13 research outputs found

    Two-Stage Convolutional Neural Network for Ship and Spill Detection Using SLAR Images

    Get PDF
    This paper presents a system for the detection of ships and oil spills using side-looking airborne radar (SLAR) images. The proposed method employs a two-stage architecture composed of three pairs of convolutional neural networks (CNNs). Each pair of networks is trained to recognize a single class (ship, oil spill, and coast) by following two steps: a first network performs a coarse detection, and then, a second specialized CNN obtains the precise localization of the pixels belonging to each class. After classification, a postprocessing stage is performed by applying a morphological opening filter in order to eliminate small look-alikes, and removing those oil spills and ships that are surrounded by a minimum amount of coast. Data augmentation is performed to increase the number of samples, owing to the difficulty involved in obtaining a sufficient number of correctly labeled SLAR images. The proposed method is evaluated and compared to a single multiclass CNN architecture and to previous state-of-the-art methods using accuracy, precision, recall, F-measure, and intersection over union. The results show that the proposed method is efficient and competitive, and outperforms the approaches previously used for this task.This work was supported in part by the Spanish Government’s Ministry of Economy, Industry, and Competitiveness under Project RTC-2014-1863-8 and in part by Babcock MCS Spain under Project INAER4-14Y (IDI-20141234)

    Segmentation of SLAR Imagery with Convolutional LSTM Selectional AutoEncoders

    Get PDF
    We present a method to detect maritime oil spills from Side-Looking Airborne Radar (SLAR) sensors mounted on aircraft in order to enable a quick response of emergency services when an oil spill occurs. The proposed approach introduces a new type of neural architecture named Convolutional Long Short Term Memory Selectional AutoEncoders (CMSAE) which allows the simultaneous segmentation of multiple classes such as coast, oil spill and ships. Unlike previous works using full SLAR images, in this work only a few scanlines from the beam-scanning of radar are needed to perform the detection. The main objective is to develop a method that performs accurate segmentation using only the current and previous sensor information, in order to return a real-time response during the flight. The proposed architecture uses a series of CMSAE networks to process in parallel each of the objectives defined as different classes. The output of these networks are given to a machine learning classifier to perform the final detection. Results show that the proposed approach can reliably detect oil spills and other maritime objects in SLAR sequences, outperforming the accuracy of previous state-of-the-art methods and with a response time of only 0.76 s.This research was funded by both the Spanish Government’s Ministry of Economy, Industry and Competitiveness, European Regional Development Funds and Babcock MCS Spain through the RTC-2014-1863-8 and INAER4-14Y(IDI-20141234) projects

    Comparison of CNNs and Vision Transformers-Based Hybrid Models Using Gradient Profile Loss for Classification of Oil Spills in SAR Images

    Get PDF
    Oil spillage over a sea or ocean surface is a threat to marine and coastal ecosystems. Spaceborne synthetic aperture radar (SAR) data have been used efficiently for the detection of oil spills due to their operational capability in all-day all-weather conditions. The problem is often modeled as a semantic segmentation task. The images need to be segmented into multiple regions of interest such as sea surface, oil spill, lookalikes, ships, and land. Training of a classifier for this task is particularly challenging since there is an inherent class imbalance. In this work, we train a convolutional neural network (CNN) with multiple feature extractors for pixel-wise classification and introduce a new loss function, namely, “gradient profile” (GP) loss, which is in fact the constituent of the more generic spatial profile loss proposed for image translation problems. For the purpose of training, testing, and performance evaluation, we use a publicly available dataset with selected oil spill events verified by the European Maritime Safety Agency (EMSA). The results obtained show that the proposed CNN trained with a combination of GP, Jaccard, and focal loss functions can detect oil spills with an intersection over union (IoU) value of 63.95%. The IoU value for sea surface, lookalikes, ships, and land class is 96.00%, 60.87%, 74.61%, and 96.80%, respectively. The mean intersection over union (mIoU) value for all the classes is 78.45%, which accounts for a 13% improvement over the state of the art for this dataset. Moreover, we provide extensive ablation on different convolutional neural networks (CNNs) and vision transformers (ViTs)-based hybrid models to demonstrate the effectiveness of adding GP loss as an additional loss function for training. Results show that GP loss significantly improves the mIoU and F1_1 scores for CNNs as well as ViTs-based hybrid models. GP loss turns out to be a promising loss function in the context of deep learning with SAR images

    Fully automated SAR based oil spill detection using YOLOv4

    Get PDF

    Hydrocarbon quantification using neural networks and deep learning based hyperspectral unmixing

    Get PDF
    Hydrocarbon (HC) spills are a global issue, which can seriously impact human life and the environment, therefore early identification and remedial measures taken at an early stage are important. Thus, current research efforts aim at remotely quantifying incipient quantities of HC mixed with soils. The increased spectral and spatial resolution of hyperspectral sensors has opened ground-breaking perspectives in many industries including remote inspection of large areas and the environment. The use of subpixel detection algorithms, and in particular the use of the mixture models, has been identified as a future advance that needs to be incorporated in remote sensing. However, there are some challenging tasks since the spectral signatures of the targets of interest may not be immediately available. Moreover, real time processing and analysis is required to support fast decision-making. Progressing in this direction, this thesis pioneers and researches novel methodologies for HC quantification capable of exceeding the limitations of existing systems in terms of reduced cost and processing time with improved accuracy. Therefore the goal of this research is to develop, implement and test different methods for improving HC detection and quantification using spectral unmixing and machine learning. An efficient hybrid switch method employing neural networks and hyperspectral is proposed and investigated. This robust method switches between state of the art hyperspectral unmixing linear and nonlinear models, respectively. This procedure is well suited for the quantification of small quantities of substances within a pixel with high accuracy as the most appropriate model is employed. Central to the proposed approach is a novel method for extracting parameters to characterise the non-linearity of the data. These parameters are fed into a feedforward neural network which decides in a pixel by pixel fashion which model is more suitable. The quantification process is fully automated by applying further classification techniques to the acquired hyperspectral images. A deep learning neural network model is designed for the quantification of HC quantities mixed with soils. A three-term backpropagation algorithm with dropout is proposed to avoid overfitting and reduce the computational complexity of the model. The above methods have been evaluated using classical repository datasets from the literature and a laboratory controlled dataset. For that, an experimental procedure has been designed to produce a labelled dataset. The data was obtained by mixing and homogenizing different soil types with HC substances, respectively and measuring the reflectance with a hyperspectral sensor. Findings from the research study reveal that the two proposed models have high performance, they are suitable for the detection and quantification of HC mixed with soils, and surpass existing methods. Improvements in sensitivity, accuracy, computational time are achieved. Thus, the proposed approaches can be used to detect HC spills at an early stage in order to mitigate significant pollution from the spill areas

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Recent Advances in Oil-Spill Monitoring Using Drone-Based Radar Remote Sensing

    Get PDF
    Oil spills are regrettably common and have socioeconomic implications on communities and disastrous consequences on the marine ecosystem and maritime life. The European Space Agency (ESA) has stated that worldwide spillage exceeds 4.5 million tons of oil annually, where 45% of the amount is due to operative discharges from ships. To alleviate the severity of oil spills and promptly react to such incidents, it is crucial to have oil-spill monitoring systems, which enable an effective contingency plan to dictate the best actions for dealing with oil spills. A quick and efficient intervention requires the (1) detection of oil slicks, (2) thickness estimation, and (3) oil classification. The European Maritime Safety Agency (EMSA) highlighted in 2016 the need to use drones as complementary systems supporting satellite maritime surveillance. While multiple sensors could be used, active radars appear to be prominent for oil spill monitoring. In this chapter, we present recent advances in drone-based radar remote sensing as an effective oil spill monitoring system. It shows from the system-level perspective the capability of radar systems on drones, using high spectral resolution and parallel scanning, to perform the above-required functionalities (1, 2, and 3) and provide valuable information to contain the damage

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography
    corecore