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ABSTRACT

OPTIMAL AND INTELLIGENT DECISION MAKING IN SUSTAINABLE
DEVELOPMENT OF ELECTRONIC PRODUCTS

by
Meimei Gao

Increasing global population and consumption are causing declining natural and social

systems. Multi-lifecycle engineering and sustainable development address these issues by

integrating strategies for economic successes, environmental quality, and social equity.

Based on multi-lifecycle engineering and sustainable development concepts, this doctoral

dissertation aims to provide decision making approaches to growing a strong industrial

economy while maintaining a clean, healthy environment. The research develops a

methodology to complete both the disassembly leveling and bin assignment decisions in

demanufacturing through balancing the disassembly efforts, value returns, and

environmental impacts. The proposed method is successfully implemented into a

demanufacturing module of a Multi-LifeCycle Assessment and Analysis tool. The

methodology is illustrated by a computer product example.

Since products during the use stage may experience very different conditions,

their external and internal status can vary significantly. These products, when coming to a

demanufacturing facility, are often associated with incomplete/imprecise information,

which complicates demanufacturing process decision making. In order to deal with

uncertain information, this research proposes Fuzzy Reasoning Petri nets to model and

reason knowledge-based systems and successfully applies them to demanufacturing

process decision making to obtain the maximal End-of-Life (EOL) value from discarded

products.



Besides the EOL management of products by means of product/material recovery

to decrease environmental impacts, the concepts of design for environment and

sustainable development are investigated. Based on Sustainability Target Method, a

sensitivity analysis decision-making method is proposed. It provides a company with

suggestions to improve its product's sustainability in the most cost-effective manner.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the rapid development of computer and communication technologies, the growth

rate of the electronic industry has been much more dramatic than ever expected.

Electronic products have the following features:

1) Their volume is very large;

2) They become obsolete very quickly; and

3) Many of them contain both valuable and toxic materials.

Computers and other electronic devices are as common in offices as telephones,

and their quantity is growing. Faster, more powerful computers quickly replace their

predecessors. A 1999 study by the National Safety Council estimated that nationally,

approximately 20.6 million personal computers would become obsolete in the United

States in 1998 and nearly 500 million computers would become obsolete between 1997

and 2006. Most old electronic products are either in storage or thrown in landfill rather

than being recycled [NSC, 1999]. End-of-Life (EOL) electronic products may contain a

significant amount of contaminants, including mercury, lead, cadmium, and

polychlorinated biphenyls (PCBs). These toxic materials are not a problem when

consumers use electronic products, but they can create health and environmental hazards

if they are not properly disposed of at the end of their life.

The need to develop products that minimize environmental damage has become

increasingly evident. Products are important in fulfilling human needs, but the side

1
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effects of production and consumption - pollution and depletion of natural resources -

must also be of concern to designers, manufacturers, and even users. Based on the U.S.

Environmental Protection Agency's municipal solid waste (MSW) characterization and

the durable goods fraction of MSW, the scrap electronics wastestream may be as high as

5 to 10 million tons per year [Mahecdra, 2002]. Consumer electronics and computers

contribute significantly to the environmental burden placed on the municipalities across

the nation. Due to the customer's increased interest in "green products" and government

legislation, companies have been consistently pressured to increase the pace to develop

more and more green products through green manufacturing processes.

Electronic products contain valuable secondary materials - metals and engineered

plastics - that can be used by the marketplace in the production of new products. If

discarded electronic products and wastestreams, such as computers, televisions, and

telephones, could be recovered and reengineered into valuable feedstreams, then the

negative trend is broken to achieve sustainability.

Based on the principle of sustainable economy where competitiveness is balanced

with environmental responsibility, Multi-Life Cycle Engineering (MLCE) approach was

proposed [Caudill, 1997]. MLCE concentrates on investigating, developing and creating

new applications for materials and components from discarded products. The objective is

to enhance the use of materials and components from discarded products so that they

could be used over more than one product lifecycle.

As an integral part of a product life cycle, demanufacturing is a process of

disassembling a product and assigning bins for the resultant subassemblies and parts,

which are then reused, re-manufactured, reengineered, or disposed of [Shyamsundear et
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al, 1997]. The process of disassembly, the first step in demanufacturing, attempts to break

up a product into several pieces, with expectation that the pieces together have a net value

greater than that of the discarded product. Then, the disassembled subassemblies and

components are sorted and assigned to the collection bins where they can gain the

maximum value. Hence, efficient demanufacturing of a product is one of the main goals

of multi-lifecycle engineering.

For instance, in order to maximize the value and minimize the environmental

impacts from a used computer, should we refurbish it for sale? If it has no high reuse

value, should we disassemble the computer to get valuable components or materials, or

separate toxic materials, or just throw the whole computer away? If some of the inside

components are associated with uncertain values, how can we deal with the uncertainty to

make our decisions?

Besides the End-of-Life (EOL) management of products by means of

product/material recovery to decrease environmental impacts, the concept of Design for

Environment (DFE) is proposed to integrate environmental requirements into the design

process. "Sustainable development" through eco-efficiency [Fiksel, 1996] has become an

essential part of the companies who see a competitive advantage in conservation of

resources and environmental stewardship. To evaluate environmental performance and

sustainability, it is very important to develop and implement an unambiguous and

quantitative measure for environmental impacts of products, processes and activities.

Compared to other environmental performance metrics, the Sustainability Target Method

(STM) approach [Dickinson, 1999] shifts the focus from environmental impact to

sustainability, and explicitly considers economic or market value and is equally
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applicable to analyzing products/processes, services or facilities. By directly considering

economic value, resource productivity measures can be generated, and comparisons can

be drawn between products or services that are not necessarily "functionally equivalent"

but are instead economically equivalent. STM utilizes the earth's carrying capacity

estimates and economic information to provide a practical sustainability target for

individual businesses and products. This approach provides a basis for decision making

between different suppliers and manufacturers.

Electronics manufacturers use commodities provided from their supply chain.

Most electronic components are standard plug-in parts. Supply chain management

shortens the cycle between components, manufacturers and end customers. How to

choose the suppliers to balance profitability and environmental performance is among the

crucial decisions a company has to make.

For instance, a computer company is going to assemble a computer for sale. The

company needs to buy parts from different suppliers. Each part is associated with price

and environmental impacts. If a company's objective is to maximize its profitability, the

parts with the lowest prices will be chosen. However, a company has to make a decision

to balance profitability and environmental performance to make it sustainable too. The

real success of a business enterprise is measured by the "triple bottom line" (TBL): its

impact on people, profits, and the planet.
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1.2 Objectives

This research intends to investigate the optimal decision making algorithms and methods

on sustainable development of electronic products. The specific objectives are:

1) To investigate the optimal decision approaches to maximize the profit from a used

product through balancing the resource invested in disassembly processes, the

return and the environmental impact caused by them.

2) To develop a Multi-Life Cycle Assessment (MLCA) tool to support designers and

decision makers for practicing a full life cycle analysis on products based on Life

Cycle Assessment (LCA) and Mutli-LifeCycle Engineering (MLCE) concept.

3) To use fuzzy logic theory to quantify the data uncertainty and develop Fuzzy

Reasoning Petri nets (FRPN) model and their reasoning algorithm based on fuzzy

production rules.

4) To apply FRPN into a demanufacturing process for dynamic decision making

with uncertain information.

5) To investigate decision making methods based on Sustainability Target Method

(STM) to provide a company with the best improvement suggestions to raise its

product's sustainability.

1.3 Organization

The dissertation is organized as follows: Chapter 1 gives the motivation and objectives of

the research work. Chapter 2 surveys the literature associated with current research issues

and existing methods in the areas of the related research subjects. Chapter 3 proposes the

methods to determine disassembly leveling and bin assignment for product multi-
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lifecycle analysis and assessment. Chapter 4 develops a fuzzy reasoning Petri net (FRPN)

model and reasoning algorithm to deal with uncertainty and make the best decisions.

Chapter 5 applies FRPN in demanufacturing process decision making. Chapter 6

proposes the improvement approaches of product sustainability based on sustainability

target method. Finally, Chapter 7 presents the conclusions and some future research

directions.



CHAPTER 2

LITERATURE REVIEW

2.1 Life Cycle Assessment (LCA) and Multi-Life Cycle Engineering (MLLE)

The need to do something about the environment is undisputed nowadays. There are a

number of different system-based approaches to integrating environmental issues into

industry, such as life cycle assessment (LCA), design for the environment (DFE), total

quality environmental management, green supply chain management, and a number of

national and international environmental standards. DFE means the systematic

consideration of design performance with respect to environmental health, and safety

objectives over the full product and process life cycle [Fiksel, 1993]. LCA is one of

methodologies to help implement DFE. It is an objective process to evaluate the

environmental burden associated with a product, process, or activity by identifying and

quantifying energy and materials used and wastes released to the environment, to assess

the environmental impact of those energy and materials, and to analyze possible

approaches to improve environmental quality [SETAC, 1993]. The assessment includes

the entire life cycle of a product, its processes or activities, encompassing a) product

design; b) material processing; b) manufacturing; c) use; and d) recycling or final

disposal.

Many LCA tools have been available for implementing a full LCA analysis. Some

examples of the available LCA database and software are ECU-it [1999], Gabi software

[1997], TEAM [1998], and SimaPro 4.0 [1999]. Since it is unlikely that one single LCA

methodology can be optimal for all LCA analyses, differences can be found in these

7



8

tools, depending on the boundary set by the tool and the specific problems it is designed

to solve. They may deal with energy at just one life cycle stage rather than the total life

cycle. They may also vary in the type of databases of materials they use.

As an extension to the traditional LCA methodology, Multi-Life Cycle

Engineering (MLCE) is a new approach in today's environment [Zhou et al., 1996; 1999;

Caudill, 1998]. It is based on the principle of sustainable economy where competitiveness

is balanced with environmental responsibility. MLCE is a comprehensive, systems

approach to growing a strong industrial economy while maintaining a clean, healthy

environment - not only today but for future generations [MERCK, 2003]. MLCE takes a

systems perspective and considers fully the potential of recovering and reengineering

materials and components from one product to create another, not just once but many

times.
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Multi-Life Cycle Assessment (MLCA) systematically considers and quantifies the

consumption of resources and the environmental impacts associated with a product or

process. It extends the structure of traditional LCAs to include explicit consideration of

demanufacturing, remanufacturing, reengineering, and reuse - extending ACA to the

realm of MACE [Mahecdra, 2002]. The total life cycle engineering framework in terms

of consideration for analysis and modeling can be presented in Figure 2.1 [Jin, 1999].

2.2 Demanufacturing

As mentioned in Section 2.1, MACA extends the structure of the traditional ACA to the

realm of MLCE by including explicit consideration of demanufacturing,

remanufacturing, reengineering, and reuse, among which, demanufacturing is the most

important concept and procedure in MACE.

As an integral part of a product life cycle, demanufacturing is a process of

disassembling a product and assigning bins for the resultant subassemblies and parts,

which are then reused, re-manufactured, reengineered, or disposed of [Shyamsundear et

al., 1997]. A demanufacturing procedure is a bridge to connect different lifecycles of

products. Hence, efficient demanufacturing of a product is one of the main goals of multi-

lifecycle engineering.

In order to maximize the value return from a used product and minimize the

environmental impact of a used product, one generally has to make two decisions in

demanufacturing stage: 1) how to disassembly a product (disassembly process); and 2)

how to assign the disassembled components to the collection bins.
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2.2.1 Disassembly Process

The process of disassembly, the first step in demanufacturing, attempts to break up a

product into several pieces, with expectation that the pieces together have a net value

greater than that of the discarded product. Disassembly has recently gained much

attention in the literature due to its role in product recovery [Jovane, 1993]. There are two

decisions to be made in disassembly process:

1) Disassembly Leveling: identifying the extent to which the disassembly of a

product should be performed.

2) Disassembly Process Planning: determining the sequence of disassembly tasks.

The disassembly leveling problem can be defined as achieving a disassembly

level to which the product of interest is disassembled to keep profitability and

environmental features of the process at a desired level [Gungor and Gupta, 1999]. Even

though complete disassembly may seem to provide the best way of minimizing the

damage to the environment, complete disassembly may not be profitable since the cost of

disassembly exceeds the market and environmental benefit. Thus, it is important to find a

balance between the resources invested in a disassembly process and the return realized

from it.

A Disassembly Process Plan (DPP) is a sequence of disassembly tasks which

begins with a product to be disassembled and terminates in a state where all of the parts

of interest are disconnected. A plan can, therefore, be either partial or complete

disassembly. The objective of disassembly process planning is to find optimal or near-

optimal DPPs, in terms of the cost of disassembly or the cost/benefit ratio assuming that a

certain level of disassembly is given [Gungor and Gupta, 1999]. In current literatures,
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however, disassembly leveling is usually integrated into disassembly process planning.

Disassembly level and disassembly sequence are decided concurrently.

Researchers in this field have considered various ways to represent the geometric

relationships among parts, the most common being graphs and trees, which can be mainly

1) Connection Graph

Connection Graph is an undirected graph, which can be generated according to CAD files

of a product. This method can find the feasible disassembly sequences from a CAD

system directly and automatically and provides some useful information for designers to

evaluate a disassembly problem during the product design. It assumes that the

disassembly process is the reversed process of assembly. However, the reversing order

between assembly and disassembly process does not always hold.

2) Directed Graph

A directed graph is a graph showing all possible disassembly strategies and associated

cost and revenue values. The problem is then converted into a shortest path problem. Its

solution techniques are readily available.
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3) AND/OR Graph

AND/OR graph is also a directed graph with feasible disassembly sequences. A node

representing a product or subassembly can have more than one disassembly method,

forming OR-relation; if a disassembly step causes a node (product or subassembly)

separated to more than one parts or subassemblies, forming AND-relation. AND/OR

graph is also able to show all the possible disassembly sequences as a directed graph we

mentioned earlier. Due to the introduction of UR and AND logic relations, AND/UR

graph needs less storage space for nodes and edges than the directed graph. This

advantage of AND/OR graph becomes greater as the number of parts in a product

increases.

It is clear that each kind of disassembly plan corresponds to a tree in the AND/UR

graph. Therefore, in order to obtain the optimal disassembly plan, one needs to compute

the total cost of each tree from the beginning node (the product) and then chooses the tree

with the least cost.

4) Disassembly Petri Nets

Petri nets (PN) [Zhou and Venkatech, 1999] are a graphic modeling method. They are

widely used to model and analyze such discrete event systems (DES) as communication,

manufacturing, and transportation systems. Petri nets are excellent tools to model and

analyze the synchronism, parallel and conflict among the processes in a system. A

Disassembly Petri Net (DPN) model extends traditional Petri nets to represent

disassembly processes in detail. It is a variant of AND/UR graph. The advantages of

using Petri nets are multi-folded. First, we can allow the dynamic behavior to be
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visualized using a token game from the understanding point of view. Second, both

disassembly process and system resources can be represented in a single presentation.

Thus concurrent and sequential operations, choice structures, and resource constraints can

clearly be described.

Moore et al [1998B] proposed a method to map a AND/OR graph to a DPN and

use reachability tree method to generate all feasible disassembly process plans. Cost

functions are used to determine the optimal DPP [Moore et al, 1998C].

Zusseman et al. [1998; 1999] propose another disassembly Petri net (DPN) for

modeling and adaptive planning of disassembly processes. The objective of their study is

to derive the optimal disassembly process plan whose terminal goal is not fixed and the

objective function is maximized. Two utility functions are introduced to places and

transitions in a DPN. The former represents the end-of-life value for a product,

subassembly, or part to be reused, refurbished, material-recycled and utilized, and

discarded. The latter represents the cost to perform a particular disassembly operation. To

incorporate the uncertainty caused by different product conditions and performance of the

external resources, the success rates of disassembly operations are presented by

introducing probability values to the corresponding transitions.

5) Other methods

Other methods have also been used in the fields of disassembly process planning. For

instance, Huang and Wang [1996] develop a Neural Network-based approach to identify

the optimum disassembly sequence that maximizes the profit from the materials

recovered. Arai and Iwata [1993] present a simulation-based method for
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assembly/disassembly planning of a product by utilizing a CAD system and an approach

to find the best sequence of disassembly among all possible disassembly sequences with

the assumption that a disassembly sequence is just the reverse of an assembly sequence.

6) Problems in existing disassembly process planning methods

Disassembly process planning is the heart of a disassembly system. The key question is

how quickly the algorithm can generate a good solution for a system. In the other words,

the smaller the complexity, the better the planning [Tang et al., 2000]. However, the

methods in current research on disassembly planning process are to find an optimal DPP

from all the possible disassembly paths. The number of alternative disassembly paths

grows exponentially as the number of the components increase in a product [Gungor and

Gupta, 1999]. Therefore, based on the current research, it is not easy to reduce the

complexity for a disassembly planning method.

Most of the present research work on disassembly process planning counts on the

information of assembly process to generate possible DPPs. First of all, it should not be

assumed that the disassembly plan is simply an inverse of the bill-of-materials tree [Das

et al., 2002]. Secondly, in practice, the real conditions of some of used products might be

unknown. The situation of inside components cannot be known until a product is

disassembled to that step, and different individual products (even same type of products)

might have different conditions. For example, a hard drive in a computer may be able to

be reused while a hard drive in another computer with the same brand, model and age

may not. Some components in a product may rust or deform so that they can not be

disassembled from other components while they may be in good condition in another
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product. Those uncertainties make a predetermined plan unrealistic [Tang et al., 2000].

Hence, the current research work on disassembly process planning is hard to be applied

in practical disassembly process analysis and planning because of the high complexity

and uncertain information.

2.2.2 Bin Assignment

After being disassembled, the resultant subassemblies and components are assigned to

collection bins for further processing, such as remanufacturing, reengineering, reuse, and

dispose of. This procedure is called bin assignment. The disassembled components could

be recovered or discarded. In a typical disassembly facility there are four classes of

outputs: 1) retrieved parts or subassemblies; 2) recyclable material mass; 3) waste

materials; and 4) hazardous material. Thus, a collection bin could be a "reuse" bin for

product recovery (remanufacturing) [EPA, 1997]; a different material bin for material

Product recovery includes disassembly, cleaning, sorting, replacing or repairing

bad components, reconditioning, testing, reassembly and inspecting. The recovered

parts/products are used in repair, remanufacturing of other products and components, and

for sale to an outsider.

The recyclable material mass is collected in different material collection bins with

certain purity level, which are then transferred to a recycling facility. Disassemblers then

contact material recycling vendors for the collection of these bins. Based on the

specifications provided by these vendors, dissemblers setup a series of material output

bins, like copper, steel and aluminum, which are to be transported to those interested

vendors. Une can see that the end-of-life value for a part or subassembly depends on what
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kind of collection bins one sets up. In other words different bin setup affects the

outcomes of the disassembly leveling and disassembly process planning. Mani at al.

[2001] propose an approach to calculate the material recycling values of parts for a given

set of material collection bins using the bill-of-materials information from CAD program.

A bin assignment task has been considered following a disassembly process. Yet,

the two processes actually are interweaved. The components in a product are associated

with different values if assigned to different bins — reuse value, material values obtained

from material recycling, and hazard mitigation value. These values may determine the

disassembly operation for a product. Whether a component should be obtained from

disassembly is decided by the disassembly leveling. The two processes have been always

considered separately in the current literatures. The above analysis shows that such

separation may not be the best. It may lead to significant loss in overall demanufacturing

gain for certain products if not for every product. Thus, an algorithm integrating the two

processes is worth investigating to achieve maximum demanufacturing gain.

2.2.3 Performance Assessment of Demanufacturing at Product Design Stage

To integrate environmental issues into industry, DFE is an approach that product

designers evaluate and improve their designs from an environmental perspective. There is

a need to develop DFE tools that require minimal use input and can run automatically in

the shadow of product design process [Mani et al., 2001].

An MLCA tool is developed by the Multi-Life Cycle Research Center at NJIT for

analyzing and comparing the environmental impacts, energy consumption, and cost of

different products. With this software, one can practice a full life cycle analysis on

products by considering all the effects and options based on product life cycle stages,
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including product design, material processing, production, use, demanufacturing,

remanufacturing and reengineering. The software tool is written for Windows

environment using Visual Basic with Microsoft Access as the database package. It aims

to support the designers for implementation of the MLCE methodology; develop generic

screens that can be used by most consumer electronic producers, with particular focus on

telephones, computers, monitors, and televisions; have environmental information on

products and processes readily accessible to designers, which simplifies the integration of

DFE into a design process; help designers and decision makers track the environmental

performance of products by using performance metrics and other indices such as Eco-

Compass; and supply a cost model to put the cost issue on line [Mahecdra, 2002].

Demanufacturing stage connects a product's lifecycle to the next. Therefore, the

decision making and analysis at demanufacturing stage are crucial to practice a full life

cycle analysis on products.

There are following limits and requirements for a designer to practice

demanufacturing analysis based on a MLCA tool:

1) Limited information: the only available information at design stage is the data in a

product's CAD file;

2) Few user input: users should not input too much data in order to make an analysis;

3) Integration of disassembly leveling and bin assignment: disassembly leveling and

bin assignment tasks have to be integrated and execute automatically.

This kind of preliminarily work is explored in [Mani et al, 2001]. Mani et al.

proposed an approach to calculate the material recycling values for parts through

calculating the contribution of the material in a part to each bin based on Bill of Materials
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(BOM). The only use input is reuse values of components. Based on material recycling

values and reuse values, they apply complete disassembly first and initialize bin

assignment. Then, the result is adjusted using 2 rules. There are some problems with the

method:

1) It assumes that all the components in a product are parts, which only have one

kind of material. The assumption is not correct;

2) It only provides the approach to calculate the material recycling values for parts,

and does not mention the approach to calculation the material recycling values for

subassemblies and final subassemblies, which may be composed of more than one

kind of material;

3) Hazard penalty is not considered there;

4) Rule 1 there says the parts with low weight won't be disassembled. However,

those kind of parts may have to be disassembled first in order to get other desired

components;

5) Rule 2 is trying to use a bottom to up approach based on BUM tree to update

disassembly levels and bin assignments. However, it assumes that a

subassembly's value only comes from its children (a subassembly has no value

itself). Therefore, it is not correct;

6) The correctness is not proved; and

7) An illustration example applying the method is missing.
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2.3 Environmental Performance Metrics

Inside an LCA and MLCE methodology, it is very important to develop and implement

an unambiguous and quantitative measure for environmental impacts of products,

processes and activities. There are four major environmental impact assessment methods

that are comprehensive in nature and generate a single numerical value reflecting the

composite magnitude of global impact associated with a specific product.

1) Eco-indicator 95

The Eco-indicator 95 approach, developed by the National Reuse of Waste Research

Programme and Pre Consultants of the Netherlands, is one of the most widely used

environmental performance assessment tools. The work is intended to give fundamental

and in-depth considerations of how people should evaluate the consequences of

impairment of the environment, and how designer can search for more environmentally

friendly design alternatives.

The Eco-indicator 95 method classifies, characterizes and normalizes the

environmental impacts based upon their effects. The environmental burdens associated

with a product are first aggregated into a number of environmental effects caused. Then

the effects are characterized according to the degree to which they contribute to

ecosystem damage. The characterized effect scores can then be normalized compared

with reference values. The result is an environmental profile with standardized effect

scores. Finally the different environmental effects are weighted and summed to form an

overall environmental index. A single Eco-indicator value is calculated on the basis of

impact data from a lifecycle inventory study combined with appropriate weighting
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techniques. In addition to scientific influence considerations, the weighting is determined

based on subjective and political views. The Eco-indicator method uses the degree by

which a target level, which reflects the earth's carrying capacity for that effect, is

exceeded to weight the different environmental effects. The greater the gap between the

current environmental impact and a target level, the higher the rating given to the

seriousness of the impact. Detailed information on Eco-indicator 95 can be found in

[Goedkoop, 1998].

2) Eco-indicator 99

The Eco-indicator 99 is an extension and update of the Eco-indicator 95 methodology.

Both Eco-indicator 99 and 95 use a damage-oriented methodology based on a "less is

better" approach. The difference is that, Eco-indicator 95 assesses the potential impact,

and a low damage level at which demonstrable but limited damage occurs is set as the

target level, while Eco-indicator 99 assesses the impacts on their possible marginal

damage, that is to say, no explicit target is defined. Detailed information on Eco-indicator

99 can be found in [Goedkoop and Sepriensma, 1998].

3) Ecological Footprint

The concept of the Ecological Footprint is based on the premise that sustainability

depends on maintaining natural capital, and that human consumption and emission must

not exceed the natural carrying capacity. This framework [Wackernagal et al., 1999] is

intended to track national economy's energy and resource throughput and translate them

into biologically productive area necessary to produce these flows. The approach
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estimates, not only, industrial and commercial usage, but also overall human

consumption of resources including food and shelter. The Ecological Footprint represents

the critical natural capital requirements of a defined economy or population in terms of

the corresponding biologically productive areas. In order to calculate the ecological

footprint, recourses consumed and wastes generated have to be estimated. Then, the

recourse and waste flow is converted to a biologically productive area necessary to

provide these functions. Ecological Footprint is mostly used to calculate area-based

indicators of sustainability [Dieoff]. If the footprint area calculated for a region exceeds

that available from within its boundaries, the region is deemed to be drawing excessively

from the global carrying capacity.

4) Sustainability Target Method (STM)

The Sustainability Target Method (STM) utilizes the earth's carry capacity estimates and

economic information in order to provide a practical sustainability target for individual

businesses and products. The principle behind the STM approach is to establish a

relationship between carrying capacity and both the environmental impact and economic

value of products. Initially formulated at Aucent Technologies Bell Aaboratories, the

STM is under continuing development through collaboration of the Multi-lifecycle

Engineering Research Center (MERC) at NJIT with Lucent Technologies and Agere

Systems. The key and unique feature of this method is the link between carrying capacity,

economic value, and environmental impact to provide an absolute or "target" criteria for

sustainability that is practical for use by business [Dickinson et al, 2002].



22

In general the STM approach involves interpreting different types of

environmental impact based on the single dimensionless indicator AEI, the environmental

impact per production rate. This is accomplished by normalizing environmental impacts

using impact reference levels that relate impact with economic value and sustainability.

In turn, AEI provides the basis for calculating Resource Productivity (RP), and the related

indicators Service Productivity (SP) and Value Productivity (VP). These are relative

indicators expressing the rate of production, service functionality, and value provided,

respectively, per unit of environmental impact. They provide a basis for comparing

environmental impact among products (the higher productivity is the better).

Resource productivity and Value productivity are also used to calculate Eco-

Efficiency (EE), which is a practical, absolute indicator for sustainability. Essentially it is

a product's economic contribution (the percentage of GDP) divided by its environmental

burden (the percentage of carrying capacity). Thus the criterion for sustainability is EE

?_.100%. EE >100% simply indicates even less impact than the sustainable level given the

value being provided. Additional information on STM can be found in [Dickinson et al,

1999; 2001].

Compared to other environmental performance metrics, STM:

1) Shifts the focus from environmental impact to sustainability;

2) Creates relationship between Carry Capacity, Economic Value and Environmental

Impact;

3) Provides a practical sustainability target through determining the indicators RP

(Resource Productivity) and EE (Eco-Efficiency); and
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4) Provides a basis for decision making between deferent suppliers and

manufacturers.

For an electronics manufacturer there are commodities provided from the supply

line. The STM provides a very effective basis for integrating supply line impacts with

production, use and end-of-life by applying the same indicators to evaluate those

lifecycle stages [Dickinson et al, 2002]. The STM approach provides a basis for decision

making with different suppliers and manufacturers involved, because it uses an absolute

"target" criterion for sustainability analysis. In addition, the structure and terminology of

STM is consistent with ISO14000 standards.

2.4 Decision Making Methods

Decision making is a process of choosing alternatives based on the values and

preferences of a decision maker. Optimal decision making is the strategy of choosing the

best possible solution to a problem, discovering as many alternatives as possible and

choosing the very best one. The "best" solution depends on the defined problem and the

goal of a decision maker. For instance, when a computer company is choosing its

suppliers, the company's objectives can be to maximize its profitability, or to balance

profitability and environmental performance such that the overall economy or the

company most sustainable. Several decision making methods exist, depending on the

problems of interest and the criteria of choice.
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1) Analytical Techniques

Analytical techniques use mathematical formulas to provide a method for a problem and

then derive an optimal solution or predict a certain result. Analytical techniques are used

mainly for solving structured problems, usually of a tactical or operational nature, in

areas like resource allocation or inventory management. A structured problem is one in

which standard solutions exit. In a structured problem, the procedures for obtaining the

best (or at least a good enough) solution are known. The dominant methods belong to the

field of mathematical programming including linear programming, non-linear

programming, and integer programming. In this dissertation, we use an analytical

technique to maximize value return from used products and minimize the environmental

impact through deciding disassembly level and bin assignment for disassembled

components.

2) Search Algorithms

For many cases, even if a mathematical model is built up, the derivation of a solution

may not be trivial at all. If such model offers a discrete search space that contains all the

solutions, then search algorithms are often used as a method for the solution. Search

algorithm is a step-by-step search process for arriving at an optimal solution. Solutions

are generated and tested for possible improvements. An improvement is made whenever

possible and the new solution is subjected to an improvement test. The process continues

until no further improvement is possible.
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3) Heuristic Search

The idea of a "heuristic" is a technique which sometimes will work, but not always. It is

sort of a rule of thumb. Most of what we do in our daily lives involves heuristic solutions

to problems. They usually work, or they usually work well enough, and when they don't

work, we then try to find the other ways.

The word "heuristic" is not just used to describe cases where a solution might not

be found, but also to describe cases where we are trying to find the best solution. A

heuristic rule might help us to find solutions which are good, but perhaps not the very

best they can be. It may help us find a good solution faster or reach an optimal solution

along a most likely direction. Obviously the measure of goodness, and the assessment of

a heuristic technique, is going to be relative to the domain, and to the specific job that

problem solving is going to be applied to in that domain. Heuristic search method is used

in the situation that the optimal solution is not reachable or to find the optimal solution

will be too time-consuming [Zanakis and Evans, 1981].

4) Sensitivity Analysis

Sensitivity analysis [Marshall, 1999] attempts to help decision makers when they are not

certain about the accuracy of the relative importance of information, or when they want

to know the impact of changes in input information of a model on some results or

measures of performance. Through checking the impact of a change in the input data on

the proposed solution, the priorities of the input data can be obtained to change proposed

solution. For instance, if a computer company wants to make a decision on which

components should get more attention and need most urgent improvement such that the
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company can get the best benefits, the company needs to know the improvement of

which component will have the most significant effect on the performance of the whole

product.

5) Artificial Intelligence

Artificial intelligence (AI) is basically a theory of how the human mind works. Different

from conventional computing, which is based on an algorithm, AI computing is based on

symbolic representation and manipulation. In AI, a symbol is a letter, word, or number

that is used to represent objects, processes and their relationships. Ubjects can be people,

things, ideas, concepts, events, or statements of fact. By using symbols, it is possible to

create a knowledge base that states facts, concepts, and the relationships among them.

Then various processes are used to manipulate the symbols to generate advices or

recommendation for solving problems.

Figure 2.2 Applying AI concepts with a computer.

Figure 2.2 illustrates the concept of a computer using AI in an application. The

collection of knowledge related to a problem to be used in an AI system is called a

knowledge base. Once a knowledge base is built, AI techniques are used to give the

computer the reasoning capacity. With the ability to draw inferences from a knowledge
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base, a computer can put some practical use as a problem solver and decision maker.

Powerful reasoning strategies used to draw inferences are very important in AI.

Several methods exist in the AI research field: evolving solutions - Generic

Algorithms (GA) [Grefenstette, 1982; Goldberg, 1989]; simulating human brain to solve

problems - Neural Network (NN) [Fu, 1994; Hertz et al., 1991]; expert reasoning - rule

based system [Dym and Aevitt, 1991]; and dealing with linguistic ambiguity - fuzzy logic

[Zadeh, 1975].

Uf all the situations one can think of, whether planning, diagnosis, data

interpretation, optimization, or social behaviors are involved, many can be expressed in

terms of rules. It is not surprising, then, that for several decades rules have served as a

fundamental knowledge presentation in artificial intelligence.

Fuzzy logic is basis of a method of reasoning that allows for partial or "fuzzy"

descriptions of rules. The power of fuzzy logic comes from the ability to describe a

particular phenomenon or process linguistically and then to represent that description in a

small number of very flexible rules. The knowledge in a fuzzy system is embedded in its

rules and fuzzy sets together, which hold general descriptions of the properties of

phenomena.

Neural networks make sense when one has access to a large amount of data and is

not in a position to articulate relationships among variables with confidence. Fuzzy rules

make sense in just the opposite type of situation: wherever one does not have enough

data, but has experts who are able to describe pieces of behaviors in terms of that cannot

be disputed.
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Which decision making methods should be used in problem solving depends on

the problems of interest and the criteria of choice. In this research work, various decision

making methods will be used and developed according to the problems and criteria on

sustainable development of electronic products.

2.5 Summary

Due to the increasing environmental pressure, sustainable development issues have been

caused much interest among manufacturers, governments and consumers. This chapter

reviews some of the recent methodology and technology development activities on the

sustainable development subject. The issues include the multi-lifecycle engineering for

product demanufacturing and recycling, and sustainability analysis at product design and

manufacturing stage. This chapter also briefly reviews various decision making

approaches in the current literature, some of which will be used and improved in this

research work to make decision according to different problems on sustainable

development of electronic products.



CHAPTER 3

INTEGRATION OF DISASSEMBLY LEVELING AND BIN ASSIGNMENT
FOR DEMANUFACTURING ANALYSIS

As an integral part of a product life cycle, demanufacturing is a process of disassembling

a product and assigning bins for the resultant subassemblies and parts, which are then

reused, re-manufactured, reengineered, or disposed of [Shyamsundear et al, 1997]. The

process of disassembly, the first step in demanufacturing, attempts to break up a product

into several pieces, with expectation that the pieces together have a net value greater than

the discarded product. Then, the disassembled subassemblies and components are

assigned to the target bins where they can gain the maximum value. This process is called

bin assignment. Demanufacturing stage connects a product's one lifecycle to the next.

Therefore, the decision making and analysis at demanufacturing stage are crucial to

practice a full life cycle analysis on products. In order to practice full life cycle analysis

at product design stage, designers need to have a DFE tool that require minimal use input

and can decide disassembly levels and bin assignment automatically in the shadow of

product design process.

Bin assignment task has been considered the one following a disassembly process.

Yet, the two processes actually are interweaved. Whether a component is obtained from

disassembly is decided by the disassembly leveling. The values of components in a

product are associated are decided by bin assignment. On the other hand, these values

determine the disassembly operation. However, the two processes are always considered

separately in the current literature.

29
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Partially motivated by Mani et al.'s work [Mani et al, 2001]. This chapter is to

utilize the information from a CAD system to develop an algorithm, called as a bin

assignment algorithm, to complete both the disassembly leveling and bin assignment

decisions through balancing the effort involved in disassembly processes, return realized

from them, and environmental impact. The algorithm requires minimal user input and can

run automatically based on product design information. It has also been implemented into

a demanufacturing module of a Multi-Aifecycle Assessment and Analysis (MACA)

[Caudill et al, 2001].

This chapter is organized as follows: Section 3.1 introduces product tree structure,

which the algorithm is based on. Section 3.2 presents the bin assignment algorithms

design. Section 3.3 focuses on the algorithm implementation and complexity analysis.

Section 3.4 briefly introduces MLCA tool. Section 3.5 illustrates the algorithm and its

application in MLCA through an example, and Section 3.6 gives summary.

3.1 Product Tree Structure

Bin assignment means to determine disassembly levels and assign disassembled

subassemblies and components to target bins where they can gain the maximum value. It

is the most important and complicated task in demanufacturing. The algorithm is based
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on the product structure, which already exists in the design stage of a product. No other

structures need to be built.

The structure of a product can be well represented as a tree as shown in Figure 3.1

[Zhou et al, 1999]. A sample product tree (Zenith Laptop Z Star 433VA) is shown in

Figure 3.5. The root of the tree is product itself. The assembly at level k can be

disassembled into several subassemblies at level k+1. A subassembly that cannot be

separated is a leaf node. If it is made of a single material, it is called a part; otherwise, it

is a final subassembly (FS). For example, bolts and nuts are parts; and batteries and chips

are FS.

A subassembly at level k has two choices:

1) dealt with as a whole — no further disassembly is needed; and

2) disassembled into subassemblies and/or parts at level k+1.

The disassembled subassemblies and components are assigned to bins for further

processing — material or product recovery [Lund, 1996]. Whether a subassembly needs

further disassembly and which bin a disassembled component is assigned to can be

decided by a bin assignment algorithm automatically, which will be discussed in detail

next.

3.2 Bin Assignment Algorithm

3.2.1 Complete Disassembly

In developing the algorithm for bin assignment, users' input should be minimized. In the

demanufactuirng stage, the only input data required is readily extracted from common

Computer Aided Design (CAD) programs. Specially, the data include product structure,
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part weight, and part material composition. All the other data are stored in a standardized

library.

In this algorithm, it is assumed that the value obtained from a used product only

comes from the recycled materials and the product is completely disassembled to the leaf

level (parts/final subassemblies). The objective of this algorithm is to calculate the

maximum recyclable value of each part/final subassembly and locate its corresponding

target bin.

Step] Calculate the maximum recycling value of the parts and final subassemblies.

Let i be the ith part/final subassembly in a product, j the jth material in part/final

subassembly, and the material recycling bin 0. Then the following notations are

introduced:

the weight of material j in node i.

the recycling yield of material j in bin p.

the unit material value in bin p.

The recycling yield represents what percentage of the material is reclaimable

when it is sent to a specific bin. Note that cc  may be negative for the case where

material j generates adverse effect on claiming the main material in bin p. All the above

data are stored in database.	 is extracted from CAD programs, the default values of

1)fii and Chi are stored in the standard library. Users with permission can modify the

library data through the user interface.

The material recycling value of a part/final subassembly in a specific material bin

is the sum of the contribution of each material in the part/final subassembly to the bin.
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The contribution is negative if the material generates adverse effect on the recycling the

main material in that bin. Hence, the value of a certain part/final subassembly is

Step 2: Assign the parts and final subassemblies to the corresponding bins.

A part/final subassembly is assigned to bin p if it has the maximum material

recycling value in bin p.

3.2.2 Integration of Disassembly Leveling and Bin Assignment

As mentioned before, Algorithm 1 assumes that a product is disassembled to the leaf

level. In fact, in order to achieve more benefits from a used product, a subassembly does

not need further disassembly if disassembly effort is equal to or lager than the increased

value through the disassembly.

At the demanufacturing stage, the first thing needed to do for a product is

disassembly. To achieve the maximum benefit from used products, the disassembly level

and a reasonable disassembly plan should be decided. Disassembly planning is a

complicated task because there are various connections between the parts / subassemblies

[Tang et al, 2000]. In this work, it is assumed that the immediate children in a

subassembly can be obtained through one aggregate step of disassembly. The assumption

does not hold only when some of subassemblies need partial disassembly. The algorithm

based on the assumption will work well in case that the most of subassemblies/parts in a

product will be deal with as a whole, for example keyboard, hard drive, monitor, and

floppy disk compartment in a computer.

This work proposes an algorithm to determine disassembly levels and target bins
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in an integrated way to maximize the profit from a used product through balancing the

effort involved in disassembly processes, the return and the environmental impact. In

developing an algorithm for bin assignment, one tends to utilize the information

associated to a product, which is readily extracted from its CAD programs. Specially, this

data includes a component relationship tree, component material composition and weight.

Each node in a product tree may have reuse value, material recycling value,

hazard mitigation value or the value coming from its children. The objective is to

calculate the maximum value of the root node (a used product) in the product tree. Here a

bottom-up approach is used, which starts from the leaf level of a product tree to the root.

The following are the steps of the algorithm, which will be more formally presented in

Section 3.3.

Step 1: Calculate the maximum material recycling value of each node in a product tree.

In this step, the material recycling value of a node in each material bin is

calculated and the maximum value is selected among them as its material value. Here, a

node may be a whole product, or subassembly having children, or leaf (part/FS).

Aet i be the itch node in a product, j the th material in it, and (3 the material

recycling bin p. Then the following notations are introduced:

the weight of material j in node i.

the recycling yield of material j in bin 13.

the unit material value in bin (3.

the material value coming from the material recycling of node i.

The recycling yield raj represents the degree of the reclaimable material j's



35

contribution to a specific bin 13. Note that O fli may be negative for the case that material

j generates adverse effect on recycling of the main material in bin P.

The material recycling value of a subassembly in a specific material bin is the

sum of the contribution of each material in the subassembly to the bin. Hence, the

material value of node i is

Step 2: Determine initial values of all the nodes in a product tree.

Rib 	the reuse value of node i

H i 	the hazard mitigation value of node i

V	 the value of node i to be decided

Bibthe target bin for node i to be decided

Hazard mitigation value is a kind of profit a company achieves through reducing

the hazardous material's impact on the environment. The target bin Bib for a node is the

bin where it has the maximum value. If the subassembly is not available or the product

will not be disassembled to that level, Bib is set to zero. Three special bins are defined:

The first bin (P=1) is the "Reuse" bin where all reusable subassemblies are going to be

reused; the second bin ((3=2) is "Hazard" bin where the parts/FS with a high hazard

mitigation value are stored for further treatment, and the third bin ((3=3) is the "Trash"

bin where the components without any value are stored to be disposed of. Material bins

are numbered with p>3.

The algorithm uses a bottom-up approach, which starts from the leaf level of a

product tree. Hence, the initial value of a non-leaf node is set to zero. For a part/FS, its



36

initial value is decided by its reuse value Rib, hazard mitigation value H i , and material

value Mid which can be calculated using Equation (3.1).

Formally, the initial value for node i having children:

Then the target bin of the initial assignment for a node having children is set to

zero (Bib= 0 means that node i is not available because it is assumed that a subassembly is

going to be disassembled into children by default).

For a part/FS i, its material value is compared to its reuse value first. If the reuse

value is greater than or equal to the material recycle value, it is going to be reused. The

obtained value from the part/FS is the reuse value plus its hazard mitigation value, which

is obtained by avoiding throwaway of the component. Otherwise, the part/FS is going to

be recycled if it does have material value and target bin can be obtained from Equation

3.1. If it does not have material value at all (Mid 50), then check if it has hazard

mitigation value. If so, set its value to that value and assign the part/FS into "Hazard" bin.

Otherwise, its value is set to zero and assign the part/FS to "Trash" bin. In summary,

Step 3: Determination of disassembly levels and update of values and target bins.

A disassembly leveling problem can be defined as achieving a disassembly level

to which the product of interest is disassembled to keep profitability and environmental
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impact at a desired level. Complete disassembly may seem to provide the best way of

minimizing the damage to the environment [Gungor and Gupta, 1999]. It is not profitable

when the cost of disassembly is more than the market and environmental benefits. Thus,

it is important to find a balance between the resources invested in a disassembly process

and return realized from it [Bhamra, 1997].

In order to determine the disassembly level, the disassembly effort is required to

check if further disassembly is worthy. The disassembly effort for subassembly i to break

into its children is denoted by E, which can be calculated according to [Mani et al, 2001]

or given by users if known. In [Mani et al, 2001], disassembly effort is modeled as a

function of the number of links unfastened, the packing density of each subassembly, and

the access level of the subassembly. These values can be obtained or estimated from the

CAD data, which include the number of the children the subassembly has, their bounding

volumes, and the level at which the subassembly is located.

3.1) Assume that L is the total number of levels in a product. Set k=L-1;

3.2) For each subassembly i at level k:

The net value obtained through a disassembly process

i.e., the hazard mitigation value equals the sum of the hazard mitigation values its
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immediate children may have.

For each subassembly i (having children) at level k,

The situation here is slightly similar to the value calculation of a part/FS in Step 2.

At first, to check if an assembly is going to be reused. If not, then check if the value gain

through a disassembly process is greater than the material recycling value of the

subassembly as a whole to decide if it needs further disassembly. It is noted that A. itself

includes hazard mitigation value if some of its children have. If the value gain through a

disassembly process is not positive, the subassembly will not be disassembled, and

whether it is treated as trash directly depends on if it has hazard mitigation value.

The values and target bins of a subassembly may need to be updated. If it needs

no further disassembly, the target bins of its children are set to 0 because the product will

not be disassembled to that level. Otherwise, it is to be disassembled. Then, its value

comes from its children's and the subassembly itself is not available (set its bin to zero.).

3.3) k=k-1. If k<0, the algorithm stops, otherwise go to Step 3.2.
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After these three steps, the target bin for each node has been obtained. Then a bin

tree can be created according to the above calculation results.

3.3 Algorithm Implementation and Complexity Analysis

3.3.1 Algorithm Implementation

The goal of the proposed algorithm is to determine the value and target bin for all the

nodes in a tree according to the information associated to the nodes and the tree structure

so that the maximum value can be obtained for each node.

Inputs:

1) Data extracted from product CAD file: tree structure, Wei ;

2) Date in database: 0,67 , Cal , Rib, and H i .

Outputs: V and B.

The flow diagram of the algorithm is shown in Figure 3.2. The algorithm

implementation can be represented as follows:

Step 1: Initialization
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Do while not end of RecordSet

For subassembly i,

Estimate E l according to an algorithm in [Mani et al, 2001] or use

user-supplied data;
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3.3.2 Complexity Analysis of The Algorithm

In this section, it will be approved that the algorithm maximizes the value of a used

product with a polynomial computational complexity under assumption that a

subassembly is disassembled into its immediate children in one aggregate step.

Theorem 1: In a product tree, the number of all the nodes (part, FS or subassembly) is

less than or equal to 2n-1, where n is the number of leaves (part or FS).

A product tree is a type of tree, each node of which has at least two children

except its leaves that have no children. This point is obvious because each subassembly is

composed of at least two components. According to this character of a product tree, it is

easy to prove that for the fixed number of nodes in a product tree, the number of leaves is

minimum when each non-leaf node has exactly two children. In other words, the number

of nodes is the maximum for a fixed number of leaves in a product tree when each non-

leaf node has exactly two children. In a tree whose non-leaf nodes have exactly two

children, if the number of the leaves is n, then the number of the nodes is N=2n-1[Baase

1988]. Therefore, Theorem 1 is proved.

Theorem 2: The algorithm complexity is O(n2+mn), where m is the number of collection

bins and n is the number of leaves in a product tree.

Proof

In Step 1, in order to initialize the values for leaf nodes, the value of each node in

each bin needs to be calculated. Hence the initialization for leaf nodes runs at 0(mn); and
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the initialization for a non-leaf value runs at O(N-n) where N is bounded by 2n-1

In Step 2, the calculation is based on each non-leaf node. For each such node, the

values of its immediate children are required to calculate A„ H i and w,; , and the

calculation runs at O(n) in the worst case; The value of each non-leaf node in each bin

needs to be calculated to obtain m„ which runs at 0(m); The values of all the children of

a non-leaf node may need to be updated, which runs at 0(n) in the worst case. Thus, for

each non-leaf node, the calculation runs at O(2n+m), i.e., O(n+m) in the worst case.

Therefore, the total computational complexity in Step 2 is O((N-n)*(n+m)), i.e.

O(n2+mn) .

Hence, the computational complexity of the algorithm is 0(n2+mn).

Theorem 3: The algorithm maximizes the value of a used product given input data

including its tree structure in which a subassembly is disassembled into its immediate

children in one aggregate step.

Proof.

The objective of the algorithm is to obtain the maximum value of a used product,

which is the value of the root node (k=0) in product tree. Hence, the proof will be done if

the value of the root node calculated from the algorithm is proved to be its maximum

value.

For each subassembly at a certain level, it is either left intact or disassembled into

their immediate children. If it is not disassembled, the subassembly goes to reuse bin



hazard bin (Bib =2) with the value of H i , or trash bin with no value. Otherwise, the

subassembly is disassembled into its immediate children and has the value of Al .

immediate children with the maximum value of Al which is its immediate children's

values minus its disassembly effort; or the subassembly goes to trash bin with zero value.

The algorithm uses a bottom-up approach, which starts from the leaf level of a

product tree to the root. At each level, according to the above analysis, the maximum

value of each node at that level is obtained. Therefore, for the subassembly at the next

upper level, its immediate children have their maximum values so that the subassembly's
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value can be updated with its maximum value. Continuing this to the root, the value of

the root is its maximum value. Therefore, Theorem 3 is proved.

3.4 MLCA Tool

The proposed algorithm is successfully applied to develop a demanufacturing module in a

MLCA Tool [Caudill et al, 2001; Gao et al, 2001]. This section gives a brief introduction

to the MACA tool first and then focus on the development of demanufacturing module.

3.4.1 Brief Description of MLCA Tool

The MACA tool is developed to apply the MLCA methodology to electronic products

and help designers obtain environmental performance of their products. An ideal MLCA

tool aims [Caudill et al, 2001]:

1) To support the designers to implement the MLCA methodology;

2) To develop generic screens that can be utilized by most consumer electronic

designers, producers, and demanufacturer;

3) To have environmental information on products and processes readily accessible

to designers, which facilitates the integration of DfE (Design for Environment)

into a design process;

4) To help designers and decision-makers to track the environmental performance of

products by using performance metrics and other indices such as Eco-Compass

[Fussler and James, 1996].

The initial prototype version of a multi-lifecycle assessment software tool has

been completed. It starts from product description screens, goes through seven multi-
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lifecycle stages, finally, ends with final analysis and reports. There are three key levels in

the development of the MACA software:

The first one is the import of product information. The information of a product

that consists of certain subassemblies and parts is needed to evaluate a product layout, in

a general case, including material type, weight, and quantity of each component in a

product, and the tree structure of a product. If the product file is of ProEngineer format,

an automatic data retrieval and database population algorithm can be used [Zhou et al.,

2001].

The second level is the multi-lifecycle screen development. Information specific

to each multi-lifecycle stage of a product is entered and modified in these screens. There

are six screens related to each multi-lifecycle stage: Material Processing, Production,

Use, Demanufacturing, Reengineering, and Remanufacturing.

The third one is to use algorithms to make decision and transfer the product

information into assessment reports mainly on value gain, environmental burdens and

energy consumption. The reports of the actual energy consumptions and environmental

burdens consumed and generated during the lifecycles of their products can help

designers make improvements to their product design. Thus the devised ones have higher

profit, less energy consumptions and environmental burdens, while satisfying the same

basic functional requirements.

Other than the screen implementation of MLCA software, data storage and

retrieval to and from Microsoft Access database is another important aspect of the

implementation. SQL queries are the common way to do it. To link SQL queries with
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Visual Basic, the process is usually done with statements that create Recordsets, which is

an easy way to create an object that gives us access to all the data in the query.

Multi-lifecycle analysis is a systematic approach in analyzing a product, since it

accounts for the multiple lifecycles that materials or components pass through. This

requires a clear vision and understanding of the product from its raw material extraction

through use stage and finally demanufacturing, reengineering and remanufacturing.

Hence, the efficient demanufacturing of a product is one of the prime goals of multi-

lifecycle engineering. In the following sections, the design and development of the

demanufacturing stage module will be introduced.

3.4.2 Demanufacturing Module

3.4.2.1 Bin Assignment. 	 Bin assignment is to assign the disassembled subassemblies

and components to the target bins where they can gain the maximum value, which is the

most important and complicated task in the demanufacturing stage. In the MLCA tool,

the bin assignment is accomplished in two ways: First, the disassembly algorithms (as

discussed at Section 3.3) are designed to automatically sort the parts and subassemblies

into bins based upon disassembly effort and market value of recovered materials. The

second, a manual sort, if needed, is performed where the users can make modification on

the tree built up by the algorithm or set up a totally new bin tree manually, which

provides additional convenience to users when they need to assess and analyze the

environmental performance of a product.

1) Automatic assignment

In the demanufacturing module, the algorithms (as discussed in Section 3.4) are

developed to assign collection bins automatically. All the data needed for the algorithm
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are stored in Access database. The information of a product, in a general case, including

material type, weight, and the tree structure of a product can be obtained through an

automatic data retrieval and database population algorithm [Zhou et al, 2001]. Original

product information is extracted from ProlEngineer software and written into XML

(Extensible Makeup Aanguage) file. Then, the XML file data is retrieved into database

through a Java program [Zhou et al, 2001]. The default values of (D iv , Cal, R, and H i

are stored in a standard library. Users with permission can modify the library data

through the user interface. A sample screen of the demanufacturing module with

assignment results is shown as Figure 3.5. In the MACA tool, a bin tree is created where a

bin name is displayed and then all the parts and subassemblies sorted into that bin are

arranged along the tree. An example will be described in Section 6.4.

2) Manual assignment

Users also can make bin assignment manually in the MLCA tool. The functions

provided by manual assignment include:

• Add new bin;

• Delete binlsubassembly;

• Clear bin tree;

• Click-and-drag a subassembly from the product tree being displayed on the screen

to the appropriate bin;

• Click-and-drag a subassembly between the two different bins in the bin tree to re-

assign the bin to the subassembly.

3.4.2.2 Process Specification and Definition. 	 After being assigned to the bins, the

subassemblies in each bin are going to be processed for material recycle or disposed of.
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There are two kinds of processes may be applied to the bins: Primary process

(Reengineering / Remanufacturing / Disposal) and secondary process (Shedding and

separation / Decontamination / Demilitarization). A secondary process is a pre-process

before a primary process. Users can specify / view / re-assign the processes for the bins.

The recyclable materials assigned to reengineering / remanufacturing process are going to

the corresponding stages in the tool for further analysis. The efficiency of the process for

each material and the cost associated to the processes also need to be specified. The

default values are provided to users extracted from the database and users can also update

the value through the designed user interface according to their particular application.

3.4.2.3 Result Display.	 In MLCA tool, reports and comparative analysis can be

performed based on the information of a product and processes. An interactive capability

exists for analysts to select one or more lifecycle stages, impact categories, and specific

environmental burdens of interest. Inventory calculations are made and results can be

displayed in both graphical and tabular formats.

In the demanufacturing stage, value return, environmental burden, energy

consumption and cost are associated with the disassembly operations and processes for

recyclable materials in different collection bins. The developed demanufacturing module

allows users to effectively manage the end-of-life options of a product.
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Three cases are studied and compared in this section to illustrate the proposed algorithm

using Zenith Aaptop Z Star 433VA computer (Figure 3.3) as an example with the data and

results presented in Appendix. Please note that all the numerical information shown has

been adopted only for the illustration - purpose. In Case 1, the laptop is completely

disassembled no matter what condition it has. In Case 2, the disassembly level is

determined using the proposed algorithm in this paper, where the information in CAD file

is utilized. Case 3 assumes that the mating relationship in the product is known (shown as

in Figure A.1 of Appendix), which is based on a disassembly experiment on a real

product [Yossapol and Boontaveekit, 2000]. The comparison of value gains from the

product is shown in Table 3.1. The detailed data associated to the product for Case 2 are

displayed in Tables A.1-A.3 of Appendix. The information for Case 3 is shown in Tables

A.4 and A.5 of Appendix, which is based on [Yossapol and Boontaveekit, 2000]. Please
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note the disassembly efforts are calculated under the assumption that disassembly cost is

$ 12lhour.

From this example, it can be observed that the proposed algorithm (Case 2) is 3.5

times better than complete disassembly with the same data input and computational

complexity. Case 2 is more than 80% close to Case 3. However, Case 3 needs much more

data input than Case 2, such as disassembly sequences. The required information may not

be available before a product is disassembled.
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A sample bin assignment result for this example is displayed as a bin tree in a

MACA screen as shown in Figure 3.4. In MLCA, the bin tree is created where a bin name

is displayed and then all the parts and subassemblies sorted into that bin are arranged

along the tree. For example, mother board is assigned to "PCB" bin since it gains the

maximum value in that bin. In the same way, Battery enters "Hazard" bin since it has

high hazard mitigation value, and hard disk and floppy disk compartment go to "Reuse"

bin with high reuse value, and so forth.

3.6 Summary

This chapter is to utilize the information from a CAD system to develop algorithms to

complete the disassembly leveling and bin assignment decisions through balancing the

effort involved in disassembly processes, return realized from them, and environmental

impact caused by them. An algorithm is developed for the first time to integrate the

functions of disassembly leveling and bin assignment together to achieve the maximum

profit from used products. The developed algorithm is of polynomial computational

complexity, i.e., O(n2+mn). It has the similar complexity as that of complete

disassembly-based bin assignment algorithm, i.e., 0(mn). Note that m is the number of

bins and n is the number of parts and final assemblies. Instead of the exponential

complexity others, e.g. [Zussman 1999; Tang et al, 2001], may have, the proposed

algorithm has only polynomial complexity owing to the assumption that a subassembly at

level k is disassembled into its immediate children in one aggregate step. The proposed

algorithm can bring significantly higher gain than the complete disassembly-based

algorithm. Its performance can be very close to that of optimal disassembly planning,
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depending upon the product structure and accuracy of the disassembly effort estimates. It

has successfully been used in the demanufacturing module of an MLCA tool. It requires

minimal user input and can be run automatically in the shadow of a design process.

This disassembly leveling and bin assignment algorithm is a kind of bottom-to-up

search algorithm based on tree structure, which is a step-by-step update process for

achieving an optimal solution. The process continues until no further

improvementlupdate is possible. In the following two chapters, an artificial intelligent

method based on fuzzy reasoning to implement real time demanufacturing process

decision making will be discussed.



CHAPTER 4

FUZZY REASONING PETRI NETS

In Chapter 3, an algorithm is proposed to utilize the information from a CAD system to

complete both the disassembly leveling and bin assignment decisions through balancing

the effort involved in disassembly processes, return realized from them, and

environmental impact caused by them. Because the algorithm requires minimal user input

and can execute automatically, it can be used for multi-lifecycle assessment perfectly.

However, since products during the use stage may experience very different conditions,

their external and internal status can vary significantly. These products, when coming to a

demanufacturing facility, are often associated with uncertain information. To be able to

deal with uncertainty and complement real time decision making, this chapter presents a

Fuzzy Reasoning Petri net model for knowledge representation and reasoning with

uncertainty.

This chapter is organized as follows: Section 4.1 introduces basic concepts of

Petri nets and reviews the exiting Petri net model for fuzzy reasoning. Section 4.2

introduces fuzzy production rules and their Petri net representation. Section 4.3 proposes

the formal definition, execution rules, and examples of Fuzzy Reasoning Petri Net

(FRPN). Section 4.4 presents the reasoning algorithm based on an FRPN model. Section

4.5 illustrates the legitimacy and feasibility of the proposed approach through a turbine

fault diagnosis expert system. Section 4.6 is the summary.

54
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4.1 Introduction

Petri nets (PN) [Zhou and Venkatech, 1999] are a graphic modeling method. They are

widely used to model and analyze such discrete event systems (DES) as communication,

manufacturing, and transportation systems. Since Zisman showed that PN could be

translated into production rule systems [Zisman, 1978], they have caused great attention

in the field of artificial intelligence (AI). PN and AI were combined to achieve some

goals difficult to fulfill by using only one of them. In order to deal with uncertainty,

several authors from PN and artificial intelligence communities have proposed different

kinds of Fuzzy Petri Nets (FPN) based on different notions. For example, in [Valette et

al, 1989] FPN are used to model DES under incomplete information about state and time,

where fuzzy variables are used to describe the degree of a physical object in a certain

place [Cardoso et al, 1999]. Cao and Sanderson (1995) proposed FPN as a presentation of

a robotic workcell by defining fuzzy internal states of objects and using transition

reasoning rules in PN to impose precedent constraints on key operations for task

sequence planning. Another important combination of PN with artificial intelligence is

that PN model is applied to fuzzy rule-based reasoning using proposition logic, where

tokens represent the state of propositions and rules are marked by a fuzzy value between

0 and 1 [Aoony, 1988]. In his model, the transitions serve as rules, and the places serve as

propositions. Based on Aooney's method, Chen et al. improved its ability in both

expressions and reasoning method. They developed an algorithm to determine whether

there exists an antecedent-consequence relationship from a proposition to another [Chen

et al, 1990; Chen, 2002]. The fuzzy reasoning algorithm is implemented using a

reachability based method. Though it can be implemented using a computer, the



56

algorithm is loaded down with much trivial details. The parallel reasoning ability of PN

has not been exploited. Since then, many approaches have been proposed to extend PN to

FPN [Tazaki and Yoshida, 1992; Bugarin and Barro, 1994; Konar and Mandal, 1996;

Scarpelli et al, 1996]. The same name, FPN has been used based on different notions,

which has caused the concept confusion in this research field. In the dissertation work,

Petri nets are applied into proposition logic for (fuzzy) rule-based reasoning and

"Reasoning Petri Nets" concept is proposed to avoid the confusion.

The advantages of applying a PN formalism to rule-based systems are

summarized as follows

1) PN's graphical nature allows one to visualize the structure of a rule-based system

and make the models relatively simple and legible.

2) PN's mathematical foundation allows one to express the dynamic behavior of a

system in algebraic forms.

However, most current researches related to FPN focused on applying a fuzzy

reasoning mechanism over the PN structure rather than utilizing the PN formalism to

improve the efficiency of fuzzy reasoning [Yang et al, 1997].

The relationship between the ordinary PN and PN for knowledge representation

and reasoning remains unexploited in the previous work so that Petri nets theory could

not be used into proposition logic reasoning efficiently. Moreover, the existing FPN

models for knowledge representation and reasoning are unable to deal with the negation

issue in a knowledge base system, which is of critical importance because an

antecedent(s) andlor a consequent(s) of a rule in a knowledge base may be a negative

literal. This chapter aims to:
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1) explore the similarity and difference between DES and rule-based systems;

2) propose the concept of Fuzzy Reasoning Petri Nets (FRPN) for rule-based

representation;

3) define formally FRPN and its execution rules;

4) propose an efficient reasoning algorithm with parallel reasoning ability; and

5) illustrate their applications through an expert system.

4.2 Fuzzy Production Rules and Their Representation with FRPN

4.2.1 Formats of Fuzzy Production Rules

In many situations, it is difficult to capture data in a precise form. In order to properly

represent real-world knowledge, fuzzy production rules [Negoita, 1985] have been used

for knowledge representation.

As addressed in [Chen et al, 1990; Yang at al, 1997], fuzzy production rules can

be classified into four types and their fuzzy reasoning results can be summarized as

follows:
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where O denotes the truth degree of antecedentlconsequent part Pi in a fuzzy rule R1  ,

and cc denotes the confidence degree of applying rule Rj  .

Rules of Type 4 are unsuitable for deducing control because they make no

specific implication. Therefore, this type of rules is not allowed to appear in a knowledge

base [Chen et al, 1990]. In the following, the first three types of rules will be discussed.

4.2.2 Rule Representation

Petri nets used in knowledge representation, called Fuzzy Reasoning Petri Nets (FRPN),

stand for the syntactic structure of rule-based knowledge. Propositions can be represented

by PN places. Each place may or may not contain a token associated with a truth degree

between zero and one. The rule reasoning processes can be expressed by means of firing

transitions of FRPN. The confidence of a rule is associated with its corresponding

transition. It is also between 0 and 1 where one means the full confidence and zero means

none. The mutual causality interconnection among the statements and reasoning rules can

be expressed by means of the analogy with the arcs between places and transitions.

According to the above specification, the first three types of rules can be

represented with PN structures in Figures 4.1-4.3, respectively. Note that type 3 rules

need to be normalized before they are transformed to a PN structure, i.e.,
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Each rule in FRPN uses the logic operator "AND" to combine its preconditions

and each proposition uses the logic "OR" to combine its antecedent transitions. Hence, if

there is an "OR" operation among the antecedent proposition of a rule in the knowledge

base, it has to be normalized into more than one rule before being transformed to FRPN,

as illustrated in Figure 4.3.



4.2.3 Negation Issue

A proposition (an antecedent or a consequence) in a rule may contain negative literals.

Consider the following rules (also shown in Fig. 4 (a)):

In order to deal with the negation issue, a "complementary arc" is introduced into

FRPN. It connects an input place to a transition, and pictorially represented by a directed

arc terminated with a small circle. Note that a small circle means "not" in logic circuits.

If a proposition associated with a negation operator is an antecedent in a rule, that

is, the proposition is the input of the rule, such as "NOT P3" in R 1 and "NOT P8" in R5, a

complementary arc is used to connect the input proposition (place) to the rule (transition).

If a proposition associated with a negation operator is a consequent in a rule, that is, the



4.2.4 Features of FRPN

FRPN are different from ordinary PN due to the features of fuzzy production rule systems

that are different from DES:

1) In FRPN, the number of tokens in a place cannot be greater than one since a token

is associated with a truth degree between zero and one. A token does not represent

an "object" while it may likely do so in ordinary PN.

2) FRPN are always conflict-free nets. This point is based on the two facts: a) There

is no "resource" concept in FRPN; and b) a proposition may be shared by

different rules at the same time. For example, in Fig. 4.4, the proposition P4 is

shared by two rules - R2 and R3. R2 and R3 can utilize proposition P4 at the same

time and reason in parallel.

3) The tokens are not removed from the input places of a transition after it fires. This

is because the evaluation of the rules means only the truth propagation of the

propositions. In other words, the truth of a proposition will not disappear because

of the rule reasoning. Moreover, a conflict problem would arise if the tokens were

removed.
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Yang et al. (1997) insist that the tokens are removed from the input places

of a transition after the transition fires to keep PN's original firing rules valid. But

the conflict problem remains unresolved when an input place is shared by more

than one transition. Nazareth (1993) also insists that the tokens are removed from

the input places of a transition after it fires. In order to avoid the disappearance of

an antecedent propositions' truth after its firing, the structure in Figure 4.5 is

proposed. This solves the conflict and token infinity problems. However, the

ability to perform the parallel reasoning is weakened when a proposition is shared

among more than one rule. Furthermore, a model based on such structures is more

complicated.

4) In FRPN, a complementary arc whose input place has a token doesn't inhibit the

firing of the rule because a token in it simply means that the truth degree of the

corresponding proposition is known and a token is assigned with truth degree

between 0 and 1.
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4.3 Formal Definition of FRPN

Fuzzy Reasoning Petri Nets (FRPN) are an extension of PN, which is exclusively used in

rule-based knowledge representation and reasoning. The section gives their formal

definition and execution rules.

4.3.1 Definition of FRPN

An FRPN can be defined as an 8-tuple:



graph. The updates of the truth degree vector 0 through the firing of a set of rules

describe the dynamic rule reasoning process of the modeled system. If the truth degree of

a proposition is known at a certain reasoning step, a token is assigned to the

corresponding proposition, which is associated with the value between 0 and 1. The token

is represented by a dot. When a proposition p i has no token, which means that the truth
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degree is unknown at that step, O il= 0. Hence,O= 0 implies two possible situations -

either the absence of token which means truth degree of proposition p i is unknown or a

token with zero value which means the truth degree of proposition p i is known and

equals zero. Marking vector y can be used to distinguish the two situations.

4.3.2 Execution Rules of FRPN

In order to represent the execution rules of FRPN formally, two operators from Max

algebra are cited:
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Please note that if the arc from Pi to Rib in Figure 4.6-4.8 is a complementary arc,

O should be replaced by 1- O

A practical fuzzy rule-based system may have a combination of these three types

of rules. Both Pi and "NOT Pi" may exist in a rule-based system. In this case,

complementary arcs are needed to model it.

definition of FRPN, the output matrix 0 and confidence matrix C are:
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At this step, the firing and control vectors are

After the next step firing of the rules, the marking and truth degree vectors are:

and 0 2 is the final reasoning result. The termination condition will be proved next.

4.4 A Reasoning Algorithm Based on FRPN

4.4.1 Reasoning Algorithm

Based on the model and execution rules of FRPN, a reasoning algorithm can be

developed to obtain the final reasoning result about a modeled rule-based system from its

initial truth degrees of propositions 0 ° . From Equations (4.1) and (4.2), it can be

70
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observed that as long as L and ,u are known, the next step marking and truth degree

vectors can be derived from the current values, and so forth. The final reasoning result

can be obtained. It will be proved that the reasoning process will terminate. L is a vector

composed of truth degrees of rules' preconditions. From the view point of control theory,

L can be called as a "control vector". Hence, it is an important step to obtain the value of

L. Next, L and ,u are derived from the model and known parameters so that an

integrated reasoning algorithm can be built.

To obtain firing vector and the minimum fuzzy value of the truth degrees among

an enabled rule's inputs, a "neg" operator [Tzafestas and Capkovic. 1997] is used.

Combining it with the other operators defined in Section 3.2, p lc and Lk  can be

calculated as the follows:

k means the k-th reasoning step;

neg Lk  is an n-dimensional vector. Its components express the confidence of proposition
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kk i1 is an rn-dimensional firing vector at the kth reasoning step. /./ 	 if r. is enabled;

and k =0, if rib is not enabled, j=1,...,m;

Lk is an rn-dimensional vector. Its components express the confidence of enabled rule

re 's precondition being false at the k th reasoning step, j=1,...,m. The corresponding

component equals to one, if the rule is not enabled; and

pk  is an rn-dimensional control vector at the k th reasoning step. Its components express

the truth degrees of enabled rule r ib 's preconditions, and Like= 0 if rule rib is not

enabled, j=1,...,m.

For example, in Figure 4.4, according to the definition of FRPN, the I and H are

I =

Its initial marking

1	 0	 0

1 	 0	 0

0	 1	 0

0	 1	 1

0	 0	 1

0	 0	 0

0	 0	 0

0	 0	 0

0	 0	 0

_0	 0	 0

y ° =[1	 1

0

0

0

0

0

0

0

0

0

0

1

0-

0

0

0

0

0

0

1

0

0

1 1 0

H =

0 0

0	 0	 0	 0	 0-

0	 0	 0	 0	 0

1	 0	 0	 0	 0

0	 0	 0	 0	 0

0	 0	 0	 0	 0

0	 0	 0	 1	 0

0	 0	 0	 0	 0

0	 0	 0	 0	 0

0	 0	 0	 0	 1

_ 0	 0	 0	 0	 0

0 0] T and initial truth degree vector

0 ° = [0.8 0.9 0.7 0.6 0.4 0 0 0 0 0] T . According to the equations in this section

afore, the following results can be obtained:

0 ° =[0.2 0.1 0.3 0.4 0.6 1 1 1 1 1] T .

-27 =[0 0 0 0 0 1 1 1 1 1] T.
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With p ° and L ° , the next step marking y id and truth degree vector 0 1 can be

obtained from Equations (4.1) and (4.2), as discussed in Section 4.3.2. In the same way,

the firing vector, control vector, marking and truth degree in the next step can be derived,

and so forth.

So far, it has been discussed how to obtain all the necessary parameters for

automatic reasoning. Next, the reasoning algorithm based on an FRPN model will be

formally described.

where "Cry and "®" are the operators defined in Section 4.3.2.

Then, the FRPN reasoning algorithm can be described as follows:
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4.4.2 Complexity of The Algorithm

An acyclic net is a net in which there is no loop or circuit. No circularity exists in most

practically used knowledge base [Nazareth, 1993; Koriem, 2000]. Therefore, the FRPN

of a fuzzy production rule system is assumed to be an acyclic net.

Theorem 4.1: The reasoning algorithm for an acyclic FRPN terminates at a finite

number of iterations k_. h+ 1, where h is the number of transitions in the longest place-

transition direct path in the net. The computational complexity in the worst case is

0(nmh) where n and m are the numbers of places and transitions respectively.

Proof
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Hence, it is proved that the reasoning terminates when

(b) Let h stand for the number of transitions in the longest place-transition direct path. It

Since h is the number of transitions in the longest place-transition direct path, the

components in 8 h-1 and L h are the same except the components in sink places. Also,

the components of p iFI express the truth degrees of enabled rules' preconditions, they

are not correlative to sink places' truth degrees. From these two view points, it can be

derived that pF =pFh-1.
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Combining (a) and (b), it can be concluded that the algorithm at the worst case

terminates at the (h+l)t  step.

Note:

1) The last step reasoning is for checking whether the marking and truth degree vectors

still change. If h is known in advance, one can certainly terminate the reasoning at the

ht  step. Otherwise, the reasoning algorithm will halt at (h+l) t  step at the worst case.

The algorithm may terminate at a step before h iterations depending on the initial

marking, truth degrees of propositions and whether the marking and truth degree

vectors change after that step. For example, for the FRPN model in Figure 4, suppose

is a necessary condition for the determination of reasoning but not a sufficient

one. This point is indicated in the example in Section 4.5.
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4.4.3 Modularization of FRPN

In some cases, a rule-based system can be divided into several sub-systems, e.g., the one

in Fig. 4.9. The arrows between sub-systems indicate the propagation of truth degrees. If

a rule-based system is composed of several modules, the corresponding FRPN modules

can be built up and the algorithm can be executed respectively, which may reduce the

complexity. Suppose Sub-system i has the complexity of 0(m in ihd, then the total

complexity for the whole rule-based system A;

4.4.4 Procedure to Apply FRPN to Fuzzy Rule-based Reasoning

Given a fuzzy rule-based system and the initial marking and truth degrees of the

propositions in the system, the reasoning result can be achieved through the following

steps:

Step 1: To normalize the fuzzy rules;

Step 2: To model them using FRPN;

Step 3: To obtain the parameters needed for the reasoning algorithm from the

FRPN model;
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Step 4: From the initial marking and truth degrees of the propositions to calculate

the final reasoning result using the proposed algorithm.

The next section explains the application of the method through a gas turbine fault

diagnosis system.

4.5 FRPN for A Gas Turbine Diagnosis System

A rule-based system can be modeled and reasoned using the proposed FRPN model and

reasoning algorithm. This section applies the method into a turbine fault diagnosis expert

system [Huang, 2000].

4.5.1 Rule Base

Rule 1 (confidence=0.8)

Sympton:

1. The cross section area of turbine's path is too large (p i )

2. The efficiency of assembling unit is too low (pa)

Anticipated fault:

Ventilation side of guider's blade of turbine wears and tears (p3)

Rule 2 (confidence=0.8)

Sympton:

1. The spray head of turbine is broken ()25)

2. The flow rate of the fuel in combustor is not too high (--,p 7)

Anticipated fault:

The higher pressure level's spray head of turbine is broken (p8)

Rule 3 (confidence=0.8)



Sympton:

1. The spray head of turbine is broken (P25)

2. The flow rate of the fuel in combustor is too high (p 7)

Anticipated fault:

The higher pressure level's spray head of turbine is broken (138)

Rule 4 (confidence=O.8)

Sympton:

1. The outlet gas temperature of turbine is too high (p9)

2. The efficiency of turbine is too low (pio)

3. The flow coefficient of turbine is too low (p11)

Anticipated fault:

The blade of turbine scales (p12)

Rule 5 (confidence=O.8)

Sympton:

1. The efficiency of turbine is too low (plo)

2. The power of assembling unit is too low (p13)

3. The efficiency of assembling unit is too low (p2)

Anticipated fault:

The blade of turbine wears and tears (pm)

Rule 6 (confidence=0.8)

Sympton:

1. The efficiency of assembling unit is too low (132)

2. The inlet gas temperature of turbine is too high (pis)
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Anticipated fault:

The blade of turbine burns down (p16)

Rule 7 (confidence=O.9)

Sympton:

1. The flow path of compressor wears and tears (p 17)

Anticipated fault:

The compressor is in turbulence (p18)

Rule 8 (confidence=1)

Sympton:

1. The blade of compressor breaks down (pp)

Anticipated fault:

The compressor is in turbulence (pH)

Rule 9 (confidence=0.8)

Sympton:

1. The conversion flow of compressor is too low (Pm)

2. The pressurization ratio of compressor is too low (p5)

3. The compressor has problem (p24)

Anticipated fault:

The inlet of compressor freezes (p22)

Rule 10 (confidence=1)

Sympton:

1. The efficiency of assembling unit is too low (p2)

2. The fuel consumption of assembling unit is too high (p21)
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3. The inlet gas temperature of turbine is too high (pis)

Anticipated fault:

The compressor has problem (p24)

Rule 11 (confidence=O.9)

Symptom:

1. The pressurization ratio of compressor is too low (p 5)

2. The uniform entropy compression efficiency of compressor is too low (p23)

Anticipated fault:

The blade of turbine scales (p12)

Rule 12 (confidence=0.8)

Symptom:

1. The conversion flow of compressor is not too low (-920

2. The pressurization ratio of compressor is not too low (---p5)

3. The compressor has problem (p24)

Anticipated fault:

The flow path of compressor wears and tears (p17)

Rule 13 (confidence=0.8)

Symptom:

1. The inlet gas temperature of turbine is too low (p4)

2. The efficiency of assembling unit is too low (p2)

3. The pressurization ratio of compressor is too low (p 5)

Anticipated fault:

The spray head of turbine is broken (p25)
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4.5.2 FRPN Modeling of The Application

Using the procedure in Section 4.4, the first three steps lead to an FRPN model as shown

in Figure 4.10. Matrices I, 0 and H can be obtained from the model.

From the rule base, confidence matrix C = diag (O.8 0.8 O.8 O.8 O.8 O.8 O.9

1.0 0.8 1.0 0.9 0.8 O.8). Suppose that the initial marking is y ° = (1 1 0 1 1 0 1

0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 O) T and the initial truth degree

vector is 0 ° = (O.6 1.O O.O O.O O.2 O.O O.O 0.0 0.2 O.9 O.O O.O O.8 0.O 0.2 0.O 0.O

O.O O.O O.O O.3 0.O O.O O.O 0.O) T. Note that initial degrees are obtained by fuzzifying

the data gathered from a gas turbine system through data sampling equipment. Given y °

and 0 ° , the proposed reasoning algorithm can be used to derive the reasoning result.

Figure 4.10 The FRPN model of a turbine fault diagram expert system.
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4.5.3 Algorithm Execution Results

A C++ program is developed to execute the proposed reasoning algorithm. Because the

proposed reasoning algorithm is a formal algorithm based on the operations of matrices,

the program is very simple and generic. For different rule based systems, users just need

to input appropriate FRPN model parameters, i.e., I, 0, H, C, y ° and 0 ° , the algorithm

will be executed automatically to obtain the final truth degree of all the propositions. For

this example, the execution result is shown in Figure 4.11. Note that the algorithm still
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continue at the 2nd step although r 2 =-1 g . The marking and truth degree in the fourth

reasoning step is the same as those in the third step. Thus, the reasoning terminates after 4

propositions, including symptons. The truth degrees of the concerned faults can be picked

up by multiplying the other non-concerned elements with zero, shown as the fault vector

in Figure 4.10. The fault of "The blade of turbine wears and tears" has the highest value

compared to other faults. Therefore the system most likely has the fault of "The blade of

turbine wears and tears" with the confidence of O.64.

4.6 Summary

A particular kind of extended Petri net format — Fuzzy Reasoning Petri Net (FRPN) model

is proposed to represent a fuzzy rule based system. A reasoning algorithm based on the

proposed model is derived in this research. Even though this new kind of Petri nets is

extended from the ordinary Petri nets, its speciality is emphasized to match the rule-based

system's characteristics in this research. Both graphical and mathematical advantages of

ordinary Petri nets can be well utilized when one employs FRPN for reasoning. Negation

issues in PN for knowledge reasoning are for the first time addressed. The proposed

algorithm adopts a matrix equation format that is similar to that in the ordinary Petri nets,

and exhibits fully parallel reasoning ability. Using this algorithm, the truth degrees of all

the propositions can be quickly obtained from the initial ones without using a reachability

analysis method. It has great potential to be used to solve complicated problems efficiently.

A practical rule-based fault diagnosis system is used to illustrate the proposed method.
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The next chapter will apply the method into demanufacturing process decision to handle

the uncertain information associated to used products and make dynamic demanufactuing

process decisions based on real time information about a product and its components'

statuses.



CHAPTER 5

FUZZY REASONING PETRI NETS FOR DEMANUFACTURING
PROCESS DECISION MAKING

Practical demanufacturing process planning is extremely important for efficient material

recycling and components reuse. Most of the research work on demanufacturing process

planning, as discussed in literature review, is intended to generate predictive optimal

result based on the information of an assembly [Tang et al, 2000]. The work in Chapter 3

also utilizes the information from a CAD system to complete the disassembly leveling

and bin assignment decisions. This kind of work provides predetermined plans and can be

used in prediction and assessment. In practice, however, the indeterminate characteristics

associated to used products makes the predetermined plan unrealistic and

demanufacturing processes have to be decided dynamically adaptive to the products'

specific status. Based on theory of FRPN in Chapter 4, this chapter presents a Fuzzy

Reasoning Petri net model to represent a used product with uncertainty and its related

demanufacturing decision rules, and applies the algorithm based on FRPN model into

dynamic decision making in demanufacturing process with uncertain information.

This chapter is organized as follows: Section 5.1 introduces demanufacturing

system model. Section 5.2 presents demanufacturing process decision rules and their

FRPN Model. Section 5.3 utilizes an example to describe the demanufacturing process

decision procedure. Section 5.4 gives summary.
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5.1 Demanufacturing System Model

Demanufacturing is an integral part of a product life cycle, which performs a set of

functions (such as inspection and disassembly) to recover materials and components for

reuse, recycling, or re-manufacturing. A genetic model for a demanufacturing system is

shown in Figure 5.1.

The used products coming to a demanufacturing system are separated in

collection unit according to their types. Then, for each product, the inspection unit will

test its potential reusability, material composition, disassembly success rate and so on.

According to the data from the inspection unit and the rules for demanufacturing, the next

process for the product will be decided. Finally, the subassemblies or parts getting from

the disassembly go to the inspection unit for the next process decision.
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5.2 Demanufacturing Process Modeling with FRPN

Efficient reasoning for a complex electronic product's status based on the present known

characteristics is important to ensure highly reliable and efficient disassembly processes.

These used products, unfortunately, exhibit high uncertainty in system status since

products may experience very different conditions during their use stage. Hence, the

demanufacturing processes have to be decided dynamically based on the products'

specific status. Moreover, the demanufacturing process usually can't be determined by a

single criterion, but multi-criterion rules. The rules themselves are not necessarily of full

confidence, which come from the previous experience or expert knowledge. Hence, the

complexity and uncertainty have to be handled in a disassembly decision process. An

example for demanufacturing process decision making is shown in Figure 5.2.
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For each product/subassembly, its reuse value is evaluated first. If the reuse value

is high enough, the productlsubassembly is reused directly. Otherwise, the reuse value of

its components (subassemblieslparts) is further investigated. If any subassemblylpart has

a high reuse value, then try to disassemble the productlsubassembly to obtain the

subassemblieslparts with high reuse value. Or, one wants to recover the materials from

the productlsubassembly. If there are no recoverable materials in the

productlsubassembly at all, it is dumped. If it is composed of recoverable materials, the

productlsubassembly with compatible material composition doesn't need to be further

broken down unless some of its parts pose a hazard.

According to the definition of FRPN, the decision process in Figure 5.2 can be

presented as Figure 5.3 using the FRPN model. The definitions of the propositions in

Figure 5.3 are the followings:
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Si: Reuse value of a productlsubassembly is high.

S2: Some parts in it may have high reuse value and it is not difficult to obtain them.

S3: The productlsubassembly has no recoverable materials.

S4: The productlsubassembly has not the compatible material composition.

S5: No hazardous materials are in the productlsubassembly.

S6: The productlsubassembly is reused.

S7: The parts with high reuse value are obtained through productlsubassembly

disassembly.

S8: The productlsubassembly is dumped.

S9: The subassemblieslparts with different materials are separated via disassembly.

S10: Material is recovered without further disassembly.

S11: The hazardous materials are removed.

5.3 An Electronic Appliance Example

In this section, the disassembly of a handlight is used as an example to demonstrate the

application of the proposed method. The components contained in the handlight include

Cover (C), Glass (G), Head-housing (H), Bulb (B), Spring (S) and Main-housing (M).

The mental head-housing is screwed onto the same material main-housing, and both the

cover and bulb are screwed onto the head-housing. The spring is welded onto the main-

housing. All the possible disassembly paths are shown as Figure 5.4, modeled by

Disassembly Petri net (DPN) [Zhou and Venkatech, 1999].

Starting with the whole product — handlight, suppose that the following evaluation

is obtained according to the data from the inspection unit.
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• The possibility for the product to be reused is O.1;

• "Cover" has high reuse value (certainty =O.9) and the possibility of any other parts'

reuse is no more than 0.2;

• Material can be recovered from the product with the certainty of 0.8;

• At this stage, the product does not have the compatible material;

• There are no hazard materials.

FRPN,
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result of the decision is to disassemble the productlsubassembly and try to obtain the part

with high reuse value because it has highest truth value of O.9. In the DPN model, there

are two choices to obtain "Cover". Suppose that the path with the minimum disassembly

steps is chosen. Hence, transition t 1 is selected.

After disassembling the handlight, a new subassembly - HBSM is obtained. For

HBSM, the inspection value is again updated and the similar reasoning process could be

used for making further decision and so forth.

materials directly without further disassembly.

From the above example, it can be observed that the multi-criterion step-by-step

decision process in Figure 5.2 can be modeled by FRPN in a parallel way to obtain the

result of reasoning automatically just in one reasoning step. Moreover, for each

productlsubassembly, the inspection value for decision is updated so that a decision can

be made in real time and is closer to the practical situation.
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5.4 Summary

The research work for disassembly process planning in literature focuses on the generation

of the optimal sequence based on the predictive information of a product. In practice, most

of used products' characteristics are unknown, making a predetermined plan unrealistic

[Tang et al., 2000]. Hence, the practical approach should consider uncertainty and address

a dynamic disassembly system reactive to unpredictive events. This chapter introduces the

general demanufacturing system model and applies FRPN modeling and reasoning

algorithm into demanufacturing decision making in a demanufacturing system to handle

the uncertain information associated to used products. A dynamic demanufactuing decision

making process is implemented. Using this method, multi-criterion fuzzy demanufacturing

rules, which come from the previous experience and expert knowledge, can be presented in

a uniform model to obtain decision making results.



CHAPTER 6

SUSTAINABILITY IMPROVEMENT

In Chapters 3 and 5, the optimal and intelligent decision making methods on

demanufacturing processes are proposed to increase the profit and decrease

environmental impact from used products. Besides the End-of-Life (EOL) management

of products by means of productlmaterial recovery to decrease environmental impacts,

the concept of Design for Environment (DFE) is proposed to aim to integrate

environmental requirements in a design process [Mahendra and Marcel, 20002].

"Sustainable development" through eco-efficiency has become the rallying cry of a new

breed of companies who see competitive advantage in conserving resources and

promoting environmental stewardship. How to make its products most sustainable has

become one of a company's most important decisions to make. Before making such

decision, one has to define the concept of sustainability and has its measurement. The

Sustainability Target Method (STM) provides a practical sustainability target for

individual businesses and products through determining the relative indicator Resource

Productivity (RP) for environmental performance and the absolute indicator Eco-

Efficiency (EE) for sustainability [Dickinson et al., 2002].

Based on STM indicators, decision-making methods are investigated in this

chapter to provide a company with improvement suggestions and enable a company to

improve its product's sustainability at the stages of design and manufacturing.

A product can be viewed generally as an assembly that consists of multiple

components. Thus, one of the ways a company can improve its product environmental
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performance is by improving the performance of these components. Given STM

information on the components, how the company utilizes this to improve its product

sustainability is a decision-making issue. This chapter investigates the optimal decision-

making approach for a company to improve its product's sustainability using the STM

indicators RP and EE of the product components. Sensitivity analysis is used to provide a

methodology to indicate which components should receive attention to make the overall

product more sustainable. The feasibility of the approach is validated by using a

generalized product consisting of multiple components, which relates easily to circuit

board assemblies and other types of electronic products.

This chapter is organized as follows: Section 6.1 introduces the sustainability

target method. Section 6.2 introduces a sensitivity analysis method. Section 6.3 proposes

the sensitivity analysis method on STM indicator analysis. Sections 6.4 and 6.5 illustrate

the legitimacy and feasibility of the proposed approach through examples. Section 6.6

gives the summary of the chapter.

6.1 Sustainability Target Method

The Sustainability Target Method (STM) approach utilizes the earth's carrying capacity

estimates and economic information to provide a practical sustainability target for

individual businesses and products. Initially formulated at Lucent Technologies Bell

Laboratories, the STM is under continuing development through the collaboration of the

Multi-lifecycle Engineering Research Center (MERC) at New Jersey Institute of

Technology (NJIT) with Aucent Technologies and Agere Systems. The key and unique

feature of this method is the link between carrying capacity, economic value, and
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environmental impact to provide an absolute or "target" criterion for sustainability that is

practical for use by business [Dickinson et al, 2002].

Compared to other environmental impact assessment methods, STM shifts the

focus from environmental impact to sustainability and explicitly considers economic or

market value of a product. It is equally applicable to analyzing processes, services or

facilities. By directly considering economic value, resource productivity measures can be

generated, and comparison can be drawn between products or services that are not

necessarily "functionally equivalent" but are instead economically equivalent. Thus, the

STM approach provides a basis for decision making among different suppliers and

manufacturers. This section gives a brief description about STM. The approach is

described in detail in [Dickinson, 1999; Dickinson et al., 2001].

STM involves interpreting different types of environmental impact based on a

single dimensionless indicator, i.e., the environmental impact per unit production rate, as

denoted by E/pR . Its computation is accomplished via normalization by using impact

reference levels that relate impact with economic value and sustainability. EIPR provides

the basis for calculating the relative indicator Resource Productivity (RP) for

environmental performance and the absolute indicator Eco-Efficiency (EE) for

sustainability.

A. Environmental Impact (El)

The Environmental Impact (AEI) resulting from an activity, such as manufacturing a

product or providing a service, is quantified by normalizing each associated impact using

an impact reference level that relates in a specific way to sustainability. AEI is aggregated

by adding the ratios to obtain a single dimensionless indicator of total impact.



Each impact reference level IRA is the level at which the impact is environmentally

sustainable at a rate of value generation BR , i.e., the value reference level. Both the

impact level and impact reference level are expressed per unit time (e.g., kglyear for

emissions), and the same for

For production rate P (product items per unit time), the environmental impact per

unit production rate EIPR is then:

B. Resource Productivity (RP)

Resource Productivity (RP) is the production rate achieved per unit environmental

impact:

RP serves as a relative indicator of environmental performance that allows for direct

comparison, such as between products or alternative product designs. A larger RP value

means a higher production rate achieved per unit environmental impact. An increasing

trend in the resource productivity indicator RP would be an indication that the firm is

moving in the direction of using resources more efficiently and generating less

environmental impact.
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C. Eco-Efficiency (EE)

Eco-Efficiency (EE) is defined as:

',value ratio); and B is value creation, e.g. revenue ($/year). The value

of the product is established by the market. BR is the value reference level corresponding

to the impact reference levels. Then,

where VPR  is the revenue per product unit or value added per unit. EE is an absolute

indicator of sustainability. It is the ratio of the actual rate of value generation

o the rate that is sustainable given the level of environmental impact

an be interpreted as the benefit achieved compared to the minimum

allowable benefit given the level of environmental impact incurred. Thus, the criterion for

sustainability is EE ?_ 100% (EE >100% simply indicates even less impact than the

sustainable level given the value being provided). EE serves as an absolute indicator of

sustainability.

Definition: A product is sustainable if its EE 100% .

To make products most sustainable, the values of RP and EE are expected as high

as possible. The higher these values, the higher production rate achieved per unit of
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environmental impact and more sustainable. The methods to compute these values can be

found in [Dickinson et al., 2001; 2002].

An example of STM indicators' calculation is provided as follows for illustration.

All numerical information shown has been adopted only for this example. The company

to be evaluated in this example manufactures a single product at a rate of 1000 units per

day (P) and generates revenue of $40OMlyear (V). The manufacturing involves three

environmental impacts: 1) Global Warming (4OK kglday); 2) Acidification (8K kglday);

and 3) Summer Smog (1 kglday).

The environmental impact of the manufacturing is

where:

are the levels of impacts global warming, acidification, and

summer smog respectively;

are the reference levels of impacts global warming,

acidification, and summer smog, respectively.

The resource productivity indicator, RP, is

(Items per day, per unit environmental impact)
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The Eco-Efficiency indicator, EE, is

The environmental impact is twice the sustainable level. In other words, either

environmental impact orland revenue should be improved to make the company

sustainable.

6.2 SensitiLity Analysis

In general, a product can be viewed as the one that consists of its components. Thus, a

company can improve its product's performances through improving the components'

performances. One of the most important performances a company is facing how to

improve sustainability, which integrates the strategies for economic success,

environmental quality and social equity [Mosovsky et al., 2000]. If a company attempts

to make a product more sustainable, it may be able to do so by improving the

sustainability of the components of the products.

An issue is raised in this attempt. How does the company utilize the SMT

indicators of the components to improve the product's sustainability efficiently? In the

next section, a sensitivity analysis approach that enable a company to make the best

decision will introduced.

To make the product more sustainable, the company needs to improve the

product's RP and EE. If a company expects to improve its product's sustainability

through improving the components' performance, the company needs to make a decision

on which component should be given the first priority consideration and requires most

urgent improvement such that the product is most sustainable.
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Sensitivity analysis measures the impact on the outcomes of changing one or

more input values. For example, there are three input values. Then an analysis could be

performed to see how the outcome changes as each of the three chosen values is

considered in turn, with other things being held the same. To improve the sustainability

and environment quality, a company expects the values of RP and EE of its products as

high as possible. Sensitivity analysis approach can be used to determine which

component's performance change has the most notable effect on the product's EE and RP

indicators.

Without the loss of generality, it is assumed that a product is produced from three

types of components — A, B and C. The quantities of A, B, and C in the product are nA,

and EEA , EEB , and EEC , respectively.

The product's RP:

where EIPR_Assembly is the environmental impact produced in assembling a product from A

with quantity nA, B with nB, and C with nc. RP is the production rate achieved per unit

environmental impact for the product. From the above equation, it can be seen that the

product's RP can be increased through increasing RPA, RPB, and RP M .

The product's EE:
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Assuming that the change of VPR  ,VERB  , or VERB does not effect RPA , RPR  , RP

and VTR  , the above two equations indicate that the change of APRA (or VERB , or VERBS )

does not change the overall RP and EE values of the product. In other words, the

improvement on EEA (or EER , or EE M ) by increasing only APRA (or VERB , or VERBS)

cannot improve the product's RP and EE. Therefore, eventually the product's RP and EE

are improved by increasing RP values of the components.

Next section will discuss the sensitivity of the change of a product's RP and EE in

terms of the change of its components' RP values.

6.3 SensitiLity Analysis of STM Indicators

6.3.1 Resource ProductiLity Analysis

RP = 	1
n A 	no 	Inc +	 +	 + AEI PR—AssemblyRPA RPR RPM

For brevity and clarity, let x — 
 n A 

+ 
 n R 	n c.

+ 	 + AEI PR—Assembly , which is the

environmental impact per unit production rate of the product.

The sensitivity of RPA 's effect on the product's RP is obtained by taking the first

deviation of RP with respect RPA:

d(RP) 1 	dx 

d(RPA)
— ( 

x2 
) 

d(RPA)

1 1 	1	 n A
= (—

X
2) . n A ( RpA2 ) —

 x 2 .-. *-s AFB
A

which is the change of RP of the product per unit change of RP of Component A.

RPA RPR RPM
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which are changes of product's EE per unit RP change of Component A, B and C,

respectively.

6.3.3 Decision Making Based on RPs of Components

From RP and EE analysis, the following consistent conclusion can be reached. The

company should try to improve the RP of the component that can generate the largest

improvement to its product's RP and EE. In other words, the component with the
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because improving the RP of the component can generate the largest improvement to its

product's RP and EE.

6.3.5 Results for General Cases

In the above analysis, that a product is composed of three types of components is

considered. In practice, no matter how many types of components, the following

conclusions can be obtained.
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Rule 1. A company is producing a product, which is composed of N types of

components. The number of type-i component is Ili; the RP associated to it is RP;, and the

cost per unit change in RP; is Cif, i=1,..,N. In order to make the product more sustainable,

improve the component's RP.

Rule 2. In the case that the cost for resource productivity improvement is not an issue or

minimum RP.

Rule 4. A company is producing a product, which is composed of N types of

components. The number of type-i component is nib; the value of type-i component is v„, ;

and the EE associated to it is EE;, i=1,..,N. In order to make the product more sustainable,

improve the component's RP.

Rules 1-3 are based on RP information of components while Rule 4 is based on
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6.4 An Illustration Example

In this section, a simple example is used to illustrate the above analysis and verify the

above conclusions. It assumes that a company is producing a printed circuit board, which

is composed of 4 type-A chips (ID: A) and 2 type-B chips (ID: B) and Base Board (ID:

C) respectively. The relevant parameters are shown in Table 6.1.

According to Rule 1 in previous section, in this example, the company should

focus on Chip A's performance improvement first, then Chip B, finally the base board

because Chip A's RP has the most significant effect on the product per unit cost, and base

board has the least effect.

Initially, RP and EE of the product:



Assume that RPs of Chip A, Chip B and the base board are increased by 50 per

unit environmental impact. Their effect on the product's sustainability are analyzed,

respectively.
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In the same way, if RP of Chip B is increased by 50 per unit environmental

impact, and RPs of Chip A and the base board keep unchanged,

If RP of the based board is increased by 50 per unit environmental impact, and

RPs of Chip A and Chip B keep unchanged.

From the above calculation, it can be concluded that Chip A has the most

significant effect on the product's sustainability by the same performance improvement

as Chip B and the base board per unit cost. Thus, in this example, the company should

focus on Chip A's RP performance improvement first to improve the product's

sustainability.
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6.4.2 Based on RP Information of Components

When the cost per unit change of a component's RP is not an issue, unknown, or equal.

According to Conclusion (2), without considering the cost for RP improvement,

the company should focus on Chip B's performance improvement first, then Chip A, and

finally the base board. In this example, EE of the product is improved to 1.032 if RP of

Chip B is increased by 50, while the EE is improve to 1.013 and 0.967 respectively if

Chip A and the base board are selected to be improved. It can be observed the Chip B has

the most significant effect on the product's sustainability by the same performance

improvement as Chip A and the base board. Therefore, the result is verified.



According to Conclusion (3), based on EE information of components, the

company should focus on Chip B's performance improvement first, then Chip A, and

finally the base board. The result is the same as the result based on RP information of

components when the cost for improvement is under no consideration.

6.4.4 Discussion

From above analysis, the following interesting results are obtained: to improve a

product's sustainability, a company is not necessary to pick up the component with worst

6.5 Application to A Handy Board

In this section, "Handy Board" is used as an example (Figure 6.1) to illustrate the above

analysis and verify the above conclusion. The Handy Board is a 68HC11-based controller

board designed for an experimental mobile robot. The Handy Board is based on the 52-

pin Motorola MC68HC11 processor, and includes 32K of battery-backed static RAM,

four outputs for DC motors, a connector system that allows active sensors to be

individually plugged into the board, an ACD screen, and an integrated, rechargeable

battery pack. This design is ideal for experimental robotic project, but the Handy Board
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can serve other embedded control applications as well. The main components in the

board are listed in Table 6.2, where RP and C are the environmental impact and costs per

unit change of RP respectively.

It is assumed that the environmental impact produced in assembling the product

unit value of the product

per unit environmental impact.

Initially, the RP and EE of the product:

In order to improve the product's sustainability, one can try to improve its

components' RPs. From Table 6.2 and Rule 1 in Section 6.3.5, it can be observed that the

company should focus on Component No. 9 -16x2 ACD first, because it has the

maximum value of nl(RP 2 *C), which means that it has the most significant effect on the

whole product per unit cost. When the cost per unit change of a component's RP is not an
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issue or unknown, according to Table 6.2 and Rule 2 in Section 6.3.5, the company

should focus on Nicad battery because it has the maximum value of n!RP2 .

Assume that RPs of ACD and battery are increased by 10 per unit environmental

impact. Their effect on the product's sustainability respectively will be analyzed next.

First consider that LCD's RP is increased by 10 per unit environmental impact, and RPs

of other components' RPs keep unchanged, then RP and EE of the product become:

In the same way, if RP of battery is increased by 10 per unit environmental

impact, and RPs of other components keep unchanged, then the RP and EE of the product

become:
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From the above calculation, it can be seen that the battery has more significant

effect on product's sustainability for the same performance improvement than LCD does.

However, if the cost for RP improvement is considered, the LCD has more significant

effect on product's sustainability for the same performance improvement than the battery

per unit cost does. The results are consistent with the conclusions derived in Section

6.3.5.
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6.6 Summary

Based on STM, this chapter investigates the approaches to support a company to improve

its product's sustainability using the product's components' STM indicators, and adopts

sensitivity analysis method to provide a company with improvement suggestions on

which components should receive more attention and perform urgent improvement to

make its products more sustainable. Through the analysis, the result is obtained that a

company is not necessary to pick up the component with worst RP or EE to focus on first

in order to improve a product's sustainability. The future work includes investigating the

application of STM in supply chain management and lifecycle assessment, such as

supplier selection, analysis of service, use and recycling activities as well as the design

and manufacturing processes. The data acquisition approaches for calculation and the

decision-makings based on the uncertain information are also future discussion issues.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Increasing global population and product consumption are causing declining natural and

social systems. Sustainable development addresses these issues by integrating strategies

for economic successes, environmental quality, and social equity. Sustainable

development for the Earth and its future generations depends on turning environmental

responsibility into a competitive advantage through End-of-Life (EOL) management of

discarded products and new product design to minimize waster and maximize resource

utilization.

The changing needs of customers not only require a great variety of products, but

also make the products obsolete quickly. Most old electronic products are either in

storage or thrown in landfills rather than recycled. EOL electronics contain a significant

amount of toxic materials, which are not a problem when consumers use electronic

products, but they can create health and environmental hazards if they are not properly

disposed of at end-of-life. Multi-Lifecycle Engineering is a comprehensive and

systematic approach to growing a strong industrial economy while maintaining a clean,

healthy environment. The use of materials and components from discarded products is

enhanced so that they could be used over more than one product lifecycle. As an integral

part of a product life cycle, demanufacturing is a process of disassembling a product and

assigning bins for the resultant subassemblies and parts, which are then reused, re-

manufactured, reengineered, or disposed of. Efficient demanufacturing of a product is

116
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fundamental to fulfill the goals of multi-lifecycle engineering. Bin assignment task has

been considered the one following a disassembly process in the current literatures. Yet,

the two processes are actually interweaved. In this doctoral research, the information

from a CAD (Computer Aided Design) system is utilized to develop a methodology to

integrate the disassembly leveling decision with the bin assignment task. An example is

performed by applying the methodology to a computer product analysis.

Since products during the use stage may experience different conditions, their

external and internal status can vary significantly. In this research, an Fuzzy Reasoning

Petri net model and fuzzy reasoning algorithm are proposed to deal with uncertain

information, and are successfully applied to demanufacturing process decision making so

that the demanufacturing processes are dynamically decided.

Besides the End-of-Aife (EOL) management of products by means of

product!material recovery to decrease environmental impacts, the concept of Design for

Environment (DFE) is proposed to aim to integrate environmental requirements in a

design process. Based on Sustainability Target Method (STM), decision-making methods

are investigated in this research to provide a company with improvement suggestions and

enable a company to choose their suppliers to improve the company's sustainability.

In addition to the theoretical research, the proposed methods are implemented into

a software package. Using today's advanced computing technologies, the Multi-

LifeCycle Assessment and Analysis (MACA) tool is developed to gather and analyze the

information of the whole lifecycle of a product, including product design, material

processing, production, use stage, and up to demanufacturing, remanufacturing,

reengineering stage. It provides product developers with a set of systematic approaches to
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green product and system development and therefore increase significantly the efficiency

and profitability of manufacturing and demanufacturing industries, and improve the

quality of environment.

The contributions of this dissertation are summarized into three aspects:

1) Bin assignment algorithm for multi-lifecycle assessment tool development

An integrated methodology to complete both the disassembly leveling and bin

assignment decisions is developed through balancing the effort involved in

disassembly processes, value return, and environmental impact. The proposed

method is successfully implemented into a demanufacturing module of MLCA

software so that a product can be analyzed through its whole life cycle. It utilizes

the information from a CAD system and requires minimal user input and can be

automatically executed during a design process. It is proved that the maximum

value can be retrieved and minimum environmental burden can be produced from

used products using the proposed method, under the assumption that a

subassembly is disassembled into its immediate children in one aggregate step.

The algorithm can derive relatively high value return from a product with low

computational complexity. An example is used to illustrate the methodology.

2) Decision making with uncertainty

Since products during the use stage often experience different conditions, used

products are thus associated with uncertain information so that the demanufacturing

processes have to be decided dynamically based on the products' specific status. To

deal with uncertain information, a particular kind of extended Petri net format — a

Fuzzy Reasoning Petri Net (FRPN) model is proposed to represent a fuzzy rule
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based system. A reasoning algorithm based on the proposed model is derived.

FRPN can be used in generic fuzzy rule based systems for modeling and reasoning.

Both graphical and mathematical advantages of ordinary Petri nets can be well

utilized when one employs FRPN for reasoning. The proposed algorithm exhibits

fully parallel reasoning ability. The method is applied into demanufacturing process

decision to handle the uncertain information associated to used products and

implement dynamic demanufactuing process decision.

3) Sustainability improvement

Besides decision making approaches based on end-of-life management, this

research also investigates the methodologies to improve a product's sustainability

in the design and manufacturing stage. Based on sustainability target method, a

sensitivity analysis decision-making method is proposed to provide a company

with improvement suggestions and enable a company to improve its product's

sustainability effectively. The method allows a company to focus on a right

component to improve its performance and thus achieve the needed product

sustainability.

This research has the following limitations:

1) In the bin assignment investigation, it is assumed that a subassembly at a certain

level is disassembled into its immediate children at the next level in one aggregate

step. This assumption does not always hold in practice;

2) In FRPN for fuzzy reasoning, it is assumed that the rule base is error free. If the

rule base itself has errors, the reasoning results may be inconsistent. The FRPN

has reasoning ability but does not have learning ability;
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3) In sustainability improvement based on STM approach, this research only

considers one kind of decision making problem, which is to improve a product's

sustainability through improving its components' performance.

7.2 Future Research

There are several ways in which this work could be extended in the future. Some

important and promising directions are listed as follows:

1) In bin assignment algorithm, it is assumed that a subassembly at a certain level

either does not need disassembly or is disassembled into all of its immediate

children at the next level. This assumption holds sometimes but not always. If all

the disassembly sequences are considered, the computational complexity will be

very large (the complexity exponentially increases in terms of the number of

components) and all the link relations have to be known, which makes the

development of the algorithm in the multi-lifecycle assessment software not

practical. A tradeoff method needs to be developed to obtain better solution

without too much input information and too high complexity. In the research, the

bin assignment results can be modified by manual assignment. In the future, the

improvement work may be to develop some kind of heuristic rules which are

added following the proposed algorithm to make the disassembly leveling and bin

assignment more practical;

2) Based on the improved bin assignment algorithm, the MACA tool can also be

improved. Besides, more effort is required to implement more methodologies into

the software package to make the tool more powerful and complete. For example,
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the decision making approaches based on STM can be integrated into the

software. The MLCA tool is developed based on local database. Distributed on-

line version is required to widen its application;

3) As mentioned in the limitations, it is assumed that the rule base is correct in

FRPN for fuzzy reasoning. The validation and testing of rule base embedded in

rule reasoning can be the future research work. To improve knowledge rules by

combining the learning mechanism with the FRPN model is a promising research

work. Moreover, additional applications should be explored in the future;

4) Further integrating the method of dynamic disassembly process decision making

with disassembly line design to develop an integrated disassembly system is a

promising research direction. Thus the end of life value of used products, the

disassembly system throughput and precious resource utilization can be

optimized;

5) More decision making issues based on STM approach can be implemented. How

to make decision on supply chain management based on STM method is another

direction for the future work.

6) Industrial case studies are required to be developed. Although several examples

are performed in the research, they are limited to laboratory tests. Collaboration

with industrial firms would be valuable to putting the theoretical research results

into practical uses. Especially collection of accurate data represents a tedious yet

extreme important task. On the other hand, more appropriate design and

implementation methodologies may be required to be developed for particular

industrial applications.
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