP). A proposed robust detector is developed as a closed form so-

lution to solve this problem. Thiswork also present amulticriterion robust detector (MRD)

and a relaxed robust detector (RRD) for PU’s spectrum sensing in CSI uncertainty scenar-

ios. For these cases, the results show superior performance for the proposed cooperative

detectors compared with the traditional detectors such as matched filter (MF) detector. In

[140] the authors proposed a novel scheme of spectrum detection in which a robust detec-

tor can be derived by existing an uncertainty signal covariance matrix for non-coherent

spectrum sensing using multiple-input multiple-output cognitive radio networks. In this

work, an eigenvalue perturbation theory is utilized to estimate the signal covariance ma-

trix. Subsequently, the problem is formulated to be an appropriate optimization frame-

work in which the generalized likelihood ratio test (GLRT) [141] based robust test statistic

detector (RTSD) and robust estimator-correlator detector (RECD) towards primary user

detection is involved. Since this problem is formulated to be a close-form expression for

the RTSD and RECD, then it can be efficiently solved by using Karush-Kuhn-Tucker (KKT)

conditions. This work demonstrates that the proposed detector has a significant improve-

ment in specified situations compared with the other detectors where the nominal co-
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variance matrix is used. In this paper [112], the binary hypothesis problem of spectrum

sensing in multiple antenna cognitive radios is addressed using the prior information for

unknown parameters. Bayesian technique with proper prior distribution is exploited in

order to derive the corresponding detector for three varied scenarios with proper dis-

tribution for the unknown parameters. In these cases, the channel uncertainty problem

can be seen; besides this, unknown noise variance also exists. The iterative expectation

maximization method is used for unknown parameters. Under certain assumptions, this

work shows that using Bayesian techniques in addition to the GLRTmethod gives accept-

able results even if the finite number of the observation is available, the results also the

proposed outperformance other detectors in multiple antenna sensing spectrum under

specified assumptions.

In this paper, we propose a mathematical framework of the GLRT detector for spec-

trum sensing in cognitive radio. This work assumes an uncertainty exists in the CSI. Two

different scenarios are addressed in this paper. Initially, for the first scenario where non

perfect CSI is exists with known channel uncertainty while the noise covariance matrix is

unknown. In this case, we derive the novel Sub-optimal detector based on binary hypoth-

esis using a generalized likelihood ratio test with a Bayesian approach. Further, in the

second scenario where the uncertainty is available in CSI but unknown with unknown

noise covariance matrix, we also derive the robust detector against the channel uncer-

tainty based on an optimization framework which can be used to solve a closed form

expression for the observed covariance matrix. Maximum a posteriori probability (MAP)

which is considered one of the most important approaches for spectrum sensing in recent

works is utilized in this work for both mentioned cases in order to estimate unknown pa-

rameters. Convex optimization is utilized in this paper in order to estimate the unknown

variables.

The outline of the rest of the paper is as follows: Section 2 shows the literature review

of Bayesian approach for the independent and identically distributed (i.i.d.). Section 3
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Figure 4.1: MIMO cognitive radio system model consisting of single primary user with
𝑁𝑡 transmitting antennas and single secondary user with 𝑁𝑟 receiving antennas

shows the system descriptions. Section 4 demonstrate the methodology under different

assumptions. In section 5, we show the proposed performance compared with state of art

detectors based on the system model. The last section provides concluding remarks.

4.3 Literature Review

The GLRT detector is considered to be an optimal solution in hypothesis testing problem

where the signal has large samples. When the signal has a small sample size, the detection

problem becomes a big challenge to be solved. Based on [142], a Bayesian approach has

been used to solve the detection problem where the signal sample is finite. The frame-

work for Bayesian approach and generalized likelihood ratio test (B-GLRT) is considered

an optimal solution to the finite sample problem, which is also considered the combina-

tion for estimating themodel parameters and detecting the signal. Moreover, 𝑓 (X|Θ0) and

𝑓 (X|Θ1) represent the density functions under 𝐻0 and 𝐻1 null and alternative hypothesis

respectively [142, 143]. Θ0 and Θ1 are considered the unknown parameters. Furthermore,

assume that the unknown parameters have prior distributions 𝑓 (Θ0) and 𝑓 (Θ1), respec-
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Table 4.1: Table of Notation

Lightface letters ≜ a scalar value
Boldface lower-case letters ≜ a vector
Boldface upper-case letters ≜ a matrix

Variables

(·)𝐻 ≜ a conjugate transpose
𝐸 [·] ≜ an expected value
diag ≜ a diagonal of matrix
∥·∥ ≜ a norm

𝑡𝑟 (·) ≜ a trace
(·)∗ ≜ a conjugate
|·| ≜ a determinant

𝑒𝑡𝑟 (·) ≜ an exp 𝑡𝑟𝑎𝑐𝑒 (·)
CN ≜ a complex number

tively. The structure of the detection / estimation problem can be defined by

b =
{
𝛿 (𝐻1 |x), 𝛿 (𝐻0 |x), 𝑓 (Θ̂1 |x, 𝐻1), 𝑓 (Θ̂0 |x, 𝐻0)

}
, (4.1)

Thus, the conditional risk for each hypothesis can also be defined as

𝛿 (b |𝐻𝑖) =
∫ (

𝑓 (𝐻0 |x)
∫

𝑓 (Θ̂0 |x)A0𝑖 (Θ̂0, x)𝑑Θ̂0

)
𝑑x+∫ (

𝑓 (𝐻0 |x)
∫

𝑓 (Θ̂1 |x)A1𝑖 (Θ̂1, x)𝑑Θ̂1

)
𝑑x. (4.2)

where,

A 𝑗𝑖 (Θ̂ 𝑗 , x) =
∫

𝐶 𝑗𝑖 (Θ̂ 𝑗 ,Θ𝑖) 𝑓 (x|𝐻𝑖,Θ𝑖) 𝑓 (Θ𝑖)𝑑Θ𝑖 . (4.3)

At the end, the optimization problem becomes:

inf
b
𝛿 (b |𝐻1), subject to 𝛿 (b |𝐻1) ⩽ 𝜌

′
, (4.4)

𝐶 𝑗𝑖 (Θ̂ 𝑗 ,Θ𝑖) is the cost function and considered to be ’1’ as defined in [143], the level 𝜌 ′
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is considered the maximum value of error type I under hypothesis 𝐻0. Maximum Likeli-

hood Estimation (MLE) represents themost importantmethods to estimate the parameters

in GLRT detector, while the MAP estimator can be used as an optimal solution under a

finite sample size for the model parameters estimation when the B-GLRT is involved to

solve spectrum sensing problem. In particular, In [143], the GLRT is given by.

LR =

𝑓

(
x;𝐻1, Θ̂1

)
𝑓

(
x;𝐻0, Θ̂0

) 
𝐻0 <

𝐻1 ≥
Z (4.5)

While the linear ration for B-GLRT can be described as:

LR =

𝑓

(
x;𝐻1, Θ̂1

)
𝑓

(
Θ̂1

)
𝑓

(
x;𝐻0, Θ̂0

)
𝑓

(
Θ̂0

) 
𝐻0 <

𝐻1 ≥
Z (4.6)

where Θ̂0 and Θ̂1 denote the estimation parameters under𝐻0 and𝐻1, respectively, Z is the

threshold of detector. These parameters are defined based on the prior distribution as:

Θ̂𝑡 = argmax
Θ𝑡

𝑓 (x;𝐻𝑡 ,Θ𝑡 ) 𝑓 (Θ𝑡 ). (4.7)

where t refers to the hypothesis case. t can be "0" which refers to null hypothesis or "1"

referring to alternative hypothesis, Θ̂𝑡 denote theMAP estimators of the parameters under

𝐻0 and 𝐻1. The following posterior distributions show the mode’s parameter estimators:

𝑓

(
Θ̂𝑀𝐴𝑃𝑡 |X, 𝐻𝑡

)
∝ 𝑓𝐻𝑡

(
X|Θ̂𝑀𝐴𝑃𝑡

)
𝑓

(
Θ̂𝑀𝐴𝑃𝑡

)
. (4.8)

4.4 System Descriptions

In this section, a multiple-input multiple-output in cognitive radio network with single

secondary user is associated with 𝑁𝑟 receiving antennas and 𝑁𝑡 transmuting antennas as
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shown in Fig. 1. In this work, we assume that the noise and PU signal are independent

of each other under alternative hypothesis 𝐻1, and also since any scaling of primary user

signal can be directly effect channel gain. These assumptions do not lead to loss of gen-

erality. In many engineering applications, it can be seen that the detection problem is

addressed when an additive Gaussian noise and the channel error are present, such as in

[112, 124]. 𝐻1 and 𝐻0 are considered the hypotheses of the presence and absence of the

signal respectively.

The basic system model for this scenario at the 𝑛𝑡ℎ time instant is described as:

X =


[ 𝐻0

HS + [ 𝐻1

(4.9)

where H ∈ C𝑁𝑟 ∗𝑁𝑡 is the channel matrix between secondary receiver and the PU trans-

mitter, S ∈ C𝑁𝑡∗𝐿 is PU signal samples at transmitter antennas, and [ ∈ CNr∗L is the matrix

of additive noise samples at 𝑖𝑡ℎ antenna which is complex random variables with covari-

ance matrix R[ . X ∈ C𝑁𝑟 ∗𝐿 is the observation signal which is the Gaussian distribution

with mean and covariance matrix corresponding to the hypothesis. Since the assumption

is reasonable and customary, the mathematics and derivation of the problem will be sim-

ple. From the cognitive radio system model as described in eq. (4.9), the instant signal for

the 𝑖𝑡ℎ receiving antenna can be equivalently described as,

xk = Hs + [k. (4.10)

where H ∈ C𝑁𝑟×𝑁𝑡 is the MIMO channel matrix between 𝑁𝑟 transmitting antennas at

the primary side and𝑁𝑟 receiving antennas on the secondary side, x𝑘 ∈ C𝑁𝑟×1 is a complex

vector that contains the observed values at the instant k corresponding to transmitted sig-

nal that is corrupted by the noise vector [ (𝑘) ∈ C𝑁𝑟×1 which is additive white Gaussian
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L represents the number of input sample s. Moreover X𝑘 = [x𝑘 (1), x𝑘 (2), . . . , x𝑘 (𝐿)]𝐻 ∈

C𝐿×1, ∀𝑘 ∈ [1, . . . , 𝑁𝑟 ], (ℎ)𝑘𝐻 ∈ C1×𝑁𝑡 , ∀𝑘 ∈ [1, . . . , 𝑁𝑟 ] represents the row channel

matrix such that H = [h1, h2, . . . , h𝑁𝑟
] and [𝑘 ∈ C𝐿×1 ∀𝑘 ∈ [1, . . . , 𝑁𝑟 ] is the noise vector

whose covariance matrix R[ = 𝐸 ([𝑘[𝑘𝐻 ).

Due to several practical limitations, the actual channel matrix can not be accurately gath-

ered at the transmitter. Thus, it is subject to some error such that,

H = Ĥ + U. (4.11)

where Ĥ = [ĥ1, ĥ2, . . . , ĥ𝑁𝑟
]𝑇 ∈ C𝑁𝑟×𝑁𝑡 is the nominal channel matrix that is available at

the secondary user and Û𝑚 = [û1, û2, . . . , û𝑁𝑟
] ∈ C𝑁𝑟×𝑁𝑡 is the related uncertainty matrix

where u𝑘 ∀𝑘 ∈ [1, . . . , 𝑁𝑟 ]𝑇 . Due to the channel uncertainty, the observation signal after

plugging eq. (4.11) into eq. (4.1) is reduced to,

x𝑘 = (ĥ𝑘 + u𝑘)s + [𝑘 . (4.12)

The objective of the fusion center is to choose the correct model from the following

two possible hypotheses:

x𝑘/𝐻0 ∼ CN(`0, Γ0)

x𝑘/𝐻1 ∼ CN(`1, Γ1) (4.13)

The mean and the covariance matrix of the observation for each 𝑖𝑡ℎ receiving antenna

at alternative hypothesis can be driven as follows:
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`1(𝑘) = 𝐸 [x/𝐻1] = 𝐸 [Hs + [𝑘]

= 𝐸 [Hs] + 𝐸 [[𝑘] = H𝐸 [s] = 0

Γ1(𝑘) = 𝐸 [xx𝐻 ] = 𝐸 [(Hs + [𝑘) (Hs + [)𝐻 ]

= 𝐸 [Hss𝐻H𝐻 ] + 𝐸 [[𝑘[𝐻𝑘 ] + 𝐸 [Hs[𝐻
𝑘
] + 𝐸 [[𝑘H𝐻 s𝐻 ]

= HH𝐻 + Γ0.

where Γ1 is equal to HH𝐻 + R[ ∈ C𝑁𝑟×𝑁𝑟 and Γ0 is equal to R[ ∈ C𝑁𝑟×𝑁𝑟 . The likeli-

hood of the observation X𝑘 corresponding to alternative hypothesisH0 is given by:

p(x𝑘 ,H0) =
𝑒𝑥𝑝 (−x𝑘Γ0x𝐻

𝑘
)

𝜋𝐿+𝑁𝑟𝑁𝑡 |Γ0 |
(4.14)

while the likelihood of the observation X𝑘 corresponding to alternative hypothesis H1 is

given by:

p(x𝑘 ,H1) =
𝑒𝑥𝑝 (−x𝑘Γ1x𝐻

𝑘
)

𝜋𝐿+𝑁𝑟𝑁𝑡 |Γ1 |
(4.15)

4.5 Methodology

4.5.1 B-GLRT detector with known channel gains and unknown
noise covariance matrix (B-GLRT1)

In this part, we assume the channel uncertainty is known while the noise covariance

matrix is unknown. Prior information for the distribution of the noise variance is assumed

as known at SU. We assume that the noise variance has an Inverse-Gamma distribution

with different values of shape 𝜌 and scale parameter ^ . Thus, 𝛾2 ∼ Inv-Gamma (𝜌 , ^)

[144, 42, 112]. In the next section, we also assume that the noise has the prior statistical

distribution for each noise variance. In other words, assuming a diagonal matrix Γ0 =
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𝑑𝑖𝑎𝑔 (𝛾2
0,1, . . . , 𝛾

2
0,Nr

), of the noise covariance, 𝛾2
0,𝑖 is clearly modeled a priori by an Inverse-

Gamma distribution with the shape parameter 𝜌𝑖 and the scale parameter ^𝑖 is considered

an Inv-Gamma(𝜌𝑖 ,̂ 𝑖 ).

Now, Bayesian approach can be utilized in this case to determine the model unknown

parameters where the observation sample is finite. Here the channel gain matrix has been

assumed to be known and the noise variance is unknown for the SU. To achieve more

flexible calculation, we used the joint prior for the noise variance parameters as given by

𝑓
(
𝛾2

0,𝑖
)
= 𝑓 (Γ0)

=

𝑁𝑟∏
𝑖=1

^
𝜌𝑖
𝑖

Γ (𝜌𝑖)
(
𝛾2

0,𝑖
)−𝜌𝑖−1 exp

(
−^𝑖
𝛾2

0,𝑖

)
. (4.16)

where 𝑖 = [1, . . . , 𝑁𝑟 ], In order to obtain the values of unknown parameters in null

hypothesis, and since these parameters have prior knowledge based on the Bayesian the-

orem, the maximum a posterior probability can be involved in this case. This can be

achieved by taking the log of eq. (4.8) followed by taking the maximum as shown in eq.

(4.17) to achieve the MAP estimator. We require the MAP estimator of the noise variance

parameters under 𝐻0, that is,

Θ̂0 |x, 𝐻0 = Max
{
log

(
𝑓𝐻0 (x|Θ0) 𝑓 (Θ0)

)}
(4.17)

Then the posterior distribution of noise variance can be shown as:

Γ̂0 = argmax
Γ0

[log(𝑓 (X;𝐻0, Γ0)) + log(𝑓 (Γ0))] . (4.18)

In null hypothesis, Γ0 = R[ . Thus, eq. (4.18) become eq. (4.19),

R̂[ = argmax
R[

[
log(𝑓

(
X;𝐻0,R[)

)
+ log(𝑓

(
R[

)
)
]
. (4.19)
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It can be seen from the system model that the observation signal at 𝑖𝑡ℎ antenna at

secondary side is complex normal distribution with density:

𝑓𝐻0 (X|Γ0) =
L∏
𝑗=1

𝑓𝐻0 (x 𝑗 |R[)

= 𝜋−NrL

(
Nr∏
𝑖=1

𝛾2
0,𝑖

)−L
exp

{
−

Nr∑︁
𝑖=1

L∑︁
𝑗=1

𝑥∗𝑖 𝑗𝑥𝑖 𝑗

𝛾2
0,𝑖

}
= 𝜋−NrL

Nr∏
𝑖=1

[
(𝛾2

0,𝑖)−L exp
{
−1
𝛾2

0,𝑖

L∑︁
𝑗=1

𝑥∗𝑖 𝑗𝑥𝑖 𝑗

}]
. (4.20)

According to eq. (4.18), the log function can be taken for multiplication between eq. (4.20)

and eq. (4.16) followed by taking the derivative with respect to 𝛾2
0,𝑖 > 0, 𝑖 = [1, . . . , 𝑁𝑟 ], in

order to obtain the model parameter. It can be easily seen as:

𝛾2
0,𝑖 =

1
L + 𝜌𝑖 + 1

(
L∑︁
𝑗=1

𝑥∗𝑖 𝑗𝑥𝑖 𝑗 + ^𝑖

)
. (4.21)

for 𝑖 = [1, . . . , 𝑁𝑟 ], (see Appendix 1 in our previous work [42] for more detail about the

proof).

Under the alternative hypothesis, we obtain the MAP estimation of noise covariance

matrix in hypothesis detection problem where the channel gain and its error are known.

Based on eq. (4.17) the MAP estimation equation will be:

Θ̂1 = argmax
Θ1

𝑓 (x;𝐻1,Θ1) 𝑓 (Θ1). (4.22)

In alternative hypothesis, Γ1 = HH𝐻 + Γ0 represents the covariance matrix of the

observation where the channel has known uncertainty as shown in eq. (4.11). Γ0 is also

modeled as a priori using eq. (4.16). The density of x in alternative hypothesis is given by:

𝑓𝐻1 (x; Γ0) = 𝜋−N𝑟 |Γ1 |−1 exp
{
−x𝐻Γ−1

1 x
}
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where Γ1 = (HH𝐻 + Γ0)−1, so that the data distribution under 𝐻1 has density:

𝑓𝐻1 (X|R[) = 𝜋−N𝑟
��HH𝐻 + R[

��−L
× exp

{
−

L∑︁
𝑗=1

x𝐻𝑗 (HH𝐻 + R[)−1x 𝑗

}
= 𝜋−N𝑟

��HH𝐻 + R[
��−L 𝑒𝑡𝑟 {

−R(HHH + R[)−1} . (4.23)

Let Rℎ = HH𝐻 be the covariance channel matrix that is known for the SU. We also

define R =
∑L
𝑗=1 x 𝑗x𝐻𝑗 . Thus, the MAP estimator of the noise variance under 𝐻1 is given

by solving the following optimization problem:

𝑃1 : argmax
Γ1

[
log(𝑓𝐻1 (X|Γ1)) + log(𝑓 (Γ0))

]
.

(4.24)

By substituting eq. (4.16 ) and eq. (4.23) into eq. (4.24), P1 becomes:

𝑃1 : argmax
Γ0

[
log 𝑓𝐻1 (X|Γ1) + log 𝑓 (Γ0)

]
= argmax

Γ0:𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
(L log

��Γ−1
1

�� − 𝑡𝑟 [RΓ−1
1 ]

+ (𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [KΓ−1

0 ]) . (4.25)

where (𝜌1 = · · · = 𝜌Nr = 𝜌) are the hyperparameters of the conjugate priors and K =

𝑑𝑖𝑎𝑔(^1, . . . , ^Nr ) is the diagonal matrix which represents the conjugate priors hyperpa-

rameters. Since problem P1 is not convex, wemustmanipulated it to be a convex optimiza-

tion problem which can be easily solved by using a numerical semidefinite programming
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(SDP) optimization package such as [51]. For more detail, see Appendix (1.1).

4.5.2 B-GLRTdetectorwithunknown channel uncertainty andnoise
covariance matrix

In this part, we assume the channel uncertainty matrix is unknown and the noise covari-

ance matrix as well at SU. We also use the same prior distribution for the noise variance

as mentioned in eq. (4.16). According to the system model as shown in eq. (4.1), the esti-

mated valued of noise covariance matrix in null hypothesis still can be obtained by using

eq. (4.21) while in alternative hypothesis both channel uncertainty and noise covariance

matrix must be estimated. Thus, the problem can be seen as

𝑃1 : argmax
Γ0:𝐷𝑖𝑔𝑜𝑛𝑎𝑙

Γ1≥0

[
log 𝑓𝐻1 (X|Γ1) + log 𝑓 (Γ0)

]
= argmax

Γ0:𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
(L log

��Γ−1
1

�� − 𝑡𝑟 [RΓ−1
1 ]

+ (𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [KΓ−1

0 ]) . (4.26)

Then the objective is to maximize the LR subject to certain constraint, so P1 becomes.

𝑃1 : argmax
Γ0:𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙

(L log
���(R̂ℎ + ∆Rℎ) + Γ0

���−1

−𝑡𝑟 [R
(
(R̂ℎ + ∆Rℎ) + Γ0

)−1

1
]

+(𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [KΓ−1

0 ]).

(4.27)

Here, we must maximize 𝑓𝐻1 (x|Γ0) because 𝑓𝐻1 (x|Γ0) is a function of ΔRℎ which is the

channel error and has an effect on the maximization of LR. To find the value of ΔRℎ that

maximizes 𝑓𝐻1 (x|Γ0), we can perform the following solutions.
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Robust solution, B-GLT2

Back to eq. (4.27), we can see that this problem consists of two optimization variables

( ΔRℎ , Γ0) and and since it is difficult to handle as a single optimization problem, it can

be solved using alternative optimization technique as following similar procedure in our

previous work[30] and also as following in this paper [145]. The optimization problem

becomes:

• Solving for Γ0: in this case, we assume that Γ0 is unknown and ΔRℎ is known and

then solve for Γ0.

𝑃1 : argmax
Γ0

(L log | (R̂ℎ + ∆Rℎ)︸       ︷︷       ︸
Rℎ

+Γ0 |−1

−𝑡𝑟 [R((R̂ℎ + ∆Rℎ)︸       ︷︷       ︸
Rℎ

+Γ0)−1]

+(𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [KΓ−1

0 ]) .

subject to

Γ0 ≥ 0,

For additional details see Appendix (2.1) .

• Solving for ΔRℎ : now we can assume that Γ0 is known and solve for ΔRℎ . We also

define that,

ℜ = R̂ℎ + Γ0
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𝑃1 : argmax
ΔRℎ

(L log | (ℜ + ∆Rℎ) |−1

−𝑡𝑟 [R (ℜ + ∆Rℎ)−1]

+(𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [KΓ−1

0 ]).

subject to

∥∆Rℎ∥𝐹 ≤ 𝜖 ,

Appendix (2.2) shows mote detail.

Sub-optimal solution, B-GLT3

In this solution we substitute the value of ∆Rℎ that gives the minimum value for 𝑓𝐻1 (x|Γ0),

where ∆Rℎ equal to −𝜖I𝑀 or +𝜖I𝑀 depending on the position of ∆Rℎ in 𝑓𝐻1 (x|Γ0) or in case

the values of∆Rℎ in𝑓𝐻1 (x|Γ0) that lead tominimumvalue of 𝑓𝐻1 (x|Γ0) are both +𝜖I𝑀 . Thus,

𝑓𝐻1 (x|Γ0) = 𝜋−Nr

���(R̂ℎ + 𝜖I𝑀 )+Γ0

���−L 𝑒𝑡𝑟 {
−R(R̂h + 𝜖IM)+ + Γ0)−1

}
, (4.28)

𝑃1 : argmax
Γ0:𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙

(L log
���(R̂ℎ + 𝜖I𝑀 ) + Γ0

���−1

−𝑡𝑟 [R
(
(R̂ℎ + 𝜖I𝑀 ) + Γ0

)−1

1
]

+(𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [KΓ−1

0 ]).

(4.29)

The positive exponent means the bonded matrix must be positive semi definite (PSD).

This can be accomplished by setting the negative Eigenvalues of the resultant R̂ℎ + 𝜖I𝑀 to
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zero and this happens due to the Hermitian of R̂ℎ . In this case, the problem can be solved

based on Appendix (1.2).

After estimating the model parameters in both hypothesis Γ0 and Γ1, we can derive the

detector formula. According to eq. (4.6), therefore, the log of this equation is:

LLR = log(𝑓𝐻1 (x|Γ1) 𝑓 (Γ1))

− log(𝑓𝐻0 (x|Γ0) 𝑓 (Γ0)). (4.30)

Then, the log of the posterior distribution can be:

log(.) |𝐻0 = −(L + 𝜌 + 1) log(
��Γ̂0

��)
+ 𝑡𝑟 (−RΓ̂−1

0 ) − 𝑡𝑟 (KΓ̂−1
0 ). (4.31)

and

log(.) |𝐻1 = −(L + 𝜌 + 1) log(
��Γ̂1

��)
+ 𝑡𝑟 (−RΓ̂−1

1 ) − 𝑡𝑟 (KΓ̂−1
1 ). (4.32)

Substitute eq. (4.32) and eq. (4.31) in eq. (4.30). Therefore, the detector is given by;

TZ (B − GLRT) = (L + 𝜌 + 1) log(
��Γ̂1

����Γ̂0
�� ) + 𝑡𝑟 (−RΓ̂−1

1 ) (4.33)

− 𝑡𝑟 (−RΓ̂−1
0 ) − 𝑡𝑟 (KΓ̂−1

1 ) + 𝑡𝑟 (KΓ̂−1
0 )

𝐻1
⋛
𝐻0

Z
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4.6 Numerical Evaluation

In this part, we demonstrate our approach using simulated data, and clarify the perfor-

mance of our design of the GLRT spectrum sensing algorithm when the channel uncer-

tainty exists over varied parameter settings for the distribution model. In our simulation,

the average received SNR at SU has been defined as [42]:

𝑆𝑁𝑅 = log(𝑡𝑟 (HH𝐻 )) − log(𝑡𝑟 (Γ0)) . (4.34)

First, we clarify the effect of the channel uncertainty U in spectrum sensing where the

noise parameters are unknown and uncorrelated. As mentioned, the channel uncertainty

is assumed to have deterministic values while prior knowledge is known for the noise

parameters. For these assumptions, we show the performance of the GLRT algorithm

based on Bayesian approach as known as B-GLR1, and also we show its performance

compared with other approaches which are derived in this work. These approaches also

compared with other state-of-the-art spectrum sensing under the same assumptions, such

as the ED and others.

As mentioned, MIMO technique is considered in this paper with the number of re-

ceiving antennas N𝑟 equal to 3 to receive a number of samples L equal to 20, the number

of transmitting antennas N𝑡= 2.

We also set the hyperparameter values of prior distributions parameter as the shape(
𝜌1 = . . . = 𝜌𝑁𝑟

)
equal to 2, and the scale K has different arbitrary values as diag [2, 1.5,

3]. The number of realizations is 5 ∗ 104 in which probability of false alarm (pfa) can be

generated to eventually obtain the threshold value.

In Fig. 4.2, we illustrate the probability of missed detection (Pm) in terms of SNR for

the several detectors such as the maximum to minimum eigenvalue test (MME), Energy

with minimum Eigenvalue test (EME) [146, 147] as shown in eq. (4.35) and eq. (4.36)

respectively,
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TZ (MME) = _𝑚𝑎𝑥 (Γ̂)
_𝑚𝑖𝑛 (Γ̂)

𝐻1
⋛
𝐻0

Z (4.35)

TZ (EME) = _𝑎𝑣 (Γ̂)
_𝑚𝑖𝑛 (Γ̂)

𝐻1
⋛
𝐻0

Z (4.36)

where _𝑚𝑎𝑥 , _𝑚𝑖𝑛 , and _𝑎𝑣 respectively denote the maximum, minimum, average eigen-

values of the covariance matrix ˆ(Γ).

This figure also depicts the performance of all detectors when the SNR is within the

range [-20 to 10] at a pdf = 5 × 10−1, with the finite sample number L equal to 20 . It can

also be seen that B-GLRT 1 outperforms other proposed detectors since it has a perfect

channel compared with other cases.

Respective operating characteristic curves (ROC) can be seen in Fig. 4.3. In this figure,

we shows the probability of detection (PD) versus the probability of false alarm using a

range of values of pfa, SNR value is -3 dB and number of samples L equal to 10 . It also

can be seen an efficient detection performance of the proposed detectors compared with

other state-of-the-art detectors such as the Hadamard ratio test and the Sphericity test

[105] shown in eq. (4.37) and eq. (4.38) respectively. The threshold of the case is numeri-

cally obtained. In addition, the results show that the optimal detector largely outperforms

Hadamard ratio test and Sphericity test and we see that the proposed B-GLRT1 detector

has good performance compared with other proposed detectors.

TZ (HR) =
(
𝑁𝑟∏
𝑗=1
𝛾 𝑗 𝑗

)
|Γ |−1

𝐻1
⋛
𝐻0

Z (4.37)

TZ (ST) =
(∑𝑁𝑟

𝑗=1 𝛾 𝑗 𝑗

𝑁𝑟

)
|Γ |−(1/𝑁𝑟 )

𝐻1
⋛
𝐻0

Z (4.38)

where Γ is the covariance matrix.

Furthermore, we also show the performance of proposed detectors in terms of the
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Figure 4.2: Probability of missed detection of different detectors against average SNR for
𝑃 𝑓 𝑎 = 5 × 10−1, Nr = 3 and L = 20.
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Figure 4.3: Simulated ROC performance of the proposed B-GLRT assumed prior at SNR
= -3 dB.,Nr = 3 and L = 10.
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number signal samples. Fig. 4.4, the probability of missed detection (Pm) for each detector

can be observed versus the number of samples L . In Fig. 4.4, it can be shown that the

proposed detectors have a significantly better performance comparedwith other detectors

where pfa is equal 5×10−1, Nr = 3, Nt = 2 and the average SNR of -3 dB. It can be observed

that the proposed detector performance has an extreme increase when the input samples

increase. In addition, the proposed B-GLRT1 detector performs better than other detectors

since it has a perfect uncertainty.

2 4 6 8 10 12 14 16 18 20

Number of sample, L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
a
b
il
it
y
 o

f 
m

is
s
e
d
 d

e
te

c
ti
o
n
, 
P

m
d

#B-GLRT1

B-GLRT2

B-GLRT2

Energy Test

Sphericity Test

MME Test

Hadmard Test

Figure 4.4: Probability of missed detection of the proposed detectors against L for pfa =
5 × 10−1, average SNR = -3 dB.

We also do another simulation in order to show the performance of the detectors

where the signal samples is a large number. In this section, Fig.4.5 clarifies the relation

between the probability of detection versus the probability of alarm (pfa). From this figure,

it can generally be observed that even the performance ofmost detectors have a significant

improvement but the proposed detectors maintain a better performance compared with

other detectors or the propose detectors ‘B-GLRT2’, ‘B-GLRT3’ have enough ability to

be robust detectors against channel uncertainty. Fig.4.6 shows the performance of the
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proposed approach agianst other detectors where the signal samples is a large value.
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Figure 4.5: Probability of detection versus probability of false alarm at SNR = -3 dB., Nr =
3, Nt = 2 and L =20.
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Figure 4.6: Probability of detection against probability of false alarm at SNR = -3 dB., Nr
= 5, Nt = 3 and L = 25.
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Finally, we show the probability of missed detection of the detectors in terms of SNR

where the number of samples is changed as shown in Fig.4.7. From this figure, it can be

seen that the proposed detectors have an efficient performance in terms of probability of

missed detection when the number of signal samples is increased.
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Figure 4.7: Probability of missed detection of different detectors against average SNR for
𝑃 𝑓 𝑎 = 5 × 10−1, Nr = , Nt = 2.

4.7 Conclusion

This paper presents a novel method for developing spectrum sensing detectors in multi-

cell CR network with non-perfect CSI for the SU network. In this context, novel detection

schemes such as the B-GLRT1, B-GLRT2, and B-GLRT3 are proposed for different cases

when the noise distribution parameters are unknown in the non-perfect channel. For the

first case with unknown noise covariance and the perfect channel, we derived a GLRT1

based binary hypothesis detector for spectrum sensing in MIMO CR networks. In this

case, our formulation for maximizing likelihood distribution determines the correspond-
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ing unknown parameters for each hypothesis within a specified amount of SNR from the

SU base stations. We further developed an expression of B-GLRT2 and B-GLRT3, where

the CSI uncertainty in MIMO cognitive radio is not perfect. This problem is formulated as

an optimization problem that is solved in different ways to obtain a robust and sub-optimal

solution for the spectrum sensing CR. Simulation results are presented to demonstrate

the proposed detectors’ performance where a CSI and noise uncertainty is available with

a finite number of observed data samples. The results also illustrate that the proposed

B-GLRT detectors achieve significant improvement compared with state-of-the-art spec-

trum sensing schemes. We present simulation results showing that our solution methods

outperform state-of-the-art methods with existing and non-existing channel uncertainty.

Further, the theoretical analysis and simulation re- sults indicate that our approaches can

offer outstanding spectrum sensing performance when small sample size is available.This

work focused on obtaining a robust signal detector at the secondary user based on local

decisions received from the cooperating signal PU considering CSI uncertainty in MIMO

CR Networks. A promising extension to future work can use the cooperative spectrum

sensing at the fusion center side in the presence of the noise and channel uncertainty.
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Chapter 5

Concluding remarks and Future Work

This chapter summarizes our developed spectrum sensing techniques for both the noise

and the channel uncertainty- in cognitive wireless networks. It also explains some future

intended works related to these networks using both Bayesian and convex optimization

based on the statistical analysis methods.

5.1 Research Summary

Chapter 3 considered the spectrum sensing problem between the end-users in the conven-

tional wireless network when the links between the primary user and the secondary users

are uncertain. Two solutions were developed using the MAP estimation method based on

the Bayesian theorem. The B-GLRT solution following our proposed robust solution in

several past works. Compared with another art-of-states detector with the presence of

the noise uncertainty.

We have presented a novel multiantenna detector for Gaussian distribution signals

spatially (with different variances) and uncorrelated noises. In particular, we intend to

use the B-GLRT for detecting an observed vector values random variable in presence of
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the iid noises, Although this detector does not admit, in general, robust solution, we have

shown that in the low SNR our proposed algorithm outperforms other detectors.

Finally, we note that the derivation considered here assumes knowledge of the channel

uncertainty. While this may be reasonable in some contexts, there are scenarios in which

the channel can be unknown, which can be studies and showed in chapter four.

Chapter 4 considered the spectrum sensing cognitive radio among the secondary users

in the conventional wireless network when the links are also assumed to are uncertain. In

this work, two cases are studied where both the channel and the noise uncertain available.

Two solutions were developed using the MAP estimation method based on the Bayesian

theorem in null hypothesis while the convex optimization method is utilized when the

channel uncertainty is unknown. The traditional solution following our proposed robust

solution is shown in the past chapter. This formation problem is compared with another

art-of-states detector with the presence of the channel and the noise uncertainty.

It can be seen from the previous chapters that we have presented a novel multiantenna

detector for Gaussian distribution signals spatially (with different variances) where the

noises and the channel uncertainty are excited. In particular, we intend to use the B-GLRT

for detecting an observed data random variable in presence of the iid noises, Although

this detector does not admit, in general, robust B-GLRT, we have shown those proposed

methods .

Finally, we perceive that the derivation considered here assumes knowledge of the

channel uncertainty. While this may be reasonable in some contexts, there are scenarios

in which the channel can be unknown, which can be studied and showed in chapter four.

The two solutions were analyzed through numerical simulation, and the result shows the

validation and convergence of the clarifications for different network parameters. Also,

the result shows that the proposed solution outperforms the sub-optimal one.
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5.2 Future Work

We are intending to continue reaching towards the next directions:

5.2.1 Spectrum Sensing mmwave Backscattering Radio

The cognitive radio (CR) technique has been extensively studied in recent decades with

the goal of improving spectrum efficiency. This will be accomplished, as we discussed in

previous chapters, by allowing secondary users access to the designated radio spectrum.

In a CR system, the secondary user is allowed to use the radio spectrum assigned to the

PU in an opportunistic or spectrum sharing approach. In other words, the second receiver

(SRx) can share the secondary transmission from the second transmitter (STx) to the same

spectrum with the primary transmission from the primary transmitter (PTx) to the pri-

mary receiver (PRx). The process is carried out by detecting the interference level from

STx to PRx in order to ensure that the caused interference level to the primary transmis-

sion is below a set of common threshold values. The development of spectrum efficiency

may be limited by transmission between end-users. As a result, the typical transmitter

architecture demands the use of energy active components, such as active radio.

Backscattering radio technology, such as ambient backscatter communications (AmBC),

has recently been used to develop wireless transmitters that do not require active compo-

nents, resulting in a significant reduction in signal power consumption. Furthermore, STx

uses backscattering modulation to send its message across the ambient radio frequency

(RF) waves. We can use the spectrum sensing technique to estimate the signal between

the two independent backscattering processes in this new technology that works with

enhanced wireless communication like 5G and 6G. We may also investigate network un-

certainty, such as noise and channel uncertainty, using this method. We intend to use a

variety of prior models based on Bayesian theorems, such as the Dirichlet-Multinomial

model, which may be found in Appendix A.
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5.2.2 Massive MIMO Cognitive Backscattering Communications
for Future Wireless Networks, Symbiotic Radio:

In this technique, more than one Users can share the same spectrum sensing signal utiliz-

ing a special technique. In subse-quent work, both spectrum sensing models ( in perfect

CSI and non-perfect CSI) shall be considered and studied deeply. In a summary, a new ap-

proach called symbiotic radio (SR) is being investigated as a way to combine the benefits

of CR and AmBC while addressing the drawbacks of both. SR, like CR, has two spectrum

sharing systems: the primary system and the secondary system. SR, but at the other side,

creates mutually beneficial spectrum sharing rather than blocking it in CR. In compari-

son to AmBC, the SR approach uses collaborative decoding to provide very dependable

backscattering communications. As a result, SR is also known as cognitive backscattering

communications, which improves wireless network spectrum and energy efficiency.

5.2.3 Non Orthogonal Multiple Access(NOMA)

In this work, we shall investigate a cooperative non-orthogonal multiple access (CNOMA)

scheme based on spectrum sensing where perfect CSI and non-perfect CSI exists, not

only the channel uncertainty can be addressed in this 5G technique, but also the noise

uncertainty can be addressed, this problem can be formulated in multiple methods and

solved in multiple approaches. the statistical approach can be involved in this problem.
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Appendix A

Dirichlet-Multinomial

A.1 Dirichlet-Multinomial Model

𝑝1, 𝑝𝐾 ∼ Dir(𝛼1, . . . , 𝛼𝐾 )

𝑦1, . . . 𝑦𝐾 ∼Mult (𝑝1, . . . , 𝑝𝐾 )

This class is essentially just the exponential family of distributions.

Posterior.

𝑓 (\ |𝐷) ∝ 𝑓 (\, 𝐷)

= 𝑓 (𝑝1, . . . , 𝑝𝐾 |𝛼1, . 𝛼𝐾 )
∏
𝑦𝑖∈𝐷

𝑓 (𝑦𝑖 |𝑝1, . . . 𝑝𝐾 )

∝
𝐾∏
𝑗=1

𝑝
𝛼 𝑗−1
𝑗

∏
𝑦𝑖∈𝐷

𝐾∏
𝑗=1

𝑝
𝑦
( 𝑗)
𝑖

𝑗

=

𝐾∏
𝑗=1

𝑝
𝛼 𝑗−1+Σ𝑦𝑖 ∈𝐷𝑦

( 𝑗)
𝑖

𝑗
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This density is exactly that of a Dirichlet distribution, except we have

𝛼′𝑗 = 𝛼 𝑗 +
∑︁
𝑦𝑖∈𝐷

𝑦
( 𝑗)
𝑖

That is, 𝑓 (\ |𝐷) = Dir(𝛼′1, 𝛼′𝐾 ) .

Posterior Predictive.

𝑓 (𝑦 |𝐷) =
∫

𝑓 (𝑦 |\ ) 𝑓 (\ |𝐷)𝑑\

=

∫
𝑓 (𝑦 |𝑝1, 𝑝𝐾 ) 𝑓 (𝑝1, 𝑝𝐾 |𝐷)𝑑𝑆𝐾

=

∫
Γ(𝑛 + 1)∏𝐾

𝑗=1 Γ(𝑦 ( 𝑗) + 1)

𝐾∏
𝑗=1

𝑝
𝑦 ( 𝑗)

𝑗

Γ(∑𝐾
𝑗=1 𝛼

′
𝑗 )∏𝐾

𝑗=1 Γ(𝛼′𝑗 )

𝐾∏
𝑗=1

𝑝
𝛼 ′
𝑗−1
𝑗

𝑑𝑆𝐾

=
Γ(𝑛 + 1)∏𝐾

𝑗=1 Γ(𝑦 ( 𝑗) + 1)
Γ(∑𝐾

𝑗=1 𝛼
′
𝑗 )∏𝐾

𝑗=1 Γ(𝛼′𝑗 )

∫ 𝐾∏
𝑗=1

𝑝
𝑦 ( 𝑗)+𝛼 ′

𝑗−1
𝑗

𝑑𝑆𝐾

=
Γ(𝑛 + 1)∏𝐾

𝑗=1 Γ(𝑦 ( 𝑗) + 1)
Γ(∑𝐾

𝑗=1 𝛼
′
𝑗 )∏𝐾

𝑗=1 Γ(𝛼′𝑗 )

∏𝐾
𝑗=1 Γ(𝑦 ( 𝑗) + 𝛼′𝑗 )
Γ(𝑛 + ∑𝐾

𝑗=1 𝛼
′
𝑗
)

(1)

where 𝑑𝑆𝐾 denotes integrating (𝑝1, 𝑝𝐾 ) with respect to the (𝐾 − 1) simplex.

Marignal. This derivation is almost the same as the posterior predictive.

𝑓 (𝐷) =
∫

𝑓 (\ |𝛼)
∏
𝑦𝑖∈𝐷

𝑓 (𝑦𝑖 |\ )𝑑\

=

∫
𝑓 (𝑝1, . 𝑝𝐾 |𝛼1, 𝛼𝐾 )

∏
𝑦𝑖∈𝐷

𝑓 (𝑦𝑖 |𝑝1, . 𝑝𝐾 )𝑑𝑆𝐾

=

∫ Γ(∑𝐾
𝑗=1 𝛼 𝑗 )∏𝐾

𝑗=1 Γ(𝛼 𝑗 )

𝐾∏
𝑗=1

𝑝
𝛼 𝑗−1
𝑗

∏
𝑦𝑖∈𝐷

Γ(𝑛 + 1)∏𝐾
𝑗=1 Γ(𝑦

( 𝑗)
𝑖

+ 1)

𝐾∏
𝑗=1

𝑝
𝑦
( 𝑗)
𝑖

𝑗
𝑑𝑆𝐾

=
Γ(∑𝐾

𝑗=1 𝛼 𝑗 )∏𝐾
𝑗=1 Γ(𝛼 𝑗 )

[
∏
𝑦𝑖∈𝐷

Γ(𝑛 + 1)∏𝐾
𝑗=1 Γ(𝑦

( 𝑗)
𝑖

+ 1)
]
∫ 𝐾∏

𝑗=1
𝑝
Σ𝑦𝑖 ∈𝐷𝑦

( 𝑗)
𝑖

+𝛼 𝑗−1
𝑗

𝑑𝑆𝐾
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=
Γ(∑𝐾

𝑗=1 𝛼 𝑗 )∏𝐾
𝑗=1 Γ(𝛼 𝑗 )

[
∏
𝑦𝑖∈𝐷

Γ(𝑛 + 1)∏𝐾
𝑗=1 Γ(𝑦

( 𝑗)
𝑖

+ 1)
]
∏𝐾

𝑗=1 Γ(
∑
𝑦𝑖∈𝐷 𝑦

( 𝑗)
𝑖

+ 𝛼 𝑗 )
Γ( |𝐷 |𝑛 + ∑𝐾

𝑗=1 𝛼 𝑗 )
(2)

Dirichlet-Categorical

The derivations here are almost identical to before (with some minor syntatic differ-

ences).

Model.

𝑝1, 𝑝𝐾 ∼ Dir(𝛼1, 𝛼𝐾 )

𝑦 ∼ Cat(𝑝1, . . . , 𝑝𝐾 )

Posterior.

𝑓 (\ |𝐷) ∝ 𝑓 (\, 𝐷)

= 𝑓 (𝑝1, . . . , 𝑝𝐾 |𝛼1, . 𝛼𝐾 )
∏
𝑦𝑖∈𝐷

𝑓 (𝑦𝑖 |𝑝1, . . . 𝑝𝐾 )

∝
𝐾∏
𝑗=1

𝑝
𝛼 𝑗−1
𝑗

∏
𝑦𝑖∈𝐷

𝐾∏
𝑗=1

𝑝
1{𝑦𝑖= 𝑗}
𝑗

=

𝐾∏
𝑗=1

𝑝
𝛼 𝑗−1+Σ𝑦𝑖 ∈𝐷1{𝑦𝑖= 𝑗}
𝑗

This density is exactly that of a Dirichlet distribution, except we have

𝛼′𝑗 = 𝛼 𝑗 +
∑︁
𝑦𝑖∈𝐷

I {𝑦𝑖 = 𝑗}

That is, 𝑓 (\ |𝐷) = Dir(𝛼′1, 𝛼′𝐾 ) .

Posterior Predictive.

𝑓 (𝑦 = 𝑥 |𝐷) =
∫

𝑓 (𝑦 = 𝑥 |\ ) 𝑓 (\ |𝐷)𝑑\

=

∫
𝑓 (𝑦 = 𝑥 |𝑝1, 𝑝𝐾 ) 𝑓 (𝑝1, 𝑝𝐾 |𝐷)𝑑𝑆𝐾

=

∫
𝑝𝑥

Γ(∑𝐾
𝑗=1 𝛼

′
𝑗 )∏𝐾

𝑗=1 Γ(𝛼′𝑗 )

𝐾∏
𝑗=1

𝑝
𝛼 ′
𝑗−1
𝑗

𝑑𝑆𝐾
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=
Γ(∑𝐾

𝑗=1 𝛼
′
𝑗 )∏𝐾

𝑗=1 Γ(𝛼′𝑗 )

∫ 𝐾∏
𝑗=1

𝑝
1{𝑥= 𝑗}+𝛼 ′

𝑗−1
𝑗

𝑑𝑆𝐾

= Γ(
𝐾∑︁
𝑗=1

𝛼′𝑗 )
𝐾∏
𝑗=1

Γ(1{𝑥 = 𝑗} + 𝛼′𝑗 )

𝐾∏
𝑗=1

Γ(𝛼′𝑗 )Γ(1 +
𝐾∑︁
𝑗=1

𝛼′
𝑗
)

=
𝛼′𝑥∑𝐾
𝑗=1 𝛼

′
𝑗

(3)

where we used the fact that Γ(𝑛 + 1) = 𝑛Γ(𝑛) to simplify the second to last line.

Marignal.

𝑓 (𝐷) =
∫

𝑓 (\ |𝛼)
∏
𝑦𝑖∈𝐷

𝑓 (𝑦𝑖 |\ )𝑑\

=

∫
𝑓 (𝑝1, 𝑝𝐾 |𝛼1, 𝛼𝐾 )

∏
𝑦𝑖∈𝐷

𝑓 (𝑦𝑖 |𝑝1, 𝑝𝐾 )𝑑𝑆𝐾

=

∫ Γ(∑𝐾
𝑗=1 𝛼 𝑗 )∏𝐾

𝑗=1 Γ(𝛼 𝑗 )

𝐾∏
𝑗=1

𝑝
𝛼 𝑗−1
𝑗

∏
𝑦𝑖∈𝐷

𝐾∏
𝑗=1

𝑝
1{𝑦𝑖= 𝑗}
𝑗

𝑑𝑆𝐾

=
Γ(∑𝐾

𝑗=1 𝛼 𝑗 )∏𝐾
𝑗=1 Γ(𝛼 𝑗 )

∫ 𝐾∏
𝑗=1

𝑝
Σ𝑦𝑖 ∈𝐷1{𝑦𝑖= 𝑗}+𝛼 𝑗−1
𝑗

𝑑𝑆𝐾

=
Γ(∑𝐾

𝑗=1 𝛼 𝑗 )∏𝐾
𝑗=1 Γ(𝛼 𝑗 )

∏𝐾
𝑗=1 Γ(

∑
𝑦𝑖∈𝐷 1{𝑦𝑖 = 𝑗} + 𝛼 𝑗 )

Γ( |𝐷 | + ∑𝐾
𝑗=1 𝛼 𝑗 )

(4)
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Appendix B

First Paper Derivation

B.1 Section title

Here is some additional information which would have detracted from the point being

made in the main article.

B.1.1 Subsection title

This section even has subtitles

Appendix 2

We have,

Σ̂𝑀𝐴𝑃0 = argmax
Σ0

{log (𝑓 (Y|𝐻0,Σ𝑀𝐴𝑃0) 𝑓 (Σ𝑀𝐴𝑃0))}
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Taking log for both sides of eq. (4.20)

log(𝑓 (Y|𝐻0, Σ0))

= −LM log(𝜋) + (−L) log(
M∏
𝑖=1

(𝜎2
0,𝑖)) −

M∑︁
𝑖=1

L∑︁
𝑗=1

𝑦∗𝑖 𝑗𝑦𝑖 𝑗

𝜎2
0,𝑖

(B.1)

By taking log on both side of the both of eq. (4.16). We obtain

log(𝑓 (𝜎2
0,1, · · · , 𝜎2

0,M)) =

log
(

M∏
𝑖=1

𝛽
𝛼𝑖
𝑖

Γ(𝛼𝑖)
(𝜎2

0,𝑖)−(𝛼𝑖+1) exp(−𝛽𝑖
𝜎2

0,𝑖
)
)

= log
(

M∏
𝑖=1

𝛽𝛼
𝑖

Γ(𝛼𝑖)

)
− (𝛼𝑖 + 1)

M∑︁
𝑖=1

log𝜎2
0,𝑖 +

M∑︁
𝑖=1

−𝛽𝑖
𝜎2

0,𝑖
(B.2)

By adding eq. (B.1) and eq. (B.2), we obtain.

log(𝜎2
0,𝑖)𝑀𝐴𝑃 = −LM log(𝜋) + (−L) log(

M∏
𝑖=1

(𝜎2
0,𝑖))

−
M∑︁
𝑖=1

L∑︁
𝑗=1

𝑦∗𝑖 𝑗𝑦𝑖 𝑗

𝜎2
0,𝑖

+ log
(

M∏
𝑖=1

𝛽
𝛼𝑖
𝑖

Γ(𝛼𝑖)

)
− (𝛼𝑖 + 1)

M∑︁
𝑖=1

log𝜎2
0,𝑖 +

M∑︁
𝑖=1

−𝛽𝑖
𝜎2

0,𝑖

(B.3)

Taking the derivative with respect 𝜎0,𝑖 to eq. (B.3), we have
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𝜕 log𝜎2
0,𝑖

𝜕𝜎2
0,𝑖

= ( L
𝜎2

0,𝑖
) + (

∑L
𝑗=1𝑦

∗
𝑖 𝑗𝑦𝑖 𝑗

(𝜎2
0,𝑖)2 )

− (𝛼𝑖 + 1) ( 1
𝜎2

0,𝑖
) + 𝛽𝑖

(𝜎2
0,𝑖)2 (B.4)

setting the derivative to zero, we obtain the MAP of 𝜎2
0,𝑖 as

𝜎2
0,𝑖 =

𝛽𝑖 +
∑L
𝑗=1𝑦

∗
𝑖 𝑗𝑦𝑖 𝑗

𝛼𝑖 + 1 + L
(B.5)

Appendix 2

Eq. (4.25) can be written equivalently as

Σ𝑀𝐴𝑃0 = argmax
Σ0:𝐷𝑖𝑔𝑜𝑛𝑎𝑙

M:𝐷𝑖𝑔𝑜𝑛𝑎𝑙
X≥0

(L |X| − 𝑡𝑟 {RX}

+(𝛼 + 1) log |M| − 𝑒𝑡𝑟 [BM])

subject to

Σ−1
1 ≤ X

Σ−1
0 ≤ M

It also can be written as:

Σ−1
1 ≤ X as (Σ0 + HH𝐻 )−1 ≤ X

By using Schur complement, the equation above can be written as:

(Σ0 + HH𝐻 )−1 ≤ X ⇐⇒

X I

I Σ0 + HH𝐻

 ≥ 0
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Similarly,

Σ−1
0 ≤ M ⇐⇒


M I

I Σ0

 ≥ 0

.

Then, P1 reduces to :

Σ0 = argmax
Σ0:𝐷𝑖𝑔𝑜𝑛𝑎𝑙

M:𝐷𝑖𝑔𝑜𝑛𝑎𝑙
X≥0

(L |X| − 𝑡𝑟 {RX}

+(𝛼 + 1) log |M| − 𝑡𝑟 [BM])

P2: subject to 
M I

I Σ0

 ≥ 0


X I

I Σ0 + HH𝐻

 ≥ 0

M ≥ X. (B.6)
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Appendix C

Second Paper Derivation

C.1 Section title

Here is some additional information which would have detracted from the point being

made in the main article.

C.1.1 Subsection title

This section even has subtitles

Appendix 1

1. Eq. (4.25) can be written equivalently as

R[ = argmax
Γ0:𝐷𝑖𝑔𝑜𝑛𝑎𝑙

M:𝐷𝑖𝑔𝑜𝑛𝑎𝑙
Ψ≥0

(L |Ψ| − 𝑡𝑟 {RΨ}

+(𝛼 + 1) log |M| − 𝑒𝑡𝑟 [BM])

subject to
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Γ−1
1 ≤ Ψ

Γ−1
0 ≤ M

M ≥ Ψ.

This problem can be solved by using Schur complement as shown in our previous

work in [42] :


Ψ I

I R[ + (R̂ℎ + ∆Rℎ)︸       ︷︷       ︸
Rℎ


≥ 0

Similarly, 
M I

I R[

 ≥ 0

2. In sub-optimal method (B-GLRT3), ∆Rℎ is equal to +𝜖I𝑁𝑟 then problem reduces to

R[ = argmax
Γ0:𝐷𝑖𝑔𝑜𝑛𝑎𝑙

M:𝐷𝑖𝑔𝑜𝑛𝑎𝑙
Ψ≥0

(L |Ψ| − 𝑡𝑟 {RΨ}

+(𝛼 + 1) log |M| − 𝑒𝑡𝑟 [BM])

subject to 
Ψ I

I R[ + (R̂ℎ + 𝜖I𝑁𝑟 )︸       ︷︷       ︸
Rℎ


≥ 0


M I

I R[

 ≥ 0
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M ≥ Ψ

In sub-optimal method (B-GLRT3), ∆Rℎ is equal to +𝜖I𝑁𝑟 then problem reduce to

R[ = argmax
Γ0:𝐷𝑖𝑔𝑜𝑛𝑎𝑙

M:𝐷𝑖𝑔𝑜𝑛𝑎𝑙
Ψ≥0

(L |Ψ| − 𝑡𝑟 {RΨ}

+(𝛼 + 1) log |M| − 𝑒𝑡𝑟 [BM])

subject to 
Ψ I

I R[ + (R̂ℎ + 𝜖I𝑁𝑟 )︸       ︷︷       ︸
Rℎ


≥ 0


M I

I R[

 ≥ 0

M ≥ Ψ

Appendix 2

1.

𝑃1 : argmax
Γ0:𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙

(L log |Rℎ + Γ0 |−1

−𝑡𝑟 [R (Rℎ + Γ0)−1
1 ]

+(𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [BΓ−1

0 ])

(C.1)

subject to
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(Rℎ + Γ0)−1 ≤ Ψ

Γ−1
0 ≤ M

M ≥ Ψ.

This problem can be solved according to the solution that is mentioned in appendix

(1.1).

2.

𝑃1 : argmax
ΔRℎ

(L log | (ℜ + ∆Rℎ) |−1

−𝑡𝑟 [R (ℜ + ∆Rℎ)−1]

+(𝜌 + 1) log
��Γ−1

0
�� − 𝑡𝑟 [KΓ−1

0 ])

(C.2)

subject to

(ℜ + ∆Rℎ)−1 ≤ Ψ

∥∆Rℎ∥𝐹 ≤ 𝜖 .

This equation can also be solved using Schur complement, the problemwill become:


Ψ I

I (ℜ + ∆Rℎ)

 ≥ 0
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