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ABSTRACT

A FRAMEWORK TO ANALYZE ENERGY EFFICIENCY OF MULTI-BAND
SPECTRUM SENSING ALGORITHMS

by Jay B. Patel

Cognitive radio (CR) is a device which can detect wireless communication channels

that are not in use and adapt its parameters intelligently. Networks with CRs use the

available frequency bands much more efficiently and hence have higher data rates

compare to traditional radios. Spectrum sensing is the class of techniques used by CRs to

understand its wireless environment. Recent research on evaluating multi-band spectrum

sensing algorithms is limited to only algorithm complexity and optimization; therefore,

the primary goal of the study is to devise a novel framework that analyzes a multi-band

spectrum sensing algorithm in terms of energy consumption and algorithm efficiency. The

proposed structure leads to a comparison and evaluation of a large class of multi-band

spectrum sensing algorithms. Multi-band spectrum sensing search methods such as linear,

random and binary are evaluated for energy loss and detection performance using the

proposed framework.
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1 INTRODUCTION

The internet of things (IoT) is a group of uniquely identifiable devices connected to

the internet via pre-defined protocols. Examples of IoT devices include washing machines,

smart thermostats, wearable gadgets, and smart televisions. The development and

implementation of smart cities, smart cars, smart homes, and smart grids depends on the

advancement of IoT devices. Advancement of wireless communication technology has led

to an increase in IoT devices [1].

A cognitive radio (CR), which is a smart radio, continuously obtains knowledge of the

surrounding spectrum environment to adjust the radio’s operational parameters

dynamically. Cognitive radios perform efficient data transmission due to their adaptive

behavior. One of the primary goals of the CR in IoT devices is to use empty frequency

bands belonging to a licensed primary user (PU) when the PU is not transmitting or

receiving any data. The utilization of PU frequency bands by CRs allows an unlicensed

secondary user (SU) to transfer the data efficiently. The use of CR in the IoT environment

is emerging rapidly due to the dynamic spectrum sensing capability. With the current pace

of development in the telecommunication industry, CRs will become a necessary part of

the IoT devices soon [2].

Spectrum sensing is a crucial process performed by CRs to determine the presence or

the absence of PUs in the frequency bands of interest. One-band spectrum sensing and

multi-band spectrum sensing are two categories of the spectrum sensing process. The task

of the one-band spectrum sensing method is to examine one band for its availability to

transfer the data. Coherent detection, energy detection, cyclostationary detection,

second-moment detection, and covariance detection are different strategies to perform

one-band spectrum sensing [3]–[6]. The task of a multi-band spectrum sensing method is

to find multiple bands that are available to transfer the data. The common multi-band
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spectrum sensing methods are linear detectors, parallel detectors, and wide-band detectors

as the multi-band spectrum sensing methods [3]–[6].

1.1 Motivation

The increase in wireless IoT devices leads to an increase in data traffic in free

industrial, scientific and medical (ISM) bands. Since Wi-Fi technology also relies on ISM

bands for data transfer, the ISM bands are no longer reliable bands for wireless IoT

devices to operate [2]. The implementation of 5th generation (5G) wireless

communication technology drives the rapid deployment of IoT devices. 5G technology

addresses many issues related to complex IoT requirements and architectures [7]. Also,

5G technology promises to be faster, cheaper, and more secure compared to previous

wireless communication technologies like 4th generation (4G) and long-term evolution

(LTE). The main challenges of implementing CRs as IoT devices include high energy

consumption of the device, inefficient use of spectrum sensing algorithms and

unavailability of the constant power supply. A spectrum sensing algorithm may give the

best performance in terms of detection of empty bands, but it consumes more energy.

Hence, an energy efficient algorithm with high detection performance is vital to

implement a CR as an IoT device in a restrictive energy environment.

Lack of research, a bright future, and open challenges of CRs were the driving force

of my investigation into the spectrum sensing framework. There was a need for creating a

generalized framework that considers not only the detection performance of the spectrum

sensing algorithms but also the energy consumption of the CR.

1.2 Research Objectives

The primary goal of the research is to investigate the energy consumption behavior of

the receiver front ends used in CRs. Circuit blocks such as a low noise amplifier (LNA),

band-pass filters (BPFs), mixers, a phase-locked loop (PLL) or a local oscillator (LO),

low-pass filters (LPFs), a variable gain amplifier (VGA) and an analog-to-digital converter
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(ADC) are an integral part of the receiver front end. There are three specific objectives of

the research. The first specific objective is to analyze the critical system-level factors that

dominate the energy dissipation of the receiver front end circuit blocks. The second

specific objective includes the formation of a system-level energy consumption model that

can determine the amount of energy loss of a multi-band spectrum sensing algorithm. The

third specific objective requires the energy loss model to be compatible with the

multi-band detection performance framework so that the comparison between energy loss

and detection performance can be made.

1.3 Thesis Organization

The organization of this paper is as follows. In Chapter 2 the background knowledge

needed to understand the study is presented. In Chapter 3, the past research on the power

dissipation of a receiver front end, one-band spectrum sensing methods and multi-band

spectrum sensing methods are discussed in detail. Chapter 4 introduces a system model to

analyze the energy consumption of the receiver front end. Chapter 5 serves as a

framework to analyze multi-band spectrum sensing algorithms. Chapter 6 defines the

algorithms used to present the simulation results. The simulation and results of the

proposed research are presented in Chapter 7. Chapter 8 concludes the thesis and

mentions potential research areas for further improvement of the study.
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2 BACKGROUND KNOWLEDGE

The analysis of receiver front end hardware requires the understanding of essential

signal processing concepts. This section presents essential background knowledge to

interpret the development and investigation of previous work.

2.1 Power Spectral Density

Signals received at the receiver front end are always random due to thermal noise. A

power spectral density (PSD) is the parameter used to evaluate the energy distribution of

the received signal over frequency.

Rxx(τ) = E[X(t) ·X(t + τ)] (1)

where E[.] represents the expectation operation, and X is a random process.

Sxx(ω) =
∫

∞

−∞

Rxx · (τ)e− jωτdτ

Sxx(ω)(dB) = 10 · log10(Sxx(ω)) (2)

Autocorrelation is the correlation of the received signal with its delayed copy as

shown in (1). For random signals, the PSD is the Fourier transform of the autocorrelation

function defined in (2). Fig. 1 shows the PSD in decibels of a noisy 10 kHz sinusoidal

signal.
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Fig. 1. Power spectral density.

2.2 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is a critical parameter in communication systems

because the signal received at the receiver front end includes random thermal noise.

Therefore, the performance of the receiver depends on the magnitude of the noise power

in the received signal.

SNR =
E[X2]

σ2
N

SNRdB = 10 · log10

(
E[X2]

σ2
N

)
(3)

where X is a random signal, and σ2
N is the noise variance.

The signal-to-noise ratio is defined as the ratio of the average power of the random

signal to the variance of the noise as shown in (3). The SNR is often presented in
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decibels. Fig. 2 shows the power of a sinusoidal signal at the frequency of 10 kHz with

random noise. The y-axis represents the power of the input signal in the decibel watts,

and the x-axis denotes the frequency range in the kilohertz.

Fig. 2. Signal-to-noise ratio.

2.3 Peak-to-Average Power Ratio

The peak-to-average power ratio (PAPR) gives the information on the distribution of

the power of the received signal. The PAPR is defined as the ratio of the peak power of

the signal to the RMS value of the signal as

PAPR =
PPEAK

Prms

PAPRdB = 10 · log10

(
PPEAK

PRMS

)
(4)
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where PPEAK is the peak signal power, and PRMS is the root-mean-square (RMS) value of

the received signal power.

Generally, the sparse distribution of the signal power is desirable because it relaxes

the design complexity of the receiver front end blocks such as mixers and ADCs. A high

PAPR degrades the performance of the radio frequency (RF) systems in terms of power

dissipation and ADC resolution [8]. Fig. 3 depicts the power of multiple noisy sinusoidal

signals with different amplitude and frequency. The y-axis represents the power of the

input signals in decibel watts, and the x-axis denotes the frequency range in kilohertz.

Fig. 3. Peak-to-average power ratio.

2.4 Signal-to-Quantization Noise Ratio

Analog to digital conversion of a received signal by an ADC produces additional

quantization noise. Therefore, the signal power is compared with the quantization noise
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power to determine the effect of the quantization noise. The signal-to-quantization noise

ratio (SQNR) is defined as

SQNR =
PSig

PQN

SQNRdB = 10 · log10

(
PSig

PQN

)
(5)

where PSig is the signal power,and PQN is the quantization noise.

The high PAPR often degrades the performance of an ADC by reducing the resolution.

The effective number of bits (ENOB) is the parameter that is used to measure the

resolution of an ADC based on the PAPR and SQNR.

2.5 Third-Order Input Intercept Point

The design of an amplifier for the receiver front end is a challenging task due to

non-linearities. The non-linear behavior of the amplifier in the receiver front end

introduces the harmonics of the received signal. The third or fourth order does not affect

the performance of the amplifier if high harmonics are outside the bandwidth of the

amplifier. However, adjacent signals could produce the harmonics that are within the

bandwidth of the amplifier. Hence, in addition to primary signals, the harmonics of the

received signal also get amplified. The amplified harmonic signals interfere with the signal

of interest. As shown in Fig. 4, the green bars are the signals of interest, and the red bar

represents the third-order intermodulation products that interfere with concerned signals.

The second and third order signal often fall outside the bandwidth of the amplifier.

The third-order input intercept point (IIP3) is a theoretical point. In Fig. 5, the 3-dB

intercept point (IP3) is where the fundamental signal power and the third order signal

power theoretically intercept. The projection of the IP3 on the input power axis is the IIP3.

The IP3 value is the maximum power the amplifier can handle without introducing
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Fig. 4. Intermodulation distortion.

Fig. 5. The third-order input intercept point.

intermodulation effects. Hence, a high IP3 value is usually desirable in the receiver front

end amplifier design.
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3 LITERATURE REVIEW

Previous work in the field of receiver front end needs to be investigated to understand

the energy consumption of critical receiver front end components. The spectrum sensing

task can be divided into one-band and multi-band. There are many distinct methods to

perform spectrum sensing. In-depth examination of the previously proposed multi-band

spectrum sensing methods is key to this research.

3.1 Analysis of Receiver Front End

In digital communication systems, a signal received at the antenna passes through

many analog circuit blocks before being processed by a digital processor. The group of

RF circuitry that processes the received signal until discretization is called receiver front

end. The receiver front end has many types and contains many circuit components. This

section presents the previous work done to analyze the power consumption of the receiver

front end used in CRs.

3.1.1 Receiver Architectures

As shown in Fig. 6, a typical receiver architecture has a reconfigurable antenna, a high

dynamic range LNA and ADCs. The baseband processor does the down conversion and

the baseband processing of the received signal. However, the implementation of the

reconfigurable antenna and a wideband LNA is challenging and inefficient [9]. Also, the

ADC required in the ideal receiver needs high sampling rates. Therefore, CRs need

complex receiver front end architectures.
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Fig. 6. Ideal receiver for CRs.

3.1.1.1 Heterodyne architecture: Fig. 7 shows a classical architecture of a

receiver using heterodyne structure. In the heterodyne receiver, the received signal first

passes through a BPF. The further degraded signal from the BPF passes through an LNA

for amplification. The amplified signal gets downconverted by a mixer and LO. The

downconverted baseband signal passes through a LPF and an AGC to avoid aliasing and

clipping issues. The ADC converts the analog signal to the digital domain. The

heterodyne receiver could also have an in-phase(I) and quadrature (Q) branches after the

mixer. The heterodyne receiver is excellent in terms of adoption of different protocols and

provides satisfactory selectivity and sensitivity. However, the heterodyne receiver does not

solve the image problem. The image problem occurs during the downconversion process.

The implementation of image rejection filters solves the image problem in the receiver

front end. The heterodyne receivers also contain many analog components such as BPFs

and image rejection filters to improve performance [9]. Therefore, the power consumption

of the heterodyne receiver is high.
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Fig. 7. Simple heterodyne receiver architecture design.

3.1.1.2 Zero-IF architecture: Zero-IF stands for Zero Intermediate Frequency.

Zero-IF receiver architecture uses fewer analog components than heterodyne architecture.

Hence, the power consumption of the Zero-IF receiver is lower [9]. As shown in Fig. 8,

the received signal passes through a BPF and then an LNA similar to the heterodyne

receiver. The downconversion to I/Q branch is where the Zero-IF receiver differs from the

heterodyne receiver. In the Zero-IF receiver, the downconversion takes place only once

unlike the heterodyne receivers. Flicker noise and DC offset are major disadvantages of

Zero-IF receivers.

Fig. 8. Zero-IF receiver architecture design.
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3.1.1.3 Other architectures: Digital low-IF receivers are another type of receiver

design that combines the design ideas of the heterodyne receiver and the Zero-IF receiver.

The additional down conversion step is added in the digital domain on top of the Zero-IF

design as shown in Fig. 8. However, the image frequency problem persists. Hence, the

digital low-IF receiver requires more analog components for downconversion [9].

Bandpass sampling receivers are useful when the sampling rate of the ADC is low. The

bandpass sampling receivers take advantage of the fact that the under-sampling of a

bandpass spectrum generates duplicates of the spectrum in the low-pass region. The BPF

filter used after the antenna must be designed with minimum gain loss for the receiver to

work efficiently. The power consumption of the bandpass sampling receiver is low since

the required sampling rate of the ADC is low.

3.1.2 Receiver Front End Components Analysis

The receiver front end consists of many circuit blocks that have different requirements

of power. This section provides the information on the previous work done to derive a

model for the power consumption of receiver front end circuit blocks.

Analog filters used in the receiver front end for CRs need to be reconfigurable or

tunable to cover a wide range of frequency band. The low power consumption of a

tunable analog filter leads to degraded receiver speed [9]. Hori et al. [10] present a tunable

wideband analog filter. The figure of merit (FoM) is a model to compare a new or

upcoming model to the existing ones. The efficiency of a wideband analog filter based on

FoM is [10]

FoM =
Ptotal

N · fc ·SFDR ·N4/3 (6)

where Ptotal is the full power consumption of the wideband analog filter, N is the total

number of zeros and poles of the filter, fc is the cut-off frequency, and SFDR stands for

spurious-free dynamic range.
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Gianni et al. [9] provide information on many analog filters used in receiver front end.

The power consumption of the analog filter depends on the parameters like

complementary metal–oxide–semiconductor (CMOS) technology, the filter order, and

bandwidth. In Fig. 9, the data of the power consumption and the bandwidth of the filter is

plotted. The line in Fig. 9 is the best estimate of the linear relationship between the power

consumption and analog filter bandwidth. The mathematical representation of the line is

Pf ilter = 0.1976 ·W +13.389 (7)

where Pf ilter is the power consumed by the analog filter in milliwatt and W is the

bandwidth of the analog filter.

Fig. 9. Linear model of analog filters.
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Based on (7), there is a linear relationship between the power consumption and the

bandwidth. Hence, the power loss of the analog filter increases with the bandwidth. The

linear model in (7) is based on minimal data. Hence, the model for the analog filter cannot

be generalized.

A low-noise amplifier amplifies a weak signal received through an antenna. The

design and the operation of the LNA depend on the critical parameters like IIP3,

bandwidth, noise figure (NF), and gain. In [11], a relationship between the power

consumption of a two-stage LNA and the critical design parameter is shown as

PLNA = 2
√

Gtot · k1 · k2 · IIP31 · IIP32 (8)

where Gtot is the total gain of the amplifier, k1 and k2 are the technical parameters, IIP31

and IIP32 are the IIP3 values of the two amplifier stages.

The noise figure of a circuit block is the ratio of the input SNR to output SNR. The

degradation of the input signal’s SNR by a receiver circuit block is analyzed using the

NF.The design of LNA shown in [11] has a trade-off between the parameters like the gain,

NF and IIP3. The IIP3 and NF are small for a high gain amplifier.

Lolis et al. [12] propose a model for computing the power consumption of the LNA

based on the high-level parameters. The model to determine the power consumption of an

LNA includes a FoM. The relation between the power consumption of an LNA and

high-level parameters is

PLNA =
G · IIP3 · fc

FLNA ·FoMLNA
(9)

where G is the gain of the LNA, fc is the center frequency of the input signal, FoMLNA is

the figure of merit for LNAs, and FLNA is the operational frequency of the LNA.

Mixers are a critical part of the receiver front end. The mixers are usually placed after

the LNA as shown in Fig. 7. The outputs of LNA and LO are fed into the mixer to
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perform a non-linear operation. The mixer multiplies input signals. The multiplication

process creates outputs at the sum of the input signal frequency and the difference of the

input signal frequencies as shown in Fig. 10. In Zero-IF receiver design, the frequency of

the LO is the same as the frequency of the LNA to directly down-convert the signal to

baseband.

Fig. 10. Role of a mixer at receiver front end.

The power consumption of the mixer depends on the design parameters such as IIP3,

conversion loss, NF, and dynamic range. Due to non-linear operation of a mixer, IIP3 is a

crucial parameter to test the performance. The output signal from passive mixer usually

suffers from the loss. The dynamic range of the mixer increases with the SNR. The NF

determines the noise added by the mixer to the input signal. The NF of the mixer should

be as low as possible since the noise added by the mixer is not removable.

A phase-locked loop is used to generate reference frequencies in the receiver front

end. A phase-locked loop is a system with negative feedback. A voltage-controlled

oscillator (VCO) and comparators are integral parts of a PLL. High power consumption

and low tuning speed are the main disadvantages of a PLL [11].

The local oscillator refers to a device that can generate stable reference frequencies. A

phase-locked loop can be used as a LO to generate reference frequencies required in the
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receiver front end. The LO generates random phase variations that are known as phase

noise. Hence, the phase noise is a critical parameter in determining the performance of a

LO. The phase noise decreases with an improvement in the performance of the

oscillator [13]. The NF of the LO is directly related to the phase noise [11]. The phase

noise and the power consumption of a LO have a reciprocal relationship. Hence, reducing

the power consumption means increasing the phase noise and NF. Gao et al. [11]

designed a model for the power consumption of an injection-locked oscillator(IJLO). As

per the model, the relationship between the power consumption of the IJLO and

high-level parameters is

PIJLO =C ·
(

R
L

)3

·NEF · k ·T
Sφ

· ω2
c

Q2 · (∆ω2)
+ k ·G · IIP3 (10)

where C represents capacitance, L represents inductance, R represents resistance, k is the

Boltzmann constant, Q is the quality factor, NEF is the Noise Excess Factor, T is the

temperature in Kelvin, ∆ω is the offset frequency, and Sφ is the noise power density.

An analog-to-digital converter is the most dominant part of the receiver front end in

terms of power consumption. The critical parameters for the ADC are the ENOB,

dynamic range, and sampling rate. There are many architectures of the ADC. Flash,

pipelined, integrating, sigma-delta are some of the known architecture of the ADC. The

flash ADC uses comparators to convert the input analog signal to bits. The flash ADC is

also the fast as the conversion from analog to digital bits happens in one clock cycle. For

N bit conversion, the flash ADC requires (2n−1) comparators. Hence, the number of

comparators needed for high-resolution flash ADC is very high. The size and power

consumption both increase exponentially for high N flash ADC. For high-speed

applications, flash ADC is a good choice.

The pipelined ADC divides the analog to digital conversion task into several stages.

Due to multiple stage design, it is possible to realize a pipeline ADC with higher
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resolution then flash ADC. However, the speed of the conversion in pipelined ADC

reduces. Integrated ADC uses an integrator circuit to do analog to digital conversion. The

integrated ADC can get up to 12-16 bit resolution. However, the integrated ADC is slower

than the pipelined version. The sigma-delta ADC uses noise shaping and oversampling

methods to achieve high resolution.

Murmann and Boris [14] collected the data on the power consumption and the

sampling rate for many different ADC designs. In Fig. 11, the plot of the power

consumption of various ADCs versus the sampling rate of the ADC is shown.

From Fig. 11, there is no clear relationship between the power consumption and the

sampling rate of the ADC. Besides, the power consumption of the ADC cannot be

modeled solely based on the sampling rate as the ENOB, SQNR, and SNR are the other

key factors to influence the ADC performance and power consumption.

Fig. 11. ADC power versus sampling rate survey.
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Heydari [15] proposed a wideband receiver power consumption model. In the model,

the power consumption of an ADC depends on parameters like reference voltage, number

of bits, and clock frequency. The power consumption model is

Pave = 2N−2 ·
(

γ
−1 ·CS ·V 2

re f · f +(1− γ)−1 ·VDD · IDD

)
(11)

where N is the resolution of the ADC, CS is the equivalent switched capacitance of each

comparator, Vre f is the reference voltage for the ADC conversion, f is the clock frequency

of the comparator, γ is the fraction of the clock period used for comparison, VDD is the

supply voltage, and IDD is the DC current drawn from the supply voltage.

3.2 One-Band Spectrum Sensing Methods

The primary goal of the one-band spectrum sensing is to detect an empty band. The

H0 hypothesis suggests that the received signal is the PU signal with noise, and the H1

hypothesis suggests that the received signal is only noise. A one-band spectrum sensing

model with H0 and H1 hypothesis can be expressed as

H0 : x(n) = s(n)+ v(n)

H1 : x(n) = v(n) (12)

where x(n) represents the signal detected at the receiver, s(n) is the PU signal, v(n) is the

additive white Gaussian noise (AWGN) signal.

Any method based on the hypothesis shown in (12) can be evaluated with the

probability of detection (Pd) and the probability of false alarm (Pf ).

Pd = p(H1|H1) (13)

Pf = p(H1|H0) (14)
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3.2.1 Energy Detector

In the energy detection method, the received signal is converted to an energy signal.

The sum of energy samples is then compared to a threshold to decide the presence or

absence of a PU [16], [17].

T (x) =
M

∑
k=1
|X(k)|2 (15)

Where T (x) is the total energy of M samples, and X(k) represents the fast Fourier

transform (FFT) of the received samples. |.| is the operation of taking absolute value of a

complex number.

As shown in Fig. 12, the samples from the RF front end are converted into the

frequency domain using a FFT algorithm. To accurately find empty bands, M samples of

the received signal per band is accumulated as shown in (15). The sum of accumulated

received samples is then compared to a threshold to decide on H0 or H1 hypothesis.

Fig. 12. Energy detector.

T (x)≷ T0 (16)

The T (x) is compared to a operating threshold (T0) to decide the appropriate

hypothesis as shown in (16).
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The performance of the energy detection method heavily depends on the selection of

T0. The value of T0 can be static or dynamic. An optimal value of T0 can increase the

performance of the energy detection method dramatically [18]. The energy detection

method does not depend on the prior information of the received signal. At a low SNR,

the performance of the energy detection method is poor [19].

The energy detection method could be handy when the frequency of the spectrum

sensing is low. There is an opportunity to optimize the energy loss of the receiver front

end because the resources are not used continuously to decide the hypothesis. The number

of sample M can also be optimized such that the receiver front end resources are used

with a minimum amount of time to get optimal performance [20].

3.2.2 Cyclostationary Detector

Rx(τ) = E[x(t) · x(t + τ)] (17)

Sx(α,τ) =
∞

∑
τ=−∞

Rx(τ) · e− j2πατ (18)

Where τ is the period of the received signal, E[.] is the expectation, S is the cyclic

spectral density (CSD), and α is the cyclic frequency.

Cyclostationary method exploits the repetitive nature of the input signal to decide the

hypothesis in (12). In some cases, the PU signal includes data redundancy to get more

protection against noise ambiguity at the receiver [21]. The method of detecting PU using

the cyclic redundancy in the received signal is called cyclostationary detection [19]. As

shown in Fig. 13, the cyclostationary detector uses the second order statistics like the

correlation of the received signal to decide the hypothesis in (12). The correlation of the

input signal is formulated in (17).
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Fig. 13. Cyclostationary detector.

Based on the CSD shown in (18), the updated hypothesis to detect the presence of the

PU can be shown as

H0 : Sx(α,τ) = Ss(α,τ)+Sv(α,τ)

H1 : Sx(α,τ) = Sv(α,τ) (19)

The cyclostationary method depends on the prior information about PU’s data. The

performance of the cyclostationary method is superior to the energy detector method since

the second order statics distinguish the PU signal from the noise. An optimized

cyclostationary method is also available where complexity and sensing time is an issue in

implementation [22].

The cyclostationary method depends heavily on the second order statics which

complicates the post-processing of the signal. The autocorrelation requires two cycles of

the input signal. The sensing time increases due to the compilation of two cycles of the

input signal. From the energy consumption perspective, the cyclostationary method

provides less optimization than the energy detection method.

3.2.3 Matched Filter Detector

T (x) =
M

∑
n=1

x(n) · x∗p(n) (20)

where x∗p is the complex conjugate of the saved pilot data of the PU, and M is the total

number of samples collected.
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The matched filter detection depends on the knowledge of the pilot data transmitted

by the PU [23], [24]. The known pilots are used to compute the test statistics. The

comparison of the test statistics with the threshold determines the result. As shown in

Fig. 14, the received signal is multiplied with the known pilots to generate the test

statistics. The result of the test statistics is then used to decide the hypothesis in (12) by

comparing the test statistics to the threshold.

Fig. 14. Matched filter detector.

As shown in (20), the test statistics can be calculated using the complex conjugate of

the known pilots of the PU. The calculated test statistic is then compared to a threshold as

shown in (16) to decide the correct hypothesis.

The matched filter detection may perform better than the cyclostationary detection

method since the determination of band status can be done faster. Similar to the energy

detection method, the performance of the matched filter detection method depends on the

selection of the threshold. Dynamic selection of the threshold makes the matched filter

method optimal.

In terms of energy consumption of the RF front end, the matched filter detection

method could be beneficial for a small M. Due to the perfect knowledge of pilots of the

PU, the fast detection of a full band is possible. Fast detection saves the receiver front end

energy. However, the assumption that the information about the PU signal is available is

not practical in most situations.
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3.2.4 Other Methods

One-band detection can also be done using the covariance method. In the covariance

method, a model of the received samples is used in conjunction with the singular value

decomposition technique to decide the hypothesis in (12) [25], [26]. The process of

determining the hypothesis includes the calculation of the eigenvalues along with a

threshold. Similar to energy detection, the threshold limits the detection performance. The

assumption for the covariance based method includes no prior knowledge of the PU.

However, the computational complexity is very high since the method requires complex

matrix manipulation. In terms of energy consumption of the receiver front end resources,

the covariance method is as efficient as the energy detector method. The extra

computation complexity makes the covariance based detection method inefficient

compared to the energy detection method.

Due to recent advancement in the field of machine learning, many machine learning

based spectrum sensing algorithms are proposed. In [27], [28], the authors have posted

the spectrum sensing problem as supervised and unsupervised classification. Based on the

classifier, a vector of probability is inferred to decide the state of the frequency band in

question. The primary goal of the machine learning based spectrum sensing algorithms is

to detect the pattern of the PU signal and use the detected patterns to decide the status of

the band. The detection performance of machine learning based methods depends heavily

on computational complexity. The IoT based CR does not have high computational

complexity to train and save large machine learning models continuously. Besides, the

time to train the model and the classification delay are other parameters that are taken into

account while deciding the detection performance of the machine learning based methods.

The receiver front end resources are heavily used during the model training. The receiver

front end resources lose energy while the training is running. Hence, machine learning

based methods may not be a realistic option in a restrictive energy environment.
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3.3 Multi-Band Spectrum Sensing for Primary Detection

Multi-band spectrum sensing divides a large band into B small sub-bands

(s1,s2,s3, ...,sB) as shown in Fig. 15, and finds the PU present in the spectrum. In

multi-band spectrum sensing scenario, the hypothesis H0 is defined as all the B

sub-bands are empty. While the hypothesis H1 is defined as the full bands that belong to

the set of PU bands L and empty if the band does not belong to the set L. The size of the

set L is the same as the total number of the PU bands. The size of set L is B when all the

bands are filled with PU. The multi-band hypothesis is formed as

H0,i : xi(n) = vi(n) i = 1 . . .B,

H1,i : xi(n) = si(n)+vi(n) i ∈ L

xi(n) = vi(n) i 6∈ L (21)

Fig. 15. Multi-band spectrum sensing.

T (xi)≷ T0,i (22)
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The performance matrix of a multi-band spectrum sensing algorithm is simplified into

(22) if there is no correlation between the sub-bands [29]. Each sub-band in the spectrum

is compared to an operating threshold to decide the presence of a PU. A general

performance matrix to incorporate the detection of multiple bands is discussed in detail in

Chapter 6.

3.3.1 Serial Detector

In the serial detection method, the sub-bands are scanned one by one to find PUs. The

receiver front end needs to have some reconfigurable resources to search multiple bands

serially. The BPF and LO are adjustable circuit blocks of the receiver front end [29].

3.3.1.1 Adjustable BPF: With an adjustable BPF, the receiver front end can

sense sub-bands one by one. After tuning the BPF to a specific sub-band, one-band

spectrum sensing methods can determine the activity of the PU. The design of the

wideband receiver with configurable BPF is challenging [30]. Hence, the implementation

of the adjustable BPF is expensive. A wideband receiver also requires a wideband ADC,

and the wideband ADC uses more power than a narrowband ADC. Therefore, the receiver

front end consumes more energy with the adjustable BPF.

3.3.1.2 Tunable LO: A local oscillator generates the reference frequency of

interest. The reference frequency from the LO helps down-convert a sub-band located at a

high frequency. Since the LO downconverts the signal, the output signal is a lowpass

signal. Hence, a low sampling rate ADC is required. Due to the low sampling rate ADC,

the receiver front end consumes less energy. The downside of the tunable LO

configuration is the slow speed of tuning. The speed of the spectrum sensing is limited by

the speed of the tunable LO.

3.3.2 Wavelet Detector

The wavelet-based detection method is useful when the locations of the sub-bands are

not known [31], [32]. The location of the sub-bands are shown in Fig. 15 as f1, f2, . . . , fB.

26



As shown in Fig. 16, the incoming signal is converted into the PSD using the FFT

algorithm. The wavelet transform operates on the PSD of the received signal. The

transformed signal is used to detect any singularities [33]. The singularities help identify

edges of sub-bands.

Fig. 16. Wavelet detector.

The wavelet-based sensing can be energy efficient as the receiver front end needs to

collect only a limited number of sample. However, to identify the sub-band edges

accurately, the computational complexity of the wavelet-based detection method increases

significantly.

3.3.3 Joint Detector

In multi-band spectrum sensing, the joint detection method performs the one-band

spectrum sensing process for multiple bands in parallel [34]. As shown in Fig. 17, the

input signal is converted to parallel. After the conversion from serial to parallel, the signal

is transformed into the frequency domain PSD using the FFT algorithm. The PSD of each

band is used to detect full or empty band using one-band spectrum sensing methods

discussed in Chapter 3.2. Different thresholds decide the activity of a PU at each arm of

the joint detector. Hence, the joint detection method provides a vector of thresholds for

the sub-bands. Due to the different threshold for each sub-band, the efficiency of the joint

detection algorithm increases [35]. At each parallel stage, the one-band spectrum sensing

method can be different. However, the use of many one-band spectrum sensing methods

in parallel increases the computational complexity of the receiver. The energy

consumption of the joint detection is high because the high number of samples required to

do parallel detection.
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Fig. 17. Joint detector.

3.3.4 Filter Bank-Based Detector

The filter bank-based method requires a bank of discrete BPFs to convert the received

signal into many different sub-bands [36], [37]. As shown in Fig. 18, sub-bands at the

output of BPFs are processed using one-band spectrum sensing methods. Since the filter

bank increases the complexity of the receiver by requiring many hardware changes, the

filter bank-based method consumes more energy [29].

Fig. 18. Filter bank-based detector.

28



T (xi) =
M

∑
k=1
|Xi(k)|2 i = 1 . . .B (23)

where Xi(k) is the Fourier transform of the input signal xi(n) for ith sub-band. The test

statistics for each sub-band using the energy detector is shown in (23).

3.3.5 Other Detectors

Compressive spectrum sensing uses a sub-Nyquist sampling rate to reconstruct the

received signal. If the PU signal is sparse in the frequency domain, the signal in the

frequency band can be detected using a lower sampling rate than the sampling rate

suggested by Nyquist theorem [38], [39]. For example, to correctly construct the spectrum

at 1 GHz, the sampling rate needs to be at least 2 GHz as per Nyquist theorem. However,

the signal can be reconstructed using sub-Nyquist sampling rates if the signal at 1 GHz is

sparse, and the spectrum is scarce. The lower sampling rate reduces the sampling rate

requirement of ADC; therefore, the energy consumption of the receiver front end may

also be relaxed. In a restrictive energy environment, the compressive sensing method

could be handy. Due to the lower sampling rate, the received signal suffers from degraded

SNR. Also, the non-linearities in the receiver front end components like mixers and

amplifiers affect the sub-Nyquist sampling negatively.

Knowledge of signal propagation angle used by the PU also opens up a new

opportunity to do multi-band spectrum sensing. Spectrum sensing based on the

information of propagation angle is called angle spectrum sensing. Due to the deployment

of multiple input multiple output (MIMO) and beamforming systems, there could be a

place where SU can use the same frequency band as PU if the frequency band used by the

SU does not cross the propagation angle of the PU [40]. The concept of angle spectrum

sensing is beneficial in terms of energy saving as the spectrum bands can be used by both

PU and SU simultaneously.
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Blind spectrum sensing is another type of multi-band spectrum sensing where no

information about the PU signal is required. The blind spectrum sensing is the case in

many scenarios and environments due to the increase in the frequency domain traffic [41].

The energy consumption of the receiver front end depends on the spectrum activity. If the

spectrum is full with high SNR signals, the energy expenditure of the receiver front end is

high.
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4 SYSTEM MODEL

In the CR environment, the energy sources are often limited. Chapter 4 defines the

mode of operations of the CR. Utilizing tools from recent works, a model to calculate and

analyze the energy consumption of a receiver front end is discussed in Chapter 4.2.

4.1 Receiver’s Operation Status

In the communication system, there are times when the receiver is not receiving any

data nor doing the spectrum sensing. Hence, the receiver changes status based on the

operation. The receiver holds one of the four statuses: 1) transient; 2) active; 3) sleep; and

4) ideal. In active status, the receiver is either receiving the data or scanning the spectrum

to find empty bands. In ideal status, the power to the receiver is on, but the receiver is

neither receiving the data nor scanning the spectrum for empty bands. In transient status,

the receiver is transitioning from one status to another status, and the active components

of the circuit are getting settled into the new status. In sleep status, the power to the

receiver front end is turned off. The power consumption in the active status is the highest

since all of the components of receiver front end are running. The power consumption of

the ideal status is higher than the sleep status but lower than the active status. All four

statuses of the receiver are shown in Fig. 19. The power consumption of the transient

status may not be as smooth as shown in Fig. 19 as the transient power consumption in

RF integrated circuits depends on dose rate [42].

The total operating time, T, of the receiver is defined as

T = TActive +TIdle +TTransient +TSleep (24)

Based on (24), the total energy consumption of the receiver front end is

Etot = PActive ·TActive +PIdle ·TIdle +PTransient ·TTransient +PSleep ·TSleep (25)
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Fig. 19. Receiver operation status monitor.

The energy consumption during the idle and sleep status is very low compared to the

energy consumption of the active status [8]. Since energy consumption during the

transient time is unstable and lower than the idle status, the energy consumption of the

transient state is also ignored.

The energy consumption of the active status can further be broken down into

spectrum sensing mode and data receiving mode as

EActive = Esns +Edata

EActive = Psns ·Tsns +Pdata ·Tdata (26)

Since we are only interested in energy loss during spectrum sensing, energy loss

during data receiving is ignored. Hence, the total spectrum sensing energy loss is

Esns = Psns ·Tsns (27)
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4.2 Receiver Front End Energy Model

Fig. 20 shows a generalized structure of receiver front end architecture with the

critical components like an LNA, a splitter, multipliers, LPFs, and ADCs. The receiver is

of the quadrature type which is widely popular in software defined radios (SDRs) [9].

Outputs of in-phase and quadrature ADCs are transferred to the digital processing devices

such as field-programmable gate arrays (FPGAs) to generate a spectrum using the FFT

algorithm. The spectrum is then analyzed using various spectrum sensing algorithms to

decide the state of the band.

Fig. 20. Receiver front end architecture for energy model.

To build a flexible CR that can work with wideband signals, the VGA needs to be

compatible with the wideband signal. The power consumption of the VGA depends on

key high-level parameters such as the SNR, CMOS technology, and phase noise [43]–[45].

If the phase noise requirements are relaxed, then for a given 3-dB bandwidth and input

voltage signal range, the power consumption of the VGA depends on the design of the

CMOS circuit and power supply.
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The power consumption of the LNA calculated in (9) also includes the power

consumption of the ADC. The power consumption of the ADC used with the LNA is

assumed to be constant. Therefore, the power consumption of the reconfigurable LNA can

be calculated using (9) only if the ADC power consumption is considered constant. Since

there is no strict requirement of the NF and gain, the power consumption of the LNA can

be assumed constant.

The splitter and mixers are the components of the receiver front end whose power

consumption depends on the parameters such as the NF and IIP3. The power consumption

of the mixers and splitter should be as low as possible due to the power constraint

requirements of the IoT devices. There are ways to reduce the power consumption of the

mixers and splitters by putting constraints of the design parameters like phase noise and

supply voltage [46].

The power consumption of LPFs does not depend on the input signal frequency. The

power of the LPF may increase with an increase in the bandwidth of the filter depending

on the design. For a fixed bandwidth, the power consumption of a LPF does not change

significantly.

The ADC performance depends on the parameters like the input signal swing, speed

of the analog to digital conversion, number of bits, and quantization noise. A system level

model of the ADC can be derived by dividing the ADC model into two parts [47]. The

first component is the comparator and the second component is the digital circuit that

converts outputs of the comparators to the digital numbers [47]. The ADC used in this

work is a high-speed Nyquist rate ADC. The power model of the ADC does not depend

on the actual implementation method of the ADC such as flash and pipeline [47]. A

model for the power dissipation of an ADC is [8]

PADC =
V 2

dd ·Lmin ·
(
Fsample +Fsignal

)
10(−0.1525·N1+4.838) (28)
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where Vdd is the ADC supply voltage, Lmin is the size of the CMOS technology node,

Fsample is the frequency of the comparators, Fsignal is the frequency of the signal, and N1

is the effective bit resolution.

The bit resolution based on the quantization noise of the ADC is also known as

effective number of bits. According to Cui et al. [48], the resolution N1 is a function of

the SQNR and PAPR as

N1 =
SQNR(dB)+PAPR(dB)−4.77(dB)

6.02
(29)

If we assume that the signal frequency Fsignal is half or less of the Fsample as per

Nyquist theorem, (28) can be written as [48], [49]

PADC =
V 2

dd ·Lmin ·Fsample · 3
2

10(−0.1525·N1+4.838) (30)

Hence, the power consumption of the ADC depends on the signal parameters such as

the SNR, PAPR, and Fsample. The power consumption of the multipliers and splitter is

very low and does not vary with the vital signal parameters; therefore, the power

consumption of the multipliers and splitter is ignored.

PTotal = PLNA +PLO +2 ·PLPF +2 ·PVGA +2 ·PADC

Since the power consumption of the BPF, LPF, LNA and VGA does not depend on

the signal parameters like the SNR and Fsample, the power consumption of these blocks

can be assumed constant.

POther = PLNA +PLO +2 ·PLPF +2 ·PVGA

Therefore, the total power loss of the receiver front end is

PTotal = POther +2 ·PADC (31)
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Based on (27) and (31), the energy consumption based on the spectrum sensing time

can be calculated as

ETotal = (POther +2 ·PADC) ·Tsns (32)

ETotal = EOther +2 ·EADC (33)

The total energy consumption by the RF front end is in terms of the spectrum sensing

time, SNR, PAPR, and Fsample. The energy consumed by the other component is constant.

The sensing time depends on the sampling frequency, Fsample, and number of samples per

band, M.

Tsns =
M

Fsample
(34)

From (30) and (34),

EADC =
V 2

dd ·Lmin ·M · 3
2

10(−0.1525·N1+4.838) (35)

Therefore the energy consumption of the ADC also depends on the number of

samples per band, M. Combining (33) and (35) gives the energy consumption formula for

the receiver front end.

ETotal = EOther +
V 2

dd ·Lmin ·M ·3
10(−0.1525·N1+4.838) (36)

The energy consumption model derived in (36) applies to the receiver front end

architecture shown in Fig. 20. The model for energy consumption of an ADC shown in

(35) can also be applied to the parallel energy detectors shown in Chapters 3.3.3 and 3.3.4.
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5 A FRAMEWORK FOR THE ANALYSIS OF MULTI-BAND SPECTRUM
SENSING

In the multi-band spectrum sensing problem, the main goal is to estimate multiple

empty bands locations in the multi-band spectrum. Sirkeci and Collins [50] propose a

framework to find PUs in the multi-band spectrum sensing scenario. In this section, a

modified version of the multi-band framework in [50] is used to find empty bands. The

assumption is that the spectrum is divided into multiple bands, and the empty bands

occupy a subset of these bands. In the following, the maximum number of available bands

(B) and the maximum number of empty bands (nmax) are assumed to be known. Let H0

denote the null hypothesis or full spectrum hypothesis corresponding to the scenario

where all the bands are occupied with the PU, and let H j denote the jth hypothesis for

which the bands in the set L j 6= /0 are the empty bands. The received signal

xi = [xi(1),xi(2), . . . ,xi(M)] at the ith band is composed of M samples and can be

modeled under the given hypotheses as

H0 : xi = si +vi i = 1 . . .B,

H j : xi = si +vi i 6∈ L j, j = 1 . . .N

xi = vi i ∈ L j, j = 1 . . .N (37)

If H j occurs, then the task is to determine the set L j based on the received signal x. A

given decision strategy will decompose RB×M into N +1 disjoint decision regions

(R0,R1, . . . ,RN) such that if x ∈R j, then the hypothesis H j is assumed to be realized.

The following sections describe various methods to analyze various spectrum sensing

search strategies.

5.1 Single Empty Band Detection Performance Framework

In this section, strategies for detecting and locating a single empty band in a

multi-band spectrum are presented. Specifically, if the empty band is defined as j, then the
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set L j in (37) can be defined as L j = { j}, j = 1 . . .B. Here H j refers to the hypothesis that

j the band is empty. Hence, there are B+1 hypotheses, with N = B H j hypotheses and

one full spectrum hypothesis. Based on the definition of L j, the H j and full spectrum

hypotheses are defined as Hi, i = 1 . . .B, and H0, respectively with known probabilities

p(Hi) and p(H0) respectively. The strategy decides the best possible location of a single

empty band.

The optimal decision strategy for the single empty band detection problem is known

as the generalized likelihood ratio test (GLRT) [50]. The optimality criterion is to

maximize the area under the curve (AUC) for the localized receiver operating

characteristics (LROC). The probability of the false positive is

PFP =
B

∑
i=1

∫
Ri

p(x|H0)dx (38)

where {Ri}B
i=1 denotes the decision regions for x associated with B possible empty band

locations. Similarly, the probability of correctly deciding empty band, PT P is defined as

PT P =
1

1− p(H0)

∫
RB×M−R0

B

∑
i=1

p(x|Hi)p(Hi)dx (39)

where RB×M is the complete range of x and R0 is the decision region for x under

hypothesis H0. In addition, the probability of correctly locating an empty band, PCL, after

a true positive decision, is defined as

PCL =
1

1−P(H0)

B

∑
i=1

∫
Ri

p(x|Hi)p(Hi)dx (40)

The normalization by 1
1−P(H0)

in (38) and (40) are a result of each probability being

conditioned to the event that there is an empty band.

The LROC is the analysis of the PCL versus PFP while the receiver operating

characteristics (ROC) is the analysis of the PT P versus PFP. The optimal decision strategy
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to maximize the AUC of the LROC is

T (x) = min
i∈{1...B}

p(x|Hi)p(Hi)

p(x|H0)

i(x) = arg min
i∈{1...B}

p(x|Hi)p(Hi)

p(x|H0)
(41)

Decide Hi(x) if T (x)< T0, else decide H0

5.2 Multiple Empty Bands Detection Performance Framework

In this section, decision strategies for an unknown number of empty bands are

presented. The multi-band decision strategies such as the free response ROC (FROC),

signal absent abscissa FROC (SAA-FROC), alternate free response ROC (AFROC), and

signal absent abscissa AFROC (SAA-AFROC) are used to analyze the detection

performance of multi-band spectrum sensing methods [50]. The assumption is that the

prior knowledge of the input signal is not known. Hence, the spectrum sensing method

used for finding an empty band is of energy detector type.

All the FROC analyses assume that the H j hypothesis contain n(n > 1) empty bands

at locations r1 . . .rn. The goal is to find a strategy that identifies if the signal x contains

empty-bands and if so, find the the best approximation n̂ empty bands and their

approximate locations r̂1, . . . , r̂n. The probability mass function (PMF) of the number of

empty bands is denoted by pn(n), and the joint PMF for the locations of these empty

bands is denoted by pr1...rn(r1 . . .rn). For convenience, the number of empty bands and

their locations are noted as θ = (n,r1 . . .rn) and its distribution as p𝜃(θ).

Estimated parameter vector is denoted as θ̂ = (n̂, r̂1 . . . r̂n). The likelihood ratio is

L(x|θ) =
p(x|∪N

i=1 Hi,n,r1, . . . ,rn)

p(x|H0)
(42)

where ∪N
i=1Hi corresponds to the union of H j hypotheses.
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In [50], the function u(θ , θ̂) which counts the fraction of correctly located empty

bands is given as

u(θ , θ̂) =
# of correct localizations

n

=
∑

n
i=1 1{ri∈{r̂1,...,r̂n̂}}

n
(43)

where 1A denotes the indicator function which is equal to 1 when the event A is true, and

zero otherwise. The decision strategy will utilize u(θ , θ̂) to weight each estimate choice,

giving those choices with the most significant fraction of correctly located empty bands a

high weighting factor.

AFROC is the analysis of the empty band detection fraction FSD versus the probability

of false positives PFP. In [50], the equations to plot AFROC curve are

FSD = ∑
θ

p𝜃(θ)
∫

R(1)
p(x|∪N

i=1 Hi,θ)u(θ , θ̂)dx (44)

PFP = p(H0)
∫

R(1)
p(x|H0)dx+(1−P(H0))∑

θ

p𝜃(θ)
∫

R(1)
p(x|∪N

i=1 Hi)v(θ , θ̂)dx(45)

where R(1) = RB×M−R0. In [50], the counting function v(θ , θ̂) is defined so that it

equates to one if a false localization occurs and, it equates to zero otherwise

v(θ , θ̃) =
{

1 NFL(θ , θ̃)≥ 1
0 no false localizations

where the total number of false localizations is defined as

NFL(θ , θ̃) =
n̂

∑
i=1

1{r̂i /∈{r1,...,rn}} (46)

For the SAA-AFROC analysis, the false positives from full spectrum hypothesis

bands are not counted. Hence, the second term in the definition of PFP is ignored, which

is same as setting v(θ , θ̂) = 0.
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The FROC is the analysis of the signal detection fraction FSD, given in (44), versus

the average number of false positives N̄FP defined as

N̄FP = p(H0)
∫

R(1)
p(x|H0)n̂(x)dx+(1−P(H0))∑

θ

p𝜃(θ)
∫

R(1)
A(x,θ , θ̂)dx (47)

where A(x,θ , θ̂) = p(x|∪N
i=1 Hi)NFL(θ , θ̂), R(1) = RB×M−R0, and NFL(θ , θ̂) is given

in (46).

Similar to SAA-AFROC curve, the decision strategy for SAA-FROC is given by

removing the false positives from full spectrum hypothesis bands [50].
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6 MULTI-BAND SPECTRUM SENSING ALGORITHMS

As shown in (35), the energy consumption of ADC depends on the number of samples

M. The following linear, random, and binary empty band search algorithms use the fact

that the ADC energy loss depends on M to calculate the energy consumption of receiver

front end.

6.1 Linear Search

The goal of the linear search is to explore the spectrum from the lowest frequency to a

high frequency in a sequential manner. In Fig. 21, there are B bands with signals

s1,s2, . . . ,sB at frequencies f1, f2, . . . , fB. There are N empty bands and (B−N) bands

occupied by PUs. The bands occupied with PUs are noted as PU1,PU2, . . . ,PUB−N and

the empty bands are noted by E1,E2, . . . ,EN . As noted in Fig. 21, the linear search

algorithm starts the search for empty bands from the band at frequency f1 and then

proceeds to the next band f2. The linear search algorithm continues the search

sequentially until the desired number of empty bands is found, or the search over all B

bands is completed. The number of steps is the total number of bands the linear algorithm

transverses. If the algorithm finds the desired number of bands in k steps, the number of

samples needed for the spectrum sensing is M · k.
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Fig. 21. Linear search.

6.2 Random Search Without Replacement

Random search without replacement looks for empty bands randomly. Unlike linear

search, the frequency bands are not scanned sequentially from low to high in random

search without replacement. The spectrum is scanned randomly as shown in Fig. 22. The

number of steps taken by the random search without replacement is equal to the steps

taken by the linear search. The random search without replacement scans a sub-band only

once in one run. Similar to the linear search, if the random search without replacement

algorithm finds the empty bands in k steps, the number of samples needed for the

spectrum sensing is M · k. For a constant nmax, k is directly proportional to B.
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Fig. 22. Random search without replacement.

6.3 Random Search With Replacement

The random search with replacement is, as the name suggests, the pursuit of an empty

band by randomly picking a sub-band out of all available bands at each trial. It is possible

that the random search with replacement algorithm searches the same sub-band multiple

times in one run as shown in Fig. 23. The random search with replacement algorithm

usually takes more steps than the linear and the random search without replacement to

find empty sub-bands.

The random search with replacement may seem unnecessary as the number of steps to

find an empty band is high. However, when PUs are using the spectrum in a burst mode,

the random search with replacing is handy. In a burst mode, the PU is using the spectrum

for very short data transfers. The random search may look for a band occupied with a

bursty PU and in the same search recheck the same band to find the band empty. Hence,

the detection performance of random search with replacement may be better than the

linear search.
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Fig. 23. Random search with replacement.

Since the energy loss of the receiver front end depends on the number of steps, the

energy performance of the linear, random without replace and random with replace

algorithms in terms of energy consumption can be shown as

Elinear = ERandomw/oreplace < ERandomw/replace (48)

6.4 Binary Search

Binary search implementation is different from linear and random searches. In binary

search, the spectrum is assumed to have the total number of bands as B = 2l where l is a

positive integer. As shown in Fig. 24, the binary search algorithm divides the whole

spectrum into two high bandwidth group of bands. For each group band, M number of

samples are collected to form a test statistic. The test statistic is compared with a

operating threshold to determine the possible empty group bands. If test statistics of the
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left group of bands is lower than the threshold, as shown in Fig. 24, the left sub-band

spectrum is further divided into two sub-bands. The same process of calculating the test

statistic for threshold comparison is followed. The method of dividing and comparing

continues until the algorithm finds the smallest sub-bands that are less than the threshold.

The step in the binary search is the action of dividing the band as shown in Fig. 24. If at

any stage, a large bandwidth sub-band group has higher energy than the threshold, each

small bandwidth sub-band in the group is considered full.

Fig. 24. Binary search.

The maximum number of steps the algorithm can take is l. The bandwidth of the

group band in the first step is always higher than the bandwidth of the group band in the

second step. Hence, the sampling frequency needed to sense the band reduces

logarithmically as the number of steps increases. The reduction in sampling frequency

results in energy saving as the energy performance of the receiver front end depends on

sampling frequency as shown in (30). The noise power is proportional to the bandwidth of
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the spectrum. In a narrow band, the noise power is low compared to a broader band.

Hence, the detection performance of the binary search increases with the decrease in the

bandwidth of the spectrum. The number of samples needed for spectrum sensing scales as

M · log2(k) where k is proportional to B.
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Table 1
Simulation Environment

Parameters Value
B 16

SNR 3,5,10 dB
M 10

Vdd 3 V
SQNR 60 dB
Lmin 10 µm

7 SIMULATIONS AND RESULTS

Monte-Carlo simulations are used to obtain detection performance and energy curves.

The effects of multipath and fading are not considered in the simulations. For simplicity,

all PUs have the same SNR in the multi-band spectrum of interest. In all the simulation

below, the total number of bands is B = 16. Below, we also assume P(H0) = 0.5, and

P(Hi) = 1/(2N) for i = 1 . . .N, and the SU does not know about the maximum number

of empty bands (nmax) available. In the simulations, n̂max is the required maximum

number of empty bands. The simulation is done using the Python programming language.

There are no hardware measurements taken for the simulation. Values of the parameters

used in the simulation are shown in Table 1.

7.1 Simulation Description

Due to the non-linearities of the RF front end circuit blocks, there is a possibility that

the transmitted signal energy leaks to the surrounding bands. The leakage of energy from

one band to the surrounding bands is also considered to make the simulation more

applicable. In the simulation, each PU signal leaks to the surrounding two sub-bands.

A detailed description of the simulation algorithm is given in Appendix A. The PU’s

signal contains the samples of the transmitted data and the noise as shown in (37). Each

sample of the PU’s signal is modeled as the sum of two zero-mean unit variance complex

Gaussian distribution samples scaled by an amplitude. The sample of the PU is scaled by
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the amplitude of PU’s signal and the noise sample is scaled by the noise signal amplitude.

For the linear and random search methods, M samples per band are added to generate a

test statistics vector to compare to a threshold. However, in the binary search method, the

sub-bands have different bandwidths and contain multiple PUs. Hence, a sample of the

PU is scaled as

SA =
√

Px ·α (49)

where SA is the amplitude of a sample, Px is the power of the PU’s signal and α is the

ratio of the total number of PUs present in the group of sub-bands to the total number of

sub-bands in the group.

For example, in the step one of the binary search shown in Fig. 24, the left group of

the band has three PUs in the group of four sub-bands. Hence, the value of α is 3/4. The

right group, the four red bands, in step one has the value of α = 1 since all four bands are

PUs. In binary search, the test statics is calculated using the sum of M samples generated

using complex Gaussian distribution of zero-mean unit variance. Each complex Gaussian

sample of PU is scaled by the amplitude determined using (49).

7.2 Single Empty-Band Detection Simulations

In single empty band detection simulation, the purpose of the SU is to find one empty

band regardless of the nmax. As discussed in Chapter 5.1, the LROC method is used to

measure the detection performance.

Based on (36), the energy consumption of the receiver front end depends on the PAPR.

With an increase in the SNR, the PAPR also increases; hence, the receiver power

consumption increases.

Fig. 25 shows the energy consumption for linear search, random search without

replacement and random search with replacement. As expected, the energy consumption

of the random search with replacement is slightly higher than the linear search and
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Fig. 25. Energy consumption plots for single empty band detection methods with different
SNRs.

random search without replacement. Also, the energy consumption of the received signal

with 3 dB SNR is lower than the signal with 10 dB SNR as expected.

Fig. 26 illustrates the energy loss of three one-band search methods with respect to

the different number of empty bands. When most of the spectrum is empty and available

50



−10 −5 0 5 10 15 20 25
Threshold (dB)

5

10

15

20

25

En
er
gy
 C
on
s 
m
pt
io
n 
(μ
 J)

Linear nmax = 8 
Random w/o replace nmax = 8 
Random w/ replace nmax = 8 
Linear nmax = 1 
Random w/o replace nmax = 1 
Random w/ replace nmax = 1 

Fig. 26. Energy consumption plot for single empty band detection methods with different
n̂max.

for data transfer, the number of steps taken to find the empty bands are low. The energy

consumption of the scenario where more empty bands are available should be lower

compared to the situation where less empty bands are available. As expected, the energy
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consumption is lower when there are eight empty bands available compared to four empty

band scenario.

7.3 Multiple Empty-Band Detection Simulations

In multi-band spectrum sensing, the goal of the algorithms is to find more than one

empty band efficiently. The linear search, random search, and binary search are the three

most straightforward algorithms to locate multiple empty bands in a multi-band spectrum.

In this section, simulations of multi-band spectrum sensing algorithms using the

framework of energy consumption and detection performance are presented.

Fig. 27, 28 show the FROC analysis of the linear search algorithm with respect to the

thresholds for n̂max = 2 and n̂max = 4. The SNR of the simulation is set to 10 dB for nmax

= 4. Fig. 28 also shows the energy loss of the ADC as a function of the thresholds. The

energy loss of the ADC is normalized by 28.2 µJ. In Fig. 28, the number of the average

false positive fraction is greater than one as anticipated. Therefore, the average number of

false positive is plotted separately. The energy loss of the ADC decreases with an increase

in the false positive rate. As the AUC of true positive rate plot increases, the AUC of the

energy plot decreases. Low AUC for the energy plot means good energy efficiency.

Fig. 27, 29 show the SAA-FROC investigation with respect to the thresholds in the

simulation environment where SNR is 3 dB and nmax = 4. The linear search algorithm is

used to detect two and four empty bands in the spectrum. Average false positive plots

in Fig. 29 show the detection performance analysis respect to the thresholds.
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Fig. 27. Energy consumption and true detection performance analysis of the linear search
spectrum sensing method using the FROC and SAA-FROC frameworks.
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Fig. 28. False detection performance analysis of the linear search spectrum sensing method
using the FROC framework.
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Fig. 29. False detection performance analysis of the linear search spectrum sensing method
using the SAA-FROC framework.

Fig. 30 displays the AFROC performance framework along with the energy

dissipation of the ADC for the thresholds. The simulation is done with nmax = 1 and SNR

of 5 dB. The AUC for the true positive fraction is very low because the algorithm

searches for two and four empty bands where there is only one empty band available.
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Since most of the spectrum is full with PU’s activity, the algorithm takes more steps to

find empty bands. The false positive fraction reaches to one quickly. At the peak of the

true positive rate curve, both the energy dissipation of the ADC and the false positive rate

are high. Hence, the detection performance is poor.
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Fig. 30. Energy consumption and detection performance analysis of the linear search
spectrum sensing method using the AFROC framework.
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Fig. 31 exhibit the interpretation of the SAA-AFROC framework in conjunction with

the energy consumption of the ADC. The simulation environment includes SNR of 3 dB

and nmax = 8. The plot of the false positive fraction, the true positive fraction, and the

energy loss of the ADC is shown to examine the behavior of the receiver front end energy

loss with respect to the detection performance of the spectrum sensing algorithm.
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Fig. 31. Energy consumption and detection performance analysis of the linear search
spectrum sensing method using the SAA-AFROC framework.
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Fig. 32 shows the FROC performance plot of the linear and binary search. The plot

was simulated with the SNR of 3 dB and nmax = 4. The AUC for the linear search is

higher than the binary search. Therefore, the linear search performs better than the binary

search. However, Fig. 33 shows that the binary search has the lowest energy consumption.
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Fig. 32. FROC analysis plot for the linear and binary search methods.
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Hence, the binary search is energy efficient but delivers lower detection performance than

the linear search.
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Random ŵo replace  nmμx = 1
Binary
GLRT

Fig. 33. Energy consumption plots for multiple empty band detection methods with respect
to the threshold.

Fig. 33 shows the energy consumption plots for the GLRT, binary search, linear

search, random search without replacement, and random search with replacement. The
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linear search with n̂max = 1, random search without replacement, and random search with

replacement strategies only find one empty band while the GLRT and binary search find

multiple empty bands. The GLRT search method requires the knowledge of all the

sub-bands available in the multi-band spectrum. Hence, the energy performance of the

GLRT search does not depend on the number of steps. The energy consumption is the

highest for GLRT and does not rely on the threshold. The linear search and random search

without replacement strategies have similar energy consumption curves for n̂max = 1. The

energy loss of the random search with replacement is marginally higher than the linear

search for n̂max = 1. The linear search, random search without replacement, and random

search with replacement strategies have high energy consumption at low thresholds as the

algorithm searches the majority of the spectrum bands. As the threshold increases, energy

consumption decreases. The binary search has the lowest energy consumption. As n̂max

increase to 2, the energy consumption of the linear search is higher for the same threshold

compared to linear search with n̂max = 1. Similarly, the energy loss is high for linear

search with n̂max = 4 compared to the linear search with n̂max = 2 as expected.
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8 CONCLUSIONS AND FUTURE WORK

In this paper, a framework to analyze multi-band spectrum search techniques in terms

of energy and detection performance is introduced. The ability to have the information on

the energy consumption of the receiver front end for a particular spectrum sensing

algorithm is the most significant advantage of the proposed framework. Most of the

previous analyses only focused on the empty-band detection performance of the

multi-band spectrum sensing algorithm. The framework proposed in this research not only

elaborates the performance analysis of correctly identifying one or multiple empty bands

but also provides information on the energy loss of the receiver.

The scope of the future work of the research presented in this paper is large. The

critical assumption in the study is that PUs operate on the same the SNR. However, the

SNR of each PU in the multi-band spectrum environment is not the same in practical

situations. Hence, a modified framework to estimate the SNR of the PU can be developed

based on the presented work. The threshold is also considered constant for all of the

bands in the energy detection method. The technique of adaptive threshold can be

incorporated into the presented study to make the framework even more generalized.

The model manifested in this study to analyze the multi-band spectrum sensing

algorithms does not include phenomena like multi-path and fading. Multi-path and fading

are inevitable in communications systems. Hence, incorporating the concepts of multiple

wireless channels can make the model robust and versatile. The presented research is

based on the energy detection method. Hence, the spectrum of wideband code-division

multiple access modulation cannot be detected through the model presented in this

investigation. The techniques of machine learning can be used to detect wideband signals

that are below the noise spectrum.
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Appendix A

SIMULATION ALGORITHM

The simulation for linear and random search is done using Algorithm 1. Algorithm 1

begins with the initialization of the required variables. Within one trial of the simulation,

the spectrum containing B sub-bands is constructed using randomly picked PU’s locations.

At each sub-band, M samples of noise or a PU’s signal power plus noise is added. The

leakage of the signal energy to the surrounding bands is also calculated. After preparing

an energy vector using the received samples, linear and random search methods are used

to find empty bands. The energy loss is measured using (35). The detection performance

evaluating parameters such as true localization, true detection, false localization, and false

detection are determined based on the search method results. Table 2 contains the

references to the notation used in Algorithm 1.

Table 2
Simulation Notation

Symbol Meaning
B Total number of bands.
M Number of samples to be collected per band.
LSNR The set of the SNR values.
Dt The set of thresholds.
σ2

i The variance of signal i.
EADC The set of calculated ADC energy.
NI The size of set I.
T1 The total number of trials.
T2 Trials per threshold.
X The received signal.
EX Energy vector of the received signal.
s,v The PU and noise signal respectively.
G∼ (m,σ2) Gaussian distribution with mean of m and variance of σ2.
U ∼ (a,b) Uniform distribution in the range from a to b.
P The set containing locations of PUs.
El The leakage energy vector.
| · |2 The square of the absolute value.
S The vector of number of steps.
Search(E,Th) A spectrum search method that finds bands b that are less than

the the threshold Th.
Energy(E,smp) The method that calculates the energy of a vector E based on

the number of samples (smp).
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Algorithm 1 The Simulation Algorithm for Linear and Random Search

// Initialize variables
1: B← 16
2: M← 10
3: LSNR← 3,5,10
4: Dt ← (0 : 0.1 : 500)
5: for kk ∈ LSNR do
6: σ2

s ← LSNR[kk]
7: EADC(0 : NT1,0 : NDt )← 0
8: Tl(0 : NT1,0 : NDt )← 0
9: Tr(0 : NT1,0 : NDt )← 0

10: SNR← σ2
s

σ2
v

11: for j j ∈ T1 do
12: for ii ∈ T2 do
13: X(0 : NB)← 0
14: EX(0 : NB)← 0
15: P(0 : k)←U ∼ (0,B)
16: for i ∈ B do
17: if i ∈ P then . PU signal
18: for j ∈M do
19: s← G∼ (0,σ2

s )
20: v← G∼ (0,σ2

v )
21: X(i)← s+ v
22: EX(i)← EX(i)+ |X(i)|2
23: EX ← El . Adding spectrum leakage
24: if i /∈ P then . Noise only signal
25: for j ∈M do
26: v← G∼ (0,σ2

v )
27: X(i)← v
28: EX(i)← EX(i)+ |X(i)|2

29: S(0 : NDt )← 0
30: for i ∈ Dt do
31: b,S(i)← Search(EX ,Dt(i)) . Various search methods
32: EADC( j j, i)← Energy(EX ,M ·S(i))
33: if b 6=−1 then . True localization determination
34: Tr( j j, i)← Tr( j j, i)+1
35: if b ∈ P then
36: Tl( j j, i)← Tl( j j, i)+1
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