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Two-Stage Convolutional Neural Network for Ship
and Spill Detection Using SLAR Images
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Abstract— This paper presents a system for the detection of
ships and oil spills using side-looking airborne radar (SLAR)
images. The proposed method employs a two-stage archi-
tecture composed of three pairs of convolutional neural
networks (CNNs). Each pair of networks is trained to recognize
a single class (ship, oil spill, and coast) by following two steps:
a first network performs a coarse detection, and then, a second
specialized CNN obtains the precise localization of the pixels
belonging to each class. After classification, a postprocessing stage
is performed by applying a morphological opening filter in order
to eliminate small look-alikes, and removing those oil spills and
ships that are surrounded by a minimum amount of coast. Data
augmentation is performed to increase the number of samples,
owing to the difficulty involved in obtaining a sufficient number
of correctly labeled SLAR images. The proposed method is
evaluated and compared to a single multiclass CNN architecture
and to previous state-of-the-art methods using accuracy, preci-
sion, recall, F-measure, and intersection over union. The results
show that the proposed method is efficient and competitive, and
outperforms the approaches previously used for this task.

Index Terms— Neural networks, oil spill detection, radar detec-
tion, side-looking airborne radar (SLAR), supervised learning.

I. INTRODUCTION

THE presence of an oil slick on the sea surface requires
early detection in order for active emergency proto-

cols focused on controlling the environmental impact and
ecological damage to be carried out. It is also necessary
for governments to identify illegal boats in order to impose
sanctions. Detection and monitoring are usually performed
using two principal kinds of sensors: the synthetic aperture
radar (SAR) installed on satellites and the side-looking air-
borne radar (SLAR) mounted on the aircrafts.
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Both sensors allow governments to monitor a wide marine
area 24 h a day. Since SAR has a greater range and resolution
than SLAR and can also work in all weather, SLAR can
monitor any place at any time whenever weather conditions
allow aircraft to fly, in contrast with SAR which depends on
its orbit.

Other sensors that are not based on microwaves are also
used for oil spill detection from a high altitude, such as the
optical or visible spectrum and infrared (IR). IR has visibility
limitations in adverse weather conditions (clouds, rain, and
so on), whereas visible sensors do not work well at night.
Other sensors, such as ultraviolet and the microwave radiome-
ter, are usually used to measure the thickness and volume of
the spills (not to detect them), since SAR and SLAR cannot
generally discriminate thickness, as mentioned on the work by
Leifer et al. [1], in which the behavior and specifications of the
most relevant spaceborne sensors for oil spill remote sensing
are also discussed.

SAR and SLAR have also been used for ship detection.
Both sensors make it possible to observe man-made metallic
targets on the sea. Ship detection systems can be useful to
identify the ships fishing in unauthorized waters, outside trade
routes (illegal traffic), and close to oil slicks. In the latter case,
the ship could potentially be considered as the source of the
oil spill.

Both SLAR and SAR images represent oil spills as dark
spots on the marine surface. However, some ocean phenomena
(low-wind area, surge, and so on), natural activities (coral reef,
phytoplankton blooms, fish and algae banks, and so on), and
human actions may also cause dark regions. These dark spots
are known as look-alikes. The implementation of automatic
detection methods to discriminate between look-alikes and oil
spills is an important challenge for remote sensing when the
input data are SLAR or SAR. Moreover, ships in these kinds
of images are represented as bright spots. However, small
islands or islets, sea conditions (waves, shoals of fish, and
so on), and coast–sea contours can complicate the detection
of ships because all of them cause noisy bright spots.

There are two ways to approach the oil spill detection
problem: by using multipolarization features to study the char-
acterization of the slick [2], [3] or, as mentioned in this paper,
by using the intensity image obtained from a scatter signal
without considering the parameters of the image acquisition
and formation processes.

As it is shown in [4] and [5], the majority of the methods
employed for oil spill detection using intensity SAR imagery
are based on the image processing techniques. Automatic ship
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detection with SAR has been widely studied and was most
recently reviewed in [6]–[8]. When compared to the large
amount of feasibility analyses for both SAR-based oil spill
and ship detection, very few research studies use SLAR for
the same purpose.

An important difference between SAR and SLAR images
is due to how the radar is mounted on satellites or aircrafts,
respectively. SLAR antenna changes its position and orien-
tation according to the direction and the turns made by the
maneuvers of the aircraft. Therefore, in SLAR, the observer’s
perspective is not fixed and it causes more noise than SAR.
In our case, the aircraft is a fixed-wing aircraft EADS-CASA
CN 235-300 equipped with a TERMA SLAR 9000 with two
antennas under the wings, one on each side and perpendic-
ular to the flight direction. This causes scan failures where
there is no intersection in the field of view. An example
of these failures is produced in the central zone below the
aircraft, registered as measurement errors and represented as
artifacts or noise in the SLAR image.

Another example is when the aircraft turns causing that one
of the two antennas points to the sky and, consequently, regis-
ters errors in the acquired SLAR image. These problems cause
simultaneous dark and bright spots, which can be confused in
the detection process with oil spills, coasts, ships, or other
targets. Therefore, it is more common that the noise pixels
are present in SLAR than in SAR, hindering the detection
process.

It is currently difficult to find the works that address the
detection of oil spills through the use of SLAR images. A pre-
vious method in this line was presented in [9] in which a sys-
tem to detect oil spills using recurrent neural networks (RNN)
was proposed. The RNN took several adjacent image rows as
input, obtaining a test accuracy of 97%.

In this paper, we propose the use of a two-stage convo-
lutional neural network (CNN) for the task of detecting and
locating ships, oil spills, and coasts using SLAR sensor data.
CNNs are multilayer architectures designed to extract high-
level representations of a given input. They have dramati-
cally improved the state of the art as regards image, video,
speech, and audio recognition tasks [10]–[12] due to their
ability to perform suitable feature transformations for the
task at hand. In most computer vision tasks, such as image
segmentation [13], [14] CNNs, clearly outperform traditional
approaches.

The proposed architecture uses a combination of two-stage
CNNs, each of which is specialized in the detection of a
type of target, in order to increase the classification accuracy.
This architecture provides a coarse detection of the targets
over a wide area followed by a per pixel detection to finely
locate the targets. This technique increases both the accuracy
and the time performance, as the fine detection stage is only
executed in the areas in which a target has been previously
detected by the coarse stage. In order to overcome the limited
amount of data, the proposed data augmentation process
and the combination of binary classifiers using the one-vs-
rest strategy provide better results with few training data.
As shown in the evaluation results, the presented approach
experimentally outperformed previous state-of-the-art methods

based on image processing and traditional machine learning
techniques which use hand-engineered features.

The rest of this paper is organized as follows. Section II
provides a brief review of the state of the art as regards the
automatic detection of oil spills and vessels using SAR and
SLAR sensors data. Section III details the two-stage CNN
architecture proposed. Section IV describes the metrics used to
evaluate our method, provides a description of the data set used
for the experimentation and also presents the experiments,
along with a discussion of the results. Finally, Section V shows
our conclusion and future work.

II. BACKGROUND

Until 2010, the majority of methods employed for oil spill
detection using SAR images were based on three steps: region
segmentation focused on dark spot detection, slick feature
extraction, and spot classification, as stated by Brekke and
Solberg [4]. Years later, the same authors introduced the
regularization of covariance matrices to decrease the number
of false positives (FPs) using statistical classifiers and support
vector machines (SVMs) [5].

One of the pioneering works as regards discrimi-
nation between oil spills and look-alikes was that of
Topouzelis et al. [15], who proposed a feature vector com-
posed of ten features based on the area, shape, and colors of
the instances. The results obtained when using a multilayer
perceptron (MLP) with the proposed feature vector yielded a
discrimination accuracy of 89%.

More recently, Xu et al. [16] compared certain machine
learning techniques, such as SVM, generalized linear models,
boosting trees, linear discriminant analysis, and MLP among
others, taking SAR images from RADARSAT-1 as input.
These classifiers were used to predict two classes (oil spills and
look-alikes) using 15 features. We used the receiver operating
characteristic (ROC) curve and specificity to measure the
goodness of their method, in addition to employing cross-
validation for the bias-reduced estimation of performance
measures.

The current trend in oil spill detection is that of using
approaches focused on artificial intelligence techniques.
Marghany [17] therefore presented a method based on a
genetic algorithm which used data set images acquired by
RADARSAT-2 operating in ScanSAR Narrow single-beam
mode. The method achieved an oil spill detection of 90%,
although the number of samples was small as only data
obtained during three days were used for evaluation.

Mera et al. [18] used a database with 47 SAR images
acquired by ENVISAT to test their approach based on moment
invariants. These images were then used to characterize the
shapes of candidate regions to be considered as oil spills, after
which two classifiers, an MLP with three layers (9, 11, and
2 neurons) and a classification and regression tree, were used
to distinguish between two classes: look-alikes and oil spills.
The database was composed of 155 instances of look-alikes
and 80 oil spills. We used 70% of the samples for training and
both classes were balanced.

Singha et al. [19] presented a method with which to
classify oil spills and look-alikes. It was tested using images
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from two satellites, ENVISAT (35 images) and RADARSAT-2
(83 images), captured between 2009 and 2012 in CleanSeaNet.
The images contained multiple look-alikes and oil spills.
We carried out two tests. The results of ENVISAT test were
135 instances of oil spills and 805 look-alikes, whereas those
of the RADARSAT-2 test were 226 instances of oil spills and
4923 look-alikes. The first test achieved accuracies of 61.48%
and 89.44%, whereas the second achieved 54.43% and 94.86%
for oil spills and look-alikes, respectively. However, we did
not explain how the training and test phases were designed.
Another issue of the approach in question is that the classes
were unbalanced.

Guo and Zhang [20] presented another approach that could
be used to discriminate between oil spills and other phenomena
of a similar appearance. The method defined nine different
shapes using a total of 50 eigenvalues (such as ratio, satu-
ration, Hu moments, and so on), which were selected using
differential evolution feature selection from the 95 shapes
originally computed. They later used two different classifiers:
a traditional neural network and a deep neural network. The
method attained accuracies of 94% and 84%, respectively,
with both classifiers. In work in question, the authors used
20 SAR images captured from ERS-1, ERS-2, and ENVISAT
representing 833 instances of look-alikes and 222 oil spills.

Similar to oil spill detection, most of the methods are
employed to detect ships use SAR images taken from satel-
lites. Schwegmann et al. [21] used this kind of images and
applied a low-threshold constant false alarm rate (CFAR) to
identify ship candidates, after which they proposed a Haar-
like feature extraction. The features obtained in this step were
then fed into an adaptable cascade classifier. This obtained an
accuracy of 89.38%. Another similar work based on CFAR
that proposed an intensity space for ship detection in high
resolution-SAR was presented in [22].

A further ship detection work by Wang and Chen [23]
showed how a calculation of the local optimal window map
was performed using multiple scales of the local contrast
measure. The authors then went on to calculate the local
variance weighted information entropy of each window and
apply a mean-thresholding to detect targets, obtaining an
accuracy of 100% with both homogeneous and heterogeneous
backgrounds and of 75% with strong background noise.

Studies regarding inshore ship detection, which is a more
complex task owing to the great similarity between the gray
and textured features of a ship and the harbor, are also
beginning to appear. Zhai et al. [24] presented an approach
that employed saliency map and superpixel segmentation
to discriminate ships. In this line, another method based
on hierarchical saliency used by Wang et al. [25] was
inspired by the multilayer selective cognition property of
the human visual systems. The authors used random-forest
techniques for classification. They evaluated their approach
with only four HD-SAR images, achieving success rates of
between 88% and 95%.

A method for detecting and removing land areas in order
to improve ship detection was presented by Ji et al. [26].
The authors first performed a downsampling to make potential
ships the size of 1 pixel and then used a median filter to remove

all remaining ships. Water and land were subsequently distin-
guished by using a double thresholding. The first threshold
was used globally to determine whether there was land in the
image, and the second for the roughly detection of land areas.
Finally, morphology operations were applied to remove noise
and fill in holes.

While numerous works have been proposed with the inten-
tion of separately detecting oil spills or ships in SAR imagery,
we are unaware of any that uses SLAR images for both
of these tasks. This is an important innovation, because
SLAR images have specific characteristics that distinguish
them from those of SAR such as a much lower resolution,
noise owing to bad signal scattering depending on the flight
altitude, or data that are missing as a result of occlusions
and aircraft maneuvers. SLAR images correspond to flight
sequences of different durations which, when digitized, are
transformed into images with the same size independently
of the flight duration. Therefore, a pixel in an image can
represent different scales, which produces deformations in
objects depending on the speed and the altitude of the plane.
This fact increases the object detection difficulty when using
traditional methods. Furthermore, SLAR images have a lot of
noise and artifacts that are similar to the detection targets.
These factors make the task of oil spill and ship detection
more difficult, thus leading to a low accuracy when traditional
methods are used, as discussed in this section. However, CNN
is invariant to these kind of transformations. In addition,
by applying a data augmentation process, we increase the
robustness against these kinds of transformations. In this paper,
we propose a new method based on CNNs for the detection
not only of ships and oil spills but also other targets such as
coasts. This is done by using SLAR images digitized from
scattering data as mentioned earlier. The proposed method
applies a two-stage CNN in order to overcome the limitations
of other approaches when they are used with SLAR rather
than SAR images.

III. METHOD

The proposed methodology is described in this section.
First, we design a multiclass CNN with which to obtain base-
line results. A two-stage CNN that performs a coarse detection
and a refined pixelwise classification is then proposed in order
to improve accuracy.

Various considerations were taken into account when
designing the different networks. As recommended in [27],
we have included dropout layers so as to reduce overfitting.
This technique randomly drops units along with their connec-
tions throughout the training phase. Max Pooling [28] layers
have additionally been used in order to reduce both computa-
tion time and the number of parameters required for the next
layers while controlling overfitting and providing translation
invariance. This filter is a form of nonlinear downsampling
that partitions the input image into a set of nonoverlapping
rectangles and yields the maximum value for each of these
subregions. We have also added Batch Normalization [29]
layers, since they help speed up training and improve the
overall success rate. This technique enables a normalization
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TABLE I

DESCRIPTION OF THE FOUR-CLASS NETWORK AND THE TWO-STAGE CNN ARCHITECTURE. CONV(F × K × K) DENOTES
A CONVOLUTIONAL LAYER WITH F FILTERS AND A KERNEL OF K × K , MAXPOOL (K × K ) A MAX POOLING FILTER

WITH A KERNEL OF K × K , AND FC(n) AN FC LAYER WITH n NEURONS

Fig. 1. Layout of the two-stage CNN showing the three different pairs of CNNs to classify ships, coasts, and oil spills.

process of the weights learned by the different layers after each
training minibatch. Finally, we have chosen rectified linear
unit (ReLU) [30] as the activation function, since it is com-
putationally efficient and enhances the gradient propagation
throughout the training phase, thus avoiding vanishing and
exploding gradient problems.

A. Four-Class CNN

In order to test the benefits of the proposed approach,
a single CNN that performs a multiclass classification has been
designed. This baseline CNN performs a pixelwise classifica-
tion using 28 × 28 pixel windows and outputs a one hot vector
representing the class of the central pixel, that can be either
water, oil spill, coast, or ship. We define the central pixel of a
n× n window as the pixel located at position i = j = �n/2�.

This network contains four convolutions and three max
pooling layers. The first convolution layer has 64 filters,
the second and the third 32, and the fourth 64. The max
pooling layer uses a 2× 2 kernel. Two fully connected layers

are stacked at the top of the network, one with 128 neurons
and the last with four. We incorporated dropout in all the layers
and used ReLU as a activation function for the entire network,
except for the last layer which uses a softmax to return the
final prediction. The complete configuration of this network
is detailed in Table I. For clarity, the dropout layers are not
shown in Table I.

The parameters and layers of this network have been tuned
to get a high accuracy. Details of this process can be found
in Section IV-D and the results for this network are shown in
Section IV-E.

B. Two-Stage CNN Architecture

As a more accurate alternative, we propose the use of a
two-stage CNN in order to perform the classification of water,
spills, coasts, and ships, employing the one-vs-rest multiclass
strategy to overcome the limited amount of training data. Fig. 1
shows the outline of the proposed architecture. The main idea
is to create pairs of specialized networks to classify each class.
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Fig. 2. Examples of SLAR images from our dataset showing oil spills (marked with a bounding box), ships (marked with circles), look-alikes (elongated
shapes in figures (a) and (c)), the noise produced by the sensor (the central vertical band that appears in all the images) and the aircraft maneuvers (the
horizontal bands that appear in the upper part of figure (b)).

The first network of each pair performs a coarse detection
of that class, and a second network performs a more precise
detection at a pixel level. The second network is only activated
when the first network detects the presence of the target class
in the input image. This operation is denoted by the symbol ⊗
in Fig. 1. The aim of this approach is, on the one hand,
to improve efficiency because a pixelwise classification is a
costly operation and, on the other hand, to improve accuracy.
Both goals are accomplished by using a total of six CNNs,
two for each class (we assume that the water class is the area
not detected by any of the CNNs).

In the first stage, the CNN takes an input image and
outputs 1 if there are any pixels from the current class within
that region. The second stage uses the images classified as 1
in the previous stage, to perform a pixelwise classification,
outputting 1 if the center pixel belongs to that class. We have
used an overlapping of half the size of the window to divide
the input image into windows. In the second step, when we
extract the windows from the previous image, we obtain a
border of pixels that cannot be classified. This is solved by
instead extracting those windows directly from the original
image.

The network topology that shown in Fig. 1 is the configura-
tion that yielded the best results performing a grid-search of its
parameters (see Section IV-D). It can be seen that the number
of kernels used for the coarse detection of oil spill and coast
increases from 16 to 64, whereas the corresponding kernel size
for the ship location decreases from 32 to 16. This difference in
the subnetwork parameters can be explained for the complexity
of the samples to be classified. Oil spills and coasts have
more variability than ships, which are small points with high
gradients. However, coast and spills are larger and they present
a higher variability in shape and gray levels. Therefore, it is
necessary a larger amount of filters in the last layers, which
are those that analyze the high-level representations.

The last stage of each CNN consists of a fully con-
nected (FC) layer which collects the output of the convolu-
tional part and performs the final classification. To feed the
FC layer with the results of the CNN layers, it is necessary
to carry out a flattening operation. This operation transforms
the output of the CNN layers into a 1-D feature vector to be
used by the FC layer for the final classification.

The output of the two-stage CNN is a combined three-
channel image, in which each channel stores the output of
each class. Pixels marked as 0 in all the three channels are
considered to be water. Since we are interested only in the
detection of ships and oil spills, information classified as coast
will be used to refine the classification of these two classes.

The complete configuration of these networks is detailed
in Table I. We incorporated dropout and batch normalization
in all the layers. We also used ReLU as an activation function
for the entire network, with the exception of the last layer
for which we used a sigmoid because it obtained better
experimental results. These details are not indicated in the
table for the sake of clarity.

The configuration parameters of the network were experi-
mentally adjusted and guided by the intrinsic characteristics
of the targets to be detected.

Ships are shown as a small bright regions in SLAR images,
as shown in Fig. 2. The main problem that arises when
detecting ships is that other floating objects, such as fish
farms or small islands, are also shown as the small bright
areas. We have, therefore, used a window size that is larger
than the size of the boats in order to take advantage of the
information in the context of the image. The two-stage CNN
shown in the first rows of Table I is used to detect the presence
of a ship. It first searches in a 28 × 28 pixel region and, if the
network finds a ships, it then enables the second network by
using a 7× 7 pixel region. In these topologies, we use more
filters in the first layer, because the ships are small and more
information can thus be obtained in fine detail.

Oil spills are shown as homogeneous dark areas of different
sizes, as shown in Fig. 2(a) and (b). In the absence of wind,
some sea bottom areas are also represented as dark zones,
as occurs with some algae formations. These phenomena are
called look-alikes and it is difficult to differentiate them from
oil spills as can be observed in Fig. 2(a) and (c). As oil spill
areas are larger than ships, we trained the CNN using 50 ×
50 pixel regions. In this case, the third layer is that which has
more filters because the oil spills are larger.

The coast is shown as a large bright area with some shadows
depicting terrain elevations. These are also characterized by a
very high contrast gradient at the edges of the coast. It is for
this reason that small islets may often be confused with ships.
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In this case, the same CNN used to detect spills is employed,
but it is trained with different samples and 28 × 28 pixel input
images are used.

C. Postprocessing

A postprocessing stage is carried out on the output of
the networks in order to improve the results. The coasts
and oil spills detected are postprocessed using an opening
morphological operation with a square kernel (K ) to eliminate
the possible small look-alikes.

A second postprocessing stage is then performed to filter out
ships or oil spills that are surrounded by a minimum amount
(λ) of coast. This error may appear with certain look-alikes
in interior areas, or with very large coastal areas whose color
similar to that of the sea. As it can be seen in Section E, this
postprocessing helps to improve the accuracy.

Algorithm 1 summarizes all the steps followed by the
proposed two-stage network. In this algorithm, I and O rep-
resent the input and output images, respectively, On accesses
the channel n of the output image O (for clarity, we used
ship, coast, and spill as channel names), and the lowercase
letters r , c, and b are regions of the image. The function
regions(I, si ze) returns a list of regions with the given size
from the input image I, the function blobs(On) returns the
set of blobs found in the corresponding channel of the output
image, and the symbol ◦ (in I ◦ K ) performs the opening
morphological operation on the image I using the square
kernel K .

D. Training Stage

Both architectures proposed in this section were trained
in the same way. The learning of the weights was per-
formed by means of the stochastic gradient descent [31],
with the consideration of adaptive learning rate proposed by
Zeiler [32]. The training lasted a maximum of 200 epochs
with early stopping when the loss did not decrease during
10 epochs.

In the case of the four-class network, the training was
performed using a mini-batch size of 16. In the case of the
two-stage network, each part of the network was individually
trained and then combined in order to create the architecture
described. The mini-batch size was set to 16 samples for the
networks in the first part of the architecture and 32 samples
for those in the second part. Section IV-D on hyperparameters
evaluation shows the experimentation performed to find these
training values.

IV. EXPERIMENTS

This section describes the evaluation metrics used to analyze
the performance of the proposed methods, the details of the
data set used for the evaluation, and the method used to
augment the data in the unbalanced classes. The evaluation of
the CNN hyperparameters using a grid search process is then
described. Finally, we present and analyze the results obtained
when considering the different metrics and compare them with
other published results.

Algorithm 1 Two-Stage CNN Algorithm
I ← input image
O← 0
foreach r ∈ regions(I, 28) do

if CoarseC N NShip(r) = 1 then
foreach c ∈ regions(r, 7) do

Oship ← Pi xelC N NShip (c)
end

end
if CoarseC N NCoast(r) = 1 then

foreach c ∈ regions(r, 7) do
Ocoast ← Pi xelC N NCoast (c)

end
end

end
foreach r ∈ regions(I, 50) do

if CoarseC N NSpill (r) = 1 then
foreach c ∈ regions(r, 14) do

Ospill ← Pi xelC N NSpill (c)
end

end
end
Ospill ← Ospill ◦ K
Ocoast ← Ocoast ◦ K
foreach b ∈ blobs(Oship) do

if |b ∩Ocoast | > λ then
Oship ← b ∩ 0

end
end
foreach b ∈ blobs(Ospill) do

if |b ∩Ocoast | > λ then
Ospill ← b ∩ 0

end
end

A. Evaluation Metrics

In order to evaluate the performance of the proposed CNN
models, four evaluation metrics widely used for this kind
of tasks have been chosen: accuracy, precision, recall, and
F-measure (F1), which can be defined as

Accuracy = TP+ TN

TP+ TN+ FP+ FN

Precision = TP

TP+ FP

Recall = TP

TP+ FN

F-measure = 2 · TP

2 · TP+ FN+ FP

where true positives (TPs) denote the number of cor-
rectly detected targets, true negatives (TN) denote the num-
ber of incorrectly detected targets, false negatives (FN)
denote the number of nondetected or missed targets, and
FPs or false alarms denote the number of incorrectly detected
targets.

The ROC curve is also used to display the results. It is
computed by plotting the true positive rate (or sensitivity,
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equivalent to recall) against the false positive rate (equivalent
to 1-specificity) at various threshold settings. The area under
the curve (AUC) is also calculated using the trapezoidal rule
to measure the goodness of discrimination.

In addition, the metric used to quantitatively evaluate the
proposed method with which to locate the three classes
considered was intersection over union (IoU) [33]. We map
each object proposal (op) onto the ground truth (gt) bound-
ing box (BB) with which it has a maximum IoU overlap.
A detection is considered to be TP if the area of overlap (ao)
ratio exceeds a certain threshold according to the following
equation:

ao = area(Bop ∩ Bgt)

area(Bop ∪ Bgt)
(1)

where area(Bop ∩ Bgt) depicts the intersection between the
object proposal and the ground truth BB and area(Bop ∪ Bgt)
depicts its union.

B. Data Set Configuration

The data set used as input in the experimentation con-
tains a total of 23 SLAR images supplied by the Spanish
Maritime Safety and Rescue Agency (SASEMAR) with a
resolution of 1157 × 482 pixels. SASEMAR is the public
authority responsible for monitoring the exclusive economic
zones in Spain and its procedures are based on reports from
the European Maritime Safety Agency. The data set samples
were captured at an approximate altitude of 4500 feet, with
a flight speed of about 200 Kn, and with a wind speed
ranging between 6 and 25 Kn. The features of SLAR images
depend on the sampling and digitalizing performed by the
TERMA-9000 sensor control software. All data are registered
in SLAR images as 8-bit integers due to the constraints of the
monitoring equipment installed on EADS-CASA CN 235-300.
Our CNN architectures use as input the SLAR images as they
are generated by the TERMA software.

As ground truth, we have considered a gray scale mask
for each SLAR image, delimiting the pixels in each target
class with a different gray value. The five classes considered
as targets: ship, oil spill, look-alike, coast, and water. It is
important to note that this labeling has been performed at pixel
level, since the goal is to evaluate both the detection and the
precise location of the points belonging to each class. In this
way, we can provide relevant information such as the count of
the different elements from each class that are present in the
image. Location is also necessary to obtain the coordinates of
ships performing illegal activities or the position of oil spills.
Furthermore, the points belonging to oil spills can be used to
detect the size and shape of spills in order to track them.

Fig. 2 shows samples of SLAR images from our data set.
They contain several examples of boats, spills, coasts, and
look-alikes, along with the noise generated by this sensor,
which depends on the aircraft trajectory and navigation maneu-
vers. Examples of noises caused under the aircraft and by
turning maneuvers are shown in Fig. 2(b) in its central and
top area, respectively. The instances of ships are marked with
a circle in the image, whereas the spills are indicated with

TABLE II

STATISTICS OF THE DATA SET: NUMBER OF INSTANCES OF EACH CLASS,
PERCENTAGE OF AREA IN PIXELS, AND AVERAGE SIDE SIZE IN PIXELS

OF THE SQUARE BB THAT CONTAINS THOSE AREAS

a BB. Fig. 2(a) and (c) contains many examples of look-alikes
around the central noise, with elongated shapes that are very
similar to those of current instances of spills.

The data set used for the experiments contains 72 instances
of ships, 14 oil spills, 172 look-alikes, and 115 blobs of coast
(Table II). Most of the image pixels (92.76%) correspond to
the water class. This fact is corroborated by observing the
average size of the samples in each class, considering the side
of its square BB.

For the experimentation, the aforementioned data set has
been divided into training, validation, and test sets, using
74% for training, 13% for validation, and 13% for evaluation,
respectively. These partitions have been made in order to
ensure that representative samples of each of the classes are
included. Two fixed sets have also been designed in order to
assess how the complexity of the samples taken as input may
influence the results. Set 1 is simpler as it does not contain
look-alikes, whereas Set 2 contains more complex samples,
including look-alikes. Due to the variability in our data set
samples, it was necessary to manually select the samples
for each set, because some SLAR images did not contain
ships or only contain noise. For that reason, we tried to balance
the training and testing sets.

The pixels of the input images in both sets are normalized
between 0 and 1.

The work by Alacid and Gil [34] presents a method with
which to detect and remove the aforementioned noise areas
which can also be seen in Fig. 2 (right). In this paper, we have
used the same method to filter images from our data set
in order to eliminate those noise areas before running the
proposed approach. Noise is not, therefore, considered in either
the training process or in the classification stage.

The size of this data set may seem small for a supervised
classifier but it should be noted that SLAR images are digital-
ized as time series in which each scanning time is represented
in the image by a certain number of rows. Each SLAR image
can, therefore, be divided into a grid and can thus be dealt
with individually. In this paper, SLAR images have been cut
into regions of 50 or 28 pixels per side (with an overlapping
of 25 and 14 pixels) to train the networks in the first stage, and
into regions of 14 or 7 pixels per side (with an overlapping of
1 pixel) in the second stage of our architecture, as discussed
in Section III. A total of up to 512 566 samples per image are,
therefore, generated overall.

Few samples are obtained when considering larger window
sizes. For example, for regions with 50 pixels on a side on
which 25 pixels overlap, we obtain around 800 samples per
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TABLE III

GRID-SEARCH OF THE HYPERPARAMETERS USING THE VALIDATION PARTITION FOR THE DIFFERENT CNNS. THE F-MEASURE (IN PERCENTAGE)
IS SHOWN, HIGHLIGHTING THE BEST RESULTS IN BOLD

Fig. 3. Data augmentation process showing the displacements and flips.
Horizontal displacement is not shown.

image. Moreover, in our data set, more than 90% of the pixels
are water, and there are fewer examples of ships and oil spills.
We consequently have a very unbalanced data set. This issue
has been solved by relying on data augmentation techniques,
as described in Section IV-C.

C. Data Augmentation

Data augmentation is applied in order to artificially increase
the size of the training set, as indicated in [28] and [35].
As the experimental results show, this process systematically
improves the accuracy. In order to augment the data of the
unbalanced classes, we focus a window around the area
of interest in which the samples of the target class were
found, and we then extract samples by moving the window
around them and performing horizontal and vertical flips.
Fig. 3 presents an example of the data augmentation process,
in which an original image and its transformations to obtain
synthetic samples are shown.

The data augmentation process is applied to the samples
of each class until the size of the class with most samples
is attained, thus balancing the number of samples per class
and signifying that all the classes contain the same amount
of samples after data augmentation. Algorithm 2 describes
the process followed to achieve data augmentation. In this
algorithm, we denote X = {x1, x2, . . . , xn} as the whole set
of samples to be augmented, C = {c1, c2, . . . , cm} as the
set containing all the classes of X , and Xc as a subset of

X containing only the samples of class c. Function gnext(X)
returns the next sample in the set X to be augmented and
faug(x) performs the data augmentation process for the sample
x following the procedure described earlier.

Algorithm 2 Data Augmentation

maxc := arg maxc∈C |Xc|
foreach c ∈ C do

while |Xc| < |Xmaxc | do
s := gnext (Xc)
Xc := Xc ∪ faug(s)

end
end

Augmentation was applied to the different training sets with
the window sizes considered. However, as the second step of
the two-stage architecture works at the pixel level and with a
small margin of context, augmentation through translation was
not applied in this stage as it would not provide new data.

D. Hyperparameters Evaluation

In order to select the best networks configuration, we have
performed a grid search [36] on the four-class network and
the two-stage CNN. First, we evaluated different window
sizes between 7 and 100 pixels per side for the input
of the networks (see Fig. 4), eventually selecting the best
parameters obtained in each case (previously mentioned in
Sections III-A and III-B).

Table III shows the best hyperparameters found after the
grid search (marked in bold). It will be noted that the most
adequate values of batch normalization and dropout differ in
each network. The best parameters in each case were used for
the subsequent experiments.

Fig. 5 shows the influence of the mini-batch size (ranging
from 8 to 128) on the training process of the four-class
network and also on the two parts of the two-stage network.
As it can be seen in these results, the best mini-batch size is
16 samples for the four-class network and the coarse networks,
and 32 samples for the pixel networks. This difference may
be due to the input window size, since for the first part of the
two-stage network a larger window size is used, and therefore
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Fig. 4. Influence of the window size on the different networks evaluated.

Fig. 5. Influence of the mini-batch size for the different networks evaluated.

it has fewer training samples. The same is true for the four-
class network, which uses a window size of 28 × 28 pixel.

We additionally performed an experiment with which to
determine the optimum size for the opening kernel used in
the postprocessing stage for spill and coast detection. We did
this by evaluating sizes from 2×2 to 10×10 (see Section F),
finding that the optimal size to be used is a 7×7 square kernel.

E. Results

After the CNNs were trained using the best values of
dropout and batch normalization indicated in Table III,
we assessed the performance of the proposed methods. This
was done by using the two test sets described in Section IV-B
without using look-alikes (Set 1) or considering them (Set 2).
None of the images in the test sets were used during the
training process. One of the images included in Set 2 was
particularly difficult because it was full of look-alikes. We ran
the four-class and the two-stage networks with these two test
sets and then assessed the performance by comparing the
results with the ground truth, pixel by pixel.

Table IV shows the results obtained at pixel level by both
approximations, with and without postprocessing, for the two
test sets. These results are shown for each class using the
metrics described in Section IV-A. In the postprocessing stage,
a morphological opening filter with a 7 × 7 square kernel
is applied to the output. Finally, those pixels classified as
spill or ship are processed using a sliding window of 21 ×
21 pixel, filtering out those that are surrounded by coast pixels
in a fraction greater than 0.3.

As it can be seen in the Table IV, the two-stage approach
improves the F-measure result obtained by the four-class
network in all the configurations evaluated (with and without
postprocessing). In the cases of both ship and coast, the two-
stage method is more than 25 points better than the four-class

Fig. 6. ROC curves of the proposed two-stage network for ships, oil spills,
and coast detection (without including the postprocessing step).

network. This improvement is slightly lower in the case of
spills owing to the presence of look-alikes identified as oil
spills. Upon comparing Sets 1 and 2, it will be observed that
the classifier obtains worse results when considering images
with look-alikes. The recall of oil spills after postprocessing
was 86.7% and 72.7% for Sets 1 and 2, respectively, showing
that our approach is capable of detecting spills but it can be
confused by look-alikes, as indicated by the precision measure
which is around 65.05% and 52.23%, respectively. A detailed
analysis of the results concerning the look-alikes is provided
in Table V. It is also observed that how the accuracy of the
proposed method improves by an average of 3.6, and in one
case by almost 9, after applying the postprocessing. For the
two sets and the three classes considered, the two-stage CNN
with postprocessing obtains an overall success rate of over
99% and a high recall value.

A possible explanation why the two-stage model outper-
forms the F-measure of the multiclass topology is that the
number of samples is relatively small for the four-class net-
work, which requires more parameters to correctly identify 4
different classes. The two-stage version has small networks
specialized in each individual class, requiring less training
data, and the first level networks are used to improve the
results of the second-level models, which are specialized to
detect a single class.

Fig. 6 shows the ROC curves calculated for ship, oil
spill, and coast outputs of the two-stage network, without the
postprocessing step, and applying different threshold levels in
order to see how it affects the sensitivity and the specificity
of the model. The higher the AUC index the better the
discrimination performed by the method. Specifically, and
using the traditional academic point system, the AUC for spills
and coast curves is in the 0.8–0.9 range, showing a good
accuracy, and the AUC for the ship curve is in the 0.9–1 range,
so it has an excellent accuracy.

The results for the spill class shown in Table IV were
obtained by considering look-alikes as water. However, this
type of formations, usually algae or corals, are very difficult
to differentiate from true oil spills, even for the human eye.
For this reason, the result obtained improves significantly if
we consider this class as an oil spill, as shown in Table V
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TABLE IV

COMPARISON OF THE RESULTS (IN PERCENTAGES) OBTAINED AT THE PIXEL LEVEL BY BOTH APPROACHES, WITH AND WITHOUT POST-PROCESSING,
AND FOR THE DIFFERENT TEST SETS, INDICATING THE RESULT BY CLASS

TABLE V

COMPARISON OF THE RESULTS OBTAINED WHEN CONSIDERING AND NOT
CONSIDERING LOOK-ALIKES AS OILS SPILLS. FOR THIS EXPERIMENT,

SPILL DETECTION WAS ONLY PERFORMED USING SET 2, BECAUSE

SET 1 DOES NOT CONTAIN LOOK-ALIKES

(row “Yes”). In order to perform this experiment, we used
the same networks with the same topology and weights, since
the number of classes remains the same (look-alikes become
part of the Spill class). We thus recommend including them
as spills, since in these cases it is better to provide a FP and
request a human operator to validate it.

Fig. 7 provides a graphical representation of the results of
both approaches. Fig. 7(a) and (b) shows the original SLAR
image and its ground truth, respectively. In the ground truth,
the green areas depict ships, the blue areas the coast, and
the red areas the spills. The results of the four-class and
two-stage CNNs after the postprocessing step are shown in
Fig. 7(c) and (d), respectively. Fig. 7(e) and (f) shows the
respective wrongly classified pixels for each approach after
postprocessing. These figures help visualize the accuracy of
the two models evaluated and to understand where the errors
are caused for each target class. As it can be seen, in both
approaches the main mistake made is the confusion between
the spill and the coast classes, since both have similar shapes
and similar gradient changes on the borders of the regions.
What is more, some look-alikes are misclassified around the
center of the image.

According to Fig. 7, the proposed topology correctly iden-
tifies the different classes. However, when measuring the error
that occurs at pixel level, unfair results are obtained (see
Table IV), since, although it might appear to make many

TABLE VI

RESULTS OBTAINED USING THE IOU METRIC AND DIFFERENT
THRESHOLD VALUES

errors, the two-stage network correctly detects the presence
and position of the objects. For this reason, and in order to
assess the localization performance, we used the IoU metric
[see (1)]. We mapped each object proposal onto its greatest
IoU in the ground truth, considering a detection to be TP if
the IoU was greater than a certain threshold λ. We evaluated
three common values for this threshold λ, 0.5, 0.3, and 0.1,
that were adequate for the task at hand considering the reduced
size of the ships. The obtained results are shown in Table VI.
In this case, the IoU metric shows that the two-stage approach
is much more accurate than the four-class CNN in the two test
sets and for the three classes considered. The four-class CNN
tends to detect larger areas than the actual size of the targets,
and the IoU obtained when mapping the detection onto the
ground truth is, therefore, usually lower than the threshold.
Note that when using λ = 0.1, our method obtains a 100%
of IoU for the spill and coast classes, and 92.86% for ships,
respectively.

Table VII shows an analysis of the contribution to the
F-measure by each part of the two-stage network. As can be
seen, the highest contribution is due to the first part of the
network (Coarse), although the second part (Pixel) improves
up to 36 points the classification of ships in Set 1. Although
the postprocessing stage has a smaller contribution, in some
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Fig. 7. Results of processing an SLAR input image and its validation ground truth. Green areas: ships. Blue areas: coast. Red areas: spills. (a) SLAR
image. (b) Ground truth. (c) Four-class CNN output after postprocessing. (d) Two-stage CNN output after postprocessing. (e) Four-class CNN error after
postprocessing. (f) Two-stage CNN error after postprocessing.

TABLE VII

ANALYSIS OF THE CONTRIBUTION TO THE FINAL RESULT BY EACH PART
OF THE TWO-STAGE NETWORK IN TERMS OF F-MEASURE

cases (as for spill detection in Set 1), it increases the final
F-measure by about nine points.

F. Comparison

In this section, we compare the proposed two-stage archi-
tecture with other methods from Oprea and Alacid [9] for
the detection (without localization) of oil spills in SLAR
images. Note that unlike the paper cited above, which only
performs detection, our method performs both detection and
localization. In order to evaluate both approaches under the

same conditions, we trained the network with the same data set
of SLAR images, using the same training and test partitions
used in [9] (which is different from that used in this paper
and described in Section IV-B), and with the same metrics
(Accuracy, Precision, and Recall).

In [9], different types of classifiers were evaluated: MLP
networks, RNN [37], long short-term memory (LSTM) net-
works [38], bidirectional RNNs (BRNN) [39], and support
vector classifiers (SVCs) with a radial basis function kernel.
Each classifier was evaluated using different configurations of
parameters, including the number of neurons on the hidden
layers, the number of hidden layers, activation functions, batch
size, dropout, and time steps length considered in the RNN.

Table VIII shows a ranking of the best results obtained with
each classifier. The details regarding the implementation and
parameters used in these methods can be found in the work
by Oprea and Alacid [9]. As it can be seen, the proposed two-
stage networks (with a kernel size of 7 × 7) outperform the
accuracy and precision of all the previous methods evaluated.
We have also included the result obtained with a smaller kernel
(5 × 5) which gets a higher recall value. As can be seen
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TABLE VIII

RANKING OF METHODS FOR DETECTION OF SPILLS: OUR TWO-STAGE
CNN APPROACH VERSUS DIFFERENT CLASSIFIERS PRESENTED IN [9]

Fig. 8. Evaluation of the kernel size used in the postprocess stage.

in Fig. 8, the larger the kernel size, the higher precision and
accuracy is obtained, as more FPs are removed. For smaller
kernel sizes, the recall increases but the precision decreases.
This allows us to adjust this parameter according to our
priority.

G. Runtime Analysis

From a practical point of view, it should be noted that the
proposed architecture can be used in applications that require
a fast response. For the detection and localization of the three
classes considered, the proposed network takes an average
of 7.81 ms to process a sweep of the SLAR sensor, whereas the
four-class network takes 106.09 ms, without considering the
network loading time. In the case of the Two-stage networks,
the time is distributed as follows: 5.92 ms for the first part of
the network and 1.89 ms for the second part, which execution
depends on the result of the first one. These runtimes were
obtained using a GeForce GTX 1070 GPU.

The two-stage networks are computationally more efficient
than the multiclass version for the following reasons: 1) the
calculation of the different networks can be parallelized; 2) the
networks from the second stage are only used when a ship,
coast, or spill is detected, and given that most pixels belong
to sea (92.76% according to Table II), mostly they are not
executed; and 3) the networks require less parameters as they
are specialized to detect a single class.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a two-stage CNN using a one-vs-
rest strategy to perform a coarse detection of large portions
of the image, followed by a refined pixelwise classification of
the areas detected in the first step. The main contributions of
this paper are summarized as follows.

1) To the best of our knowledge, this is the first approach
using CNNs for SLAR imagery. These type of images
are composed of two radar signals that come from
different antennas, so it is also worth mentioning the
use of a composite input into CNNs.

2) A two-stage CNN architecture to classify oil spills,
ships, and coast is presented. The first stage performs
a coarse detection and the second one is used to get the
exact pixels of the classes. The proposed setup improves
the efficiency and increases the accuracy with respect to
a standard multiclass CNN. It is also scalable, as it is
easy to add more specialized networks for new targets
without requiring to change the other networks.

3) An extensive experimentation is performed in order
to adjust both the hyperparameters and the network
topologies for this particular problem. A comparison
with the state-of-the-art methods for oil spill detection
in SLAR imagery shows that the proposed approach
outperforms the results of previous works.

When compared with a single pixelwise four-class CNN,
the F-measure is significantly improved in the case of the ship
and coast classes. There is, however, not much improvement in
the case of spill detection, as both approaches are confused by
look-alikes. The two-stage CNN obtains an overall accuracy
of over 99% and high recall values for the two sets and the
three classes considered.

The proposed two-stage architecture can be considered more
complex than the four-class CNN. However, the individual
configuration of each subnetwork of the two-stage network
is less complex than the four-class CNN. This fact allows
getting a better result with few samples and, on the other
hand, to improve the efficiency, because the second stage of
the network is only executed if the first stage detects the
presence of the target. For that reason, both time performance
and accuracy were higher with the two-stage based classi-
fier. The combination using one-vs-rest strategy improves the
F-measure of the classifier, because it provides specialized
networks for each class allowing to overcome the limited
amount of samples in the data set. In addition, the two-
stage architecture improves the time performance, because the
amount of pixels processed by the fine network is reduced.

Experiments using the IoU metric show excellent results
for the detection and localization of the three classes. In this
case, the two-stage approach performs the detection and local-
ization of ships much more accurately than the four-class
approach. This difference is mainly owing to the four-class
CNN detected areas, which are much larger than the actual
area of the ship, thus making the overlap area lower than the
threshold.

The proposed method has been compared with the other
state-of-the-art approaches for the same task using SLAR
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images and outperforms them as regards accuracy. It should
also be noted that our method performs both the detection and
the localization of the four classes considered using data from
an SLAR sensor as a basis, and these are noisier and have less
resolution than SAR sensors.

As future work, we would like to combine the information
obtained by the SLAR sensors with that of others such
as the visible spectrum. Information fusion could solve the
limitations of the different sensors, such as the detection of
certain types of materials by means of SLAR, or the problems
that visible spectrum sensors have at night or in conditions of
low visibility.
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