We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,000 148,000 185M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Recent Advances in Oil-Spill
Monitoring Using Drone-Based
Radar Remote Sensing

Bilal Hammoud and Novbert Wehn

Abstract

Oil spills are regrettably common and have socioeconomic implications on com-
munities and disastrous consequences on the marine ecosystem and maritime life. The
European Space Agency (ESA) has stated that worldwide spillage exceeds 4.5 million
tons of oil annually, where 45% of the amount is due to operative discharges from
ships. To alleviate the severity of oil spills and promptly react to such incidents, it is
crucial to have oil-spill monitoring systems, which enable an effective contingency
plan to dictate the best actions for dealing with oil spills. A quick and efficient
intervention requires the (1) detection of oil slicks, (2) thickness estimation, and (3)
oil classification. The European Maritime Safety Agency (EMSA) highlighted in 2016
the need to use drones as complementary systems supporting satellite maritime sur-
veillance. While multiple sensors could be used, active radars appear to be prominent
for oil spill monitoring. In this chapter, we present recent advances in drone-based
radar remote sensing as an effective oil spill monitoring system. It shows from the
system-level perspective the capability of radar systems on drones, using high spectral
resolution and parallel scanning, to perform the above-required functionalities (1, 2,
and 3) and provide valuable information to contain the damage.

Keywords: oil spills, drone, radar, reflectivity, slick detection, thickness estimation,
classification

1. Introduction to oil spills: Sources, effects, and reaction

Petroleum products are used across the globe by most industries and for different
applications, where the requirement for the presence of petroleum materials on site is
often imperative. This need stresses the necessity of moving petroleum substances
using maritime ships or underwater pipelines internationally between different con-
tinents and countries. To move the oil from its source to the final consumer, up to 15
transfers are involved [1, 2]. Several reasons could cause the occurrence of oil spills: in
addition to the intentional petroleum waste spill in seawater, transportation is vul-
nerable to involuntary oil spills from tanker collisions with rocky shoals, ship acci-
dents, and pipeline ruptures [3]. On a global scale, the European Space Agency (ESA)
has stated that the worldwide spillage exceeds 4.5 million tons of oil annually, where
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45% of the amount is due to operative discharges from ships [4]. Accordingly, spills in
seawater including light oil, gasoline, fuel, crude oil, and bulk oil have adverse long-
term repercussions on the maritime environment. They happen on a global scale,
influence maritime and human life, and have socioeconomic implications on commu-
nities [5, 6]. Depending on the ocean state and seawater currents, an oil spill can
scatter over a very wide area in the open sea within only a few hours. Once the spill
occurs, the oil quickly spreads to form a thick slick that becomes thinner over time
when moving away from the source. This thin layer is called a “sheen” and has a
rainbow-like appearance [1]. Therefore, oil spills can have varying thicknesses, rang-
ing from less than a micrometer (um) for sheens to millimeters (mm) for thick slicks
as documented in the Deep-Water Horizon case field samples [7, 8]. Based on the oil
type and its thickness, a slick can evaporate quickly or can persist in the environment
for a long time. For example, even though light oils are highly toxic, they evaporate
quickly. But heavy oils, which are less toxic, persist in seawater for a much longer time
and can get mixed with pebbles and sandy beaches where they remain for years [1].
Worldwide, fuels and crude oils account for 48% and 29% of the total oil spilled into
the seawater, respectively, highlighting again how much the impact on the environ-
ment could be severe [9].

In the last decades, thousands of tons of oil were spilled worldwide. The quantity
of oil spilled from tankers in the 1990s is estimated to be more than 1.13 million tons of
oil, while 73% of the total amount occurred in 10 incidents only [10]. For example,
during the Gulf War spill that occurred in 1991 on the sea island in Kuwait, around
800,000 tons of heavy crude oil were released from storage and ships [11]. Another
huge spill occurred in 1992 in Fergana Valley in Uzbekistan due to an oil well blowout.
During this accident, the estimation of the spilled oil is around 300,000 tons [2].
According to the international tanker owners’ pollution federation (ITOPF), the esti-
mated amount of oil spilled from tankers in the 2000s is 196,000 tons [10]. In 2010,
while 4000 tons of diluted bitumen were spilled in Kalamazoo, Michigan, due to a
pipeline rupture, an approximation of 500,000 tons of light crude oil were spilled in
the same year in the Gulf of Mexico due to an oil well blowout [11]. Very recently in
2018, an oil spill of 113,000 tons size happened off Shanghai in China [10] in the
Sanchi oil tanker collision.

While environmental rules, regulations, and strict operating procedures have been
imposed to prevent oil spills, these measures cannot completely eliminate the risk [2].
Therefore, there is a need to set up oil spill contingency plans in countries where the
chances of such disasters are high. These plans are usually prepared by the petroleum
administration in close cooperation with ministries, governmental and non-
governmental organizations as well as regional and international entities. They aim to
protect human life, natural resources, and the economy by preserving the coastal and
marine environment from any adverse effects an oil spill might pose. The main
objective of such plans is to maintain the alertness and readiness of the involved
entities to ensure a timely and effective response to oil spills and to prevent further
pollution. In most scenarios, it requires the quick mobilization of aerial surveillance
resources and consultation with international remote sensing institutions to provide
oil spill modeling data or remote sensing images. Accordingly, to permit a swift and
appropriate reaction and limit contamination, a need to establish an effective oil spill
monitoring system presents itself in utmost urgency.

The contingency plan deals with various transformation processes including
weathering, evaporation, and emulsification that occur when the oil is spilled on
water. Also, the plan considers oil movements in seawater given the oil’s physical
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characteristics and how it interacts with ocean waves. To contain the oil and prevent
its spread over time, special equipment such as booms is used on-site. Afterward,
devices such as skimmers and absorbing material such as sorbents are used to recover
oil from the surface. Other alternatives are to use surface-washing and chemical
dispersant agents to treat the oil or to have in-situ controlled burning as a cleanup
technique [2]. All previous measures are very critical to making the contingency plan
very effective. But a necessary factor for their usefulness is the pre-knowledge that is
available about the spill. The more information is collected from the spill scene, the
better the measures used for containment and cleaning-up operations are. The first
and most critical information is the spill location. Other information, including the
volume spilled or the type of the oil, is also necessary to define proper measures in the
contingency plan. Since this information is not available at an early stage in many
spills, surface techniques, as well as remote sensing techniques, are frequently used
for the first assessment and evaluation.

Remote sensing is the field that combines science and technology to extract
(“sense”) information about an object or phenomenon at a distance (“remotely”) by
instrument-based techniques. A detailed description of the state-of-the-art remote
sensing technologies for oil spill surveillance is listed in [1, 12-14]. The sensors used
are usually mounted on aircraft or satellite platforms. They target the detection,
thickness estimation, classification, or a combination of these functionalities. As an
addition to the state-of-the-art systems, the aim of this chapter is to present a new
advancement in oil spill monitoring using drone-based radar remote sensing, which
complements currently available systems for better oil spill surveillance. Section 2
provides an overview of the oil spill monitoring system and gives the necessary
background about the techniques used up to now for monitoring. It describes the pros
and cons of the sensors (2.1) and platforms (2.2) used by state-of-the-art techniques to
monitor oil spills. Furthermore, it describes the required information (2.3) and the
main features (2.4) for good monitoring and an effective contingency plan. In addi-
tion, a system-level view of the new drone-based proposed solution is presented (2.5)
and compared with recently developed state-of-the-art techniques in terms of their
functionalities and the used sensors (2.6). Section 3 elaborates more on the new
proposed approach for oil spill monitoring for oil spill detection, estimation, and
classification. It describes in detail the system model (3.1), the new probabilistic
detection algorithms (3.2), the new statistical thickness estimation algorithms (3.3),
and the neural network regression algorithm for the oil type classification (3.4). The
feature of onboard processing is elaborated more (3.5), and the system-level comple-
mentary solution is described (3.6). Section 4 concludes this chapter by summarizing
the importance of the presented approach as a complementary solution to state-of--
the-art techniques and highlights new aspects that should be considered in future
developments.

2. Oil spill monitoring system

In this section, we present a brief overview of the state-of-the-art techniques used
for oil spill monitoring in relation to the sensors used and to the platforms operated
during the oil spill. Then, we motivate our new proposed solution by listing the system
features, the required functionalities for an effective contingency plan, and how our
solution differs from relevant state-of-the-art techniques. For more details about oil
spill surveillance systems, the reader is encouraged to refer to [12-14].
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2.1 Sensors
2.1.1 Visual sensors

Despite many shortcomings, passive sensors that operate in the visible region of
the light are still used in oil spill remote sensing. The effect of some environmental
conditions such as sun glint and wind sheen would lead to a misinterpretation by
creating a resemblance to oil sheens, which is considered a limitation of such sensors
[1]. Another drawback is that visual sensors cannot operate at night because they are
using sunlight reflectance for operation. In addition, they require cloudless and clear
weather requirements. Given the limitations of visual sensors for oil spill detection,
and since they are not able to provide thickness information or oil classification, these
sensors are not used alone for oil spill monitoring. For example, in [15], optical remote
sensing images are combined with visible infrared imager radiometer suite (VIIRS)
images in a semi-automatic fashion to extract oil slick features. The technique is tested
in the North-West of the Gulf of Mexico. However, this method cannot be fully
automated and requires human intervention to set a proper threshold for feature
extraction. Optical sensors are rather used to document the spill and to provide a
frame of reference for other sensors [16, 17].

2.1.2 Infraved sensors

Infrared passive sensors are relatively cheap remote-sensing technologies that can
be used to detect oil spills [18]. The emissivity of the oil in the thermal infrared red
region is lower than the emissivity of the water. This is how the thick oil could be
distinguished from the background water by absorbing the infrared radiation from the
sun and appearing as a hot spot compared with the cold background for the water [1].
An opposite phenomenon is observed during the night when the heat loss from the oil
layer is faster compared with the water. This is the reason why they appear cooler at
night [19]. However, false-positive results could be obtained by misinterpreting the
thermal radiation from seaweeds. In addition, infrared sensors require the absence of
cloud and heavy fog for good operation [1, 2, 20]. Infrared sensors can detect oil films
with 10s-100 s um thickness. However, the brightness of the infrared sensing-based
imagery does not vary with slick thicknesses in the mm range. Therefore, we cannot
rely on infrared sensors to yield slick thickness measurements [13, 21, 22]. [23] shows
that thermal infrared sensors that are mounted on helicopters can detect oil spills in
the accident of the Dalian Xingang oil pipeline explosion in July 2010. Similarly, [24]
shows that using MODIS thermal infrared data, the information obtained from the sea
surface temperature identifies the oil film from seawater. This technique is applied to
the Jiyyeh spill when Israel bombarded storage tanks in Lebanon during the war of
2006, where around 15,000 tons of heavy fuel oil spilled into the Mediterranean Sea
[24, 25].

2.1.3 Ultraviolet sensors

Very thin oil films have a strong reflectance in the ultraviolet region compared
with seawater. This allows the use of ultraviolet sensors for oil spill detection when the
thickness is not greater than 10 um. Also, look-alikes such as sun glints, wind slicks,
and biogenic material challenge ultraviolet sensors for oil spill detection [1, 3]. [26]
proposed adaptive thresholding for chemical spill detection (not oil specifically) from
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ultraviolet images, which shows a distinction between the chemicals and the water
background. [27] used ultraviolet range for remote detection of hydrocarbons such as
benzene. Generally, fewer ultraviolet sensors are being used for oil spills in today’s
remote sensing because of the low relevance of thin slicks to oil spill cleanup

[3, 13, 28].

2.1.4 Passive micvowave radiometer sensors

Compared with water, the oil emits stronger microwave radiation and appears
brighter in the background. Passive microwave radiometers [29-32] are used for both
oil spill detection and thickness estimation [13]. The need to acquire knowledge about
weather conditions, the low spatial resolution of this sensor, and the a-priori knowl-
edge required about the oil characteristics all influence the microwave brightness and
decrease the effectiveness of microwave radiometers for oil spill monitoring [1].
Furthermore, the main issue with this technology tends to be the cyclical relationship
between the microwave brightness of the slick and its thickness. Currently, available
models can only measure limited thickness ranges [14]. For example, using a multi-
frequency passive microwave radiometer, the measured thickness range is limited
between 0.1 and 1.5 mm as reported in [33], or the results were underestimating the
real thickness values as in [30] where the calibration methodology and the selection of
frequencies limited the measured thickness to a maximum of 1 mm. The only com-
mercial tools currently available for measuring slick thickness are the Optimare 3-5-
channel microwave instruments. They can provide thickness up to 3 mm only [13].
Given the requirement of a dedicated aircraft to mount this sensor, in addition to their
high cost, it is complicated to put them into operation. Currently, the microwave
sensor is not being used for oil detection and slick imaging [13].

2.1.5 Radar sensors

With the absence of oil slicks, a bright image is obtained by radar sensors for clean
seawater. Once the oil is spilled into seawater, the ocean capillary waves are reduced,
and radar reflections are decreasing. Dark spots are obtained in radar imaging. This
allows for oil spill detection [34]. Synthetic aperture radar (SAR) and side-looking
airborne radar (SLAR) are the two most common types of radar, which are used for oil
spill remote sensing [35]. Imaging SAR systems [36-39] are off-nadir instruments
whose backscattering over the ocean is primarily due to Bragg scattering at relevant
incident angles. The synthetic aperture radar technique is highly prone to false targets,
however, and is limited to a narrow range of wind speeds when small ocean waves do
not yield a difference between the oiled area and the sea [2]. SAR techniques are not
used for oil thickness estimations nor for oil classification. Being widely mounted on
space-borne platforms, the radar is a very useful active sensor for a synoptic view of
the oil spill over a wide scene [1].

2.2 Platforms: Airborne to satellites to complementary drones

Most recent techniques using one sensor, or a combination of sensors, are done
remotely using airborne systems [40, 41] or satellites [42-47]. Radar satellites provide
a selection of resolutions and polarizations [13]. Serious efforts have been made to
replace airborne remote sensing with satellite remote sensing. However, satellites face
the limitations of overpass frequency and low spatial resolution [12], and the long
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time required for processing the dataset, potentially disrupting oil spill contingency
planning. This limitation has been improved using satellite constellations. A revisit
time within a few hours can be provided by a larger number of SAR satellites. Air-
borne systems, despite their high cost due to aircraft dedication, can be used directly
when needed for real-time dataset processing [1]. In addition, they provide flexibility
in terms of deployment time and choices of sensors. Therefore, a combination of
satellite and airborne sensors is used in many countries in northern Europe for oil spill
surveillance. The strategic planning is based on satellite imagery that provides a
synoptic view of the oil spill, whereas airborne sensors are used for short-term or
tactical responses [9]. Contrarily to visible and radar sensors, due to the high atmo-
spheric absorption and scattering, many sensors including the infrared and the fluoro-
sensors are not suitable to be operated on a space-borne platform [34, 48].

Despite all the effort done using space-borne platforms, only 25% of the pollution
cases are detected by satellite systems. For a quick response and rapid intervention,
the European Maritime Safety Agency (EMSA) has proposed using drones as comple-
mentary systems in satellite maritime surveillance [49]. Aerial surveillance could be
improved significantly through the introduction of drones because it is a quick
assessment tool for oil spill accidents [50]. In addition, drone-based tools will be
particularly valuable as it provides high spectral resolution, at a relatively low cost.

2.3 Required information

Once a spill occurs, the oil will spread quickly on the water surface to form oil
layers such as slicks, films, and sheens. To alleviate the severity of oil spills and
promptly react to such incidents, it is crucial to have oil-spill monitoring systems that
enable an effective contingency plan [51]. A rapid response time and a quick inter-
vention allow dictating the best actions to deal with oil spills. Therefore, monitoring
systems must perform several functionalities and provide valuable information to
contain the damage [52].

1. Functionality #1: Oil-spill detection

The most important part during oil spills is to detect oil slicks. It is important to
locate them and to determine how large the spread is. This necessary
information allows oil spill mapping for both tactical and strategic
countermeasures.

2.Functionality #2: Oil-thickness estimation

The thickness distribution of spilled oil is another critical information for spill
containment. Using the knowledge about the oil thickness, an estimation of the
total volume spilled can be performed so that adequate tools are used in cleanup
operations.

3.Functionality #3: Oil classification

Classifying the oil type is also important during spill containment. Based on this
information, the authorities estimate the environmental damage in the short-
and long term to take appropriate response activities.

4.Functionality #4: Oil-spill tracking
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Since the spill can spread quickly within a few hours, an effective contingency
plan demands the ability to track the spill over time. Tracking provides timely
and valuable information to anticipate possible damage scenarios, predict the
trajectory using additional input from weather forecasts, and assist in cleanup
operations.

2.4 Features for good monitoring

In addition to the four functionalities included in the previous section, it is also
important to take the following system requirements [1] into consideration whenever
an effective oil spill monitoring system is designed. This allows for selecting properly
the sensor and the platform. In addition, suitable and effective algorithms could be
developed.

* Spatial resolution: it is an important characteristic of the sensor that affects the
accuracy in mapping oil slicks with accurate thickness measurements.

* Quick response: oil spill surveillance requires an acceptable time frame for
collecting and processing the data, which stresses the need for real-time data
availability.

* Day-time conditions: the operation of the sensor at any time during the day and
night is essential for an effective surveillance system.

* weather conditions: it is important to limit the effects of weather conditions
including rain and fog.

* Large-scale view: the sensor that captures a synoptic view of the area allows
monitoring over a large spill spread.

* Cost and size: the acceptable size and cost of the sensor are critical to decreasing
the overall cost of the system.

2.5 New proposed solution: Wide-band radar on drone platforms

Based on the previous criteria, visible and ultraviolet cannot work at night. More-
over, infrared sensors cannot provide estimations of thicknesses. Therefore, we select
radar sensors for the proposed monitoring system because they operate during the day
and night and under all weather conditions. Whenever mounted on satellites, radar is
a very useful active sensor to detect oil over a large area. However, the synthetic
aperture radar technique is limited to a narrow range of wind speeds. The ocean’s
slight surface roughness due to very low wind speeds (below 4 m/s) leads the back-
scattering to be dominated by the specular component, challenging SAR systems for
oil spill detection [38]. Therefore, it would be advantageous to study the radar obser-
vations from nadir-looking systems (transmit and receive at zero angles from the
normal to the ocean surface) since they cover scenarios that cannot be studied by SAR
systems. Being largely independent of surface roughness, the returns from nadir (or
near-nadir) systems will benefit from the dominance of the specular scattering and
enable detection in very low wind conditions. Therefore, drone platforms are desig-
nated suitable for the proposed solution. The drone-based radar solution allows quick
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assessment of the area where the flag of possible spills is raised by witnesses. As a
drawback, operating these platforms as nadir-looking systems decreases the surface of
the scanned area viewed by the radar compared with that scanned by “side-looking”
platforms. Also, using drones instead of satellites does not allow a synoptic view of the
spill. But this can be compensated by using multiple drones at a time instead of
scanning with a single drone. The parallelization in scanning can cover a large area at a
critical time. Once a possible oil spill is announced, the drones can be directly used as
tactical-response systems to scan the scene and report results. Afterward, whenever
the spill is confirmed, the satellites can be used for strategic planning by providing a
synoptic view of the spill area. Furthermore, scanning with drones provides a high
spatial resolution compared with satellites and with a principal advantage of a rela-
tively low cost compared with dedicated airborne detection systems.

Hence, we propose a new approach for oil spill monitoring with the following
features, which are discussed in more detail in Section 3:

1.From a system-level perspective, we suggest the incorporation of both C-band
and X-band using remote sensing nadir-looking wide-band radar sensors that can
be implemented on drones as oil spill monitoring systems.

2.0ur new approach targets the spills happening during calm and moderate ocean
conditions, which are challenging for state-of-the-art SAR systems.

3.Compared with the state-of-the-art techniques, the newly proposed system
implements maximum-Likelihood and machine learning statistical algorithms
that can perform simultaneously in real time:

a. functionality #1 by detecting thick oil slicks

b. functionality #2 by estimating the thicknesses of detected slicks in the mm
range

c. functionality #3 by classifying the oil type

The proposed solution is not intended to replace state-of-the-art techniques but
rather complements them by providing a complementary system to satellite SAR
systems. During the early stages of a possible oil spill, drone systems act as small-scale
tactical-response systems improving the large-scale surveillance obtained by satellite
systems. Over the spill duration and based on satellite scans, the drones can track the
spill using the high spatial resolution feature provided by the mounted wide-band
radars.

2.6 Comparison to latest state-of-the-art techniques’

Several state-of-the-art techniques have been already included when we intro-
duced the sensors (Section 2.1) and platforms (Section 2.2). To follow up on Section
2.5 where we describe the importance of the proposed approach—and for convenience

! It is important to keep in mind that in this section we are not including all state-of-the-art techniques used

for oil spill monitoring irrespective of the sensors and platforms used.
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—we only focus in this section on the recently developed techniques that target any
of the three functionalities during oil spill monitoring (detection, estimation, and
classification) using non-satellite-based approaches.

Several drone-based techniques are recently suggested for oil spill monitoring. [53]
presents thermal imaging methods and tools applied to simulated and lab-based
experimental data to detect oil spills in seawater using drones. The simulation envi-
ronment is made to be very similar to the Gulf of Mexico spill in 2010. The drone can
be used in two operational modes: the first mode is when the spill incident is known,
then the task is to locate it exactly. The second mode is when operating to look for
potential spills and for nearby ships that caused them. After collecting thermal images
using the thermal camera mounted on an unmanned aerial vehicle (UAV), the tem-
perature profile of collected data is studied using image processing techniques. The
proposed system shows the ability to draw a rectangular contour around the spill
region but not the accurate contour. The thickness of the spill under test is not
reported. Another drone-based solution equipped with a thermal camera is proposed
in [54]. The system is suggested for industries, especially for the Bahrain Petroleum
Company (Bapco), to inspect oil and gas leakages. It uses Al-based (decision tree
(DT), random forest (RF), and support vector machine (SVM)) onboard processing
to monitor oil pipelines for possible leakages and cracks. The training is done based on
a real dataset of methane pipeline leakage detection provided by Bapco, Tatweer
Petroleum, and the National Space Science Authority (NSSA). The proposed algo-
rithms are accelerated on hardware using parallel processing to allow real-time
alerting with less than 100 milliseconds delay. No results for oil spill leakage from
pipelines are presented. The presented work is relying only on a single dataset while
multiple datasets should be included. [55] also targets the first functionality of the
monitoring system (detection) by presenting a UAV-based aerial solution to auto-
matically identify the contour and localize oil spills. This approach is tested on simu-
lated, experimental, and field data through simulated oil spills in the Leixoes Harbour
and the Douro river in Porto in Portugal and in the Puerto de A Coruna in Spain. In
[56], a deep-learning-based method is proposed to control marine oil pollution. It
implements an SVM approach that processes visual camera images to identify oil-
polluted areas. Afterward, it predicts the movement of the polluted area by calculating
the optical flows. The algorithm is applied to the 2016 Tegent Cruises dataset in
Shimen in northern Taiwan. The accuracy of the SVM classification varies between
85.71 and 99.95%. Another deep learning approach is suggested by [57]. It presents a
CNN-based novel framework to detect small oil spills inside a port using a thermal
infrared camera mounted on a drone. Three kinds of oil (HFO, DMA, and ULSFO)
that are frequently used in the port of Antwerp are included during the experiment. A
mean intersection over union (mloU) of 89% is achieved. The proposed technique is
functional within a 31.9 m by 42.1 m field of view and is useful for relatively small oil
spills. [58] uses hyperspectral images to feed a one-dimensional convolutional neural
network to identify the type of oil spills. Using the adaptive long-term moment
estimation (ALTME) optimizer, the oil spill spectral information is learned. The
experiment is conducted 20 m away from the Yellow Sea Shore in China, in the pool of
Qingdao Scientific Research Base. The technique achieves a detection accuracy of
more than 98.09% in detecting different predefined classes of oil films of thicknesses
between 1 and 3.5 mm. To summarize, [53-57] all target spill detection (functionality
#1), whereas [58] also targets the thickness estimation (functionality #2) in
predefined classes (between 1 and 3.5 mm) and the oil type identification (function-
ality #3). This reinforces the need for our new proposed system that targets the three
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different functionalities at the same time. Compared with the work presented in [58],
the proposed new solution is using the wide-band radar sensor instead of a
hyperspectral visual sensor (check differences in Section 2.1). Furthermore, the new
approach uses maximum-likelihood algorithms on top of different machine learning
algorithms to provide the results for monitoring. Also, the approach aims the thick-
ness estimation up to 10 mm value, and it is feasible to be implemented on drones for
onboard processing.

Other techniques, which are not drone-based, are also proposed in the literature
for oil spill monitoring. [59] proposes an optical fiber surface plasmon resonance for
oil spill detection and thickness estimation. At the water-oil and ail-oil interfaces, the
sensor records an absolute sensitivity of 1.373%/mm and 2.742%/mm in the thickness
ranges 0-5 mm and 0-10 mm, respectively. Although their approach can detect
thicknesses in the 1-10 mm range, however, it requires in-situ sampling. [60] presents
multiple machine learning algorithms (RF, SVM, DNN, and DNN with differential
pooling) that process images from the high-resolution hyperspectral sensor to identify
the oil type based on the reflectance spectra. Four types of oil are tested in this work,
including crude oil, diesel, lubricant, and heavy diesel. The oil thickness and the wind
conditions are not provided as inputs to the machine learning models to test their
accuracy with the minimal amount of available information. All tested models can
differentiate between heavy oils. But for light oils, RF fails to do the correct classifi-
cation, while the neural network models provide better classification than the SVM.
This technique is not remote-based and should be used after the detection of oil spills.
[61] develops a novel microwave oil spill sensor to determine the thickness in the
range of 10s mm using an ultra-wideband radar operating between 0.3 and
3000 MHz. The performance of the system is tested under static experimental condi-
tions. When deploying the system in the sea, the impact of the waves should be
considered.

A comparison between the functionalities provided by the developed techniques
above and our new approach is presented in Table 1.

3. Drone-based radar approach

In this section, we describe in detail the proposed approach for oil spill monitoring
for oil spill detection, estimation, and classification.

3.1 System model
3.1.1 Reflection coefficient for multi-layer structure

To physically model the oil slicks on top of the sea surface, we consider a multi-
layer structure: air, oil, and seawater. We study the reflection of the electromagnetic
waves from the sea layer covered by an oil layer, which is modeled as a thick slick with
a thickness of up to 10 mm [13]. Figure 1 shows such a simulated oil spill. When the
ocean is calm and the wind speed is low, such a thick layer significantly reduces the
surface roughness [37, 62], dampens capillary and short gravity waves, and calms the
smaller waves on the sea [63]. As a result, within the radar cross section, the incident
electromagnetic waves are reflected along the specular component due to the smooth
surface. By operating the radar on a nadir-looking system, the reflected power is fully
reflected for normal incident waves, without losses due to off-nadir backscattering.
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Sensor(s) Detection Thickness Classification Notes Reference
Estimation

Thermal Yes No No Image processing (53]

camera

Thermal Yes No No Al-based techniques (DT, [54]

camera SVM, RF)

Visual/Thermal Yes No No [55]

cameras, Lidar

Visual Yes No No SVM [56]

camera Prediction of track

Thermal Yes No No [57]

infrared

Hyperspectral sensor Yes Yes Yes Post Processing [58]
[1-3.5 mm)]

Fiber-Optic Surface ~ Yes Yes No Not drone-based, using [59]

Plasmon Resonance [0-10 mm] in-situ sampling

Hyperspectral sensor No No Yes Not drone-based, using RF, [60]

SVM, and DNN

Ultra-wideband No Yes No Not drone-based, under [61]

radar [10s of static conditions
mm]

Wideband Radar Yes Yes Yes Onboard processing Proposed
[0-10 mm)] solution

Table 1.

Non-satellite-based state-of-the-art techniques for oil spill monitoring.

Figu
Simulated oil spill with thickness range from o to 10 mm.
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We define the electrical properties (relative dielectric constants) for the air, oil, and
seawater to be respectively €; €, and e3. The different media are assumed to be non-
magnetic. If radar reflections from the seafloor are neglected, we can calculate the
field reflection coefficients for the layers at the boundaries where interaction with
electromagnetic waves occurs. They are denoted for the first interface (between air
and oil) and the second interface (between oil and water) by p;, and p,3, respectively.
Hence, the power reflection coefficient for the three-layer structure, also denoted by
the reflectivity R, is derived using the Transfer Matrix Approach [64, 65] as:

5 —i5 |2
P12€° + ppze”’

e 4 pppyppze

(1)

6 is the propagation constant that is dependent on the oil’s relative permittivity (e,),
the frequency of the electromagnetic wave (the wavelength A), and the thickness of the
oil layer (d). It is given by:

5:272'\//1561 )

3.1.2 Smooth and rough surfaces

Several statistical attributes can be calculated for a random surface [66]. The
surface height measurements may be described using standard statistical parameters,
namely:

e the height standard deviation (s), which is also called the rms-height

* the surface correlation length that measures the degree of correlation between
the surface at different locations

Based on the surface statistics with respect to the electromagnetic wavelength, we
can differentiate between two types of surfaces: a perfectly smooth (flat) or rough
surface. If the correlation length of the ocean waves is large and the rms-height of
capillary waves is very small, as it is for calm ocean conditions, then the surface is
considered smooth. In this case, radar reflections are along the specular direction and
can be calculated according to Eq. (1). Otherwise, a non-coherent component is
introduced in the scattering pattern along all directions other than the specular,
whenever the surface is rough. For this, with 0 denoting the incident angle of the
electromagnetic waves to the interfaces, the reflectivity in the specular direction is
called the coherent reflectivity R oerens> and it is given by:

27 s cos(0) 2
_4(*ms cos(0)
Rcoherent =Re ( 4 )

(3)
3.1.3 Reflectivity behavior

For our approach, we suggest the incorporation of multiple bands using remote
sensing nadir-looking wide-band radar sensors. Since frequencies from the L-band
(1-2 GHz) will not change the reflectivity value over the 1-10 mm thickness range by
more than 1 dB, they are not considered to be relevant for the proposed approach.
Instead, we will use frequencies from the C-band (4-8 GHz) and X-band (8-12 GHz).
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To better understand the reflectivity behavior at each wave frequency, Figure 2
shows the reflectivity value defined in Eq. (1) versus the oil thickness, which is varied
from 1 mm to 10 mm where different subplots correspond to different scanning
frequencies at increments of 1 GHz from 4 to 12 GHz [67]. The relative dielectric
constant of the air and thick oil is 1 and 3, respectively. We neglect the imaginary part
of the relative permittivity of the oil, which is of order 0.01 [68]. The relative dielec-
tric constant of seawater depends on the water temperature (assumed to be 20
degrees), the water salinity (assumed to be 35 ppt), and the frequency of the radar
signal [66]. For ease of reference, we also mark the mean reflectivity value in the case
of no oil spill as a constant straight line per subplot.

For instance, at 4 GHz, the curve of the reflectivity is monotonically decreasing
slowly with the thickness. It has a very small slope at small thickness values (0-
3 mm), but this slope increases with the increase of the oil slick thickness (3-7 mm).
At some thicknesses, any error in the power reflectivity measurements at 4 GHz
would mislead the oil detection due to the very small variation from the water
reflectivities. In addition, for small thickness values, the difference between reflectiv-
ity values is very small, so the estimation could go easily wrong. A different pattern is
observed at higher frequencies (7-12 GHz). The reflectivity curve admits a steeper
slope for small values of thicknesses, which improves the detection of oil slick thick-
ness. However, due to the appearing cyclic behavior, many thickness values give the
same reflectivity value leading to false interpretations for detection or estimation.
Therefore, it is important to use more than one frequency to improve the detection or
estimation. To see the effect of the relative permittivity of the oil on the reflectivity,
Figure 3 studies the variation of this parameter evaluated at two frequencies: 4 and
12 GHz [69]. For the same frequency, the effect of the variation in the relative
permittivity on the reflectivity value is dependent on the oil thickness. Also, by

f=4 GHz " f=5GHz . f=6 GHz
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o -1 -1 -1
2
E -3 -3 -3
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Figure 2.

Reflectivity (in dB) versus oil slick thickness (in mm) at different scanning frequencies. Retrieved from [67].
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Figure 3.
Reflectivity R (in dB) versus oil thickness (in mm) at different frequencies (4 GHz, and 12 GHz) and different oil
dielectric constants. Retrieved from [69].

looking at the reflectivity plots at the same frequency, they look very similar over the
full thickness range even if the relative permittivity of the oil slick is changing.
However, the reflectivity behavior varies a lot from one frequency to another.

3.2 Detection

To perform the detection functionality of the monitoring system, we are proposing
in this section different detection algorithms that use the statistical characterization of
the reflectivity values and their distribution under different oil thicknesses to obtain a
final decision on whether oil exists or not. Any previous knowledge about the exis-
tence or absence of oil in the surface scanned should be taken into consideration to
weigh the probability of the decision in the detector block. Nevertheless, without any
previous knowledge about the spill situation, the detector decision will be totally
based on the statistics of the measured power reflection coefficients ratio [69].

Let “o, w” be the events indicating the presence of the oil slick and the water,
respectively. Let R be the event representing the measurement of the reflectivity value
(s). R could represent one or more reflectivity values that are measured at the same or
at different frequencies. The reflectivity values are assumed to be independent events,
i.e., they are uncorrelated in the time domain at multiple observations, and in the
frequency domain at multiple frequency measurements. After some derivation steps
shown in [69], the detector algorithm evaluates the following ratio:

= >°1 (4)

With this ratio, the detector compares the probability of getting an oil or water
event given that radar reflectivities are measured. If the ratio gives a result greater
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than unity, the decision indicates the oil’s existence. Otherwise, the decision indicates

that the seawater surface is clean. We note that the probability of obtaining a mea-
sured reflectivity value given that the oil or water exists is evaluated using the
corresponding probability density function (pdf). For this, we propose several algo-

rithms for different detectors:

* Single observation at multiple frequencies [70]: a wide-band radar is used to scan a
target scene once, and K measurements of reflectivity are sampled at K different

frequencies.

* Multiple observations at single frequency [71]: a narrow-band radar scans a target
scene multiple times. M measurements of reflectivity are made at the same

frequency.

* Multiple observations at multiple frequencies [69]: a wide-band receiver scans a
target scene M time, and the reflectivity is sampled per scan at K different
frequencies. M*K measurements of reflectivity are collected in total.

* Joint-probability density function [72]: the thickness of the oil slick is modeled as a

random variable (RV) with an estimate of its probability density function. The
algorithm is using the joint-pdf to calculate the probability of each event. Also,

for this, a wide-band receiver scans a target scene M times, and the reflectivity is

sampled per scan at K different frequencies.

Figure 4 shows the performance of dual-frequency detectors. For clarity, we also
show the performance of the detectors running each of the two scanning frequencies
separately. Evidently, the dual-frequency detectors outperform the single-frequency

——f=4GHz ——f=8GHz
11——f=8GHz [ 1 1——f=12GHz
= = f=4&8 GHz s f = 8 & 12 GHz
PR e,

Probability of detection

—f=4GHz
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Figure 4.

Comparison between the probability of detection and the oil thickness (in mm) for different detector algorithms:
Single-frequency detectors at 4 GHz, 8 GHzg, and 12 GHz, and dual-frequency detectors using combinations of

these frequencies.
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detectors. At thickness values where the accuracy of a single-frequency detector is
low, the dual-frequency detector gives more weight to the decision of the pair detec-
tor. For instance, a 12 GHz detector performs poorly for d = 7.2 mm because it has the
same reflectivity value as the water (refer to Figure 2). However, the (4 GHz, 12GHz)
detector optimally tracks the performance of a 4 GHz detector.

Although dual-frequency detectors are better than single-frequency detectors,
there are still some thickness ranges where the probability of detection is affected by
the ambiguity points. To boost the performance of the detection, we increase the
number of frequencies K and observations M. Results in Figure 5 show that a higher
probability of detection is further obtained over the full range of thicknesses. Using
three frequencies (4 GHz, 8 GHz, 12 GHz) and two scans (M = 2) of the target scene,
the detection accuracy is above 90% for all thickness values above 3 mm. Additional
scans would further be required to improve the probability of detection of thin oil
slicks. Fortunately, performance requirements are less strict for small thickness
values. By comparing the performance of the tri-frequency detector with single
observation to the dual-frequency detectors with double observations, we notice that
the first detector is better since it provides a very high percentage of correctness at the
large thickness values (i.e., cases where oil detection is crucial) and very good behav-
ior at small thickness values, which are more challenging for oil detection but less
severe in false alarm scenarios. Additionally, the performance of the detectors is
studied under a blind detection scenario in which the scanning of the scene is done
without any knowledge about the exact or the estimated thicknesses of spilled oil. This
type of detection is based on the joint-pdf that takes into consideration all the possible
thicknesses with their probabilities in order to weigh the final decision. The distribu-
tion of oil thickness is assumed to be uniform over the range (0-10 mm). Results show
the same behavior as detailed in [72]. The detector can provide correct decisions in
different thickness ranges at different frequencies. The probability of error can be
decreased by using dual- and tri-frequency detectors. Additional error can be

1
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Figure 5.
Comparison between the probability of detection and the oil thickness (in mm) for different detector algorithms:
Dual-frequency detectors and multi-frequency detectors, using single (M = 1) and double observations (M = 2).
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compensated by using more scans. However, in the range where the oil thickness is
small (< 2 mm), the probability of detection does not exceed 65% indicating low
certainty.

Previous results are obtained under the assumption that the surface is smooth due
to very low wind speeds and calm ocean conditions. For higher wind speeds and rms-
height of the seawater, the surface roughness increases. We present the performance
of the detectors for different roughness scenarios in detail in [69]. Results show that
the performance overall is reduced.

3.3 Estimation

In this section, we complement the detection of oil spills (functionality #1) with a
new approach targeting the estimation of the oil slick thickness (functionality #2). We
present Maximum Likelihood single-, dual-, and multi-frequency estimators. The
reflectivity values evaluated at one, two, or multiple frequencies over all possible
thickness values form the constellation set that is used for the estimation. The estima-
tor uses the Minimum-Euclidean distance algorithm, in predefined 1-D, 2-D, or K-D
constellation sets, on radar reflectivities to estimate the thickness of the oil slick. Every
constellation set is divided into different mapping regions that are bounded optimally
between all the theoretical reflectivity values constituting the constellation. Any
reflectivity value R obtained in one region is mapped by the estimator to the thickness
that provides theoretically the nearest reflectivity value.

The derived algorithms are the following:

* 1-D estimator [73]: It is a single-frequency estimator. The probability of error is
minimized by choosing the thickness, which minimizes the Minimum-Euclidean
distance between the measured reflectivity R and all possible calculated
reflectivities constituting the constellation set. For the single-frequency
estimator, the constellation set is in a single dimension.

* 2-D estimator [73]: The dual-frequency estimator uses two reflectivity values in
the constellation set spanning two dimensions.

* 2-D estimator iterative approach with multiple observations [74]: The presented
algorithm uses optimized predefined 2-D constellation sets by utilizing the best
pair of frequencies for each possible thickness value. Then, it processes
sequentially the separate estimations done to optimize the estimation procedure.

* K-D estimator [67]: Using K-frequencies in the estimation, the constellation set
will span K dimensions. When using M observations that are uncorrelated in
time, we do the averaging of the measured reflectivity values in K-dimension at
each frequency of measurement.

* SVM approach [75]: A support vector regression that is following a supervised
learning approach and is trained on reflectivities calculated for three radio-wave
frequencies is proposed to predict oil thicknesses between 1 and 10 mm.

* ANN approach [76]: An artificial neural network that processes reflectivities
evaluated at nine radio-wave frequencies is proposed to predict oil thicknesses
between 1 and 10 mm.
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Using a single-frequency estimator in C-band (4-8 GHz), the mapping regions at
low thickness values will be close to each other as shown in detail in [67, 73]. A small
noise power may shift the reflectivity values from one region to another. If so, this will
be considered an error in the estimation process. At higher frequency values in X-
band (8-12 GHz), many thickness values will give the same reflectivity due to its
cyclic behavior. Therefore, even in an ideal case when no noise is introduced during
the measurements, the estimator is not capable to provide a correct estimation. This
highlights the need to use the combination of reflectivity measurements (2-D or 3-D estima-
tors) to achieve accurate thickness estimation. Using dual- and tri-frequency estimators,
one question will rise: which combination of frequencies is to be used? The best
frequency pairs and triads, for each possible thickness between 1 and 10 mm, are
derived in [74, 67] respectively. [74] also proposes an advanced iterative procedure to
use the 2D estimator for accurate and reliable thickness estimations.

Figure 6 shows the histograms of the thicknesses estimated by K-D estimators
when the actual thickness d is 5 mm with single and multiple (M = 3) scans. The
single-frequency (1-D) estimator uses f; = 4 GHz, and f, = 12 GHz. The dual-
frequency (2-D) estimator uses both f; and f,. The 3-D estimator uses an additional
frequency f; = 7 GHz. The 4-D estimator uses f;, f,, f; in addition to f, = 10 GHz. The
2-D estimator with three scans still provides thickness values from all possible values.
The 4-D estimator with three scans decreases the error in the estimation to 4 mm with
a probability of correctness of 80%. The percentage error obtained by all estimators
under different scenarios is presented in Table 2. To check the distribution of the
histograms of errors in estimation, refer to Appendix A in [67].

0123 45¢6 7 8 910 012345406 78 910
m
0123456 7 8 910 0123 454678 910

0123456 7 8 910

Histograms of Estimated Thickness
N
(&)}
o

500 —
3-D
250 r L 1
0‘
012345678 910 0123456 7 8 910
500-'_""""-700»""""'
250 ¢
0 0
0123456 78 910 01 2 3 456 7 8 910

Estimated Thickness (mm)

Figure 6.
Histograms of the thicknesses estimated by 1-D, 2-D, 3-D, and 4-D estimators with single and multiple scans
M = 3. The actual thickness d is 5 mm. Retrieved from [67].
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Probability of error (%) M f; f, 2-D 3-D 4-D
d = 10 mm 1 46 78 35 32 30
3 42 63 14 13 11
d = 5mm 1 85 94 83 65 47
3 77 91 58 33 20
d=1mm 1 97 85 83 77 72
3 94 75 65 56 49
10 90 58 36 32 26
50 79 41 10 9 6
Table 2.

Percentage ervor obtained by different estimators for different slick thicknesses. Adapted from [67].

Although some estimators provide a good probability of correctness, it is not
sufficient to have a definite decision. We should rather look at the error distribution in
the estimation to ensure that the estimations are reliable. Therefore, we should always
increase the number of frequencies or scans done to make sure that good and enough
estimation information is provided.

We developed an experimental setup to collect radar reflectivity measurements
from an oil-spill lab experiment with calm water surface conditions for very low wind
speeds with no wave action. The experimental setup includes details about the system
model with the multi-layer structure, the radar calibration technique, and other setup
parameters [77, 78]. We applied the estimation algorithm to these experimental
values. Figure 7 shows the histograms of estimated thicknesses by 1D, 2D, 3D, and 4D
estimators based on experimental reflectivity values with a single scan (M = 1), when
the actual thickness is 3 mm. As expected, 1D estimators using a single frequency are
not providing very good results. Using f1, the highest estimations are for 4 mm, the
probability of error is 72%, and the maximum deviation from the correct value is
7 mm. Using 2, the deviation is decreased to 1 mm with a probability of error of 47%.
However, single-frequency estimators are never used alone, therefore, including {2 in
the 2D estimator again increases the probability of error to 68% but provides the
advantage of decreasing the maximum deviation to 1 mm. For the higher-order 3D
estimator, the probability of error decreases to 28% with the same maximum devia-
tion. For the 4D estimator, the performance is further improved, and the probability
of error is reduced to 6%. Thus, the results shown validate the proposed higher-order
estimators on in-lab experimental data.

Another proposed estimation algorithm is based on a machine learning approach
[75]. For this, a support vector regression (SVR) model that is following a supervised
learning approach is trained on reflectivities calculated for three radio-wave frequen-
cies to predict oil thicknesses between 1 and 10 mm. The input features to the SVR
model are the power reflection coefficients (reflectivities) evaluated at f; = 4.39 GHz,
f; = 6.98 GHz, and f; = 9.07 GHz. After training the model using 80% of the simulated
data, it is validated on the remaining 20% of the simulated and on in-lab experimental
data. The model yielded an R? score of 0.992 on the simulated data, which is very close
to 1 indicating that the regression predictions are very close to the actual oil thick-
nesses. The model is supposed to predict a continuous value of the thickness as the
predicted output. But by rounding the estimated thickness to the closest integer, we
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K-D Estimators on Experimental Data, d = 3 mm
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Figure 7.
Histograms of the thicknesses estimated by 1D, 2D, 3D, and 4D estimators based on experimental data with single
scan M = 1. The actual thickness is 3 mm. Retrieved from [67].

get the following percentages of estimating the correct value in the confusion matrix:
[62.4,95.5,99.7,97.7, 97.7, 99.6, 99.4, 95.4, 80.5, 89.6%] for the thicknesses [1, 2, 3, 4,
5,6,7,8,9,10 mm] respectively. The R? score obtained on the experimental data is
0.86 indicating that the experimental thickness values and the predicted thicknesses
are close even though the model is only trained on simulated data and is not exposed
to any experimental reflectivity. For further validation, even though the model is
trained on calm surface data, it is tested with rough surfaces in two scenarios for slick
thicknesses: 5 mm and 8 mm. The model’s predictions are mostly concentrated at

6 mm for the 5 mm spill. Similarly, for the 8 mm spill, the predictions are mostly at 7
and 8 mm. This shows that using a machine learning algorithm for oil thickness
estimation is an attractive approach. Another algorithm is developed in [76], but for
convenience, we will discuss it in the following section. This concept can be further
developed by using larger and more complex machine learning models and more
diversified training data to achieve better thickness estimations in varied
environments.

3.4 Classification

An important task to perform during oil spills is to specify the oil type to predict
the environmental damage to maritime life. The oil type classification could be qual-
itatively similar to what is proposed by [60, 79-81]. Another way for classification is
by analyzing the physical characteristics of the oil material, namely the relative
dielectric constant, as we proposed in [76]. In this work, we use an artificial neural
network (ANN)-based model to estimate the relative permittivity of oil slicks for
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different oil-types classification. In addition, the model can predict the thicknesses of
such oil slicks at the same time. The input features to the model are nine radar
reflectivity values measured simultaneously and selected uniformly from C- (4—

8 GHz) and X- (8-12 GHz) bands. The ANN-model post-process these measurements
to extract the implicit information about the thickness and the relative permittivity of
the thick oil layer covering the sea surface, even though the reflectivities and the
estimated parameters have a highly nonlinear relationship. To further improve the
model’s accuracy, we also incorporate multiple observations to boost the estimator’s
performance. Results show that by jointly analyzing the reflectivity behavior at mul-
tiple frequencies, the model explores their dependence over the full plausible range of
thicknesses. The predicted thicknesses are accurate to +/— 0.5 mm in most cases. For
example, testing the model at 5.5 mm would still lead to estimations between 5 and
6.1 mm. Similarly, relative permittivity values 2.9, 3, and 3.1 are approximated accu-
rately where the shift in estimations’ mean is smaller than 0.05. The error in estima-
tions for the remaining values 2.8, 3.2, and 3.3 is higher. To test the performance of the
model, we simulate an oil spill scenario when the thickness of the oil slick that is close
to the source is 10 mm, and it decreases gradually going away from the source to

1 mm. The trained ANN model shows that it can perfectly reconstruct the spill
environment with accurate estimations of the thicknesses and the relative permittiv-
ity, where the error of the average estimate for the latter over the full map is 3% only.
To further validate the performance of the model, it is applied to in-lab experimental
data when the actual thickness is 7 mm. After collecting 13 measurements, the esti-
mated thickness is 7.65 mm compared with 8.2 with a single scan measurement.
Unfortunately, we are not able to compare the estimated permittivity with the

actual value since the latter has not been measured during the in-lab experimental
procedure.

3.5 Onboard processing

Our proposed approach targets the implementation of the monitoring functionali-
ties on board, instead of collecting measurements from the site and post-processing
them offline afterward. This will ease the monitoring and most importantly will allow
the quick assessment of the spill area, to take the best measures and actions toward the
possible damage. For this reason, it is very important to check the feasibility of
implementing the proposed approach onboard, especially since the platform that we
are suggesting is the drone, which is a battery-powered device where the energy and
power consumption are of high importance. We show the feasibility of our approach
for onboard processing by selecting one of the previously described algorithms and
implementing it on a hardware platform, namely the Pynq Z1 Field Programmable
Gate Array (FPGA). While machine learning algorithms are often considered high-
power consuming and introduce a high complexity in terms of memory footprint and
computational requirements, we select the ANN model that performs the estimation
and classification functionalities for the implementation. It is also good to note that
including “O mm” as one class for the regression estimation is equivalent to including
the detection functionality. Therefore, we believe that the implementation complexity
of this model is very significant since the latter can perform all the main required
functionalities for oil-spill monitoring at the same time. Results show that, based on
the architecture used during the implementation, only 1.13-28.37% of the available
resources are utilized by the network. Similarly, the power consumption varies
between 34 and 133 mW, which is negligible compared with the power drawn by
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drones in the order of 10th of watts. This verifies the feasibility of our ANN-based
approach and demonstrates the suitability for a practical scenario.

3.6 The proposed system: Complementary solution

For completeness of the system-level analysis, we suggest having a complete sys-
tem composed of four subsystems as shown in Figure 8:

1.Drone: It is the part used for tactical response. Whenever there is a flag raised for
possible oil spills (by witnesses or due to accidents), multiple drones that mount
nadir-looking wide-band radar sensors are sent to place. Measurements at
different frequencies are collected. Based on the weather conditions and the
ocean’s waves, multiple scans could be used to improve the accuracy of the
results. The measurements are then processed onboard using the proposed
algorithms to provide an initial assessment with respect to the detection,
estimation, and classification functionalities.

a. The detection algorithms proposed in Section 3.2 are applied. If the
probability of detection exceeds the threshold set by the persons in charge,
then there is a need to prepare to start the contingency plan.

b. The estimation algorithms proposed in Section 3.3 are applied. Thickness
values greater than 1 mm indicate the need for quick intervention because

the oil slick will persist for a long period of time.

c. The classification algorithm in Section 3.4 is applied to have an indication
about the oil type.
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Figure 8.

System-level view of the oil spill monitoring system.
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d. The results are sent to a ground station to combine results from different
drones and locations on the corresponding map.

2.Satellite: It is the part that can provide the synoptic view of the oil spill scene.
After the confirmation of the spill based on the initial assessment, the satellites
are used to provide the synoptic view and to get a better estimate of how the spill
is displaced over time. The satellites are supposed to transmit SAR images to
corresponding ground stations.

3.Data collection center: It is the part responsible for data collection, analysis, and
making decisions. SAR images are analyzed and compared with results received
from drones. Corresponding measures are taken, and the oil spill contingency
plan is launched. Oil spills are then tracked over time.

4, Conclusion

This work shows that by processing radar power reflectivity values, taken from
nadir-looking systems under weather conditions suitable for cleaning operations,
thick oil slick thicknesses up to 10 mm can be detected, estimated, and classified. The
accuracy of each function is dependent on the selected statistical algorithm. This
approach is novel since it provides most of the information that is required for an
effective contingency plan at the same time during the early stage of the spill. In
addition, this novel approach being implemented on drone platforms is a suitable
system for tactical responses needed during contingency plans. Moreover, the new
approach aims to complement state-of-the-art techniques, such as satellite-based SAR,
by covering calm ocean conditions and low wind speeds scenarios that challenge other
techniques for oil spill monitoring. Maximum-likelihood and machine learning statis-
tical algorithms could be used directly to quickly assess the scene. The ANN model
shows very low complexity, low power consumption, and high accuracy. This dem-
onstrates the feasibility to apply the approach for onboard processing. Despite all the
advancement that is presented, there are still open questions, tasks, and challenges to
consider in this field for utilized practical solutions. A further investigation on the
algorithmic level is still required to make sure that the performance will not decrease
given the variable dynamics that could be introduced in the physical environment.
Also, the complexity of all proposed approaches should be studied to check the
feasibility of implementing them on hardware platforms for onboard processing.
Despite the need for detection, thickness estimation, and classification, tracking the
spill is also very important on a small scale, especially for moderate wind speeds. It
would be useful to add this functionality as a capability of the drone-based solution by
considering the weather conditions and the ocean state to track the spill over time.
Finally, the proposed work is a proof of concept and helps take the oil-spill-related
research work one step forward toward the development of operational tools for oil-
spill intervention.
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