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Abstract: Oil spillage over a sea or ocean surface is a threat to marine and coastal ecosystems.
Spaceborne synthetic aperture radar (SAR) data have been used efficiently for the detection of oil
spills due to their operational capability in all-day all-weather conditions. The problem is often
modeled as a semantic segmentation task. The images need to be segmented into multiple regions
of interest such as sea surface, oil spill, lookalikes, ships, and land. Training of a classifier for this
task is particularly challenging since there is an inherent class imbalance. In this work, we train a
convolutional neural network (CNN) with multiple feature extractors for pixel-wise classification and
introduce a new loss function, namely, “gradient profile” (GP) loss, which is in fact the constituent of
the more generic spatial profile loss proposed for image translation problems. For the purpose of
training, testing, and performance evaluation, we use a publicly available dataset with selected oil
spill events verified by the European Maritime Safety Agency (EMSA). The results obtained show that
the proposed CNN trained with a combination of GP, Jaccard, and focal loss functions can detect oil
spills with an intersection over union (IoU) value of 63.95%. The IoU value for sea surface, lookalikes,
ships, and land class is 96.00%, 60.87%, 74.61%, and 96.80%, respectively. The mean intersection over
union (mIoU) value for all the classes is 78.45%, which accounts for a 13% improvement over the
state of the art for this dataset. Moreover, we provide extensive ablation on different convolutional
neural networks (CNNs) and vision transformers (ViTs)-based hybrid models to demonstrate the
effectiveness of adding GP loss as an additional loss function for training. Results show that GP loss
significantly improves the mIoU and F1 scores for CNNs as well as ViTs-based hybrid models. GP
loss turns out to be a promising loss function in the context of deep learning with SAR images.

Keywords: oil spills; synthetic aperture radar (SAR); deep convolutional neural networks (DCNNs);
vision transformers (ViTs); deep learning; semantic segmentation; marine pollution; remote sensing

1. Introduction

Oil spills are one of the major causes of sea oil pollution and they pose a significant
threat to the marine and coastal ecosystems. Ship accidents, bilge dumping, and offshore oil
platforms are the main sources of sea oil pollution [1]. Over the last few decades, spaceborne
synthetic aperture radar (SAR) has been widely used for the detection and classification
of oil spills and lookalikes. Oil on a sea surface can generally be seen as a dark stretch
in SAR images because it dampens the capillary waves and reduces the backscatter [2].
Nevertheless, dark stretches can also occur as a result of natural phenomena such as low
wind areas, algae blooms, grease ice, etc. [1,3]. They are generally called lookalikes. These
lookalikes add to the complexity of the classification problem. Even a visual inspection
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may not suffice to separate an oil spill from a lookalike, and an automated algorithm can
similarly mistake a lookalike for an oil spill and vice versa.

In this context, deep learning may prove useful. For example, semantic segmentation
with deep convolutional neural networks (DCNNs) can be used to assign a class label
to every pixel in the remotely sensed images. DCNNs are inspired by the functioning
of the human brain, which learns the complex feature from a large amount of data and
extracts information in a hierarchical manner, resulting in striking successes in the field
of remote sensing and geospatial analysis [4]. Unlike object-based detection methods,
semantic segmentation can delimit the boundaries and position of the target of interest
accurately, which renders it suitable for processing remotely sensed data [5,6]. The swath
of typical SAR images over a sea may include contextual information, such as part of the
coastline (land), ship(s), natural sea surface, and lookalike(s), besides oil spill itself [5].
Therefore, in the context of identification of oil spills, a multi-class classification framework
is needed. There are numerous classification models based on semantic segmentation,
including UNet [7–10] and DeepLab series [11], which have been used for the detection
and classification of oil spills. In spite of this, oil spill detection and its discrimination from
lookalikes remains a challenging problem, especially when multiple classes have to be
trained and tested.

Recently, the authors in [12] proposed a family of Convolutional Neural Networks
(CNNs), termed as EfficientNetV2. Usually, the training of CNNs require high powered
computational resources such as GPUs. EfficientNetV2 family has fewer trainable param-
eters which significantly reduces the training time. We intend to use EfficientNetV2 for
semantic segmentation based multiclass classification of SAR images and to highlight the
choice of GP loss as a promising loss function for training CNNs. In addition, the au-
thors in [13] proposed self-attention models, i.e., Transformers for language processing
applications [14,15]. As compared to CNNs, the Transformers have a large model capacity.
However, their generalization capability is worse. After the development of Transformers,
several attempts have been made to use the power of self-attention for different computer
vision tasks [16–18]. With increasing interest in Vision Transformers (ViTs), the authors
in [19] considered the advantages of both CNNs and ViTs to propose a new family of hybrid
models. These models are termed as CMTs: Convolutional Neural Networks Meet Vision
Transformers. CMTs obtained state of the art performance on various benchmark datasets.
The authors in [20] utilized the generalization capability of CNNs and model capacity of
Transformers to propose a new family of hybrid architectures referred to as CoAtNets. We
intend to do ablation studies on these hybrid models to show the effectiveness of using
GP loss for training hybrid models for oil spill classification problem. Our training dataset
is small and hybrid models may not prove useful for this case, nonetheless it allows us
to show the advantage of adding GP loss as an additional loss along with the focal and
Jaccard loss functions.

Related Work

The advantage of utilizing CNNs over traditional approaches is that they can be
trained end-to-end and learn the input-output mapping from examples [21]. This end-to-
end training will simplify the task and reduce the human effort to define critical thresholds
and parameters. Topouzelis et al. [22] utilized two neural networks (shallow and deep) for
classification of potential oil spills from lookalikes. Same framework has been utilized in
various later studies with SAR imagery [23,24]. The authors in [25] proposed a method for
oil spill detection and classification based on SegNet [26], which is a deep convolutional
neural network for semantic segmentation. The model is applied to SAR images with
pre-confirmed oil spill. The model performs well under high clutter conditions. However,
the model is also based on and limited to classification of SAR images into two classess
i.e., oil spill and lookalikes. The authors in [27] proposed a deep DCNN for semantic
segmentation of SAR images into multiple regions of interest. The deployed model was
trained on a publicly available oil spill dataset [28]. An instance-based segmentation model,
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namely mask region-based convolutional neural network (Mask R-CNN) is proposed for
the detection and segmentation of oil spills and lookalikes in [29]. The results conclude
that the instance-based segmentation model outperforms traditional deep learning models.
Krestenitis et al. [30] proposed a deep DCNN based on architecture of DeepLab [11] for
semantic segmentation of SAR images into regions of interest such as sea surface, oil spills,
lookalikes, ships and land. The deep learning model was trained on manually annotated
SAR images. The authors in [28] provided a comparison of existing CNNs based on
semantic segmentation for detection of oil spills and lookalikes.

Recently, the oil spill detection dataset developed by authors in [28] has been used
in several studies regarding oil spill classification. The authors in [31] developed a two-
stage deep learning framework for classification of potential oil spills. The first stage is a
23 layer CNN that classifies the patches based on the percentage of oil spill class pixels.
The second stage is a UNet CNN for semantic segmentation of SAR images. Moreover, they
used generalized Dice loss for training and evaluated their results on test dataset using
Dice score. The authors in [32] proposed a feature merge network (FMNet) for semantic
segmentation of SAR images. Initially, they utilized a threshold method to extract global
features from SAR images. After that, the results from the initial step are used to extract
high dimensional features. In the final step, the extracted features are combined with
the high dimensional features of the original SAR image. In [33], the authors proposed
a CNN based on UNet for semantic segmentation of SAR images into multiple regions
of interest, i.e., sea surface, oil spill, lookalikes, ship and land. However, the training is
performed with standard cross-entropy loss function which does not cater for the high
class imbalance. The authors in [34] proposed a two-stage framework for detection of oil
spills and ships using side-looking airborne radar (SLAR) images. It consists of three pairs
of CNNs with each pair trained to detect a specific class, i.e., ships, oil spills, and coast.
However, the authors used their own oil spill detection dataset based on SLAR images
to compute different performance metrics, i.e., precision, recall, and F1 scores. In [35],
the authors proposed an oil spill convolutional network (OSCNet) for feature extraction
and target classification in SAR images. They used an oil spill detection dataset that consists
of 20,000 SAR dark patches based on Envisat, ERS-1, ERS-2, and COSMO Sky-Med data.
The dataset is developed by Ocean Remote Sensing Institute (ORSI), Ocean University
of China (OUC). The authors stated that the proposed CNN performs better than the
hand-crafted features needed by traditional machine learning algorithms.

The training of neural networks naturally necessitates the choice of one or more loss
functions. At times, combination of multiple loss functions yields better performance.
Commonly used loss functions for CNNs in the context of semantic segmentation include
cross-entropy (CE) and focal loss. Since CE loss treats all samples and classes equally, it
is not suitable when there is a large class imbalance [36]. Typically for oil spill problems,
and remote sensing applications in general, the desired class may have fewer samples
by several orders of magnitude than other class(es). To address this concern, CE loss
can be tailored to give priority to class(es) with fewer samples. However, it can result in
noise amplification [37]. Focal loss can be considered an extension of CE loss, with an
addition of a modulating factor to facilitate differentiation between false positives and
negatives. A common denominator among these loss functions is that they classify each
pixel individually irrespective of the spatial relationship over semantically constant regions.

Until the present time, several methods have been proposed for detection and classifi-
cation of oil spills and lookalikes. Most of these are based on classification of SAR images
into just two classes of interest, i.e., oil spills and lookalikes. Oil spill events resulting from
ship accidents and illegal ship discharge (bilge dumping) are more common, creating a
need for detection of accurate position of ships besides the spillage. The detection and
classification algorithms based on multiple regions of interest such as sea surface, oil spills,
lookalikes, ships, and land areas are currently lacking. Moreover, for training CNNs,
the loss function that considers spatial relationship over semantically constant regions is
not studied to the best of our knowledge.
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In this paper, we investigate the performance of different CNNs and ViTs-based
hybrid architectures for semantic segmentation of SAR images into multiple relevant
classes, i.e., sea surface, oil spill, lookalikes, ship, and land. Moreover, we introduce the use
of a new loss function termed as GP loss, which is in fact the constituent of the more generic
spatial profile loss proposed for image translation problems [38]. It computes similarity
in gradient space between ground truth and predicted class labels by considering rows
and columns as spatial profiles, respectively. Despite a small oil spill detection dataset of
1112 SAR images, the use of GP loss as an additional loss, along with the focal and Jaccard
loss functions for training CNNs and hybrid models, results in significant performance
improvement in terms of mean intersection over union (mIoU) and F1 scores.

2. Dataset

The detection of oil spills remains a challenging problem for the research community.
Due to the absence of a common benchmark dataset, earlier work on oil spill detection
and classification [27,39,40] utilized different custom datasets corresponding to the specific
approaches used at the time. Until recently, to the best of our knowledge, there has been
no common baseline available in the literature for comparison of different deep-learning-
based semantic segmentation approaches. Krestenitis et al. [28] recently developed a
labeled dataset of several oil spill events, and it is publicly available through their website
(https://mklab.iti.gr/, accessed on 23 September 2020). The dataset contains spaceborne
SAR acquisitions containing oil spill events verified by the European Maritime Safety
Agency (EMSA) through the CleanSeaNet service. These SAR images are from the Sentinel
1 constellation operated by the European Space Agency (ESA). The images cover a ground
range of approximately 250 km in interferometric wide swath (IW) mode with a resolution
of 10 m. The images are dual-polarized, i.e., VV and VH, but only VV polarized images
were retained for developing the dataset. After a series of preprocessing steps, the authors
in [28] retained 1112 SAR images, which were split into training and test data subsets
comprising 1002 and 110 images, respectively. The dataset contains manually annotated
ground truth masks with a distinct RGB color assigned to each of the classes, viz., sea
surface, land area, oil spill, lookalikes, and ships. Two example training SAR images along
with their ground truth masks and class labels are shown in Figure 1. We use this dataset
not only for training the classifiers, but also as a benchmark to compare our results against
those published by the developers in [28].

Figure 1. Training dataset: A sample of two Sentinel 1 SAR images (left) along with ground truth
masks (right) and class labels, viz., sea surface (black), oil spill (cyan), lookalikes (red), ship (brown),
and land (green). The dataset was prepared by Krestenitis et al. [22] from the MKLab ITI-CERTH,
Greece. It comprises validated oil spill records from European Maritime Safety Agency (EMSA).

https://mklab.iti.gr/
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3. Methodology

The proposed methodology for oil spill detection is based on semantic segmentation
of SAR images. Due to irregularity in oil slick shape and texture, a single label for the
entire image is not sufficient to detect potential oil spills. Similarly, other approaches, such
as object-based detection [41] and assigning multiple labels to single image [42], do not
perform well in an oil spill detection case. In contrast, semantic segmentation classifies the
multiple classes of interest in a single image at pixel-level, making it suitable for complex
problems such as oil spill detection and classification [5,6].

3.1. UNet

UNet [7] is a popular CNN, originally proposed for biomedical image segmentation
and is also used in many remote sensing applications [8–10]. It consists of an encoder
(contracting path) and decoder (expansive path) part, as shown in Figure 2. The encoder
has a similar structure to a typical CNN. It consists of two 3 × 3 convolutional layers, each
followed by a rectified linear unit (ReLU) and a maximum pooling layer with kernel size 2 ×
2 and stride 2. At the end of each encoder block, the number of feature channels are doubled
to learn complex low-level features. The decoder consists of upsampling and concatenate
layers, followed by two 3 × 3 convolutional layers, rectified linear unit (ReLU), and a
maximum pooling layer with kernel size 2 × 2 and stride 2. Finally, a 1 × 1 convolution is
used to map the feature channels to the desired number of classes. The encoder part reduces
the spatial dimensions of input SAR image and increases the number of overall filters to
extract complex low-level feature maps. On the contrary, the decoder part transforms
high-level features by combining the feature information from the encoder part using
skip connections. Finally, the decoder maps the high-level features to output, which is a
semantic segmentation mask containing five classes of interest, i.e., sea surface, oil spills,
lookalikes, ships, and land areas.

Figure 2. UNet architecture proposed by Ronneberger et al. [7]. It consists of an encoder part that
extracts the complex low-level features by reducing the image dimensions and increasing the number
of channels. The decoder part upsamples the low-level features and maps the high-level features to
output, which is a semantic segmentation mask containing the desired number of classes, i.e., five in
our case.
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3.2. EfficientNetV2

EfficientNetV2 is a new family of CNNs proposed by Tan et al. [12]. These CNNs have
better training efficiency in terms of less trainable parameters, which reduces the training
time. These models are developed by jointly optimizing the training speed and parameter
efficiency using training aware neural architecture search (NAS) and scaling. The major
differences between the standard EfficientNet backbones and EfficientNetV2 CNNs are
as follows:

1. In initial layers, the EfficientNetV2 extensively utilizes MBConv and fused-MBConv
structures, as shown in Figure 3.

2. During training, EfficientNetV2 uses a small expansion ratio for MBConv modules. It
reduces the memory overhead and results in faster training.

3. EfficientNet uses a small kernel size of 3 × 3. It reduces the receptive field during
training, which can be compensated by adding some additional layers.

4. The original EfficientNet has a last stride 1 × 1 stage with large number of trainable
parameters. EfficientNetV2 does not utilize it to reduce memory usage and increase
the training speed.

We implement the EfficientNetV2S, EfficientNetV2B0, EfficientNetV2B1, Efficient-
NetV2B2 and EfficientNetV2B3 architectures for semantic segmentation of SAR images
into five classes, viz., sea surface, oil spill, lookalikes, ship, and land. We train all the
variants with and without the addition of GP loss to check its effectiveness in a semantic
segmentation based setting.

Figure 3. MBConv and fused-MBConv blocks extensively utilized by EfficientNetV2 CNNs. Fused-
MBConv blocks are recently proposed for better utilization of mobile or server accelerators. This
replaces depthwise and expansion convolutional layers in MBConv with a single regular convolu-
tional layer. Replacing MBConv with fused-MBConv can improve model training speed with small
memory overhead.



Remote Sens. 2022, 14, 2085 7 of 18

3.3. Convolutional Neural Networks Meet Vision Transformers (CMTs)

CMTs are a new family of hybrid models proposed by Guo et al. [19]. It has a CMT
stem which consists of a single 3 × 3 convolutional layer with stride 2 × 2 and two 3 × 3
convolutional layers with stride 1 × 1. The rest of the network is made of alternate 3 × 3
convolutional layers with stride 2 × 2 and CMT blocks, as shown in Figure 4. Each
CMT block consists of a local perception unit (LPU), lightweight multi-head self-attention
(LMHSA) module, and an inverted residual feed-forward network (IRFFN). LPU extracts
the local information and is defined as follows:

LPU(X) = DWConv(X) + X (1)

where X ∈ RH×W×d, H ×W represents the dimensions of the input image at current stage,
and d represents the dimensions of the features. DWConv(.) is depthwise convolution.
For details about LMHSA and IRFNN modules, the readers are referred to [19]. Combining
the aforementioned modules, the CMT block can be defined as follows:

X
′
i = LPU(Xi−1),

X
′′
i = LMHSA(LN(X

′
i)) + X

′
i,

Xi = IRFNN(LN(X
′′
i )) + X

′′
i .

(2)

where X
′
i and X

′′
i are outputs from the LPU and LHMSA modules for block i, respectively.

LN(.) represents layer normalization. We implement different variants of CMTs, viz.,
convolutional neural networks meet vision transformer (CMT) tiny, CMTExtraSmall, and
CMTSmall, and add a classification head at the end of each architecture for semantic
segmentation of SAR images. The classification head upsamples the features extracted by
each CMT architecture and maps the high-level features to output, which is a semantic
segmentation mask containing five classes of interest, i.e., sea surface, oil spill, lookalikes,
ship, and land.

Figure 4. An overview of the CMT architecture used for semantic segmentation of SAR images for oil
spill classification. The architecture is based on two modules, viz., CMT stem and CMT block. Each
CMT block consists of LPU, LHMSA, and IRFNN modules. For our classification problem, the input
is a 320 × 320 × 3 SAR image and output is a 320 × 320 × 5 semantic segmentation mask with five
desired classes.

3.4. Convolution and Self-Attention Networks (CoAtNets)

CoAtNets are a family of hybrid models, recently proposed by authors in [20]. CoAt-
Nets are built with two key insights which are as follows:
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1. The advantages of both depthwise convolution and self-attention can be achieved by
unifying them using simple relative attention.

2. Vertical stacking of convolution and attention layers can improve the generalization,
efficiency, and capacity of the models.

The CoAtNet models are composed of five stages, i.e., S0–S4, as shown in Figure 5.
The first stage consists of two 3× 3 convolutional layers with stride 2× 2 and 1 × 1, respec-
tively. The second and third stages perform downsampling with depthwise convolution.
Each stage consist of two 1 × 1 convolutional layers and one 3 × 3 depthwise convolution
layer. The fourth and fifth stages consist of relative attention and feed-forward network
(FFN) modules. For details about relative attention and FFN modules, the readers are
referred to [20]. We implement the CoAtNet-0 variant of this family and add a classification
head to upsample the low-level features and map the high-level features to the output,
which is a semantic segmentation mask containing all the relevant classes, i.e., five in
our case.

Figure 5. An overview of the CoAtNet architecture used for semantic segmentation of SAR images for
oil spill classification. It has five stages, viz., S0, S1, S2, S3, and S4. Each stage reduces the dimensions
of the input image by a factor of 1/2. For our classification problem, the input is a 320 × 320 × 3 SAR
image and output is a 320 × 320 × 5 semantic segmentation mask with five desired classes.

3.5. Experimental Setup

We implement the UNet CNN with different encoder backbones from the resnet
series to extract complex low-level features. These features are then upsampled by simple
decoder module of UNet CNN. Moreover, we implement the EfficientNetV2 family of
CNNs, CMTs, and CoAtNet families of hybrid models. Apart from UNet CNN, we add
a classification head to each architecture for upsampling the complex low-level features,
and map the high-level features to output for semantic segmentation of SAR images. All
the models are trained on the benchmark dataset introduced in Section 2. The models are
trained with imagenet pretrained weights for an input shape of 320 × 320 with batch size
of 12. A stochastic optimization method, namely Adam, is used. This is an efficient method
for stochastic optimization with low memory requirements [43]. We are applying data
augmentation on the fly. Random data augmentation generally improves the performance
in various computer vision and remote sensing applications [44]. More specifically, we
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apply a series of random transformations including zoom range, width shift range, and
height shift range of 0.3, rotation of 90◦, and random vertical and horizontal flips. These
random transformations are applied to SAR images as well as the ground truth masks
during the training phase.

3.6. Commonly Used Semantic Segmentation Loss Functions

This subsection briefly discusses the different loss functions used for training the
semantic segmentation networks.

3.6.1. Categorical Cross-Entropy Loss

The cross entropy is a measure of the difference between two probability distribu-
tions. Considering the case of binary classification, the cross-entropy loss is expressed as
follows [45]:

LCE(y, p) =

{
− log(p), y = 1
− log(1− p), otherwise.

(3)

where y ∈ {±1} is the ground truth class and p ∈ [0, 1] is the probability of predicted true
class, respectively. In the context of multi-class classifications, this loss is referred to as
the categorical cross-entropy loss. It measures the performance of a classification model
by comparing probability distributions of ground truths and predicted class labels. If we
define a new variable pt:

pt =

{
p, y = 1
1− p, otherwise.,

(4)

then Equation (3) can be rewritten as CE(pt) = − log(pt).

3.6.2. Categorical Focal Loss

This loss function helps in addressing the data imbalance problem. The hard exam-
ples tend to increase the classification error. Training a CNN with categorical focal loss
encourages the model to pay more attention to these examples, resulting in improved
classification performance. It prevents a large number of false negatives from saturating
the CNN during the training phase. Mathematically, the focal loss is defined by adding the
modulating factor (1− pt)γ to the cross-entropy loss [45]:

LFL(pt) = −αt(1− pt)
γ log(pt) (5)

where α and γ are the hyperparameters of focal loss.

3.6.3. Jaccard Loss

Jaccard index is one of the most commonly used metrics for semantic-segmentation-
based classification problems. It measures the similarity between ground truth mask and
predicted class labels. Considering y to be the ground truth mask and ŷ as the predicted
class labels, the Jaccard loss function can be computed as follows [46]:

Ljac(y, ŷ) = 1− (y.ŷ) + ε

(y + ŷ− y.ŷ) + ε
(6)

where ε is used to prevent division by zero. The subtrahend is equivalent to the inter-
section over union (IoU) value. Therefore, the use of Jaccard loss for the training aims to
directly increase the IoU (which itself is a commonly used figure of merit for classification
performance).
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3.7. Gradient Profile Loss

Common cross-entropy-based losses used in semantic segmentation focus on classi-
fying each pixel individually and do not take into account the spatial relationship over
semantically constant regions. To some extent, the use of IoU-based loss (Jaccard) caters for
this since it tries to increase the intersection over union of final predictions over a region.
In order to illustrate this point, Figure 6 shows three images, i.e., source A (left), target
B (center), and C (right). The targets B and C have the same number of white pixels but
their spatial structure is different. First, we compute the mean absolute difference (Dpixel)
between source A and each of the target B and C by considering each pixel independently.
As a result, we obtain the same value of 0.3750 for both targets. This method does not
capture the different spatial patterns of target B and C. Towards this end, the complex
spatial patterns in an image can be better captured by considering pixel variations along
a given direction. To demonstrate this, we consider the columns of an image as vectors
and compute the Euclidean distance between source A and each of the targets B and C.
The mean of these distances (DGP) between A and B is 10.9545. Similarly, the mean of
distances between A and C is 6.7082. By considering columns or rows of an image as spatial
profiles, we can accurately capture the complex spatial patterns.

Dpixel(A, B) = 0.3750,

Dpixel(A, C) = 0.3750,

DGP(A, B) = 10.9545,

DGP(A, C) = 6.7082.

(7)

With this motivation, we introduce the use of an additional loss that is computed in a
way which preserves the spatial structure of the target label map over the entire image, in
contrast to over regions or pixels. This is achieved by matching prediction probabilities
along horizontal and vertical directions in the output segmentation maps. The whole
row or column, a.k.a. profile, of the output prediction map is considered as a vector
and matched in vector space by computing cosine similarity. This is inspired from the
recently proposed spatial profile loss (SPL) [38] for use in image translation tasks. SPL
computes such similarities on different color spaces and gradient spaces of the image. Our
contribution is to incorporate such a matching on prediction probabilities in a semantic
segmentation task. Since we are matching probability distribution along profiles, we
compute this similarity over the gradients of prediction class maps. Formally, the similarity
over each image channel is measured as follows:

S(y, ŷ) = ∑
c

( 1
H

tr(yc.ŷτ
c ) +

1
W

tr(yτ
c .ŷc)

)
(8)

where y represents the ground truth mask of size H ×W, ŷ represents the predicted class
labels of the same dimension, tr(.) represents trace of a matrix and (.)τ represents transpose
of a matrix, and the subscript c represents each image channel. The first and second
terms compute similarity between row and column profiles of ground truth mask and the
predicated class labels, respectively. We compute the loss given in Equation (8) in the image
gradients’ space, and call it the gradient profile (GP) loss [38]:

LGP(y, ŷ) = −S(∇y,∇ŷ). (9)

The image gradients for each channel of an image can be easily computed by measur-
ing image difference between an image and its one-pixel shifted version.
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Figure 6. Graphical demonstration showing importance of complex spatial patterns in different
images with the same number of pixels. We compute mean absolute difference between source A
(left) and each of the targets B (center) and C (right). Targets B and C have the same number of white
pixels, which results in the same value of mean absolute difference. Complex spatial patterns can be
captured by considering rows or columns of an image as spatial profiles.

4. Results

The training of UNet CNN is conducted with different backbones. In particular, we
used resnet50, resnet101, and resnet152 backbones. Moreover, we provide extensive
ablation results on EfficientNetV2 CNNs, CMTs, and CoAtNet hybrid models. Among the
different loss functions, we used categorical focal loss and Jaccard loss, as well as the GP
loss. All models were trained for 62 epochs.

4.1. Comparison against State of the Art

We evaluate the performance of the classification in terms of the IoU values. The results
are compared against those from the earlier work [28] as reproduced in Table 1 (row #
1 & 2). The table provides both classwise IoU and the mIoU values. Our result (row #
4, Table 1) with resnet101 backbone offers a significant improvement in terms of mIoU,
which has increased by 13.5%, as well as the classwise IoU scores for all classes. The best
results reported in the earlier work are achieved for the mobilenetv2 backbone; we have
also outperformed those results by a significant margin for all classes except the sea
surface class. For the oil spill and lookalike classes, we improve by 10.6% and 5.47%,
respectively. Moreover, we carried out an ablation study by training DeepLabv3+ and UNet
with mobilenetv2 backbone and a combination of GP, Jaccard, and focal loss functions.
The results (row # 3 & 5, Table 1) show an improvement with mIoU score of 75.44% and
74.84%, which accounts for a 10% and 9% improvement over state of the art for this dataset,
respectively. These results emphasize the advantage of adding GP loss as an additional
loss function for training different backbones.

Additionally, we compare the results of our classification framework with results from
earlier works on classification of oil spills [28,31,32,34,35]. Table 2 illustrates the comparison
in terms of mIoU, F1 scores, datasets used for oil spills detection, and number of classes
considered for classification. Our proposed classification framework (row # 6, Table 2)
provides improved results with an mIoU score of 78.45% on the oil spill detection dataset
developed by MKLab ITI-CERTH, Greece, with five classes of interest, viz., sea surface,
oil spills, lookalikes, ship, and land (row # 2 & 3, Table 2). We also compare our results in
terms of F1 score against those published in [31] for the same dataset (row # 1, Table 2). We
achieved an F1 score of 82.47%, which accounts for a 2.47% improvement. This highlights
the significance of our proposed methodology for multi-class classification of oil spills
from lookalikes, sea surface, ship, and land. For the sake of completeness and the reader’s
interest, we are stating performance metrics reported by other studies on different datasets
(row # 4 & 5, Table 2) with fewer classes. A direct comparison of our results with those is
not possible due to difference in dataset characteristics and number of classes.
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Table 1. Comparison of classification results with the state of the art (as reported by the earlier
work [28]) assessed over the test SAR images in terms of the intersection over union (IoU) score.

Row Model Backbone Loss Functions Trainable
Parameters

Sea
Surface

Oil Spill Look-Alike Ship Land mIoU

1 UNet Resnet101 Cross entropy 51.5 M 93.90% 53.79% 39.55% 44.93% 92.68% 64.97%

2
DeepLab

v3+ Mobilenetv2 Cross entropy 2.1 M 96.43% 53.38% 55.40% 27.63% 92.44% 65.06%

3
DeepLab

v3+ Mobilenetv2
GP + Jaccard +

focal
2.1 M 96.00% 53.84% 59.34% 70.73% 97.29% 75.44%

4 UNet Resnet101
GP + Jaccard +

focal
51.5 M 96.00% 63.95% 60.87% 74.61% 96.81% 78.45%

5 UNet Mobilenetv2
GP + Jaccard +

focal
10.6 M 95.72% 59.07% 54.38% 73.56% 91.48% 74.84%

Table 2. Comparison of the proposed classification framework with state-of-the-art classification
methods based on SAR images in terms of the SAR datasets, number of classes, mIoU, and F1 scores.

Row Related Work mIoU Score F1 Score Oil Spill Dataset Number of Classes

1 Shaban et al. [31] - 80.00% MKLab ITI-CERTH, Greece. 2: Oil spills and lookalikes.

2 Fan et al. [32] 61.90% - MKLab ITI-CERTH, Greece.
5: Sea surface, oil spills,

lookalikes, ship and land.

3 Krestenitis et al. [28] 65.06% - MKLab ITI-CERTH, Greece.
5: Sea surface, oil spills,

lookalikes, ship and land.

4 Hidalgo et al. [34] - 71.00%
Spanish Maritime Safety and Rescue Agency

(SASEMAR).
3: Oil spills, ship and

land.

5 Zeng et al. [35] - 84.59% ORSI, Ocean University of China. 2: Oil spills and lookalikes.

6 Proposed methodology 78.45% 82.47% MKLab ITI-CERTH, Greece.
5: Sea surface, oil spills,

lookalikes, ship and land.

4.2. Ablation on ResNet Series

For our ablation study, we experiment with different resnet backbones trained with
different loss function combinations. The results are evaluated in terms of mIoU as well
as F1 score, as reported in Table 3. When just cross-entropy loss was used in [28] with
restnet101 backbone, the mIoU achieved was merely 64.97% (row # 1, Table 1). If we use a
combination of categorical focal and Jaccard loss, the mIoU score jumps to 76.52% (row # 3,
Table 3). Moreover, even resnet50 with 19 million fewer trainable parameters compared to
resnet101 performs better with this combination (row # 1, Table 3). Remarkably, addition
of GP loss further improves the overall classification performance in terms of both mIoU
and F1 scores for each backbone in our study. Classwise results have also been improved
by GP loss. For the oil spill class, in particular, GP loss improves the IoU score by nearly
3–5% in each backbone.
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Table 3. Ablation on different resnet backbones and different loss functions, evaluated over the test
SAR images in terms of the IoU and F1 scores.

Row
UNet

Backbone
Loss Functions

Trainable
Parameters

Sea Surface Oil Spill Look-Alike Ship Land mIoU F1 Score

1 Resnet50 Jaccard + focal 32.5 M 95.28% 59.51% 61.18% 71.88% 95.17% 76.60% 80.83%

2 Resnet50
GP + Jaccard +

focal
32.5 M 95.71% 62.76% 59.50% 72.08% 97.50% 77.51% 81.50%

3 Resnet101 Jaccard + focal 51.5 M 95.19% 58.85% 60.93% 73.07% 94.54% 76.52% 80.42%

4 Resnet101
GP + Jaccard +

focal
51.5 M 96% 63.95% 60.87% 74.61% 96.81% 78.45% 82.47%

5 Resnet152 Jaccard + focal 67.1 M 95.04% 58.35% 54.64% 71.96% 98.02% 75.60% 79.49%

6 Resnet152
GP + Jaccard +

focal
67.1 M 95.98% 62.10% 62.05% 72.87% 97.66% 78.13% 82.03%

4.3. Ablation on EfficientNetV2

We experiment with different architectures from the EfficientNetV2 family of CNNs.
The mIoU and F1 scores are used as evaluation metrics. For EfficientNetB0 (row # 3 & 4,
Table 4) with 15.7 million trainable parameters, the training with a combination of focal and
Jaccard loss resulted in mIoU and F1 scores of 64.64% and 68.61%, respectively. By adding
GP loss as an additional loss function, the mIoU and F1 scores improve to 75.27% and
79.26%, respectively. This accounts for an 11% improvement with the addition of GP loss.
For EfficientNetV2Small (row # 1 & 2, Table 4), EfficientNetV2B1 (row # 5 & 6, Table 4),
and EfficientNetV2B2 (row # 7 & 8, Table 4), there is an improvement of 2% in mIoU
and F1 scores with the addition of GP loss as an additional loss function along with focal
and Jaccard loss functions. For EfficientNetV2B3 (row # 7 & 8, Table 4), there is a 1%
improvement in mIoU and F1 scores with the addition of GP loss for training. Nevertheless,
GP loss performs well for architectures with different trainable parameters.

Table 4. Ablation on different variants of EfficientNetV2 CNNs and different loss functions, evaluated
over the test SAR images in terms of the IoU and F1 scores.

Row Model Loss Functions
Trainable

Parameters
Sea Surface Oil Spill Look-Alike Ship Land mIoU F1 Score

1 Small Jaccard + focal 30.0 M 95.39% 51.81% 59.86% 69.09% 95.95% 74.42% 78.02%

2 Small
GP + Jaccard +

focal
30.0 M 94.91% 55.10% 61.17% 73.81% 97.01% 76.40% 80.36%

3 B0 Jaccard + focal 15.7 M 94.45% 50.63% 63.32% 23.82% 90.96% 64.64% 68.61%

4 B0
GP + Jaccard +

focal
15.7 M 95.09% 54.03% 60.40% 70.47% 96.38% 75.27% 79.26%

5 B1 Jaccard + focal 16.7 M 94.97% 51.98% 62.00% 69.09% 95.33% 74.67% 78.39%

6 B1
GP + Jaccard +

focal
16.7 M 95.19% 56.42% 62.23% 72.80% 96.59% 76.65% 80.85%

7 B2 Jaccard + focal 19.2 M 94.91% 52.16% 61.88% 69.09% 95.64% 74.74% 78.59%

8 B2
GP + Jaccard +

focal
19.2 M 95.32% 55.40% 61.75% 70.95% 96.85% 76.05% 80.08%

9 B3 Jaccard + focal 24.1 M 94.79% 51.67% 59.53% 71.18% 95.78% 74.59% 78.73%

10 B3
GP + Jaccard +

focal
24.1 M 94.69% 53.91% 62.12% 69.09% 96.62% 75.29% 79.06%
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4.4. Ablation on CMTs

To check the effectiveness of GP loss as an additional loss function for training, we
experiment with CMTs: a family of hybrid models developed by combining CNNs and
ViTs. The generalization ability of CNNs and capacity of ViTs is combined for better
generalization and scaling. For CMTTiny (row # 1 & 2, Table 5) with 18.0 million trainable
parameters, the addition of GP loss results in significant improvement in terms of mIoU and
F1 scores. The mIoU score increases by 5% from 67.16% to 72.43%, and F1 score increases by
6% from 70.82% to 76.10%. The training of CMTXS with 23.8 million trainable parameters
without addition of GP loss (row # 3, Table 5) results in low mIoU and F1 scores. However,
with the addition of GP loss, the performance significantly improves, resulting in mIoU and
F1 scores of 72.72% and 76.78%, which accounts for 17% and 18% improvement, respectively.
Therefore, GP loss proves useful for training with a small training dataset. Referring to the
CMTSmall (row # 5 & 6, Table 5) with 34.6 million trainable parameters, the training without
the addition of GP loss results in mIoU and F1 scores of 41.00% and 43.43%, respectively.
These are the lowest scores among all the trained models. It accounts for a smaller number
of training images and trainable features. However, there is a significant improvement
with the addition of GP loss for training. The mIoU and F1 scores improved to 64.50% and
67.29%, which accounts for 23% and 24% improvement, respectively.

Table 5. Ablation on different CNNs and ViTs-based hybrid models and different loss functions,
evaluated over the test SAR images in terms of the IoU and F1 scores.

Row Model Loss Functions
Trainable

Parameters
Sea Surface Oil Spill Look-Alike Ship Land mIoU F1 Score

1 CMTTiny Jaccard + focal 18.0 M 94.98% 43.57% 59.95% 46.01% 91.30% 67.16% 70.82%

2 CMTTiny
GP + Jaccard +

focal
18.0 M 94.71% 50.06% 57.54% 69.09% 90.77% 72.43% 76.10%

3 CMTXS Jaccard + focal 23.8 M 93.11% 26.66% 54.47% 13.23% 89.49% 55.39% 58.39%

4 CMTXS
GP + Jaccard +

focal
23.8 M 95.50% 51.40% 58.95% 64.49% 93.27% 72.72% 76.78%

5 CMTSmall Jaccard + focal 34.6 M 90.15% 12.86% 40.16% 16.73% 45.07% 41.00% 43.43%

6 CMTSmall
GP + Jaccard +

focal
34.6 M 95.02% 33.14% 56.98% 69.09% 68.26% 64.50% 67.29%

7 CoAtNet-0 Jaccard + focal 29.4 M 92.53% 41.03% 55.02% 54.22% 92.20% 67.00% 70.77%

8 CoAtNet-0
GP + Jaccard +

focal
29.4 M 95.40% 50.22% 58.85% 69.09% 94.49% 73.61% 77.00%

4.5. Ablation on CoAtNet

We experiment with the CoAtNet family of hybrid models, recently proposed by
Dai et al. [20]. We train the CoAtNet-0, which is the base variant of CoAtNet series with
29.4 million trainable parameters. The training of CoAtNet-0 (row 7 & 8, Table 5) is
performed using a combination of focal and Jaccard loss functions. We obtained mIoU and
F1 scores of 67.00% and 70.77%, respectively. After the addition of GP loss as an additional
loss function, the mIoU and F1 scores improved to 73.61% and 77.00%, which accounts for
6% and 7% improvement, respectively. Hence, GP loss turns out to be a promising loss
function for training different CNNs and ViTs-based hybrid models.

4.6. Qualitative Results

A few selected results are shown in Figure 7 for qualitative analysis. These SAR images
are tested with UNet (resnet101) CNN, trained with a combination of GP, Jaccard, and
focal loss functions. Referring to the top sub-figure, the model has accurately classified
oil spill, lookalikes, and land area. It has also detected a small area of lookalikes that is
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not labeled in the ground truth mask. As such, it is difficult to say if it is a labeling error.
Nonetheless, in the computation of our performance metrics, it is attributed as an error.
Referring to the middle sub-figure, the model has detected the oil spills and a nearby ship.
In the bottom sub-figure, the model has accurately detected oil spill and land area, but a few
lookalikes predicted by the classifier close to the land seem to be in error. As per ground
truth, these dark areas are just sea surface, which may represent naturally calm water close
to the land.

Figure 7. SAR images (left) along with ground truth masks (center) and predicted class labels (right).
The classification framework used is based on UNet architecture with resnet101 pretrained encoder
backbone, trained with a combination of focal, Jaccard, and GP loss functions. The images are
acquired by Sentinel 1, and the training/test dataset is developed by MKLab ITI-CERTH, Greece.

5. Conclusions & Outlook

This paper reports an investigation into the performance of different CNNs and hybrid
(CNNs + ViTs) models for oil spill classification in SAR images, and introduces the use of a
new loss function, namely, gradient profile (GP) loss, that has offered significant improve-
ments in classification performance. The problem is set up as a multi-class classification.
A potential oil spill in an image has to be classified against other possible classes: natural
sea surface, land, ship, and lookalikes. A labeled dataset comprising 1112 SAR images is
used, which is split into training and test data subsets comprising 1002 and 110 images,
respectively. State-of-the-art results reported for this dataset are an mIoU of 65.06%, using
Mobilenetv2 backbone on the DeepLabv3+ architecture. Our proposed framework relies
on the UNet neural network architecture, and we show our best results with the resnet101
backbone. We have achieved an mIoU of 76.52% with this framework, while training with
a combination of Jaccard and focal loss functions. We achieve a further improvement of
1.93% (an overall improvement of 13.5% over state of the art) by including the GP loss
function. It explicitly takes into account spatial relationships over semantically constant
regions by computing cosine similarities over horizontal and vertical spatial profiles in
gradients’ space. We have also performed extensive ablation studies where only the GP
loss is excluded from other loss combinations in successive experiments on three different
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resnet backbones, EfficientNetV2 CNNs, CMTs, and CoAtNet hybrid models. In each case,
the inclusion of GP loss significantly improves classwise performance (particularly for oil
spill, which is an imbalanced class) as well as the overall performance.

Nevertheless, it is noteworthy to mention that the deep learning has been performed
on a rather small training set with a large class imbalance. It is probable that an increased
dataset may help in furthering the scores, though decent results (with F1 > 80) are achieved
already. We thank the researchers who set up this dataset [28,30], and for our future work,
we aim to further improve our classification scores and explore the choice of GP loss as a
preferred loss function for other remote sensing applications.
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