763 research outputs found

    Modelling Requirements for Content Recommendation Systems

    Full text link
    This paper addresses the modelling of requirements for a content Recommendation System (RS) for Online Social Networks (OSNs). On OSNs, a user switches roles constantly between content generator and content receiver. The goals and softgoals are different when the user is generating a post, as opposed as replying to a post. In other words, the user is generating instances of different entities, depending on the role she has: a generator generates instances of a "post", while the receiver generates instances of a "reply". Therefore, we believe that when addressing Requirements Engineering (RE) for RS, it is necessary to distinguish these roles clearly. We aim to model an essential dynamic on OSN, namely that when a user creates (posts) content, other users can ignore that content, or themselves start generating new content in reply, or react to the initial posting. This dynamic is key to designing OSNs, because it influences how active users are, and how attractive the OSN is for existing, and to new users. We apply a well-known Goal Oriented RE (GORE) technique, namely i-star, and show that this language fails to capture this dynamic, and thus cannot be used alone to model the problem domain. Hence, in order to represent this dynamic, its relationships to other OSNs' requirements, and to capture all relevant information, we suggest using another modelling language, namely Petri Nets, on top of i-star for the modelling of the problem domain. We use Petri Nets because it is a tool that is used to simulate the dynamic and concurrent activities of a system and can be used by both practitioners and theoreticians.Comment: 28 pages, 7 figure

    Petri net approaches for modeling, controlling, and validating flexible manufacturing systems

    Get PDF
    In this dissertation, we introduce the fundamental ideas and constructs of Petri net models such as ordinary, timed, colored, stochastic, control, and neural, and present some studies that emphasize Petri nets theories and applications as extended research fields that provide suitable platforms in modeling, controlling, validating, and evaluating concurrent systems, information systems, and a versatile dynamic system and manufacturing systems;We then suggest some of extensions that help make Petri nets useful for modeling and analyzing discrete event systems and manufacturing systems models based on the context of a versatile manufacturing system, and applies extended Petri nets models to several manufacturing systems such as an assembly cell, an Automated Palletized Conveyor System, and a tooling machine to show increased modeling power and efficient analysis methods;Finally, Validation methods are presented for these models and results of a performance analysis from a deterministic and stochastic model are used to reorganize and re-evaluate a manufacturing system in order to increase its flexibility

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Optimal and intelligent decision making in sustainable development of electronic products

    Get PDF
    Increasing global population and consumption are causing declining natural and social systems. Multi-lifecycle engineering and sustainable development address these issues by integrating strategies for economic successes, environmental quality, and social equity. Based on multi-lifecycle engineering and sustainable development concepts, this doctoral dissertation aims to provide decision making approaches to growing a strong industrial economy while maintaining a clean, healthy environment. The research develops a methodology to complete both the disassembly leveling and bin assignment decisions in demanufacturing through balancing the disassembly efforts, value returns, and environmental impacts. The proposed method is successfully implemented into a demanufacturing module of a Multi-LifeCycle Assessment and Analysis tool. The methodology is illustrated by a computer product example. Since products during the use stage may experience very different conditions, their external and internal status can vary significantly. These products, when coming to a demanufacturing facility, are often associated with incomplete/imprecise information, which complicates demanufacturing process decision making. In order to deal with uncertain information, this research proposes Fuzzy Reasoning Petri nets to model and reason knowledge-based systems and successfully applies them to demanufacturing process decision making to obtain the maximal End-of-Life (BOL) value from discarded products. Besides the BOL management of products by means of product/material recovery to decrease environmental impacts, the concepts of design for environment and sustainable development are investigated. Based on Sustainability Target Method, a sensitivity analysis decision-making method is proposed. It provides a company with suggestions to improve its product\u27s sustainability in the most cost-effective manner

    On the Performance Estimation and Resource Optimisation in Process Petri Nets

    Get PDF
    Many artificial systems can be modeled as discrete dynamic systems in which resources are shared among different tasks. The performance of such systems, which is usually a system requirement, heavily relies on the number and distribution of such resources. The goal of this paper is twofold: first, to design a technique to estimate the steady-state performance of a given system with shared resources, and second, to propose a heuristic strategy to distribute shared resources so that the system performance is enhanced as much as possible. The systems under consideration are assumed to be large systems, such as service-oriented architecture (SOA) systems, and modeled by a particular class of Petri nets (PNs) called process PNs. In order to avoid the state explosion problem inherent to discrete models, the proposed techniques make intensive use of linear programming (LP) problems

    Learning high-level process models from event data

    Get PDF

    Intelligent Business Process Optimization for the Service Industry

    Get PDF
    The company\u27s sustainable competitive advantage derives from its capacity to create value for customers and to adapt the operational practices to changing situations. Business processes are the heart of each company. Therefore process excellence has become a key issue. This book introduces a novel approach focusing on the autonomous optimization of business processes by applying sophisticated machine learning techniques such as Relational Reinforcement Learning and Particle Swarm Optimization

    Intelligent Business Process Optimization for the Service Industry

    Get PDF
    The company's sustainable competitive advantage derives from its capacity to create value for customers and to adapt the operational practices to changing situations. Business processes are the heart of each company. Therefore process excellence has become a key issue. This book introduces a novel approach focusing on the autonomous optimization of business processes by applying sophisticated machine learning techniques such as Relational Reinforcement Learning and Particle Swarm Optimization

    Aligning observed and modeled behavior

    Get PDF

    Encoding process discovery problems in SMT

    Get PDF
    Information systems, which are responsible for driving many processes in our lives (health care, the web, municipalities, commerce and business, among others), store information in the form of logs which is often left unused. Process mining, a discipline in between data mining and software engineering, proposes tailored algorithms to exploit the information stored in a log, in order to reason about the processes underlying an information system. A key challenge in process mining is discovery: Given a log, derive a formal process model that can be used afterward for a formal analysis. In this paper, we provide a general approach based on satisfiability modulo theories (SMT) as a solution for this challenging problem. By encoding the problem into the logical/arithmetic domains and using modern SMT engines, it is shown how two separate families of process models can be discovered. The theory of this paper is accompanied with a tool, and experimental results witness the significance of this novel view of the process discovery problem.Peer ReviewedPostprint (author's final draft
    • …
    corecore