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Abstract Information Systems, which are responsible for driving many pro-
cesses in our lives (healthcare, the web, municipalities, commerce and business,
among others) store information in the form of logs which is often left unused.
Process Mining, a discipline in between Data Mining and Software Engineer-
ing, proposes tailored algorithms to exploit the information stored in a log, in
order to reason about the processes underlying an information system. A key
challenge in process mining is discovery: given a log, derive a formal process
model that can be used afterwards for a formal analysis. In this paper we
provide a general approach based on Satisfiability Modulo Theories (SMT) as
a solution for this challenging problem. By encoding the problem into the log-
ical/arithmetic domains and using modern SMT engines, it is shown how two
separate families of process models can be discovered. The theory of this paper
is accompanied with a tool, and experimental results witness the significance
of this novel view of the process discovery problem.

Keywords Process discovery · SMT application · Causal nets · Petri nets

1 Introduction

Nowadays information systems are continuously monitored, producing a vast
amount of data in form of logs that describe the execution of their main pro-
cesses. One of the principal challenges is to use this data source in order to
enhance an information system into several dimensions: correctness, perfor-
mance, alignment with the specification, among others.
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Process Mining is a relatively novel discipline which has received a lot of
attention in the last decade [20]. By using the logs as source of information,
process mining techniques are meant to discover, analyze and enhance formal
process models of an information system [1]. There is a certain connection be-
tween the well-established Data Mining field, which focuses on the analysis of
data sets to obtain hidden relationships, and process mining, since some of the
process mining algorithms are grounded on traditional data mining techniques.
However, process mining focuses on processes underlying an information sys-
tem (like the process of handling customer orders, or the process of treating a
patient in a hospital), and therefore the problems tackled in these two fields
are rather different.

Process discovery faces the following problem: to discover a formal process
model (e.g., a Petri net [29], or an automaton) that adequately represents the
traces in the log. The reader can refer to Figures 1 and 2 to see toy examples of
process discovery. Process discovery can be oriented to control-flow (discover
the causal relationships between the activities), data (determine data patterns
for several purposes) or social (find the structure of the human collaboration to
carry out processes). In this paper we focus on control-flow process discovery.

In the last decade, several algorithms for control-flow process discovery
have appeared, most of them focused on the discovery of Petri nets. These
algorithms have diverse assumptions, guarantees and complexity. In general,
control-flow discovery algorithms can be split into lightweight methods that
focus on restricted formalisms, and complex methods that allow for general
process models at the expense of a higher computational cost. The contri-
butions of this paper can be categorized into the class of complex control-
flow discovery algorithms, casting the discovery as an optimization problem.
The techniques of this paper may be an alternative to the current complex
techniques, encoding the discovery problem into a satisfiability formula whose
satisfying assignments denote the discovered process models.

Satisfiability Modulo Theories (SMT) [30] is a decision problem for first
order logic formulas combined with background theories such as arithmetic,
bit-vectors, arrays and uninterpreted functions. It has been successfully applied
in several disciplines, including program verification [37], unit testing [38],
interactive theorem provers [26], scheduling [25] and planning [43]. In the last
decade there has been an enormous progress in SAT engines, making it possible
to apply them in industrial scenarios [27]. This is the driving force that has
motivated the work presented in this paper.

A common ingredient in the aforementioned applications is the use of a
model of an SMT/SAT formula to construct the solution, e.g., the problem
of scheduling reduces to modeling the set of restrictions that a valid schedule
should satisfy as an SMT formula. The same approach will be applied in
this work: log traces implicitly represent the causal relations of a potential
process model, and the problem of process discovery is to derive a process
model which satisfies all these implicit causal relations. To present the theory
in a general setting, we will distinguish two types of process models: additive
models, for which the addition of elements in the model implies the addition of
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behavior. Examples of additive models are Causal nets [39]. On the other hand,
elements in a restrictive model may exclude certain behavior, thus restricting
the language produced by the model. An example of restrictive models are
Petri nets [29]. The distinction between additive and restrictive models allows
us to consider the discovery problem of each class very differently, describing
generic and particular algorithms for each class. The main contribution of
this work is the proposal of generic algorithms for these two classes of process
models, and the proposal of techniques for encoding the discovery of Petri nets
using SMT.

Until now, SMT techniques for software engineering have focused on a
program as the main object of study: symbolic execution, model checking,
static analysis and verification of programs [27]. This paper brings SMT to a
different degree of abstraction, considering the use of formal process models
in the life-cycle of an information system as a main actor that needs to be
obtained, analyzed and enhanced during the different stages of the design of
a system.

The techniques of this paper are meant to provide fitting, precise and
simple process models without any restriction of the behavior underlying the
log. In contexts where noise may exist, we foresee the application of these
techniques after noise-filtering has been applied on the log. Likewise, when
the size of the log prevents from applying the techniques of this paper right
away, one may use decompositional approaches (e.g., clustering, projection) to
derive tractable sublogs that can be handled by the techniques of this paper.

The contribution of this paper with respect to our previous work [34,35] is
summarized as follows:

– The techniques in [34,35] only focus in C-nets, while in this work we pro-
pose generic algorithms for two classes of process models: additive and
restrictive (Sect. 4).

– An SMT-encoding technique for the discovery of Petri nets, and its corre-
sponding implementation and experimental evaluation (Sect. 6 and Sect. 7).

– A complexity study of the encoding problems presented along the paper.
– A new variant of the tool from [34,35] is presented that uses an SMT-

solver under pseudo-Boolean constraints, and an experimental evaluation
witnessing the improvement over the previous version is reported.

1.1 Organization of this paper

To illustrate the contribution of this paper, an example is provided in Sect. 2,
together with a short overview of the current applications of process discovery.
Then, in Sect. 3 the necessary preliminaries are briefly introduced. Generic
algorithms for the discovery of additive/restrictive models are proposed in
Sect. 4. Then, instantiations of these algorithms for the particular case of C-
nets and Petri nets are described in Sect. 5 and Sect. 6, respectively. Sect. 7
summarizes a set of experiments that has been performed on the tool support-
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ing the techniques of this paper. Then in Sect. 8 a discussion on related work
is provided. Finally, Sect. 9 presents future work and concludes this paper.

2 Process Discovery: applications and a motivating example

The growing field of process discovery has been already applied in several
scenarios. Here we try to summarize six of them (the list is by no means
exhaustive), providing examples of use of process discovery:

– Municipalities: typical processes in a municipality are issuing building per-
mits or the handling of invoices. Often, there exists no formal or complete
definition of these processes, but process discovery can address this. This
allows to analyze afterwards the differences between organizations, and the
degree of alignment between every case and the formal process. Several mu-
nicipalities in Holland have applied process discovery to their logs [1].

– Healthcare: information systems that monitor the processes within hospi-
tals record every event that is produced. This allows for instance to have
an accurate view of the typical paths followed by a particular group of pa-
tients [23,11]. Also, medical devices generate data that can also be analyzed
from a process perspective.

– Web Services: Service Oriented Architecture (SOA) products like IBM
WebSphere provide logging of the event information. Consequently, the
logs produced can be provided to process discovery techniques in order to
formally describe the execution of business processes, and determine its
correctness [5].

– Chip Manufacturing: ASML is the leading manufacturer of wafer scanners
in the world. In [31] a case study shows the applicability of process discovery
in this context.

– Auditing: the role of an auditor may change in the presence of process
mining techniques, since many checkings can be done automatically and
without the restriction to be applied to a small set of records [2].

– Software Engineering: apart from remarkable open-source/academic tools
like ProM (Eindhoven University), several well-known software vendors are
incorporating process discovery capabilities on their products: ARIS Pro-
cess Performance Manager (Software AG), Comprehend (Open Connect),
Discovery Analyst (StereoLOGIC), Flow (Fourspark), Futura Reflect (Per-
ceptive Software), Interstage Automated Process Discovery (Fujitsu), OKT
Process Mining suite (Exeura), Process Discovery Focus (Iontas/Verint),
Disco (Fluxicon), Celonis and Minit (Gradient).

We informally describe with a toy example the problem of process discov-
ery and the main differences between additive and restrictive models. Let us
assume an information system coordinating the purchase of items in an online
shop. We focus on four particular events of the purchase process: activity a
corresponds to a customer logging into the system, b represents the fact that
the customer places some online orders, c marks the finalization of a survey
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with his/her satisfaction with the company, while e represents the customer
logout. By monitoring the system, the two traces abce and acbe have been
recorded in the log L, as shown in Figure 1. Informally, in the behavior rep-
resented the customer first enters into the system (a), then performs b and c
(in any possible order) and finally exits the system (e).

The discipline of Process discovery aims at generating a process model from
the traces contained in a log. In the context of this paper, a process model
is considered to have two crucial characteristics: (1) a graphical description,
to enable the visualization in a software engineering setting, and (2) a formal
semantics, to allow for the unambiguous reasoning on the underlying behavior.
The two classes of models present in the figure, namely C-nets (left) and
Petri nets (right) are representatives of two broad families of process models:
additive models and restrictive models, respectively. The formal semantics of
these two models are described in the following sections, but can be intuitively
understood as follows: in the C-net the activity a can occur (since it is free from
input obligations), generating obligations to occur to the adjacent activities
b and c. Generating obligations is denoted by the dots associated to the arcs
exiting from the activity. For the Petri net, the process has initially a token
(shown as a dot) in the initial place (the circle beneath the a). When the
transition a occurs the token is removed and copied to the places on either
side of a, enabling the transitions b and c. These models have been obtained
from the log of the figure by using the techniques described in this paper.

The difference between an additive and a restrictive model can be seen
by considering the slight modifications made in the structure of each one of
the models discovered: the addition of an arc between event a and e in the
discovered C-net gives rise to the C-net in the bottom-left corner. This addition
incorporates the trace ae as a possible behavior (i.e., a customer is allowed to
leave the system without neither purchasing anything nor filling the survey).
In contrast, the new place connecting transitions b and c in the Petri net
discovered produces the Petri net in the bottom-right corner of the figure.
This net enforces the customer to first buy some goods and then take the
survey, allowing only one of the possible traces in the discovered model.

3 Background

3.1 Mathematical preliminaries

A multiset (or a bag) is a set in which elements of a set X can appear more
than once, formally defined as a function X → N, where N denotes the set of
natural numbers. We denote as B(X) the space of all multisets that can be
created using the elements of X. Let M1,M2 ∈ B(X), we consider the following
operations on multisets: sum (M1 + M2)(x) = M1(x) + M2(x), subtraction
(M1 −M2)(x) = max(0,M1(x) −M2(x)) and inclusion (M1 ⊆ M2) ⇔ ∀x ∈
X,M1(x) ≤ M2(x). We say a multiset M is k-bounded if ∀x ∈ X,M(x) ≤ k.
As usual, sets will be considered as bags when necessary.
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Fig. 1 Process discovery aims at obtaining a model out of a log. (Above) In this example
two models, an additive one (a C-net on the left) and a restrictive one (a Petri net on
the right) are generated from the same log. (Below) A model is additive if the addition of
elements can only increase the language it represents, on the other hand restrictive models
contain elements (places in the case of Petri nets) whose addition can only restrict the
language of the model.

A log L is a bag of sequences of activities. In this work we restrict the
type of sequences that can form a log. In particular, we assume that all the
sequences start with the same initial activity and end with the same final ac-
tivity, and that these two special activities only appear once in every sequence.
For instance, in the log of Fig. 1 all sequences start with activity a and end
with activity e, and these activities appear only once in each sequence. This
assumption is without loss of generality, since any log can be easily converted
into this form by using two new activities that are properly inserted in each
trace.

Given a finite sequence of elements σ = e1e2 . . . en, its length is denoted
by |σ| = n, and the element at position i (e.g., ei) is denoted by σi. Its prefix
sequence up to element i (but not including it), with i ≤ n+1, denoted by σ←i,
is e1 . . . ei−1. We define σ←1 as the empty sequence, denoted by ε. Conversely,
its suffix sequence after i, with i < n, denoted by σi→, is ei+1 . . . en. We express
the fact that an element e appears in sequence σ as e ∈ σ. The alphabet of σ,
denoted by Aσ, is the set of elements in σ. We extend this notation to logs, so
that AL is the alphabet of the log L, i.e., AL =

⋃
σ∈LAσ.
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3.2 Process Discovery

We assume a log L represents the footprints of the real process executions of a
system S that is only (partially) visible through these runs. Process discovery
techniques aim at extracting a process model M (e.g., a Petri net) from L
with the goal of eliciting the process underlying in S. We denote obs(M)
as the set of traces underlying a model M . By relating the behaviors of L,
obs(M) and S, particular concepts can be defined [13]. A model M fits log L
if L ⊆ obs(M). A model is precise in describing a log L if obs(M)\L is small.
A model M represents a generalization of log L with respect to system S if
some behavior in S\L exists in obs(M). Finally, a model M is simple when
it has the minimal complexity in representing obs(M), i.e., the well-known
Occam’s razor principle. It is widely acknowledged that the size of a process
model is the most important simplicity indicator [1].

The problem of process discovery is solved by process discovery algorithms,
that are formally defined as functions that map L onto a process model M
in such a way that some of the aforementioned metrics (fitness, precision,
generalization and simplicity) are optimized. Unlike in several approaches in
the literature [1], in this work we will take into account most of these factors
when deriving the models. First, the methods can be used to derive fitting
models. Second, we consider techniques to improve precision and generalization
of the derived models (see for instance Section 4.1). Finally, we incorporate
techniques to simplify process models (e.g., reducing arcs or bindings in a
C-net) without severely penalizing the other quality metrics.

4 Generic algorithms for the discovery of additive and restrictive
models based on SMT

Satisfiability Modulo Theories (SMT) is a decision problem for logical formulas
with respect to combinations of background theories expressed in first-order
logic with equality. Examples of theories are the theory of real numbers, the
theory of integers, and the theories of various data structures such as lists,
arrays or bit vectors. SMT is the problem of determining whether an instance
formula is satisfiable.

This section describes the SMT-based generic algorithmic support for the
two classes of process formalisms considered in this work: additive and restric-
tive models. As will become clear at the end of the section, this alternative
on process formalisms is meaningful since the nature of discovery techniques
required for each class is completely different.

4.1 Discovery of additive models

Structural elements in an additive model have the role of expressing the be-
havior allowed by the model. Hence, the more structural elements are present,
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the more behavior is described in the model. An example of an additive model
is a grammar: the addition of a new production rule can only express more
behavior accepted by the grammar. Another example of additive model is an
automaton: the addition of arcs and states potentially increases the language.
Techniques for discovery C-nets, an additive process formalism, will be pre-
sented in Sect. 5.

For many additive models it is possible to construct an SMT problem whose
solution can be transformed into a model capable of describing a given log L
(and possibly showing additional behavior). A general algorithm for such a
task is shown in Algorithm 1 (for the particular case in which the generic cost
function is minimized). The objective of this algorithm is to find the smallest
model M with perfect fitness (L(M) ⊇ L).

Algorithm 1 Discover optimized additive model
1: function discoverAdditiveModel(L)
2: M ← trivial model(L)
3: min← cost lower bound(L) . The cost of a solution is ≥ min
4: max← cost(M)− 1
5: Es ← structural equations(L)
6: while min ≤ max do
7: avg ← b(min+max)/2c
8: E ← Es ∧ (cost function(L) ≤ avg)
9: feasible, solutions← solve(E) . Call SMT solver

10: if feasible then
11: M ← extract model(solutions) . Model feasible
12: max← cost(M)− 1 . Since cost(M) ≤ avg
13: else
14: min← avg + 1 . Model unfeasible
15: end if
16: end while
17: return M
18: end function

The fundamental idea is to encode the equations that guarantee that
the sequences in the log L can be replayed by the derived model M (the
structural equations function, line 5), thus guaranteeing a perfect fitness
of the model. An example of structural equations for a particular example of
additive model will be described in detail in Sect. 5. Then a cost function must
be defined (in the algorithm it is assumed to be an integer cost function), typi-
cally based on the number of elements that the model contains. There are two
functions in Algorithm 1 related to the cost function: one is cost that returns
the value of the cost function for a given model M ; the other is cost function

which encodes as an SMT formula the computation of the cost function using
the SMT variables appearing in structural equations.

Since the latter function allows limiting the cost of the model found (if
the SMT problem is feasible), using a binary search (lines 6 to 16) this cost
function is minimized, thus yielding a model with the least number of elements
considered by the function. The binary search uses the functions solve and
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extract model. Function solve(E) calls the SMT solver on the set of equa-
tions E and returns two values: feasible and solutions. feasible is a Boolean
value indicating whether the solver found a solution to the equations in E.
solutions contains the values of the SMT variables in case the problem was
feasible. On the other hand, function extract model(solutions) builds an ad-
ditive model from the values of SMT variables where its language is guaranteed
to include L.

Note that a binary search requires some initial bounds on the cost function.
For this reason a trivial (and typically large) model is initially built that can
replay the log, to provide an initial upper bound (line 4). The initial lower
bound (represented by the function cost lower bound) can be derived from
the information in the log or some restriction of the model.

The minimization of model elements achieved with the binary search ad-
dresses another conformance factor, simplicity (see Sect. 3.2). In general, it is
assumed that models with less elements are simpler. Thus this algorithm, in
the general case, guarantees that we obtain the simplest possible model (in
terms of number of arcs) that provides complete fitness of the log.

This algorithm is valid for any additive model as long as the necessary
restrictions can be encoded in a particular SMT domain for which there is a
solver available. However, the usefulness of the algorithm may be hampered
for many different factors, including:

– The complexity of the encoding of the structural equations or the cost
function.

– The difficulty of defining a suitable cost function, that promotes as many
conformance factors (see Sect. 3.2) as possible.

For instance, let us consider an automaton, which is an additive model. If
the cost function to be minimized is the number of arcs or states, the resulting
optimal automaton will contain a single state and a self-loop for every symbol
in the alphabet AL of the log L, thus the automaton will represent the language
A∗L. This is a trivial solution for which the SMT apparatus was unnecessary.
However, as we will see in this section, there exist additive models for which
it is possible to define simple encodings and have useful cost functions.

Further uses of SMT in additive models: The flexibility of SMT problems can
be used to tackle one of the most challenging problems for additive mod-
els: generate a model that explicitly forbids some behavior (thus improving
precision if behavior not present in the log is forbidden). While the latter is
straightforward for restrictive models, additive models must consider all their
components and their interactions. For instance, in the case of a grammar that
can produce a forbidden behavior, the question is how to modify the produc-
tions so that the behavior in the log can still be produced by the grammar,
but, at the same time, the behavior we want to forbid cannot be generated. In
this section we outline a methodology that can be used in combination with
an SMT solver to achieve this particular objective.
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First of all we must find undesired behavior. This can be explicitly given as
negative examples by the user in some cases, but frequently these counterex-
amples are not available. Assuming we want to restrict as much as possible
the model to the behavior in the log, we consider as undersired behavior the
one included in the model but not present in the log. The idea will be to
find this behavior, determine if there is enough evidence in the log so as to
consider it undesired, and then forbid the generation of this behavior in the
creation of the model. A particular realization of this general concept is illus-

Algorithm 2 Forbid behavior in an additive model
1: function forbidInAdditiveModel(M , L, t)
2: Es ← structural equations(L)
3: l← 1
4: while l ≤ t do
5: σ ← forbidden behavior(M,L, l)
6: if σ = ε then . If no such σ exists
7: l← l + 1 . Increment length of σ
8: else . |σ| = l ∧ σ ∈ L(M) \ L
9: if relevant(L, σ) then

10: F ← elements(M,σ)
11: E′s ← Es ∧

∨
e∈F e 6∈M . Forbid some element of F

12: feasible,M ′ ← binary search(E′s) . Obtain minimal model satisfying E′s
13: if feasible then
14: Es ← E′s . Update structural equations
15: M ←M ′ . Update model
16: l← 1 . To ensure new model forbids all lengths
17: else
18: L← L ∪ {σ} . Discard E′s. Avoid finding again σ
19: end if
20: else
21: L← L ∪ {σ} . Avoid finding again σ
22: end if
23: end if
24: end while
25: return M
26: end function

trated in Algorithm 2. The algorithm receives three parameters: the additive
model M , the log L and a threshold t. The idea is that all sequences up to
length t that can be generated by the model but do not appear in the log, i.e.
L(M) \ L, are considered as potentially undesired behavior1. The algorithm
starts by looking for potentially undesired sequences of length l (line 5) using
the function forbidden behavior. This function returns the empty sequence
ε if no sequence of length l exists in L(M)\L. In such a case, the length of the
searched sequence l is incremented. Otherwise we have found a sequence that
we potentially have to forbid. The function relevant determines if, consider-

1 Notice that depending on the notion of valid sequence, the notion of undesired behavior
may vary. For instance, for certain formalisms, only complete sequences (i.e., sequences from
start to end) may be considered. For the sake of generality, we opt to abstracting from these
matters in Algorithm 2.
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ing the information of the log, the sequence is relevant enough to be forbidden
or not.

If the sequence is not considered relevant, we add it to the log preventing
that the algorithm finds the same sequence over and over again. Otherwise,
we compute the set F of elements in the model M that are involved in the
production of σ. This can be done by replaying the sequence on the model.
For instance, in a grammar this set would be the set of productions of the
grammar that are needed to produce the sequence (if more than one set is
possible, only one of them is returned by this function). Then, the set of
structural equations Es is extended with an equation that forbids at least one
of the elements required to produce σ. If several sets F exist, the algorithm will
keep finding σ until all possible sets F have been considered. Once the enriched
set of structural equations E′s has been computed, the model (if feasible) is
minimized using the function binary search, that corresponds to lines 6 to 17
of Algorithm 1 substituting Es by the parameter of the function, in this case
E′s. If the problem is feasible, then the changes in the structural equations
and the model are accepted, otherwise σ is added to L to prevent finding
the sequence again, since we cannot forbid this behavior2. In the former case,
notice that the length is reset to 1 in Step 16: to avoid that M ′ may incorporate
forbidden behavior already removed in M , since M ′ and M can be drastically
different. Therefore the undesired behavior of any length below the threshold
t must be tested each time a new model is computed. In any case, since the
number of potential traces to forbid is finite (and depends on the maximal
length t), Algorithm 2 terminates.

An implementation of this algorithm has demonstrated to be crucial for
tackling particular discovery instances, as demonstrated in Section 7. Since
this algorithm strongly relies on the notion of replay, Section 5.4 provides a
detailed description for the particular case of C-nets.

4.2 Discovery of restrictive models

The structural elements of a restrictive model are meant to cut the set of po-
tential behaviors. Therefore, adding a new element implies that some behavior
is left out. An example of restrictive model is a linear programming model,
where the addition of constraints clearly reduces the space of solutions of the
model. In the context of process mining, Petri nets [29] are the representative
restrictive model. A technique for the discovery of Petri nets is described in
Sect. 6.

Since an element of a restrictive model may potentially remove behavior,
the general approach for this class of systems is necessarily quite different. The
SMT encoding for additive models is a juxtaposition of different subproblems,
i.e., each sequence could constitute a single SMT problem and solved indepen-
dently, and the union of all these solutions would still be a valid global solution

2 In this case if previous iterations of the algorithm were only due to forbidding σ on
other parts of the model, these modifications could in principle be rolled back.
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to the whole set of sequences. The derived subproblems are put together to
allow optimizing the number of elements in the model (e.g., minimizing the
number of arcs in the C-net). In contrast, the SMT problem for restrictive
models should consider all the sequences in the log, because we must ensure
that the new element does not restrict any of the observed behavior. Thus,
in this approach, several SMT problems are solved, and each one of these so-
lutions corresponds to one element of the model. We iteratively discover new
restrictive elements until we obtain some guarantee that no other restrictive
element can be found that forbids some non-observed behavior.

Algorithm 3 Discover optimized restrictive model
1: function discoverRestrictiveModel(L)
2: M ← empty model()
3: Es ← structural equations(L)
4: while constrainable(M,L) do
5: E ← Es ∧ (new element(Es,M)) . Find element not previously found
6: feasible, solutions← solve(E) . Call SMT solver
7: if feasible then
8: M ←M ∪ {extract element(solutions)} . Add element to M
9: end if

10: end while
11: return M
12: end function

Algorithm 3 shows a general strategy for deriving the most restrictive
model. The basic idea is that we start with the empty model and we keep
adding elements to it until no further restriction of the language is possible.
Thus, this strategy clearly focuses on fitness (no observed behavior is left out)
and precision (no other model can be built which has a smaller language). A
particular instantiation of this algorithm will be presented in Sect. 6. In detail,
the algorithm is built on the following helper functions:

– structural equations characterizes the constraints that derived model
elements must satisfy in order to not forbid valid sequences in the log.

– constrainable tests whether new elements can be added to further restrict
the model while accepting the behavior from the log.

– new element provides further constraints that enforce the structural equa-
tions used so far in order to guide the search for new model elements.

– solve effectively determines whereas solutions exists after the aforemen-
tioned enforcing of the structural equations.

– extract element extracts one solution to be added to the model when the
SMT instance is feasible.

As with additive models, this algorithm is useful as long as some conditions
are met. For instance, the number of possible elements in a model must be
finite and we must be able to determine if a model can be further restricted
(the function constrainable in line 4 must be computable). Not all restrictive
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Fig. 2 (a) Causal net. (b) Causal net Ctravel from [39].

models have this property, however Petri nets have a well-founded theory that
can be used to compute such a termination criterion.

5 Discovering strategies for C-nets based on SMT

Recently, a formalism called Causal nets (C-nets) [39] has been proposed as
a suitable modeling language for process mining. It is an additive model that
allows expressing complex behavior that is sometimes difficult to describe using
other models. Unlike grammars, C-nets have a graphical counterpart which
makes them attractive in the context of process mining.

Let us first describe with the help of a couple of simple examples the
semantics of C-nets. Fig. 2(a) shows a log and a C-net whose language is
exactly the set of traces in the log. The semantics of the C-net can be informally
described as:

Activity a must be executed initially, since no obligations (input arcs with
dots) exist for a. It can generate obligations to either 1) activity b, or 2)
activity c or 3) activities b and c. Any of the these three possibilities requires
the execution of the corresponding activities, consuming the obligation(s) from
activity a and generating obligation(s) to activity e. The final execution of e
will empty the set of obligations and therefore will lead to a valid trace.

Figure 2(b) (from [39]) shows a more meaningful example, describing a
C-net that models the process of booking resources for travel. By considering
the informal semantics described in the C-net of Fig. 2(a), we let as an exercise
for the reader to check whether only the traces listed in the log belong to the
language of the C-net. The following section provides the formal definition of
C-nets.

5.1 Causal nets (C-nets)

Definition 1 (Causal net [39]) A C-net is a tuple C = 〈A, as, ae, I, O〉,
where A is a finite set of activities, as ∈ A is the start activity, ae ∈ A is
the end activity, and I (and O) are the set of possible input (output resp.)
bindings per activity. Formally, both I and O are functions A → SA, where
SA = {X ⊆ P(A) | X = {∅} ∨ ∅ /∈ X}, and satisfy the following conditions:
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– {as} = {a | I(a) = {∅}} and {ae} = {a | O(a) = {∅}}
– all the activities in the graph (A, arcs(C)) are on a path from as to ae,

where arcs(C) is the dependency relation induced by I and O such that
arcs(C) = {(a1, a2) | a1 ∈

⋃
X∈I(a2)X ∧ a2 ∈

⋃
Y ∈O(a1)

Y }.

Definition 1 slightly differs from the original one from [39], where the set
arcs(C) is explicitly defined in the tuple. The C-net of Fig. 2(a) is formally de-
fined as C = 〈{a, b, c, e}, a, e, I, O〉, with I(a) = {∅}, O(a) = {{b}, {c}, {b, c}},
I(b) = {{a}},O(b) = {{e}}, I(c) = {{a}},O(c) = {{e}}, I(e) = {{b}, {c}, {b, c}}
and O(e) = {∅}. The dependency relation of C, which corresponds graphically
to the arcs in the figure, in this case is: arcs(C) = {(a, b), (a, c), (b, e), (c, e)}.
The activity bindings are denoted in the figure as dots in the arcs, e.g.,
{b} ∈ O(a) is represented by the dot in the arc (a, b) that is next to activity a,
while {a} ∈ I(b) is the dot in arc (a, b) next to b. Non-singleton activity bind-
ings are represented by circular segments connecting the dots: {b, c} ∈ O(a) is
represented by the two dots in arcs (a, b), (a, c) that are connected through a
circular segment.

Definition 2 (Binding, Binding Sequence, Activity Projection) Given
a C-net 〈A, as, ae, I, O〉, B = {(a, SI , SO) | a ∈ A ∧ SI ∈ I(a) ∧ SO ∈ O(a)}
is the set of activity bindings. A binding sequence β ∈ B∗ is a sequence of ac-
tivity bindings. Given a binding sequence β = (a1, S

I
1 , S

O
1 ) . . . (a|β|, S

I
|β|, S

O
|β|),

its activity projection is the activity sequence denoted by σβ = a1 . . . a|β|.
bindings from a binding sequence β, we obtain an activity sequence denoted
as σβ .

Two binding sequences of the C-net in Fig. 2(a) are: β1 = (a, ∅, {b})(b, {a},
{e}) (e, {b}, ∅) and β2 = (a, ∅, {b, c})(c, {a}, {e})(e, {c}, ∅). The projection of
β1 is σβ1 = abe.

The semantics of a C-net are achieved by selecting, among all the possible
binding sequences, the ones satisfying certain properties. These sequences will
form the set of valid binding sequences of the C-net, and their corresponding
projection (see Def. 2) will define the language of the C-net. The next definition
addresses this.

Definition 3 (State, Valid Binding Sequence, Language) Given a C-
net C = 〈A, as, ae, I, O〉, its state space S = B(A × A) is composed of states
that are bags of obligations (activity 2-tuples). An obligation (a, b) expresses
that activity a has executed and expects b to execute. When this obligation
is satisfied, it is removed from the state, thus a state informally represents
the bag of pending (i.e., not yet satisfied) obligations. The state reached by
the C-net after the execution of a binding sequence β is defined with the help
of a function ψ: it maps sequences of bindings (formally B∗, where B is the
set of bindings of Def. 2) to the state space S. Function ψ : B∗ → S defined
inductively: ψ(ε) = ∅ and ψ(β · (a, SI , SO)) = ψ(β)− (SI ×{a}) + ({a}×SO).
The binding sequence β = (a1, S

I
1 , S

O
1 ) . . . (a|β|, S

I
|β|, S

O
|β|) is said to be valid if

the following conditions hold:
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1. a1 = as, a|β| = ae and ∀k : 1 < k < |β|, ak ∈ A \ {as, ae}
2. ∀k : 1 ≤ k ≤ |β|, (SIk × {ak}) ⊆ ψ(β←k)
3. ψ(β) = ∅
The set of all valid binding sequences of C is denoted as V (C). The language
of C, denoted by L(C), is the set of activity sequences that correspond to a
valid binding sequence of C, i.e., L(C) = {σβ | β ∈ V (C)}.

For instance, in Fig. 2(a), β1 is a valid binding sequence, while β2 is not, since
the final state is not empty (condition 3 is violated). The language of that
C-net is {abe, ace, abce, acbe}.

5.2 C-net discovery

Given a log L, the problem tackled in this section is to derive a C-net C that
addresses satisfactorily the factors described in Sect. 3.2. Concretely, we tackle
fitness by guaranteeing that all the sequences of the log belong to the language
of the model, simplicity by minimizing the structural elements of the net, and
precision because by removing unnecessary structural elements we also restrict
the language of the model. We now present a method to accomplish this, based
on encoding the discovery problem as an SMT instance.

5.2.1 Protobinding sequences of a log

In Sect. 5.1 we have seen first the definition of a C-net and then the definition
of the valid sequences of bindings it can produce. To discover a C-net from
a log, we follow the same path but in the opposite direction: we will define
sequences of triples representing unrestricted bindings that satisfy some prop-
erties. Then we will show that given these sequences, it is possible to obtain
a C-net C such that these sequences are actually valid sequences of bindings
of C. Consequently, this transforms the discovery problem for C-nets into the
problem of deriving these sequences of triples from the sequences in the log.
Let us first formalize the concept of protobinding:

Definition 4 (Protobinding, Well-Formed Protobinding Seq.) A triple
(a,X, Y ) is a protobinding if a is an element and both X and Y are sets. A
sequence β = (a1, X1, Y1) . . . (a|β|, X|β|, Y|β|) of protobindings is well-formed if
it satisfies the following conditions:

(W1) ∀i : 1 < i ≤ |β|, Xi 6= ∅ ∧ ai 6= a1
(W2) ∀i : 1 ≤ i < |β|, Yi 6= ∅ ∧ ai 6= a|β|
(W3) X1 = Y|β| = ∅
(W4) ∀i : 1 ≤ i ≤ |β|, ψ(β←i) ⊇ (Xi × {ai})
(W5) ψ(β) = ∅

Given a set B of well-formed sequences of protobindings it is possible to char-
acterize the C-nets such that their set of valid sequences of bindings contain
the sequences of protobindings in B, as the next theorem states.
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Theorem 1 ([34]) Given a set of well-formed protobinding sequences B with
identical initial and final activities as and ae, respectively, the tuple C =
〈A, as, ae, I, O〉 with:

(T1) A = {a | ∃β ∈ B : (a,X, Y ) ∈ β}
(T2) ∀a ∈ A, I(a) = {X | ∃β ∈ B, ∃Y : (a,X, Y ) ∈ β}
(T3) ∀a ∈ A, O(a) = {Y | ∃β ∈ B, ∃X : (a,X, Y ) ∈ β}

is a C-net such that V (C) ⊇ B.

The theorem allows an easy conversion from protobinding sequences to
C-nets, so that the C-net discovery problem from a log L can be reduced
to the following problem: given a log L, compute a well-formed protobinding
sequence for each sequence in L. Since, by definition, all sequences in the log
have the same initial and final activities, all the protobinding sequences will
also have, thus we can use Theorem 1 to discover a C-net.

Although the theorem does not consider all the C-nets whose valid binding
sequences include the protobinding sequences B, it was proven in [34] that it
gives always the smallest C-net (in terms of valid binding sequences and also
in terms of number of structural elements of the C-net) that can generate the
sequences in B.

In the next section we explain how we can encode as linear constraints the
problem of computing the sequences of protobindings.

5.2.2 Encoding the problem as linear constraints

Given a sequence σ of a log L, it is trivial to build a protobinding sequence
βσ out of it as βσ = (σ1, X1, Y1) . . . (σ|σ|, X|σ|, Y|σ|). The difficult part is to
ensure that βσ is actually well-formed. We will encode the unknown Xi (input
bindings) and Yi (output bindings) sets using integer variables and then define
the linear constraints that will guarantee that βσ is well-formed. We start by
delimiting the values that the Xi and Yi unknowns can take using the following
property:

Property 1 ([34]) Let σ be a sequence of activities. Consider the protobinding
sequence βσ = (σ1, X1, Y1) . . . (σ|σ|, X|σ|, Y|σ|). If βσ is well-formed, then ∀i :
1 ≤ i ≤ |σ|, Xi ⊆ Aσ←i ∧ Yi ⊆ Aσi→ .

To encode arithmetically the sets Xi and Yi for each βσ, we use an integer
variable over the domain {0, 1} (i.e., a Boolean variable, although we treat it as
an integer in this section) to encode the fact that a particular activity belongs
to the set. In particular we use a variable xσ,i,(a,σi) to indicate whether activity
a belongs to Xi in βσ or not. Note that the subscript contains one redundant
element (σi) that we keep for readability. The other elements are necessary: σ
allows us to distinguish the variables assigned to different sequences, i avoids
confusion between variables when the same activity appears in different posi-
tions of σ and a is required to identify the obligation consumed. As usual when
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sets are encoded using characteristic functions we use the following semantics:

xσ,i,(a,σi) =

{
1 if a ∈ Xi in βσ

0 otherwise.

Similarly, the variable yσ,i,(σi,a) indicates if a belongs to Yi in βσ. Due to
Property 1, the activity a for variables in Xi can only be chosen among the
alphabet of prefix σ←i, i.e., Aσ←i , while in y variables it is restricted to the
alphabet of the suffix of σ after ai, i.e., Aσi→ . We denote by X and Y the set
of all x and all y variables, respectively.

We will now rewrite the conditions (W1,W2,W3,W4 and W5) of Def. 4 for
describing a well-formed protobinding sequence βσ = (σ1, X1, Y1) . . . (σ|σ|, X|σ|, Y|σ|)
as inequalities using the X and Y variables.

Condition W1 In this case, part of the condition is already guaranteed, since
our definition of log already assumes that the initial activity only appears once.
Thus the condition simplifies to requiring that every Xi (except X1) must be
non-empty:

∀i : 1 < i ≤ |σ|,
∑
a∈Aσ←i

xσ,i,(a,σi) ≥ 1
(1)

Condition W2 This is the symmetrical case to W1 but with the Yi sets. Since
the uniqueness of the final activity is already guaranteed, we must only enforce
that the Yi sets (except Y|σ|) are non-empty:

∀i : 1 ≤ i < |σ|,
∑
a∈Aσi→

yσ,i,(σi,a) ≥ 1
(2)

Condition W3 This needs no conversion, since we can directly assign the
empty set to X1 and Y|σ|. Note that the model does not even generate any
variable in X or Y to represent these sets, since Aσ←1

= Aσ|σ|→ = ∅.

Condition W4 This condition requires that the state of obligations after ex-
ecuting prefix β←i (i.e., ψ(β←i)) contains, at least, the obligations in (Xi ×
{σi}). This is the same as requiring that the number of obligations of the type
(a, σi) in ψ(β←i) is larger or equal than the number of obligations (a, σi) in
(Xi×{σi}). Moreover, if σi is the last occurrence of that activity, condition W5
applies instead, since there cannot be pending obligations in the final state,
so the last occurrence of an activity must consume all the obligations for it.
The number of such obligations in ψ(β←i) can be computed by summing the
number of times the obligation has been produced minus the number of times
it has been already consumed before the execution of σi.

∀i : (1 ≤ i ≤ |σ| ∧ ∃j : (j > i ∧ σj = σi)) ,∀a ∈ Aσ←i ,∑
k:k<i∧σk=a yσ,k,(a,σi) −

∑
m:m≤i∧σm=σi

xσ,m,(a,σi) ≥ 0
(3)

where the first term in the subtraction from equation (3) describes the obli-
gations generated up to a given point, whereas the second term considers the
obligations consumed.
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Table 1 Structural equations for sequence abcbe.

i = 1 σ←1 = ε, σ1 = a, σ1→ = bcbe, Aσ←1 = ∅, Aσ1→ = {b, c, e}I
(1) –
(2) yσ,1,(a,b) + yσ,1,(a,c) + yσ,1,(a,e) ≥ 1
(3) –

i = 2 σ←2 = a, σ2 = b, σ2→ = cbe, Aσ←2 = {a}, Aσ2→ = {b, c, e}I
(1) xσ,2,(a,b) ≥ 1
(2) yσ,2,(b,b) + yσ,2,(b,c) + yσ,2,(b,e) ≥ 1
(3) yσ,1,(a,b) − xσ,2,(a,b) ≥ 0

i = 3 σ←3 = ab, σ3 = c, σ3→ = be, Aσ←3 = {a, b}, Aσ3→ = {b, e}I
(1) xσ,3,(a,c) + xσ,3,(b,c) ≥ 1
(2) yσ,3,(c,b) + yσ,3,(c,e) ≥ 1
(4) yσ,1,(a,c) − xσ,3,(a,c) = 0 and yσ,2,(b,c) − xσ,3,(b,c) = 0

i = 4 σ←4 = abc, σ4 = b, σ4→ = e, Aσ←4 = {a, b, c}, Aσ4→ = {e}I
(1) xσ,4,(a,b) + xσ,4,(b,b) + xσ,4,(c,b) ≥ 1
(2) yσ,4,(b,e) ≥ 1
(4) yσ,1,(a,b) − xσ,2,(a,b) − xσ,4,(a,b) = 0, yσ,2,(b,b) − xσ,4,(b,b) = 0 and

yσ,3,(c,b) − xσ,4,(c,b) = 0

i = 5 σ←5 = abcb, σ5 = e, σ5→ = ε, Aσ←5 = {a, b, c}, Aσ5→ = ∅I
(1) xσ,5,(a,e) + xσ,5,(b,e) + xσ,5,(c,e) ≥ 1
(2) –
(4) yσ,1,(a,e) − xσ,5,(a,e) = 0, yσ,2,(b,e) + yσ,4,(b,e) − xσ,5,(b,e) = 0 and

yσ,3,(c,e) − xσ,5,(c,e) = 0

Condition W5 To enforce that the final number of obligations must be zero
we require that the number of (a, σi) obligations is exactly zero after the last
execution of σi in the sequence. Since it is simply a stronger version of (3), it
replaces (3) in the last execution of σi.

∀i : (1 ≤ i ≤ |σ| ∧ ∀j (j > i⇒ σj 6= σi)) ,∀a ∈ Aσ←i ,∑
k:k<i∧σk=a yσ,k,(a,σi) −

∑
m:m≤i∧σm=σi

xσ,m,(a,σi) = 0
(4)

Definition 5 (Structural Equations) The set of equations for a C-net in-
cluding the behavior of a log L, denoted by structural equations(L), is the set
obtained by joining the set of equations (1), (2), (3) and (4) for every σ ∈ L.

Example 1 Consider the sequence σβ = abcbe, so that β = (a1, X1, Y1)
(a2, X2, Y2) (a3, X3, Y3)(a4, X4, Y4)(a5, X5, Y5) with a1 = a, a2 = b, a3 = c,
a4 = b, a5 = e, and X1 = Y5 = ∅. Table 1 shows the structural equations
for each prefix in the sequence. Note that in this table some of the equations
for i = 1 are empty since Aσ←1

= ∅, a similar case to that of i = 5 and (2),
because Aσ5→ = ∅. Moreover, (4) is used instead of (3) for i ∈ {3, 4, 5} because
these are the last executions of activities c, b and e, respectively.

In summary, by finding the satisfying assignments to the X and Y variables
in the equations arising from a log, one can derive a C-net that includes the
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language of the log3. In terms of complexity, the number of variables that each
activity occurrence generates is |A|, thus for a sequence σ, the total number
of variables generated is |A| · |σ|. Hence, the total number of variables for a
log L is |A| ·

∑
σ∈L |σ|, which is O (|L| · |A| ·maxσ∈L (|σ|)).

Depending on the input formula, SMT solvers either convert it into a SAT
problem or they can use tailored strategies for the non-Boolean parts present
in the formula. Given the mixture of linear and Boolean equations that form
the problem described above, we use the following convention when computing
the number of formulas that form the SMT problem: we give both the number
of linear equations and Boolean disjunctive clauses that form each equation. To
count the disjunctive clauses we assume that every linear equation appearing
in a Boolean formula is substituted by a dummy Boolean variable, and then
the Boolean formula is expressed in CNF. Using this definition, the number
of equations are summarized in the following table:

Equation in SMT problem # Linear equations
(per σi)

# Disjunctive clauses
(per σi)

(1) 1 –
(2) 1 –

(3) and (4) |Aσi−1 | –

Thus for an activity σi ∈ σ we have |Aσi−1
| + 2 linear equations. So for

a sequence σ, the maximum number of equations is O(|A| · |σ|). Therefore
the whole log L requires O(|L| · |A| ·maxσ∈L(|σ|)) equations, the same as the
number of variables. Next sections illustrate how to algorithmically solve the
discovery problem described in this section.

5.2.3 Solving linear constraints using SMT

The main goal of this section is to show how to solve the problem of discovery
in the SMT domain. SMT solvers for the theory of quantifier-free bit-vector
arithmetic [21] can model equations (1)–(4). Additionally, they can naturally
encode the bound on the number of arcs in the C-net, as well as some other
constraints (for instance, the heuristics for limiting the number of input/output
bindings per activity or limiting the earliest time an activity can be executed
as presented in [34], or the formulas of Sect. 5.4).

Variables in X and Y are all Boolean, so obtaining a Boolean formula
that represents the model is possible. Now let us show how (1), (2), (3) and
(4) can be encoded as Boolean formulas. Equations (1) and (2) are triv-
ial, since they correspond to a disjunction. For instance, the inequality (1):∑
a∈Aσ←i

xσ,i,(a,σi) ≥ 1 can be rewritten as
∨
a∈Aσ←i

xσ,i,(a,σi) = 1. Equa-

tions (3) and (4) are pseudo-Boolean (i.e. they are lineal combinations of bi-
nary variables) which can be also expressed using the quantifier-free bit-vector
arithmetic (for instance, encoding them using adders).

Note that these equations (ignoring the formulas used by the heuristics) can
be also solved by pseudo-Boolean solvers, so in the experiments (Sect. 7) we

3 Remarkably, the SMT technique proposed can be applied individually to every trace of
the log, which allows to independently solve the problem when complexity issues may arise.
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will also compare the strategy of using the quantifier-free bit-vector arithmetic
with them, when this is possible (if only heuristics that can be expressed as
pseudo-Boolean formulas are used).

5.2.4 Adding a cost function

Due to the additive nature of C-nets, reducing the number of arcs tends to re-
strict the language of the net. Fortunately, it is possible to encode an expression
as an SMT formula that bounds the number of arcs in the derived C-net. To ac-
complish this we can use any of the sets X or Y. Without loss of generality, we
use set X . For readability we introduce an auxiliary notation to denote the sub-
set of variables in X that correspond to a given binding (a, b) in the sequences
of a log L. Namely, X(a,b)(L) = {xσ,i,(a,b) | ∃σ ∈ L : σi = b∧a ∈ Aσ←i}. We can
now characterize in an SMT formula the number of arcs in the C-net obtained
through T1, T2 and T3 (Theorem 1) using the following pseudo-Boolean ex-
pression (in which we abuse notation so that the logical Or is interpreted as
binary value that can added in the summation):

number of arcs(L)
def
=
∑
a∈AL

∑
b∈AL

∨
x∈X(a,b)(L)

x

Then, the equation bounding the number of arcs is:

bound arcs(L, l)
def
= number of arcs(L) ≤ l

(5)

In terms of complexity we have the following number of equations:
Equation in SMT problem # Linear equations # Disjunctive clauses

(5) 1 |A| ·
∑
σ∈L |σ|

In Sect. 5.3 we will use this equation to find the C-net whose language
includes the log L and has the minimum number of arcs. Since we will explore
the solution space using a binary search strategy, we need to derive lower and
upper bounds on the number of arcs that the C-net can have.

An upper bound can be obtained by counting the arcs of a trivial C-net
that includes the language of the log (the ”immediately follows” C-net of [34]).
Given a log L, the ”immediately follows” C-net can replay all the sequences in
L, and is based on the immediately follows relation [6] between the activities
in L, denoted by <L and defined as <L= {(σi, σi+1) | ∃σ ∈ L ∧ 1 ≤ i < |σ|}.
Definition 6 (Immediately follows C-net) Given a log L, the “immedi-
ately follows” C-net of L, denoted by CIF(L), is the C-net 〈A, as, ae, I, O〉
such that: (i) A = AL, (ii) ∀σ ∈ L, σ1 = as ∧ σ|σ| = ae, (iii) ∀a ∈ A,O(a) =
{{b} | a <L b} ∧ I(a) = {{b} | b <L a}. Trivially, L(CIF(L)) ⊇ L.

In Fig. 3 we can see the ”immediately follows” C-net of the log in Fig. 1
({abce, acbe}). It is easy to check that the language of the C-net includes the
two sequences of the log and many more.

A possible lower bound is given by |AL|−1, which is the minimum number
of arcs to guarantee that all the activities in the log are connected, although
tighter lower bound can be given in some scenarios (see [34] for the details).
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a

b

c

e

Fig. 3 “Immediately follows” C-net of the log in Fig. 1 ({abce, acbe}). New traces like
abcbce are valid in this C-net.

5.3 The algorithm

In Algorithm 4 we give the pseudocode of the proposed approach (notice that
it is an instantiation of the general algorithm described in Sect. 4.1). The
main idea is to build the structural equations mandatory to any C-net whose
language includes a given log L (thus guaranteeing fitness), and then bound
the number of arcs allowed in the solution. Following the outcome of the SMT
solver, the bound is changed, so that we minimize the number of arcs using a
binary search strategy, thus increasing the simplicity of the model. Once the
number of arcs cannot be further decreased, a final step removes all redundant
bindings.

Algorithm 4 Discover minimal C-net
1: function discoverMinCnet(L)
2: C = 〈A, as, ae, I, O〉 ← CIF(L) . See Sect. 5.2
3: min← |A|
4: max← |arcs(C)| − 1
5: Es ← structural equations(L)
6: while min ≤ max do
7: avg ← b(min+max)/2c
8: E ← Es ∧ bound arcs(L, avg) . Add (5)
9: feasible, solutions← solve(E) . Call SMT solver

10: if feasible then
11: C ← extract cnet(solutions) . Model feasible
12: max← |arcs(C)| − 1 . Since |arcs(C)| ≤ avg
13: else
14: min← avg + 1 . Model unfeasible
15: end if
16: end while
17: C ← binding minimization(C) . See Sect. 5.4
18: return C
19: end function

To obtain reasonable initial bounds for the binary search, we use the con-
nectivity argument of Sect. 5.2.4 for a lower bound (line 3) requiring at least
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Fig. 4 Redundant bindings in a C-net discovered using an SMT-based approach. The
binding minimization algorithm (Sect. 5.4) is able to generate (a) starting from (b).

as many arcs as the number of different activities, and the number of arcs in
the ”immediately follows” C-net for the upper bound (line 4)4.

The algorithm contains three calls to functions that either are specializa-
tions of functions in Algorithm 1 or have not been yet introduced. One is
function solve(E) which calls the SMT solver on the set of equations E and
returns two values: feasible that is a Boolean value indicating whether the
solver found a solution to the equations in E and solutions that contains the
values of the X and Y variables in case the problem was feasible. The second
function, extract cnet(solutions), simply builds a C-net from the values of
the variables in sets X and Y using the principles explained in Theorem 1. Fi-
nally, the function binding minimization, explained in Sect. 5.4, removes the
largest set of input/output bindings that are redundant. We illustrate with an
example how redundant bindings might appear in the C-nets produced before
this function is called.

Example 2 Consider the log L = {abcf , adef , abcdef , adebcf , abcdebcf } which
can be described by the C-net of Fig. 4(a). However, a possible output for the
SMT-based approach is given in Fig. 4(b) which has two additional bindings,
marked with dashed arcs. In particular, the model in Fig. 4(b) allows the
sequences of activities bc and de to interleave. This is a valid possibility in the
sequences abcdef and adebcf of L. Since both models have the same number of
arcs, the algorithm does not prefer one C-net over the other. In this example, it
is clear that the C-net in Fig. 4(b) can be improved by minimizing the number
of bindings in the model.

Since the minimization of bindings is achieved by solving a related but
somewhat different SMT problem, we will explain the details of this technique
in the next section. The following theorem is the main result of this section:

4 Although the minimum number of arcs required to guarantee that all activities are
connected is |A|−1, the minimum bound in the algorithm is set to |A|. This is because there
is a single model that has |A| − 1 arcs, which corresponds to a sequence of activities. If this
model is feasible, then it should have been already found in CIF(L), thus |arcs(C)| = |A|−1
and the algorithm would never enter the loop and return CIF(L). On the other hand, if
|arcs(C)| > |A|−1, then there is no feasible model with just |A|−1 arcs, thus the minimum
search bound can be set to |A|.
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Theorem 2 Let C be the C-net returned by Algorithm 4 executed on a log L.
The language of C includes L, there is no other C-net including L that has
less arcs than C, and C contains no redundant binding.

Proof In [34] it was already proved that an algorithm equal to Algorithm 4
but without the call to the binding minimization function yields a C-net C ′

such that the language of C ′ includes L and there is no other C-net including L
that has less arcs than C ′. Since the function binding minimization removes
all redundant bindings from C ′, we obtain a C-net C that still satisfies the
two previous conditions but contains no redundant binding. ut

5.4 C-net replay and binding minimization

Given a particular activity sequence and a C-net, the replay problem is to find
the valid binding sequence of the net whose projection is the activity sequence.
The problem can be generalized to sets of activity sequences (i.e., a log).
This is a relevant problem, since it allows determining if a particular activity
sequence belongs to the language of a C-net, which is a fundamental knowledge
to effectively use the model. As we will see in this section, the replay problem
for C-nets is much more complex than in other models, but can be solved
using an SMT approach. Moreover, the SMT equations can be later reused
for other interesting applications, like removing redundant bindings. In this
section a brief informal description of C-net replay and binding minimization
is provided, that is developed further in [35].

The replay of a log L in a given C-net C can be expressed also as an SMT
problem, by using the structural equations of L: in structural equations(L)
some variables are removed, to reflect that some dependencies between activ-
ities are no longer possible. This is because they do not appear in C (we call
these equations the skeleton of C). Additionally, a set of equations is incorpo-
rated that restricts the possible assignments of the X and Y variables to the
set of input and output bindings in C. Although alternative replay methods
based on exploring the state space of bindings are possible, this approach has
some advantages. First of all, only exponential techniques are known for the
problem of C-net replay (although the problem is known to be in NP) 5. Sec-
ond, the replay problem of all the log can be solved in a single SMT problem
instance (which is NP-complete). Finally, the SMT-based replay will be the
basis to minimize the number of bindings of a C-net.

Formally, given a C-net C = 〈A, as, ae, I, O〉 and a log L, we denote the
skeleton of C as skeleton(C,L), which is defined as:

5 One can notice this with the simple example of Fig. 2(b): to replay the occurrence of
activity a, the three output bindings should be considered as potential successor states, in
general to proceed with the replay any of them can be combined with the occurrences of
the sequent activities, which in turn may introduce new output binding possibilities.
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skeleton(C,L)
def
= structural equations(L) ∧

∧
x∈X(a,b):(a,b)/∈arcs(C) x

∧
∧
y∈Y(a,b):(a,b)/∈arcs(C) y

Basically, in the formula above we set all the variables representing arcs not
found in C to false, hence invalidating these arcs to be used in the replay.

Similarly, the equations that restrict the choices of input/output bindings,
denoted as restrict choices(C,L), correspond to:

restrict choices(C,L)
def
=
∧
σ∈L

(∧
1<i≤|σ|

∨
S∈I(σi)Xi = S

∧
∧

1≤i<|σ|
∨
S∈O(σi)

Yi = S
)

These equations enforce that the input and output bindings can only be the
ones present in C-net C. We define the replay SMT problem replay(C,L) as:

replay(C,L)
def
= skeleton(C,L) ∧ restrict choices(C,L)

The solution to this SMT problem is the set of values of the X and Y variables
from which the Xi and Yi sets can be reconstructed. This means that from
each sequence σ in the log, we can obtain a valid binding sequence β of C-net
C such that act(β) = σ.

Theorem 3 ([35]) The equations replay(C,L) have a solution if, and only if,
every sequence σ in L is replayable by C.

In terms of the number of equations required by replay(C,L) consider first
the predicate skeleton(C,L). The first approximation would be to consider it
as the same asymptotic number of equations as structural equations(L), i.e.
O(|L| · |AL| ·maxσ∈L(|σ|)) (see Sect. 5.2.3). However, since only the obligations
for which an arc exists in C are allowed, the number of equations can be
directly reduced, instead of explicitly negating the variables representing arcs
not found in C. This reduction contributes to further reduce the amount of
variables that each activity generates to the incoming/outgoing arcs that it
has on the C-net C. If we denote the set of incoming/outgoing arcs of activity
a in C as arcs(C, a), the number of equations in formula skeleton(C,L) is
O(|L| ·max∀a∈AL(| arcs(C, a)|) ·maxσ∈L(|σ|)).

On the other hand, the predicate restrict choices(C,L) has a set of equal-
ities for each input/output binding. The number of terms required to express
this set equality (e.g., Xi = S) is restricted by the corresponding arcs in
C, thus max∀a∈AL(| arcs(C, a)|) in the worst case. Given that the number of
set equalities depends on the number of input/output bindings, we obtain
O(|L| ·maxσ∈L(|σ|) ·max∀a∈AL(|I(a)|+ |O(a)|) ·max∀a∈AL(| arcs(C, a)|)).
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Equation in SMT problem # Linear equations # Disjunctive clauses
skeleton(C,L) O(|L| ·

max∀a∈AL (| arcs(C, a)|)·
maxσ∈L(|σ|))

–

restrict choices(C,L) O(|L| · maxσ∈L(|σ|) ·
max∀a∈AL (|I(a)| +
|O(a)|) ·
max∀a∈AL (| arcs(C, a)|))

O(|L| · maxσ∈L(|σ|) ·
max∀a∈AL (|I(a)| +
|O(a)|) ·
max∀a∈AL (| arcs(C, a)|))

The mechanism by which input and output bindings of a C-net can be
minimized is closely related to the SMT-based replay. The basic idea is to build
an SMT replay problem in which we add an additional equation, enforcing that
at least a given number of bindings are not used during the C-net replay. In
other words, given an l, the replay problem then becomes: is it possible to
replay the net without using at least l of its bindings?. Once we know how
to establish this bound on the number of unused bindings, by performing a
binary search we can maximize them, thus minimizing the number of required
C-net bindings.

Formally, the quantity to maximize, expressed as a pseudo-Boolean formula
(in which the logical And of Boolean variables is treated as an integer binary
variable that can be added in the summation) is:

unused(C,L)
def
=
∑

a∈A

∑

S∈(I(a)∪O(a))

∧

σ∈L

∧

σi=a

(Xi 6= S ∨ Yi 6= S)

where the condition
∧
σ∈L

∧
σi=a

Xi 6= S expresses the fact that a particular
input binding S of C does not appear in any of the valid binding sequences
replayed. The sum of all these conditions (including the symmetrical condi-
tions on the output bindings), gives the number of unused bindings during the
replay. Thus, given a (lower) limit l on the number of unused bindings, the
SMT problem built is:

min unused(C,L, l)
def
= replay(C,L) ∧ (unused(C,L) ≥ l)

To perform a binary search we must provide a range of possible values for the
parameter l. The lower bound of this range is clearly zero, since it is possible
that the C-net requires all its bindings. On the other hand, if C contains
n bindings it is possible to give a tighter upper bound than simply n. In
particular, any activity that is not the initial nor the final one, must have at
least one input and one output bindings, while the initial (final) activity must
have at least one output (input) binding. Thus, if C contains |A| activities, this
means that at least (|A|−2)·2+2 bindings are required, so n−2 |A|+2 is a valid
upper bound. This upper bound can be further improved with the information
obtained during the creation of the formula unused(C,L) as explained in [35].

5.5 A note on the selection of the SMT domain

The encoding presented in this section can be represented in domains different
from SMT. In the algebraic domain, one option is to model equations (1)–(4)
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1 r, s, sb, p, ac, ap, c
2 r, sb, em, p, ac, ap, c
3 r, sb, p, em, ac, rj, rs, c
4 r, em, sb, p, ac, ap, c
5 r, sb, s, p, ac, rj, rs, c
6 r, sb,p, s, ac, ap, c
7 r, sb, p, em, ac, ap, c

(a)

r

sb

s

em

p

ac

rj

ap

rs

c

(b)

Fig. 5 Petri net discovery: (a) log, (b) Discovered Petri net.

from Sect. 5.2.2 in an Integer Linear Programming (ILP) model (but with
binary variables), and use one of the available solvers. However, such an option
has an important drawback: the cost function used to minimize the solution
to the problem must be linear. A possibility is to minimize the sum of all the
X and Y variables. However, this will promote solutions like the ”immediately
follows” C-net, since in that C-net every activity (except the initial and final
ones) always consumes one obligation and produces one obligation, thus it
is not possible to have a C-net producing less obligations. The approach for
minimizing arcs described in Sect. 5.2.4 requires expressions involving logical
disjunctions, which poses certain problems for ILP formulations, requiring the
introduction of auxiliary variables and additional constraints6.

In conclusion, SMT solvers provide a higher degree of flexibility than ILP.
Moreover, our tests showed that in terms of run-time they had a similar or
better performance than ILP solvers in our benchmarks.

6 Discovering strategies for Petri nets based on SMT

6.1 Petri nets, transition systems and the theory of regions

In this section we provide the background necessary to understand the tech-
nique for discovery of Petri nets based on SMT, that will be presented in
Sect. 6.2. A simple example of Petri net discovery is illustrated in Fig. 5. The
technique is grounded in the theory of regions [16], a theory that appeared in
the early nineties to provide a correspondence between an automaton and a
Petri net. For the sake of brevity, we have chosen to present only the necessary
ingredients of this theory in this section. For a detailed description on how the
theory of regions can be applied to derive Petri nets in a general setting, the
reader can refer to [8,14].

The starting point of the algorithms presented in this section is an automa-
ton whose language contains all the traces described in a log. This is without
loss of generality, since there are linear algorithms to convert a log into an
automaton [4]. For instance, we can see a log in Fig. 6 together with two pos-
sible transformations into a transition system (a type of automaton, see the
formal definition below) that always produce acyclic automata, although more

6 For instance, z = x ∨ y is equivalent to z ≥ x, z ≥ y and z ≤ x+ y.
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L =

{
abce

acbe

s0

s1

s2s3

s4s5

s6s7

a

bc

cb

ee

(b)

s0

s1

s2s3

s4

s5
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bc

c

e

b

(c)(a)

Fig. 6 (a) A log. (b) Transformation of the log into a transition system, merging equal
prefixes of sequences. (c) Transformation of the log into a transition system, merging prefixes
with the same number of the same activities.
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Fig. 7 (a) Transition system for the log {aaa, ab, ba, bb} and one of its regions r: r(s0) =
6, r(s1) = 4, . . . , r(s6) = 0 in which the gradients of the events are δr(a) = −2 and δr(b) =
−3. (b) Corresponding feasible place in the Petri net.

sophisticated techniques exist that can produce more compact (and non neces-
sarily acyclic) transformations [32,36]. The following definition formalizes the
type of automata the proposed algorithms consider:

Definition 7 (Transition system) A transition system (TS) is defined as
a tuple 〈S,Σ, T, s0〉, where S is a set of states, Σ is an alphabet of events,
T ⊆ S×Σ×S is a set of (labeled) transitions or arcs, and s0 ∈ S is the initial
state.

We use s
e−→s′ as a shortcut for (s, e, s′) ∈ T , and we denote its transi-

tive closure as
∗−→. A state s′ is said to be reachable from state s if s

∗−→s′.

We extend the notation to arc sequences, i.e., s1
σ−→sn+1 if σ = e1 . . . en and

∀1≤i≤n(si, ei, si+1) ∈ T . The language of a TS U , L(U), is the set of arc se-
quences feasible from the initial state.

Definition 8 (Petri net [29]) A Petri net (PN) is a tuple (P, T,W,M0)
where the sets P and T represent finite sets of places and transitions, re-
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spectively, and W : (P × T ) ∪ (T × P )→ N is the weighted flow relation. The
initial marking M0 ∈ NP defines the initial state of the system.

In a PN N , a transition t ∈ T is enabled in a certain marking M if
∀p ∈ P : M(p) ≥W (p, t) holds. Firing an enabled transition t in M leads to
the marking M ′ defined by M ′(p) = M(p)−W (p, t) +W (t, p), for each p ∈ P ,

and is denoted by M
t→M ′. The set of all markings reachable from the initial

marking M0 is called its Reachability Set. We say that N is k-bounded if, for
all reachable marking M and all place p, it holds that M(p) ≤ k. The Reach-
ability Graph of N , denoted by RG(N), is a transition system in which the set
of states is the Reachability Set, the events are the transitions of the net and

an arc (M1, t,M2) exists if and only if M1
t→M2. We use L(N) as a shortcut

for L(RG(N)).
To obtain a suitable implementation of the constrainable function of

Algorithm 3 for the Petri nets, we must resort to the theory of regions, which
are multisets over the states of a transition system that satisfy some conditions.
To specify these conditions we need the concept of gradient.

Definition 9 (Gradient in a TS) Let 〈S,Σ, T, s0〉 be a TS. Given a multiset

of states r and an arc s
e−→s′ ∈ T , its gradient is defined as δr(s

e−→s′) =
r(s′) − r(s). If all the arcs of an event e ∈ Σ have the same gradient, we say
that the event e has constant gradient, whose value is denoted as δr(e).

Definition 10 (Region) A region r is a multiset of states defined in a TS,
in which all the events have constant gradient.

Fig. 7(a) shows a TS with a multiset defined over the states of the system.
The numbers within the states correspond to the multiplicity of the multiset
r shown, e.g., r(s0) = 6. Multiset r is a region because both events a and b
have constant gradient, i.e., δr(a) = −2 and δr(b) = −3. It is easy to check
that these gradients are constant: for instance, every arc of event a has a
difference of −2 between the target state and the source state of every arc,
e.g., r(s1)− r(s0) = 4− 6 = −2, r(s5)− r(s4) = 1− 3 = −2, etc.

There is a direct correspondence between regions and the feasible places of
a PN with respect to the language of a TS.

Definition 11 (Feasible place) Given a TS U = 〈S,Σ, T, s0〉 and a PNNp =
〈{p}, Σ,W,M0〉, we say that place p is feasible (w.r.t. L(U)) if L(Np) ⊇ L(U).
Every region r of U corresponds to a feasible place p such that M0(p) = r(s0),
and W (p, e) = −δr(e) if δr(e) < 0, and W (e, p) = δr(e) otherwise.

The gradient of the region describes the flow relation of the corresponding
place, and the multiplicity of the initial state indicates the number of initial
tokens [14]. Fig. 7(b) shows the feasible place corresponding to the region
shown in Fig. 7(a).

Intuitively, feasible places are places that can be used to construct a PN
that will always include the language of a TS U , since the addition of a feasible
place p with language L(Np) to a PN N yields a net N ′ such that L(N ′) =
L(N) ∩ L(Np), and all feasible places p satisfy L(Np) ⊇ L(U).
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6.2 Discovery of Petri nets

Although there can be large number of regions in a given transition system
(in the worst case, an exponential number with respect to the set of states
of the TS), it was proved in [10] that the set of minimal regions is enough
to constrain the language of the net as much as possible while including the
language of the transition system. For this reason minimal regions are relevant
in Petri net discovery for obtaining precise models. Formally, a minimal region
r is a region such that, for all regions r′, r′ ⊆ r ⇒ r′ = 0, where 0 denotes
the 0-bounded region. That is, it does not have a proper subregion different
than the 0-bounded region. This section focuses on how to instruct SMT to
compute the set of minimal regions of a given TS.

Given a TS U = 〈S,Σ, T, s0〉, a k-bounded region r of U can be encoded
in SMT as follows: ∀s ∈ S, variable ms represents the value of r(s). Similarly,
the gradients of r, are encoded using a variable δe for each event e ∈ Σ.

The set of equations describing all the k-bounded regions of a TS U =
〈S,Σ, T, s0〉, denoted by k bounded regions(U, k) can be further encoded in
SMT:

– ∀s ∈ S, ms ≤ k, i.e., all multiplicities are k-bounded, and
– ∀s e−→s′ ∈ T, δe = ms′ −ms, i.e., all gradients are constant.

k bounded regions(U, k)
def
=
∧

s∈Sms ≤ k ∧
∧

s
e−→s′∈T δe = ms′ −ms

(6)

As we have seen in the general algorithm (Algorithm 3) we need a way
to compute new elements (regions in this case) at each iteration of the algo-
rithm (general method new element in Algorithm 3). In our case, given that
we are only interested in minimal regions, non-minimal regions need to be
discarded. We can prune non minimal regions with the help of two formulas:
proper subregion(r), which guarantees that the region found is a proper subre-
gion of r and ¬superregions(R) which prevents finding a region that includes
(⊆) any of the regions in a set R (this set will contain the regions currently in
the model).

The set of equations describing the regions that are proper subregions of a
region r, denoted by proper subregion(r) is:

–
∧

s∈Sms ≤ r(s), i.e., all multiplicities are smaller than or equal to the ones
in r, and

–
∨

s∈Sms < r(s), i.e., at least one multiplicity is strictly smaller.

proper subregion(r)
def
=
∧

s∈Sms ≤ r(s) ∧
∨

s∈Sms < r(s)
(7)

Conversely, the equations describing the regions that are superregions of a
region r, denoted by superregion(r) are

∧
s∈Sms ≥ r(s), i.e., all multiplicities

are greater than or equal to the multiplicities in r.

superregion(r)
def
=
∧

s∈Sms ≥ r(s)
(8)
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Given a set R of regions, it is easy to generate the equations describing the
regions that are superregions of at least one region inR as

∨
r∈M superregion(r).

We denote this set of equations as superregions(R).

superregions(R)
def
=
∨
r∈R superregion(r)

(9)

With all the previous equations it is possible to devise an algorithm (see Al-
gorithm 5) to find all minimal regions of a transition system U (thus generating
the most restrictive Petri net, using the k-bounded regions in the transition
system, that contains the language of U) [10]. With respect to the general algo-
rithm (Algorithm 3), one should notice that Algorithm 5 is computing a finite
set of regions R which will be then translated to a Petri net using a standard
construction from [10], shown at the end of this section. Algorithm 5 contains
some optimizations to increase the efficiency of the approach by avoiding vis-
iting particular solutions of the region space more than once. In any case, still
several parts can be identified with respect to the general Algorithm 3:

– The structural equations method is split into lines 5, 8 and 11 where
the combined characterization of regions is conducted.

– An emptiness test to the stack of regions s in Algorithm 5 implements the
constrainable generic method, since only when no more regions exist in
s we can certify that the model derived cannot be constrained further.

– The extract element function has been renamed to extract region,
since we obtain a region r from the solutions of a feasible SMT problem
where for all states s we have r(s) = ms.

The algorithm receives two parameters, the transition system U and the
desired region bound. The main idea is to explore the region space from the
largest region (region k, a multiset7 in which all the multiplicities are equal
to k) finding each time a proper subregion of the last region found that is not
a superregion of the minimal regions found so far (the ones in R). Once this
descending chain cannot be further continued, a minimal k-bounded region
of U has been found, which is added to the set R. Then the algorithm back-
tracks to the previous region and asks for a proper subregion that is not a
superregion of any of the regions in the updated set R. Once again when this
chain of regions is exhausted we have found another minimal region of U . This
iteration in lines 10-18 from Algorithm 5 is not explicit in Algorithm 3 and
should be understood as a necessary minimality test preceding the method
extract region8. This process continues until all minimal regions have been
found, as next theorem states.

Theorem 4 The set R returned by Algorithm 5 executed on a TS U contains
all the k-bounded minimal regions of U .

7 This is indeed a region, since the gradient of every event is constant and equal to zero.
8 Testing minimality of model elements is a feature not considered in Algorithm 3, and this

is the reason why the generic algorithm (Algorithm 3) and the instantiation (Algorithm 5)
have a different structure.
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Algorithm 5 Discover all minimal k-bounded regions of TS U
1: function discoverMinimalRegions(U, k)
2: R← ∅ . Set of minimal regions
3: s← empty stack() . Stack of regions to explore
4: push(s,k) . Start with the largest k-bounded region
5: E1 ← k bounded regions(U, k) . Equations describing all k-bounded regions of U
6: while ¬empty(s) do
7: r ← top(s)
8: E2 ← ¬superregions(R) . Eqs. forbiding all superregions of regions in R
9: region found← False

10: repeat
11: E3 ← proper subregion(r) . Eqs. describing all proper subregions of r
12: feasible, solutions← solve(E1 ∧ E2 ∧ E3) . Call SMT solver
13: if feasible then
14: r ← extract region(solutions) . Model feasible
15: push(s, r)
16: region found← True
17: end if
18: until ¬feasible
19: pop(s)
20: if region found then
21: R← R ∪ {r} . Add minimal region r
22: end if
23: end while
24: return R
25: end function

r0

a b
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c

(a)

s0 region r0

s1
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a b
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s1

s2 region r2

a b
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Fig. 8 (a) A PN. (b) Its reachability graph (three copies), in which three regions, that
form the set of minimal regions, have been shaded (e.g., region r0 is r0(s0) = 1, r0(s1) =
0, r0(s2) = 0).

Proof Assume R does not contain some k-bounded minimal region r of U .
Since r is k-bounded, it must satisfy the equations in E1. Thus if r was dis-
carded by Algorithm 5 must either be because it did not satisfy E2, or it has
a proper subregion. In the former case, then it is a superregion of at least
one region in R, thus r is not minimal. In the latter case, since the algorithm
iterates until ¬feasible is true, a contradiction is reached. ut

We illustrate how this algorithm operates with the following example:
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ra : ms0 = 1,ms1 = 1,ms2 = 1step 0

rb : ms0 = 1,ms1 = 1,ms2 = 0

ra : ms0 = 1,ms1 = 1,ms2 = 1
step 1

rc : ms0 = 1,ms1 = 0,ms2 = 0

rb : ms0 = 1,ms1 = 1,ms2 = 0

ra : ms0 = 1,ms1 = 1,ms2 = 1

step 2

Unsat

R = {rc}
step 3

rd : ms0 = 0,ms1 = 1,ms2 = 0

rb : ms0 = 1,ms1 = 1,ms2 = 0

ra : ms0 = 1,ms1 = 1,ms2 = 1

step 4

Unsat

R = {rc, rd}
step 5

Unsat

R = {rc, rd}step 6

k bounded regions(U, 1) ∧
¬superregions(∅) ∧
proper subregion(ra)

k bounded regions(U, 1) ∧
¬superregions(∅) ∧
proper subregion(rb)

k bounded regions(U, 1) ∧
¬superregions(∅) ∧
proper subregion(rc)

k bounded regions(U, 1) ∧
¬superregions({rc}) ∧
proper subregion(rd)

k bounded regions(U, 1) ∧
¬superregions({rc, rd}) ∧
proper subregion(rb)

k bounded regions(U, 1) ∧
¬superregions({rc}) ∧
proper subregion(rb)

step 7 and beyond

Fig. 9 Several steps of the execution of Algorithm 5 on the TS U of Fig. 8(b) with k = 1.
Each step shows the contents of the stack s if the SMT problem was feasible, otherwise it
shows the set of minimal regions found so far. The label on each arc indicates which SMT
problem is solved in each case.

Example 3 Consider the TS shown in Fig. 8(b). If we use Algorithm 5 to
compute its 1-bounded minimal regions, the first steps of the sequence of
SMT problems solved are shown in Fig. 9. Since in this case k = 1, the
algorithm starts with region 1, denoted as ra. Smaller subregions are then
found (rb and rc) until at step 3 the problem becomes unfeasible. At this
point rc is known to be a minimal region (note this corresponds to region r0
in Fig. 8(b)), thus added to R. Then the algorithm backtracks to the last step
that yield a satisfiable problem (step 1) and asks for a subregion of rb that
is not a superregion of rc. This produces region rd which is in fact minimal
(corresponds to region r1 in Fig. 8(b)). The process will continue until the last
minimal region, r2 in Fig. 8(b), is found and the SMT problem built from the
root node (step 0) becomes unfeasible. An example of the SMT problem to
solve to obtain step 4 is shown in Table 2.

Since after the execution of the algorithm, R contains all the minimal k-
bounded regions, a PN built using these regions (with Algorithm 6) will yield
a PN such that no other net built from k-bounded regions can have a smaller
language [10].
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Table 2 Equations used to obtain step 4 in Fig. 9.

Equations
k bounded regions(U, 1) ms0 ≤ 1 ∧ms1 ≤ 1 ∧ms2 ≤ 1 ∧

δa = ms1 −ms0 ∧ δb = ms1 −ms0 ∧ δc = ms2 −ms1
¬superregions({rc}) ¬(ms0 ≥ 1 ∧ms1 ≥ 0 ∧ms2 ≥ 0)

proper subregion(rd) ms0 ≤ 1 ∧ms1 ≤ 1 ∧ms2 ≤ 0 ∧
(ms0 < 1 ∨ms1 < 1 ∨ms2 < 0)

In terms of complexity of the SMT problem solved in each iteration, notice
that the equations describing regions should contain at least one variable per
state in the transition system, and should also encode the gradients for each
event. Next table shows a detailed count for each one of the predicates used
in Algorithm 5:

Equation in SMT problem # Linear equations # Disjunctive clauses
k bounded regions(U, k) |S|+ |T | –

proper subregion(r) 2|S| 1
¬supperregion(R) |R| · |S| |R|

Notice that apart from the complexity of the encoding shown above, the worst-
case complexity of Algorithm 5 is exponential in the number of states |S|, due
to the exploration in the space of k-bounded multisets of S.

Finally, once the set of k-bounded minimal regions are computed with
Algorithm 5, the Petri net can be derived. Algorithm 6 shows how to build a
PN that includes the language of a TS given a set of regions R of the transition
system.

Algorithm 6 Build a PN from a set regions R of TS U [10]

1: function discoverPNfromRegions(U = 〈S,Σ, T, s0〉, R)
2: W ← ∅ . Initially empty flow relation
3: for r ∈ R do
4: for t ∈ Σ do
5: if δr(t) < 0 then
6: W (r, t)← −δr(t)
7: W (t, r)← 0
8: else
9: W (r, t)← 0

10: W (t, r)← δr(t)
11: end if
12: end for
13: M0(r)← r(s0)
14: end for
15: return 〈R,Σ,W,M0〉 . Each region is a place, each event is a transition
16: end function
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7 Experiments

We have implemented Algorithms 4 and 5 in a prototype tool that uses the
STP solver [17] as the underlying SMT solver9. In this section we evaluate
the capacity of these algorithms to derive valuable models from several logs.
For the particular case of Algorithm 4 in which only pseudo-Boolean formulas
appear, we have also compared with the CLASP solver [18]. Note that in this
latter case the solver admits a cost function to minimize, thus no binary search
is required to minimize the number of arcs.

Table 3 shows the results for Algorithm 4 on some small log examples from
[34] with the following information:

– |L| is the number of distinct sequences in the log,
– |σm| is the length of the largest sequence,
– |AL| is the size of the alphabet of activities,
– arcs is the number of arcs of the final C-net,
– time is the elapsed time (in seconds) required to complete the discovery

process using STP,
– id indicates if the obtained C-net was identical to the original one, in the

case where the log originated from a C-net, or has the same language as a
Petri net found using the theory of regions,

– |X∪Y| is the number of Boolean variables used to encode the SMT problem,
– |E| is the number of linear equations that the SMT problem contains,
– bounds is the initial range in the number of arcs where the binary search

must take place,
– it is the number of iterations to obtain this C-net,
– column heur indicates if some of the heuristics defined in [34] was used,

where f refers to restricting the first occurrence of activities and i (o) to
limiting the number of input (output) bindings per activity,

– column CLASP shows the time required by the CLASP solver. In some cases
this solver, which only accepts pseudo-Boolean formulas, could not be used
because some of the formulas were not pseudo-Boolean. This is indicated
by a “–” in the table.

Table 3 Results of discovery algorithm on small examples.

Benchmark |L| |σm| |AL| |X ∪ Y| |E| bounds arcs it time heur id CLASP
aalst1 (Fig. 2(b)) 10 5 5 156 147 [6, 11] 6 2 0.3 – y 0.0
aalst2b 8 11 5 156 147 [5, 9] 6 3 0.2 – n 0.0
mixedXorAnd 3 14 7 219 162 [7, 11] 8 3 0.2 – y 0.0
a12f0n00 5 5 7 12 176 143 [12, 17] 14 3 0.1 f y –
optional1 11 8 6 413 264 [6, 10] 9 2 0.1 f,o y –
cycles 7 18 8 839 542 [8, 17] 9 3 1.3 f,i y –
a22f0n00 1 99 46 22 28898 18942 [22, 166] ≤39 ≥4 >1h – n >1h

9 STP translates the SMT formula to a SAT formula and then uses the miniSAT solver,
but any other SAT (or incremental SAT) tool can be used as backend.
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The results on these small benchmarks show that the approach is, in gen-
eral, able to derive valuable C-nets. It also shows that the techniques presented
in this paper should be optimized in order to be able to deal with large inputs,
as we will report below. Algorithm 4 always generates C-nets whose language
contains the given log (fitness=1.0), moreover, it also rediscovers the original
C-nets in most of the cases. However two logs are not successfully discov-
ered: for the aalst2b benchmark, we obtain a C-net equal to the original one,
but without an arc; on the other hand, the largest benchmark in this table
(a22f0n00 1 from [42]) could not be discovered within the one hour limit used
in our experiments. In addition to the number of variables and equations, other
factors may contribute for a solver to find a solution fast: the asymmetry be-
tween deciding whereas a formula satisfiable or unsatisfiable, the dependence
to the number of arcs in the solution, among others. This should be explored
in future work to instruct better the usage of SMT solvers.

To be able to process larger benchmarks we have to resort to a simplifi-
cation heuristic (limiting the obligation alphabet [34]) that only allows arcs
between activities that appear in some sequence of the log at most a distance
distance d, where d is a parameter called the size of the activity window. Ta-
ble 4 shows the results for our previous benchmarks as well as some larger
examples also from [42]. In this case we have not used any other heuristic. De-
spite this fact the original models were discovered in all cases but one bench-
mark. The aalst2b benchmark is a difficult one for an arc minimizing strategy,
since the model contains one arc more than the minimum number of arcs to
include the language of the log. For this example we had the more complex
Algorithm 2, which was capable of deriving the correct net in about 5 seconds.

In terms of comparisons between STP and CLASP, the latter is an order of
magnitude faster in general, except in the largest benchmark. This suggests
that if the problem can be kept in the pseudo-Boolean domain it is usually a
better strategy to use a specific solver for this class than a more general solver.

Table 4 Results of the C-net discovery algorithm when heuristics to limit the number of
variables are used (activity window of size 1).

Benchmark |L| |σm| |AL| |X ∪ Y| |E| bounds arcs it time id CLASP
aalst1 10 5 5 136 137 [6, 11] 6 2 0.0 y 0.0
aalst2b 8 11 5 240 246 [5, 9] 6 3 0.1 n 0.0
mixedXorAnd 3 14 7 89 98 [7, 11] 8 3 0.2 y 0.0
a12f0n00 5 5 7 12 72 91 [12, 17] 14 3 0.1 y 0.0
optional1 11 8 6 229 220 [6, 10] 9 2 0.1 y 0.0
cycles 7 18 8 265 288 [8, 17] 9 3 0.2 y 0.0
a22f0n00 1 99 46 22 12827 10369 [22, 166] 34 7 10.4 y 0.8
a22f0n00 5 836 76 22 121281 97429 [22, 183] 34 7 284.9 y 21.7
a32f0n00 1 100 73 32 26378 19049 [32, 362] 46 8 36.9 y 3.8
a42f0n00 1 100 58 42 48432 31815 [42, 735] 62 9 251.9 y 309.7
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To test the validity of our approach for Petri net discovery (Sect. 6), we have
compared Algorithm 5 with a state-of-the-art discovery algorithm grounded
also on the theory of regions but using ILP techniques. In particular we have
compared with the ILP plug-in in the ProM suite, that uses the Jsolve library
for ILP solving. Since Algorithm 5 works on a transition system and we initially
have a log, a transformation must be performed to use the algorithm. In this
case we have used the common final marking transformation of [32].

Table 5 shows the results for both tools. Column P/F indicates the number
of places and the number of arcs of the resulting net, respectively. Column time
was the running time to obtain the net and ETC is a metric [28] describing
the precision of the net. This metric quantifies how much behavior not seen in
the log is present in the model, where value 1.0 indicates that no additional
behavior is present, while values near 0.0 show that the model included lots
of additional behavior. The ETC metric is computed by counting model devi-
ations with respect to the log behavior, i.e., for each reachable state s in the
model that is reached by a sequence σ that is a prefix of some trace in the log,

the ratio |obs(σ)|
|allow(s)| is computed, where obs(σ) (allow(s)) is the set of activities

observed in the log after σ (allowed in the model at state s).

Table 5 Results of the PN discovery algorithm.

ILP Algorithm 5
Log |L| |σm| |AL| P/F time ETC P/F time ETC

a32 1 100 73 32 31/73 25 0.52 32/75 26 0.52
a32 5 900 102 32 31/73 112 0.59 31/73 35 0.59
t32 1 200 360 33 30/72 288 0.37 31/74 63 0.37
t32 5 1800 379 33 30/72 9208 0.39 30/72 84 0.39
a42 1 100 58 42 44/109 154 0.35 52/134 175 0.37
a42 5 900 78 42 44/101 1557 0.41 46/107 721 0.41

8 Related work

Process discovery is a vivid area, which has produced several techniques in
the last decade. In this section we focus on the related work for the particular
models that we are considering in this paper: C-nets and Petri nets. The reader
can find a complete overview of process discovery in [1].

Being a rather novel formalism, there is only one approach in the literature
for the discovery of C-nets: the flexible heuristics miner [40]. This technique
is a light-weight method that additionally can deal with noise. However, an
artifact of this is that the derivation of fitting models is not guaranteed, which
may represent a problem in several contexts.

In the case of Petri nets, the first algorithm for process discovery in the
literature was the α-algorithm [6], which is based on detecting ordering rela-
tions in the log. Although having low complexity, the α-algorithm can only
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discover a very restricted class of behaviors. To surpass this limitation, several
extensions have been presented in the literature [24,41,19]. In general, these
techniques are not general enough for capturing all necessary constructs in
process models [15].

A recent technique that is guided towards the discovery of block-structured
models and has low complexity has been presented in [22]. However, this tech-
nique is guided towards a particular class of Petri nets (workflow and sound),
describing a very restricted type of behaviors.

Evolutionary approaches have been also proposed to derive unrestricted [3]
or block-structured [12] Petri nets. However, evolutionary methods unfortu-
nately can have problems in dealing with inputs of medium/large size.

Finally, approaches closer to our work are grounded on the theory of re-
gions [16], to tackle the process discovery problem as we do in Sect. 6: the
works [9,42,14,33] can discover unrestricted models but may have difficulties
in handling large specifications similarly to the techniques proposed in this
paper. The techniques of this paper show promising results, as reported in the
previous section, where a comparison with the techniques in [42] is provided.

In summary, techniques for discovery in the literature can be split into light-
weight and complex. The technique of this paper falls in the latter class. The
advantages of our technique stems from the fact that by casting the problem as
an optimization instance, different versions can be obtained by manipulating
the constraints/cost function. This distinguishing feature may be explored to
further improve the search for solutions.

9 Conclusions, open problems and extensions

This paper has presented general algorithms to discover process models from
logs, for two families of processes: additive and restrictive models. Two rele-
vant representatives of these families have been used to develop this general
framework, and the experimental results show that SMT techniques can be
competitive with respect to other state-of-the-art discovery techniques. How-
ever we believe there is much room for improvement given that the discovery
algorithms presented did only use off-the-shelf SMT solvers, but most of the
equations were unchanged between different runs of the solver. Clearly we
would benefit from solvers capable of presolving sets of equations or incre-
mentally add/remove equations without having to recompute everything from
scratch.

On the other hand some requirements could be relaxed: for instance, it
might be interesting to instruct the SMT solver to satisfy as many structural
equations (that guarantee fitness) as possible but allowing some of them not to
be satisfied (so the overall problem is unsatisfiable) in order to achieve better
results in the cost functions. That is sacrificing fitness to obtain a simpler
model, for instance. In this regard techniques like Max-SAT [7] might prove a
valuable option.
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