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Abstract—Many artificial systems can be modelled as discrete
dynamic systems in which resources are shared among different
tasks. The performance of such systems, which is usually a
system requirement, heavily relies on the number and distribution
of such resources. The goal of this paper is twofold: first, to
design a technique to estimate the steady-state performance
of a given system with shared resources; second, to propose
a heuristic strategy to distribute shared resources so thatthe
system performance is enhanced as much as possible. The systems
under consideration are assumed to be large ones, such as
Service Oriented Architectures (SOA) systems, and modelled by
a particular class of Petri nets called process Petri net. Inorder to
avoid the state explosion problem inherent to discrete models, the
proposed techniques make intensive use of linear programming
problems.

Index Terms—Performance evaluation, Petri nets, software
performance, Discrete Event Systems

I. I NTRODUCTION

NOWADAYS, the majority of systems in several domains
(such as manufacturing, logistics or web services) are

complex systems using shared resources. Usually, the number
of resources is the key for the system to obtain a good
throughput (defined as jobs completed per unit of time) for
a large number of users/clients. However, the number of
resources (for example, the number of servers) cannot be
always incremented in the desired way: in the real world, each
project of a new system manages a budget, and this budget
limits the number of resources that can be acquired.

Many of these artificial systems can be naturally modelled
as Discrete Event Systems (DES). Unfortunately, these sys-
tems are usually large what makes the exact computation of
their performance a highly complex computational task. The
main reason for this complexity is the well-known state explo-
sion problem. As a result, a task that requires an exhaustive
state space exploration becomes unachievable in reasonable
time for large systems.

The framework of this paper is the one of DES dealing
with the resource allocation problem, also called Resource
Allocation Systems (RAS) [1], modelled with Petri nets; more
precisely, we will focus on process Petri nets [2]. A large
number of works in the literature deal with RAS from a
qualitative point of view (computing deadlock avoidance [3]–
[7] or siphons structures [8], [9]), whilst our vision here
is different: we focus on the quantitative point of view. In
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particular, the goals of the paper are: 1) to efficiently estimate
the throughput of a system and 2) to find a near-optimal
distribution of resources for the so called process Petri nets.
To the best of our knowledge, this resource optimisation issue
has not been studied in the research community for process
Petri nets.

To fulfil these goals, in this paper we propose, in first place,
an iterative strategy to compute upper throughput bounds
closer to the real throughput1 than the ones that can be
achieved in previous works [10], [11], and in second place,
a heuristic iterative strategy to gauge in the best possibleway
the number of resources needed so that the overall system
throughput is maximised. Both strategies use linear program-
ming techniques for which polynomial complexity algorithms
exist, so they offer a good trade-off between accuracy and
computational complexity.

Let us summarise how the strategies presented here work.
The strategy for getting sharper (i.e., closer to the real through-
put) upper throughput bounds is based on the computation of
bottlenecks. It calculates in a first step the slowest part of the
system, that is, the initial bottleneck of the system. Afterthat,
in each iteration the most likely part of the system to be con-
straining the current bottleneck is calculated, and the union of
both parts is considered to calculate the new upper throughput
bound. The heuristic strategy for resource optimisation tries
to calculate the number of resources the current bottleneck
needs, so that when this number of resources is added, it is
no longer the bottleneck.

Both strategies can be applied to any real-life application
whose Petri net model matches with the net class considered
in this paper, i.e., process Petri net. This kind of real-life appli-
cations can be found in manufacturing, logistics or dissimilar
systems such as web services. In general, such applications
represent real-life problems where resources are shared.

Running example.Let us consider a simple supermarket,
where customers arrive and look for the products they want
to buy. After spending some time in the supermarket, the
customer wants to pay for the products, and a supermarket
cashier attends him/her. The customer may choose to pay
either in cash with a certain probabilityp ∈ [0 . . . 1], or by
credit card (with a probability1 − p), so the cashier will
need a Point of Sales (PoS) terminal to complete the payment.

1The notion of real throughput refers to the throughput of thesystem
modelled, which can be calculated by exact analysis or simulation.
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Figure 1. Example of a supermarket system.

Figure 1 depicts a Petri net (PN) modelling the supermarket
system. The PN represents the numbernC of clients (initial
marking of placep0) and the numbernS of cashiers (initial
marking of placep2) who attend the customers and the PoS
terminals, represented by the initial markingnP of place
p6. Immediate transitions are represented by a black box,
while exponential transitions are depicted by a white box.
The think time of customers is represented by transitiont1,
which follows an exponential distribution with meanδ1 = 30
minutes, while transitiont3 represents the time for attending
customers, which follows an exponential distribution with
meanδ3 = 2 minutes. The choice of the mode of payment
is represented by placep4. A payment in cash occurs with
a probabilityw4 = 0.4, while credit card payment happens
with a probabilityw5 = 0.6. The use of the PoS terminals
(represented by transitiont7) takes, in terms of time, about5
minutes, i.e.,δ7 = 5. Finally, the cashier spends, on average,
δ7 = 2 minutes on finishing the customer request, which is
represented by transitiont9.

With the above PN configuration, it is interesting to know,
for example, where the bottleneck of the system is, that is,
what the slowest part of the system is: is it the cashier’s
work? is it the use of the PoS terminal? Another question of
interest is whether the system’s resources are enough to attend
an expected number of customers. Supposing there exists a
budget to spend in the supermarket, and knowing the cost of
hiring new cashiers and buying new PoS terminals, where and
in which ratio should the money be spent? These are the kind
of questions we are dealing with in this paper.

Suppose an initial marking ofnC = 5 expected customers,
nS = 2 cashiers andnP = 2 PoS terminals. With this initial
configuration, no matter how many new cashiers were hired
or how many new PoS terminals were bought, because the
resources are not constraining the system: there are enough
resources to attend those customers with such a think time
(δ1 = 30 minutes). Nevertheless, if the number of expected
customers is set tonC = 100 and the same think time is
considered, the bottleneck of the system is in the number of
cashiers. This indicates that new hirings should be done if it
is desired to attend customers with such a think time.

The balance of the paper is as follows. Section II discusses
the related work. In Section III some basic concepts are
introduced, such as the kind of PNs we are dealing with.
Then, in Section IV a new iterative algorithm for performance
estimation is presented, while a new resource optimisation

technique is explained in Section V. Section VI introduces a
case study to prove our methods and the experiments carried
out, with its conclusions. Finally, Section VII summarisesthe
main contributions of this paper.

II. RELATED WORK

Performance estimation using PNs is a topic which has
been broadly studied. Some works are concerned to the exact
computation of analytical measures of the performance [12],
while others overcome the state explosion problem providing
performance bounds [10], [11], [13]–[15] . The use of perfor-
mance bounds, on which our approach is based, avoids the
necessity of calculating the whole state space. The advantage
of using performance bound computation is the reduced com-
puting time, but its drawback is the difficulty to assess how
accurate the computed bound is with respect to the real system
performance.

One of the first works on performance bounds computation
is [13], where strongly connected Marked Graphs (MGs) with
deterministic timing are considered, and the reachabilityof the
computation bound is proved. Some other works that compute
performance bounds use linear programming techniques [10],
[11], in the same way that our approach. These bounds are
frequently calculated by using the first order moment (i.e.,
the mean) of the distributions associated to the firing delay.
Such bounds were improved in [14] for the particular case of
MGs by using regrowing techniques (that is, by adding more
components to the initial bottleneck of the net). In [15], the
second order moment is used to obtain a sharper (i.e., more
accurate) performance bound.

Other works provide bounds for queueing systems instead
of PN models like our approach does, e.g., [16]–[18]. Haddad
et al. give in [16] space complexity upper and lower bounds
for Stochastic Petri nets with product-form solution. In [17],
Casale et al. propose performance upper and lower bounds
for closed queueing networks with general independent and
non-renewal services. They use linear programming techniques
on the queue activity probabilities. Osogami and Raymond
provide in [18] upper and lower bounds on the tail distribu-
tion of the transient waiting time for a general independent
services queue. They use the two first moments of the service
time and interarrival time, and solve it through semidefinite
programming (SDP), a convex optimisation technique used
for optimisation of complex systems. On the contrary, our
approach uses first order moment and linear programming
techniques.

Resource optimisation and its usage have been already
studied for workflow Petri nets (WF-nets) [19] or some
variants [20]–[22]. The underlying PN model of WF-nets are
free choice nets (FCNs). However, the kind of systems we
are considering cannot be modelled through FCNs: in the
systems we consider, it may exist conflicts in the resources
acquirement synchronisation, which is not allowed in FCNs.
Li et al. propose in [19] an approach to estimate the re-
source availability by using Continuous Time Markov Chains
(CTMCs) and compute the turnaround time (i.e., the shortest
response time) by performing reduction operations on the



SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 3

original WF-net. This performance analysis has an exponential
complexity in the worst case, whilst our approach has a
polynomial complexity due to the use of linear programming
(LP) techniques. Resource usage could be computed in our ap-
proach by calculating the average marking of resource places
in the PN system. Wang and Zeng provide in [20] a method
for computing the best implementation case for a workflow
represented by a PN model, based on the reachability graph.
Such a method, however, can suffer scalability problems if the
workflow size is large. Van Hee et al. give in [21] an algorithm
to compute optimal resource allocation in stochastic WF-nets.
Such an algorithm suffers from scalability problems because
its complexity depends on the number of resources. On the
contrary, our approach only depends on the net structure, no
matters the number of resources in the system. Therefore, for
large systems with great number of resources our approach
is more tractable than the one in [21]. Chen et al. propose
in [22] a new PN model, called Resource Assignment Petri
Net (RAPN), to define how resources are shared and assigned
among different and concurrent project activities. The com-
putation of the execution project time considers deterministic
timing and, unlike our approach, such a new PN model is not
able to model activities acquiring and releasing resourcesin
an intermittent way.

Another important issue related to resource sharing is
deadlock prevention. The common use of system resources
in concurrent systems may lead to deadlock problems, i.e., a
process waits for the evolution of other process/es, while the
latter is/are also waiting for the former to evolve. In order
to deal with such problems, there exist deadlock prevention
or avoidance policies which may be applied for assuring the
liveness property and therefore to avoid deadlocks [3]–[7],
[23], [24]. As this issue has been broadly studied in the
literature (a recently published review can be found in [7]),
and is not the main focus of this paper, we assume that all the
PNs considered here are live.

With respect the aforementioned works, the contributions
of this paper are the following. In first place, we provide
a method to compute upper throughput bounds in a more
accurate way than the upper bounds that can be achieved with
the aforesaid works. In second place, we provide a heuristic
iterative strategy to distribute, for a given budget, the number
of resources in the best possible way so that the overall system
throughput is maximised.

III. PRELIMINARY CONCEPTS ANDDEFINITIONS

Some basic concepts are introduced in this section regarding
to the special class of Petri nets we are considering, and
its main characteristics. Firstly, we define Petri nets in the
untimed framework and the process Petri net formalism.
Lastly, timed Petri net systems (visit ratios, average marking
and steady-state throughput) are defined. In the following,the
reader is assumed to be familiar with Petri nets (see [25] for
a gentle introduction).

A. Untimed Petri nets

Definition 1: A Petri net [25] is a 4–tupleN =
〈P, T,Pre,Post〉, where:

• P and T are disjoint non-empty sets ofplaces and
transitions(|P | = n, |T | = m) and

• Pre (Post) are the pre–(post–)incidence non-negative
integer matrices of size|P | × |T |.

The pre- andpost-setof a nodev ∈ P ∪ T are respectively
defined as•v = {u ∈ P ∪ T |(u, v) ∈ F} and v• = {u ∈
P ∪ T |(v, u) ∈ F}, whereF ⊆ (P × T ) ∪ (T × P ) is the
set of directed arcs. A Petri net is said to beself-loop free
if ∀p ∈ P, t ∈ T t ∈ •p implies t 6∈ p•. Ordinary nets are
Petri nets whose arcs have weight1. The incidence matrixof
a Petri net is defined asC = Post−Pre.

A vectorm ∈ Z
|P |
≥0

which assigns a non-negative integer to
each place is calledmarking vectoror marking.

Definition 2: A Petri net system, or marked Petri netS =
〈N ,m0〉, is a Petri netN with an initial marking m0.

The set of markingsreachablefrom m0 in N is denoted
asRS(N ,m0) and is called thereachability set.

A place p ∈ P is k − bounded if, and only if, ∀m ∈
RS(N ,m0),m(p) ≤ k. A net systemS is k-boundedif, and
only if, each place is k-bounded. A net system isboundedif,
and only if, there exists some k for which it is k-bounded. A
netN is structurally boundedif, and only if, it is bounded no
matter whichm0 is the initial marking.

A transition t ∈ T is enabled at markingm if m ≥
Pre(·, t), wherePre(·, t) is the column ofPre corresponding
to transitiont. A transition t enabled atm can fire yielding
a new markingm′ = m+C(·, t) (reachedmarking). This is
denoted bym t

−→m′. A sequence of transitionsσ = {ti}ni=1

is afiring sequencein S if there exists a sequence of markings
such thatm0

t1−→m1
t2−→m2 . . .

tn−→mn. In this case, marking
mn is said to bereachablefrom m0 by firing σ, and this is
denoted bym0

σ
−→mn. The firing count vectorσ ∈ Z

|T |
≥0 of

the firable sequenceσ is a vector such thatσ(t) represents the
number of occurrences oft ∈ T in σ. If m0

σ
−→m, then we

can write in vector formm = m0 +C · σ, which is referred
to as thelinear (or fundamental) state equationof the net.

Two transitionst, t′ are said to be instructural conflict
if they share, at least, one input place, i.e.,•t ∩ •t′ 6= ∅.
Two transitionst, t′ are said to be ineffective conflict for
a markingm if they are in structural conflict and they are
both enabled atm. Two transitionst, t′ are in equal conflict
if Pre(·, t) = Pre(·, t′) 6= 0, where0 is a vector with all
entries equal to zero.

A transitiont is live if it can be fired from every reachable
marking. A transitiont is deadfor a reachable markingm if
and only if ∀m′ ∈ RS(N ,m),¬(m t

−→m′). A marked Petri
netS is live when every transition is live.

A p-semiflow is a non-negative integer vectory ≥ 0

such that it is a left anuller of the net’s incidence matrix,
y · C = 0 (in the sequel, we omit the transpose symbol
in the matrices and vectors for clarity). A p-semiflow im-
plies a token conservation law independent from any firing
of transitions. A t-semiflowis a non-negative integer vector
x ≥ 0 such that is a right anuller of the net’s incidence
matrix, C · x = 0. A p- (or t-)semiflow v is minimal
when its support,‖v‖ = {i|v(i) 6= 0}, is not a proper su-
perset of the support of any other p- (or t-)semiflow, and
the greatest common divisor of its elements is one. For
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example, the PN depicted in Figure 1 has three minimal p-
semiflows:‖y1‖ = {p0, p1, p3, p4, p5, p7, p8, p9, p10}, ‖y2‖ =
{p2, p3, p4, p5, p7, p8, p9, p10} and ‖y3‖ = {p6, p7, p8}. A
Petri net is said to beconservative(consistent) if there exists a
p-semiflow (t-semiflow) which contains all places (transitions)
in its support.

A Petri net is said to bestrongly connectedif there is a
directed path joining any pair of nodes of the graph. Astate
machineis a particular type of ordinary Petri net where each
transition has exactly one input arc and exactly one output
arc, that is,|t•| = |•t| = 1, ∀t ∈ T . In this work, we focus on
process Petri nets, which are defined as follows [2]:

Definition 3: A process Petri net is a strongly connected
self–loop free Petri netN = 〈P, T,Pre,Post〉 where:

1) P = P0 ∪ PS ∪ PR is a partition such thatP0 = {p0}
is the process-idle place, PS 6= ∅, PS ∩ P0 = ∅, PS ∩
PR = ∅, PS is the set ofprocess-activity placesand
PR = {r1, . . . , rn}, n > 0, PR ∩ P0 = ∅ is the set of
resources places;

2) The subnetN ′ = 〈P \ PR, T,Pre,Post〉 is a strongly
connected state machine, such that every cycle contains
p0.

3) For eachr ∈ PR, there exist a unique minimal p-
semiflow associated tor, yr ∈ N

|P |, fulfilling: ‖yr‖ ∩
PR = {r}, ‖yr‖∩PS 6= ∅, ‖yr‖∩P0 = ∅ andyr(r) = 1.
This establishes how each resource is reused, that is, they
cannot be created nor destroyed.

4) PS =
⋃

r∈PR
(‖yr‖ \ {r}).

Definition 3 implies that process Petri nets are conservative
and consistent.

Let N = 〈P, T,Pre,Post〉 be a process Petri net. A vector
m0 ∈ Z

|P |
≥0 is calledacceptable initial marking[2] of N iff:

1) m0(p) ≥ 1, p ∈ P0; 2) m0(p) = 0, ∀p ∈ PS ; and
3) m0(r) ≥ yr(r), ∀r ∈ PR, wherem0(r) is the capacity
of the resourcer and yr is the unique minimal p-semiflow
associated tor.

Definition 4: A process Petri net system, or marked process
Petri net S = 〈N ,m0〉, is a process Petri netN with an
acceptable initial markingm0.

In this work, we assume that the first acquired resource in
process Petri nets under study is a resource that representsthe
maximum capacity of the process, being its capacity always
greater than the number of instances in the process-idle place.
Therefore, such a resource place becomes implicit and we do
not consider it for the analysis.

B. Timed Petri nets

Definition 5: A Timed Process Petri net (TPPN) system is
a tuple〈S, s, r〉, whereS is a process Petri net system,s ∈

R
|T |
≥0

is the vector of average service times of transitions, and

r ∈ N
|T |
>0 is the vector of rates associated to transitions.

If s(t) > 0, then transitiont is a timed transition. Otherwise,
i.e., s(t) = 0, transition t is an immediate one. It will be
assumed that all transitions in conflict are immediate. An
immediate transitiont in conflict will fire with probability

r(t)
∑

t′∈A r(t′)
, whereA is the set of enabled immediate transi-

tions in conflict. The firing of immediate transitions consumes

no time. When a timed transition becomes enabled, it fires
following an exponential distribution with means(t). There
exist different semantics for the firing of transitions, being
infinite and finite server semantics the most frequently used.
In this work, we will assume that the timed transitions work
under infinite server semantics.

The average marking vector,m, in an ergodic Petri net
system is defined as [26]:

m(p) =
AS

lim
τ→∞

1

τ

∫ τ

0

m(p)udu (1)

wherem(p)u is the marking of placep at time u and the
notation =

AS
meansequal almost surely.

Similarly, the steady-state throughput,χ, in an ergodic Petri
net is defined as [26]:

χ(t) =
AS

lim
τ→∞

σ(t)τ
τ

(2)

whereσ(t)τ is the firing count of transitiont at timeτ .
By definition, all the places of a TPPN are covered by

p-semiflows, and therefore it is structurally bounded. In this
work, we will assume that the TPPN under study is a live and
structurally bounded net with Freely Related T-semiflows (i.e.,
a FRT-net) [27]. The range of nets fulfilling these conditions
are relatively broad. Examples of TPPNs that are FRT-nets
are: TPPNs in whichN ′ is choice-free; TPPNs in whichN ′

satisfies that every conflict is an equal conflict. It is known that
the continuous time Markov chain associated to these nets is
ergodic [27], what implies the existence of the above limits.

The vector of visit ratios expresses the relative throughput
of transitions in the steady state. The visit ratiov(t) of each
transition t ∈ T normalised for transitionti , vti(t), is
expressed as follows:

vti (t) =
χ(t)

χ(ti)
= Γ(ti) · χ(t), ∀t ∈ T (3)

whereΓ(ti) =
1

χ(ti)
represents theaverage inter-firing time

of transitionti.
In FRT-nets, the vector of visit ratiosv exclusively depends

on the structure of the net and on the routing rates [27]. Thus,
the vector of visit ratiosv normalised for transitionti, vti ,
can be calculated by solving the following linear system of
equations [27]:

(

C

R

)

· vti = 0

vti(ti) = 1

(4)

whereR is a matrix containing the ratesr(t) associated to
transitions in equal conflict.

IV. PERFORMANCEESTIMATION

In this section we present a new iterative algorithm to
compute upper throughput bounds of a timed process Petri net
system. Such an algorithm is based on the computation of p-
semiflows. Each p-semiflow has associated a subnet composed
of the places in the support of the p-semiflow. Given that
such a subnet satisfies a conservation law, and it synchronises
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with other subnets in the overall system, its throughput, ifthe
subnet is considered isolated, imposes an upper throughput
bound for the overall system. The proposed iterative strategy
considers initially the p-semiflow with lowest throughput,and
its associated subnet is called initial bottleneck. Then, such a
bottleneck is increased by adding the associated subnet to the
subnet associated to the next most constraining p-semiflow.

A. Little’s Law and Upper Bounds

The Little’s formula [28] conditions, involves the average
number of customersL in the system, the throughput,λ, and
the average time spent by a customer within the system,W .

L = λ ·W (5)

Let p be a place such that|p•| = 1, andp• = {t}, then the
pair (p, t) can be seen as a simple queueing system to which,
if the limits of average markingand steady-state throughput
exist, the Little’s formula can be directly applied [27]:

m(p) = (Pre(p, t) · χ(t)) · r(p) (6)

wherePre(p, t) · χ(t) is the output rate of tokens from place
p, which in steady state is equal to the input rate, andr(p)
is the average residence time at placep, i.e., the average time
spent by a token in placep.

The average residence time,r(p), is the sum of the average
waiting time due to a possible synchronisation and the average
service time,s(t). Therefore, equation (6) becomes:

m(p) = (Pre(p, t) ·χ(t)) ·r(p) ≥ (Pre(p, t) ·χ(t)) ·s(t) (7)

where the service times(t) is a lower bound for the average
residence timer(p), i.e., s(t) ≤ r(p), since placep has only
one output transition. Given that conflicting transitions are
assumed to be immediate, equation (7) can also be applied
to any pair(p, t) being t ∈ p• and t a transition in conflict.
Hence, the following system of inequalities can be derived [27]
from (3) and (7):

Γ(ti) ·m ≥ Pre ·Dti (8)

whereΓ(ti) is the average interfiring time of transitionti and
Dti is the vector ofaverage service demands of transitions,
Dti(t) = s(t) · vti(t) (the vector of visit ratiosvti is
normalised for transitionti). In the sequel, we omit the
superindexti in Dti for clarity.

After some manipulations of equation (8), a lower bound
for the average inter-firing timeof transitionti, Γlb(ti), can
be computed by solving the following LP problem (LPP) [27]:

Γ(ti) ≥ Γlb(ti) = maximum y ·Pre ·D

subject to y ·C = 0

y ·m0 = 1

y ≥ 0

(9)

As a side product of the solution of (9),y represents the
slowestp-semiflow of the system, thus LPP (9) can also be

seen as a search for the most constraining p-semiflow. This

p-semiflow will be the one with highest ratio
y ·Pre ·D

y ·m0

.

Therefore, an upper boundΘ(ti) for the steady-state through-
put can be calculated as the inverse of the lower bound for the

average inter-firing timeΓlb(ti), that is,Θ(ti) =
1

Γlb(ti)
.

B. Next Slowest P-semiflow

The LPP shown in (9) was the basis in [14] for developing
an iterative algorithm to compute upper bounds in Stochastic
Marked Graphs. Unfortunately, the proposed algorithm is not
applicable to more general nets than Marked Graphs, hence
we pursue for an alternative method.

The new algorithm will follow a similar strategy: firstly,
the initial bottleneck is computed using (9). Then, in each
iteration step the next slowest p-semiflow connected to the
subnet associated to the current bottleneck is added to it.

Let us suppose the p-semiflowy∗ represents the initial
bottleneck, i.e.,y∗ is obtained from the solution of (9). The
following constraint forces that some other p-semiflowy,
y · C = 0, is connected toy∗:

∑

p∈V y(p) > 0, where
V = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖} (that is, there exist places
in the support ofy which share output transitions with places
in the support ofy∗). Hence, the p-semiflowy with highest

ratio
y ·Pre ·D

y ·m0

connected toy∗ can be searched by solving

the following LPP:

maximum y ·Pre ·D

subject to y ·C = 0

y ·m0 = 1

y(p) > 0, ∀p ∈ Q
∑

p∈V

y(p) > 0

(10)

whereV = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖}, andQ = {q ∈ P, q ∈
‖y∗‖}.

As a result of LPP (10), we will obtain the p-semiflowy,
which will be a linear combination ofy∗ and the next most
constraining p-semiflow.

The strict inequality in (10) could lead us to numerical
problems since the lower the value of

∑

p∈V y(p), the higher
the value of the optimisation function. The appendix discusses
this issue and shows that the solution proposed in the fol-
lowing can be applied in practice. A way to solve this is by
reformulating

∑

p∈V y(p) > 0 into
∑

p∈V y(p) ≥ h, whereh
is strictly positive. The problem now is to set an appropriate
value for h. A high value can make constraintsy · m0 = 1
and

∑

p∈V y(p) ≥ h incompatible leading to an infeasible
LPP. A valid value ofh can be obtained by searching a real
number that is lower than each component of a p-semiflowy

that covers all places and satisfiesy ·m0 = 1. Such a value
can be obtained by means of the following LPP:
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maximum h

subject to y ·C = 0

y ·m0 = 1

y ≥ h · 1

h > 0

(11)

where1 is a vector with all entries equal to one.
The obtained valueh ensures the feasibility of the following

LPP, which is just a reformulation of (10):

maximum y ·Pre ·D

subject to y ·C = 0

y ·m0 = 1

y(p) ≥ h, ∀p ∈ Q
∑

p∈V

y(p) ≥ h

(12)

whereV = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖}, andQ = {q ∈ P, q ∈
‖y∗‖}.

As it is said, the last constraint,
∑

p∈V

y(p) ≥ h, imposes that

the support ofy corresponds to the p-semiflow connected to

y∗ with highest
y ·Pre ·D

y ·m0

.

C. An Iterative Strategy to Compute Upper Throughput
Bounds

This subsection presents an iterative strategy to obtain an
improved upper throughput bound in TPPNs. The strategy
calculates, in a first step, the initial throughput bound of the
system with the LPP (9) and takes the subnet associated to
y as the initial bottleneck. Then, in each iteration the subnet
associated to the p-semiflow that is potentially more constrain-
ing than the others is added to the bottleneck, and after that,
the throughput is calculated. Note that such an addition in
each iteration is restricting the behaviour of the system, what
implies a lower throughput. The iteration process stops when
no significant improvement of the bound is achieved.

The algorithm in Figure 2 represents the strategy used
to compute throughput upper bounds. The algorithm needs
as input the TPPN system to be analysed,〈S, s, r〉, and a
degree of precision (ε > 0) to be achieved. As output, the
upper throughput bound,Θ, and the places belonging to the
bottleneck of the TPPN,Q, are obtained. The degree of
precision ε will be used for the stopping criterion of the
iterative strategy.

In first place, the initial upper throughput bound is calcu-
lated by LPP (9) (step 1). Then, the value ofh such that
ensures feasibility of the LP is computed by using the LPP
shown in (11). The iteration process (steps 4–9) is repeated
until no significant improvement is achieved with respect to
the last iteration or the last obtained bottleneck containsall
places in its support. In the worst case, only one place will be
added in each iteration. Therefore, the algorithm complexity
is polynomial due to the LPP.

Input: 〈S, s, r〉, ε
Output: Θ, Q

1: {Θ,y} = Upper throughput bound and components of the
initial bottleneck of〈S, s, r〉 according to (9)

2: Calculate valueh by solving LPP (11)
3: Θ′ = 0; Q = {p ∈ P, p ∈ ‖y‖}

4: while
Θ−Θ′

Θ
≥ ε and Q 6= P do

5: V = {v|v ∈ •(Q•) \Q}
6:

maximum y′ ·Pre ·D

subject to y′ ·C = 0

y′ ·m0 = 1

y′(p) ≥ h, ∀p ∈ Q
∑

p∈V

y′(p) ≥ h

7: Θ′ = Θ
8: Θ = Throughput of the net composed by the p-semiflow

y′

9: Q = {p ∈ P, p ∈ ‖y′‖}
10: end while

Figure 2. The iterative strategy algorithm for computing upper throughput
bounds.

In step 5, the places that share output transitions with some
place contained in the support ofy are calculated. Step 6
corresponds to the LPP (12). Finally, in step 8 the throughput
of the subnet associated to the new bottleneck is consideredas
the new upper bound. The throughput is calculated by solving
the Markov Chain [25] associated to the current bottleneck
when it can be computed in practical time, or by simulation
otherwise.

Example. Consider again the supermarket example shown
in Figure 1. Let the initial marking benC = 21, nS = 4 and
nP = 2. The vector of visit ratiosv normalised for transi-
tion t1, is vt1 = {1.0, 1.0, 1.0, 0.4, 0.6, 0.6, 0.6, 0.6, 1.0, 1.0}.
According to LPP (9) (step 1 of the algorithm in Fig-
ure 2) the critical bottleneck is composed by‖y‖ =
{p0, p1, p3, p4, p5, p7, p8, p9, p10}, that is, the p-semiflow
which corresponds to the customers’ life-cycle. Such a result
indicates that the system has, in average, enough resourcesto
attend the expected incoming customers. The upper throughput
bound (normalised for transitiont1) of the critical bottleneck
is Θ(t1) = 0.567521 (result of LPP (9)) and the value which
guarantees the feasibility of the problem ish = 0.037037
(step 2). The places sharing output transitions with placesin
‖y‖, i.e., connected to the critical bottleneck, arep2 and p6
(calculated in step 5), each one corresponds to the resources
of the system, supermarket cashiers and PoS terminals, re-
spectively. The result of LPP in step 6 allows to regrow the
current bottleneck, imposing thaty′(p2) + y′(p6) ≥ h (that
is, one of them, at least, must be contained on the support
of y′), and gives the new bottleneck which is composed
by ‖y′‖ = {p0, p1, p2, p3, p4, p5, p7, p8, p9, p10}. The new
throughput isΘ′(t1) = 0.514220 (step 8), which represents
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an improvement of9.3919% with respect to the previous
bottleneck. Note that the place added is the one representing
the number of cashiers (i.e.,p2).

Let us assume thatε = 0.001. As the relative difference
betweenΘ and Θ′ is 0.093919 (as commented previously),
the iteration process carries on. At this point, the only place
that is not connected to the critical bottleneck isp6, which
corresponds to the number of PoS terminals. By solving the
LPP in step 6 the new bottleneck is obtained, which has all
places of the system in its support (i.e.,‖y‖ = P ), and the new
throughput isΘ = 0.480642. So, as the support of the new
bottleneck contains all places of the net, the iteration process
finishes. The new throughputΘ represents an improvement
of 6.5299% with respect to the previous bottleneck, and a
total improvement of15.3085% with respect to the initial
bottleneck.

The proposed iterative strategy is applied to a larger system
in Section VI.

V. RESOURCEOPTIMISATION

In this section we propose a heuristic strategy to gauge
the number of resources a system should allocate. Our ap-
proach for resource optimisation is similar to the Goldratt’s
principle [29]: once the system’s bottleneck is identified,the
associated resource is incremented.

A. Calculating the Next Constraining Resource

Let us recall the LPP (9) to calculate an upper throughput
bound. The most constraining p-semiflow,y, will have just
one marked place in its support due to the net structure
(as explained in Section III). Assume that the marked place
corresponds to a resource place (not the process-idle place),
then given thaty constraints the throughput of the whole
system, the addition of more instances to the resource place
will result in an increase of the system throughput. At a
certain moment, the resource becomes saturated and adding
more instances does not improve the throughput. This occurs
because the constraining p-semiflow has changed. Note that
the upper throughput bound will linearly increment with the
number of tokens of the resource place, i.e., as it is the only
place in‖y‖ having tokens and the equationy · Pre · D is
linear.

Hence, the resourcer1 contained on the support of the most
constraining p-semiflowyr1 , can be incremented untilyr1 is
no longer the bottleneck p-semiflow. Letm0

∆ be the initial
marking vectorm0 with an incrementα1 of the resourcer1,
i.e.,

m0
∆ =

{

m0(p), p 6= r1
m0(p) + α1, p = r1

(13)

The p-semiflowyr1 is not the only constraining p-semiflow if
the following equation holds:

yr1 ·Pre ·D

yr1 ·m0
∆

≤
yr2 ·Pre ·D

yr2 ·m0
∆

(14)

whereyr2 6= yr1 is a p-semiflow. Note that the p-semiflowyr2

will contain in its support the next most constraining resource
r2, and, by definition,r1 6= r2.

The numberα1 of instances of the resource placer1,
contained in the most constraining p-semiflowyr1 , needed to
be added to obtain the next constraining resourcer2, contained
in the next most constraining p-semiflowyr2 , can be easily
computed by solving the following LPP:

minimum α1

subject to yr2 ·Pre ·D = yr1 ·Pre ·D

yr2 ·C = 0

yr2(r1) = 0 (15)

yr2 ·m0
∆ = yr1 ·m0

∆

m0
∆ =

{

m0(p), p 6= r1
m0(p) + α1, p = r1

α1,yr2 ≥ 0

whereyr1 is the p-semiflow which containsr1 in its support,
yr2 is the p-semiflow which containsr2 in its support and
m0

∆ represents the initial marking vectorm0 with the incre-
mentα1 in r1.

Constraintsyr2 ·Pre ·D = yr1 ·Pre ·D andyr2 ·m0
∆ =

yr1 ·m0
∆ are both parts (dividend and divisor, respectively) of

equation (14) equalled. Constraintyr2 ·C = 0 ensures thatyr2

is a left anuller of the incidence matrix, hence a p-semiflow
of the net. Finally, constraintyr2(r1) = 0 is added to avoid
a product of two optimisation variables (the variableα1 and
the variableyr2(r1) in equationyr2 · m0

∆ = yr1 · m0
∆).

Moreover, the variableα1 ∈ R≥0 therefore, the linearity of
the optimisation problem is ensured.

Both α1 and the next constraining p-semiflowyr2 are
obtained when the LPP is solved. Note that the increment
of a resourcer1 does not affect to the ratio

y ·Pre ·D

y ·m0

of

any other minimal p-semiflowy which contains in its support
other resource (see definition of process Petri nets class in
Section III). Notice that, as in the Section IV, an LPP is used
to solve a problem that deals with integer values as the number
of resources. This relaxation to the real domain remarkably
decreases the complexity of the approach (the complexity of
solving an LPP is polynomial), and has the cost of some lost of
precision in the results. The LPP (15) can easily be extended
to, once bothα1 and the next constraining p-semiflowyr2

are obtained, calculate the next constraining resource andthe
number of tokens, i.e., instances, to increment the markingof
both places:
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minimum α1 + α2

subject to y′ ·Pre ·D = yr1 ·Pre ·D

y′ ·C = 0

y′(r1) = 0, y′(r2) = 0 (16)

y′ ·m0
∆ = yr1 ·m0

∆

y′ ·m0
∆ = yr2 ·m0

∆

m0
∆ =







m0(p), p 6∈ {r1, r2}
m0(p) + α1, p = r1
m0(p) + α2, p = r2

α1, α2,y
′ ≥ 0

wherem0
∆ represents the initial marking vectorm0 with the

incrementα1 of the placer1 and the incrementα2 of the place
r2, andyr1 (yr2 ) is the p-semiflow which containsr1 (r2) in
its support.

As in LPP (15), constrainty′ ·C = 0 ensures thaty′ is a left
anuller of the incidence matrix, and hencey′ is a p-semiflow of
the net. Besides, constraintsy′(r1) = 0 andy′(r2) = 0 ensure
linearity of the optimisation problem. Constraintsy′ ·m0

∆ =
yr1 · m0

∆, y′ · m0
∆ = yr2 · m0

∆ are the key of this LPP
because from those equations both values ofα1 andα2 can
be obtained.

Note thaty′ · Pre ·D = yr2 · Pre · D is not a constraint
in LPP (16). This is a consequence of the result of LPP (15):
from the latter LPP wherer1 is calculated, it is imposed that
yr2 ·Pre ·D = yr1 ·Pre ·D. The addition of this constraint
is not adding new information to the LPP (16).

The LPP (16) can be generalised for more resources, as it
is shown at step 5 of the algorithm in Figure 3.

B. An Iterative Strategy for Resource Optimisation

This subsection presents a heuristic iterative strategy that
aims at maximising the throughput by increasing the number
of resources appropriately. The main idea of the strategy is
to estimate theinflexion pointswhere the constraining p-
semiflows change, and hence to estimate the increment of
resources needed. More precisely, each unit of a resource has
associated a cost and the strategy establishes how to spend
a given budget such that the throughput is maximised. The
strategy ends either when there is no budget to spend, when all
resources have been dimensioned or when the last computed
p-semiflow points out to increment the process-idle place.

The algorithm in Figure 3 shows the resource optimisation
heuristic strategy. As input, the algorithm needs the TPPN
system to be analysed,〈S, s, r〉, the set of resources and the
process-idle place of the system,R andp0 (respectively), the
assigned budget to be spent,budget, and the vector of costc,
which assigns a costci to each of the resourceri contained
in R. The output is the number of itemsni to increment each
resourceri.

Firstly, an upper throughput boundy1 of 〈S, s, r〉 is cal-
culated according to LPP (9). After that, the iteration process
(steps 3–10) is repeated until the last assignment of resources
has consumed the available budget, all resources have been
dimensioned (i.e., there is enough budget for adding as many

Input: 〈S, s, r〉, R, p0, budget, c
Output: n

1: Calculate initial bottlenecky1 by solving LPP (9)
2: k = 0; cost = 0; n

′

= 0

3: while cost < budget and k 6= |R| and ‖yk+1‖∩{p0} = ∅
do

4: k = k + 1; cost′ = cost; n = n
′

; A = {p|p ∈ P, p ∈
‖yj ∩R‖}, ∀j ∈ {1 . . . k}

5:

minimum

k
∑

j=1

αj

subject to yk+1 ·Pre ·D = y1 ·Pre ·D

yk+1 ·C = 0

yk+1 ·m∆
0 = yj ·m

∆
0 , ∀j ∈ {1 . . . k}

m0
∆ =

{

m0(p) + αj , p ∈ A

m0(p), otherwise

yk+1(p) = 0, p ∈ A

yk+1, αj ≥ 0, ∀j ∈ {1 . . . k}

6: cost = 0; n
′

= 0

7: for each αj , ∀j ∈ {1 . . . k} do
8: rj = ‖yj‖ ∩R; n

′

j = ⌈αj⌉
9: cost = cost+ ⌈αj⌉ · ci

10: end for each
11: end while
12: if k ≤ |R| and cost ≤ budget then
13: n = n

′

14: end if
15: if k < |R| and cost ≤ budget and ‖yk+1‖ ∩ {p0} = ∅

then
16: assignRestOfBudget(budget− cost, 〈S, s〉, R, c, n)
17: end if

Figure 3. The resource optimisation heuristic strategy algorithm.

instances of resources as needed) or the last computed place
to be incremented its marking matches with the process-idle
place.

Step 5 calculates, in each iteration, the number of items
of a resource which need to be incremented to obtain the
next restrictive resource. Remark that the LPP in step 5 is
a generalisation of the LPP (15). After that, the cost of
incrementing such a number of instances of the resources is
computed. Note that the ceiling integer of the valueαj is
taken as result. This is motivated by two reasons: firstly, we
are assuming that the number of instances of the resources
must be a natural number; and secondly, if the resource is not
saturated it will still be the restrictive resource.

Finally, step 12 checks whether all resources have been
assigned and the cost of new resources does not exceeds the
given budget. If it is so, the last assignment is taken as the
valid one. Step 15 checks whether there exists some resource
that has not been assigned, the last resources assignment does
not overwhelm the given budget and the last computed p-
semiflow does not contain the process-idle place. When these
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conditions are fulfilled, it means that the remaining budgetmay
be spent incrementing the system throughput. A procedure is
invoked (assignRestOfBudget, step 16) for spending the
rest of the assigned budget to increment the resources as
much as possible. Note that the assignment of the remaining
budget is an NP-problem, similar to the Bounded Knapsack
Problem (BKP) [30]. Several heuristics can be used, as for
example, a “round-trip” algorithm which tries to increment
all the resources per round, or at least until the last resource
which can be incremented.

Let us illustrate the use of this strategy through the su-
permarket example, depicted in Figure 1. Suppose an initial
marking ofnC = 30, nS = 2 andnP = 2, an initial budget
$30, 000 dollars. Besides, a new hiring of a supermarket
cashiers costs$5, 000 dollars while a new PoS terminal has
a price of$700 dollars. The initial bottleneck is‖y1‖ ∩R =
{pnS}, that is, the subnet associated to the customers’ cashiers.
Therefore, this result is giving us the following information: to
attend30 customers whose think time follows an exponential
distribution of mean30 minutes, more supermarket cashiers
are needed to attend them. The LPP at step 5 gives, in the first
iteration, the increment of new cashiers needed,α1 = 2.666,
and the new constraining p-semiflow, which corresponds to
the use of the PoS terminals. So, at least three new cashiers
(⌈α1⌉) are needed to attend the customers.

As the cost of hiring new cashiers is$5, 000 dollars and
the initial budget is$30, 000 dollars, the new hirings can be
done and there is still money which remains to be spent, so a
new iteration can take place. The LPP at step 5 gives, in the
second iteration, the values ofα1 = 3.6752 andα2 = 0.4322.
Hence, to attend the customers, four new hirings and one more
PoS terminals are needed. As the cost of these increments are,
in total, $20, 700 dollars, the increment of resources can be
carried out. Now, the unassigned budget is$9, 300 and we
can follow incrementing both resources in parallel. Indeed,
the relation between both resources is known thanks to the
equalities of ratios.

In this case, even though some budget remains to be spent,
the new constraining p-semiflow contains the process-idle
place, that is, the place representing customers. Thus, the
resources of the system (cashiers and PoS terminals) have
been optimally calculated to attend30 customers whose think
time follows an exponential distribution of mean30 minutes.
In this way, the algorithm has calculated that to attend such
customers, at least four more supermarket cashiers and one
PoS terminals are needed.

Note that it may happen that the LPP at step 5 returns the p-
semiflow containing the process-idle place in the first iteration.
This fact would indicate that the system has enough resources
to attend such a number of customers with such a think time.
Therefore, the strategy is also able to compute when a system
with an initial configuration is able to support the estimated
workload, or otherwise, to compute the number of instances
of resources needed to be able to support it.

VI. CASE STUDY: A SECURE DATABASE SYSTEM

In this section we introduce a case study to test our
approach. We consider the design of a Secure Database System

Request

Intranet

PolicyHost

WS-PolicyService
Internet

SecurityHost

WS-SecurityToken
Secure
Intranet

ProviderHost

WS-Coordinator

AppHost

WS-Application

DBHost

WS-DBapplication

Figure 4. SDBS Deployment.

(SDBS) deployed as a Web Service which stores sensible
information. Besides, there exist users which are eventually
accessing to this information. A real application of this kind
of system is, for instance, a web server keeping customer’s
data of an insurance company or a bank web server keeping
customer’s balance accounts.

A. Description

Figure 4 shows the actual deployment of the SDBS, which
includes the hardware resources (depicted as cubes) and their
network links (arrows between cubes or proper cubes in the
case of intranets). Software modules (depicted as squares)
are deployed into hardware resources. The architecture of the
system is as follows: there exist a policy host, a security
host, a provider host, an application host and a database host.
Moreover, the latter is isolated and reachable only througha
secure intranet connected to the application host. Note that
each of these hosts deploys a concrete service or software
module.

Following Figure 5, the SDBS works as follows: a
user interacts with an application outside the system
(WS-Requester), which collects its personal data and the
type of operation required (let us assume it will be an
update of personal user data) by the user. This information
is summarised on a request. Each request incoming into the
system needs a security token to be identified before accessing
the system, which is provided by the security host through
WS-SecurityToken service. Once the security token is
retrieved, the request is accordingly signed and then the policy
host is requested for accessing, which checks the request
(WS-PolicyService). When the permission is granted, it
invokes theWS-Coordinator service, which communicates
with the WS-Application service (located in the applica-
tion host). The latter host has access to the database application
(WS-DBapplication) through a secure intranet. Finally,
the DB application definitively updates the user request into
the DB and an acknowledge report is returned back through
the system.

The Petri net (PN) representing the behaviour of the SDBS
system is depicted in Figure 6. Each resource is represented
by a dark grey place in the PN:p7 (policy host),p18 (security
host), p26 (provider host),p28 (application host) andp31
(database host); while user’s requests are represented by the
process-idle placep0 (depicted in light grey). The number of
instances of each resource is summarised in Table I(b), and
they will be represented by tokens in the respective place. Note
that different number of tokens inp0 will be used for sensitive
analysis in experiments.

The acquire (release) of a resource is represented by an
immediate transition with an input (output) arc. For instance,
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WS-Requester
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WS-SecurityToken WS-PolicyService WS-Coordinator WS-Application WS-DBapplication

Figure 5. SDBS Update Customer’s Data scenario.

transitiont3 represents the acquire of the security host, while
t7 represents the release of such a resource.

Each one of the activities, self-messages in Figure 5, has
been transformed into an exponential transition in the PN
with its corresponding duration (given in Table I(a)(c)). Each
message, exchanged through a net, among two resources (e.g.,
getToken()) gives rise in the PN to an exponential transition
(e.g., T2) whose delay is that of the net involved (e.g.,
$delayNet). We have assumed that the operations/messages
needed for establishing communication through the secure
intranet are more expensive (in computing time terms). For
this reason, we have set an upper delay for the secure intranet
($intranetLag) than for the insecure intranet ($secIntraLag).
For simplicity, we have assumed the same delay for each
message on the intranet communication irrespective of its size.

The workload is defined by the number of requests from
users concurrently accessing the SDBS, which is parametrised
by the variable$nRequests, an input parameter for the analysis.
The number of hosts (security host, policy host, etc.) has been
indicated using variables ($nSec, $nPolicy, etc.). Finally, the
throughput of the intranets is considered through variables
$intranetLag and $secIntraLag. Values for all these input
variables used for the experiments in the next section and its
corresponding transitions/places on the PN appear in TableI.

B. Experiments and Discussion

In this section we test our approach by performing a set
of experiments in the Petri net that accurately represents the
SDBS. After applying our approach, the obtained results will
be discussed.

1) Performance Estimation: We have carried out the
regrowing strategy (algorithm in Figure 2, Section IV-C) to

estimate the throughput of the SDBS system with a different
number of requests. The overall strategy has been implemented
in MATLAB, while throughput computation of the SDBS has
been performed with the GreatSPN tool. The GreatSPN tool
has been run in an Intel Pentium IV3.6GHz with 2GiB RAM
DDR2 533MHz host machine.

Table II shows the results obtained in the set of experiments
with the parameters set as explained previously. The first
column indicates the number of requests, followed by the
number of regrowing steps. We have called regrowing step
to each iteration of the loop of algorithm in Figure 2. For
each number of requests considered in the experiments, we
have simulated the whole system. Such results are indicated
in the first row of each experiment. In the next column, it
is shown the size of the bottleneck (in number of places
and transitions) produced by the algorithm and its percentage
with respect to the total size. Then, it is shown the result
of the upper throughput bound computed by the algorithm.
Such a bound is computed by solving the underlying Markov
Chain when it is computationally feasible [12] or by simulating
the net otherwise.Note that in case of simulation the upper
throughput bound value is the mean of simulation values, and
the real upper throughput bound value is within an interval of
±4% with a confidence level of95%. The next two columns
show, in first place, the percentage of increasing/decreasing
improvement of one bound with respect to the previous upper
throughput bound, and secondly, the accuracy of the computed
bound with respect to the throughput of the whole system.
The negative relative errors are caused by the confidence level
and accuracy degree used in the experiments. Finally, the last
column shows the execution time consumed for computing
the upper throughput bound of the PN system. We have
distinguished whether the computation of the upper throughput
bound has been achieved by exact analysis († symbol) or by
simulation (no symbol).

Note that the computation of the throughput of the whole
system takes in all cases longer than one day of simulation
time to finish, even the evaluated system is an academic
example. For larger systems, simulations may need a long
convergence time, and therefore the usefulness of bounds
computation is proved.

The degree of precision (ε) of algorithm in Figure 2 has
been set to10−3. As it can be observed, the initial bottleneck
with lowest requests (15, 20) corresponds to the underlying
state machine (it is the result of removing resource places
from the net in Figure 6). Again, this result indicates that the
system’s resources are well-dimensioned for attending such
a number of requests. In the case of15 requests, in each
iteration step there exists no significant improvement (near
to 6% in two iterations) and the regrowing strategy finishes
in few steps. However, the greatest improvement occurs when
requests reach20 units. In such a case, the first regrowing
achieves an improvement near to8%, reaching over13% in
the next iteration.

It is interesting to remark what happens when the requests
are incremented up to21. For that value, the initial bottleneck
is produced by one of the system’s resources (specifically,
the number of DB application hosts). This implies that the
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Transition Parameter Value(s) Place Parameter Value(s)
T1 $reqRate 0.2ms p0 $nRequests {15, 20, 21, 22, 23 . . . 30}

T2, T8, T10 , T49 , T53 $delayNet 2.5ms p7 $nSec 5

T13, T16, T19, T23, T36, T41, T46 $intranetLag 0.2ms p18 $nPolicy 10

T26, T29, T31, T34 $secIntraLag 0.5ms p26 $nCoords 10

T4, T43 $initProc1 1ms p28 $nApps 5

T15, T22, T52 $validate 0.3ms p31 $nDBapps 2

T6, T45 $genToken 0.5ms (b)
T9, T48 $sign 0.8ms Trans. Parameter Value(s)
T18, T55 $decrypt 1ms T28 $DBread 0.2ms

T12 $initProc2 0.3ms T30 $perform 0.6ms

T5, T44 $unpack 0.1ms T32 $consistency 0.2ms

T40 $pack 0.1ms T33 $DBupdate 0.2ms

T39 $parseOutput 0.3ms T56 $processResult 1.5ms

(a) (c)

Table I
EXPERIMENTS PARAMETERS.

Figure 6. Petri net of the SDBS. Resource places are depictedin dark grey, whilst process-idle place in light grey.

Number of Regrowing Size Through- Partial Bound Execution
requests step |P | (%) |T | (%) put improvement error time (s)

15

(full system) 61 (100%) 56 (100%) 0.525685 > +1 day
(initial bound) 56 (91.80%) 56 (100%) 0.551637 - 4.7045% 5.87s

1 57 (93.44%) 56 (100%) 0.533037 3.3718% 1.3792% 122.94s

2 58 (95.08%) 56 (100%) 0.522379 1.9995% −0.6330% 751.20s

3 59 (96.72%) 56 (100%) 0.522346 0.0063% −0.6393% 34256.97s

20

(full system) 61 (100%) 56 (100%) 0.652313 > +1 day
(initial bound) 56 (91.80%) 56 (100%) 0.735930 - 11.3621% 5.80s

1 57 (93.44%) 56 (100%) 0.675957 8.1493% 3.4979% 302.60s

2 58 (95.08%) 56 (100%) 0.637812 5.6431% −2.2735% 300.17s

3 59 (96.72%) 56 (100%) 0.637860 −0.0075% −2.2658% 3166.09s

21

(full system) 61 (100%) 56 (100%) 0.671806 > +1 day
(initial bound) 9 (14.75%) 9 (16.07%) 0.740741 - 9.3063% 0.18s†

1 57 (93.44%) 56 (100%) 0.697133 5.8871% 3.6331% 826.82s

2 58 (95.08%) 56 (100%) 0.653556 6.2509% −2.7924% 280.46s

3 59 (96.72%) 56 (100%) 0.653116 0.0673% −2.8616% 2216.06s

22

(full system) 61 (100%) 56 (100%) 0.687808 > +1 day
(initial bound) 9 (14.75%) 9 (16.07%) 0.740741 - 7.1459% 0.18s†

1 57 (93.44%) 56 (100%) 0.713762 3.6422% 3.6362% 2763.5s

2 58 (95.08%) 56 (100%) 0.666148 6.6709% −3.2515% 502.95s

3 59 (96.72%) 56 (100%) 0.667222 −0.1612% −3.0853% 1502.62s

23 . . . 30

(full system) 61 (100%) 56 (100%) 0.700056 > +1 day
(initial bound) 9 (14.75%) 9 (16.07%) 0.740741 - 5.4925% 0.18s†

1 14 (22.95%) 13 (23.21%) 0.740733 0.0011% 5.4915% 0.262s†

Table II
EXPERIMENT RESULTS FOR NUMBER OF REQUESTS{15, 20, 21, 22, 23 . . . 30}.
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Figure 7. Throughput of the SDBS with variable number of users.

throughput bound of the system will keep the same for any
number of requests over21 (seeAverage thr.of first regrowing
step for number of requests greater than21). In other words,
requests will start waiting to be attended if its number is
higher or equal than21. Besides, note that when the requests
are greater than23, in the second iteration step there is
an improvement of the upper throughput bound lower than
10−3%.

As it is said previously, the most important improvement
occurs when the number of requests is20. In just one iteration
step, the initial throughput bound is improved in a value near
to 8%. This indicates that the proposal method is more useful
(i.e., it gets a significant improvement in the upper throughput
bound in few iterations) if the resources and requests are
more well-balanced. Besides, note that as it is shown by
the execution time, the simulation of the whole PN becomes
unfeasible for large systems.

The throughput results have been plotted in Figure 7. The
throughput is drawn for each number of requests and for each
step. Besides, the result of LPP (9) has also been drawn (dot
line). LPP values match the throughput values of the initial
bottleneck. As expected, the result of solving the LPP (9)
(dot line) is an upper bound of all the rest of values. As it
can be seen, the improvement of the upper throughput bound
for each regrowing step is almost insignificant in the case of
requests lower than20 or greater than25. While the number
of requests reaches near to20, the relative difference between
the throughput of the initial upper throughput bound and the
first iteration becomes greater, which reaches its maximum in
the case of20 requests. After that point, it becomes lower
even tending to a minimum difference near to zero (see, for
instance, the case of30 requests).

Finally, the execution time shown in last column in Table II
remarks that the bigger size of the net, the longer it takes to
complete simulation. Note that small additions in the net (i.e.,
just one place) normally cause an execution time with one or
two orders of magnitude than previous executions. However,
the improvement of the upper thr. bound is not so significant
to justify such an amount of execution time.

The main conclusions that can be extracted from both
experiments can be summarised as follows:

• there exists a number of requests (inflexion point) from
which the initially most restrictive p-semiflow of the
system changes, and around such an inflexion point the
accuracy of the initial throughput bound is low. This is
motivated because when the slowest p-semiflow of the
system is much slower than the others, it dominates over
them and the system throughput is determined by the
throughput of such a p-semiflow, so the initial throughput
bound is usually quite accurate. However, when several
p-semiflows have similar speeds, none of them dominates
over the others, and hence the initial throughput bound,
which considers just one p-semiflow, is less accurate;

• the improvement of the upper bound gets specially a
significant improvement in the proximity of the inflexion
point.

As future work, we pretend to keep researching on the
performance estimation based on performance bounds, and
trying to obtain some quality bound characterisation. The use
of LP problems and the token/delay ratio between p-semiflows
on a PN system could be useful for this goal.

As the reader can imagine, it would be nice if we were able
to compute directly such inflexion points, which is the goal in
the next set of experiments.

2) Resource Optimisation: For these experiments, the
number of requests has been set tonRequests = 100, whilst
the initial number of resources remains unchanged:5 security
hosts,10 policy hosts,10 coordination hosts,5 application
hosts and2 DB application hosts (summarised in Table I). Let
us suppose a budget of$20, 000 and the following costs per
resource:$3, 500 per security host (represented by placep7),
$1, 000 per policy host (placep18), $2, 000 per coordinator
host (placep26), $500 per application host (placep28) and
$500 per DB application host (placep31). The prices of the
hosts are reflecting either the cost of the physical hardwareor
the cost of reimplementing the services.

Applying the optimisation strategy introduced in Section V,
the initial restrictive resource is the number of DB application
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Figure 8. Different resources configuration and its associated cost.

hosts,$nDBapps (initial tokens of placep31). The algorithm
in Figure 3 computes the new restrictive resource, security
hosts, and the number of DB application hosts needed to
be incremented (which is just one host). As the cost of
incrementing is$500 per DB application host and there is a
budget of$20, 000, it can be carried on. The strategy continues
looking for the next restrictive resource. So, the second iter-
ation gives as result the new restrictive resource (application
host) and the new instances of DB application and security
hosts, respectively,2 and 5 units. The increment of such
resources has a cost of$18, 500, so it can be afforded. The
new restrictive resource, after the third iteration, is thenumber
of coordinator hosts. This time, it is needed to increment in
6 units the security hosts, in3 units the DB application hosts
and in 1 unit the application hosts with respect to the initial
configuration. This last assignment has a cost greater than the
initial budget, so the iteration process finishes and the previous
assignment is taken as the valid one (5 security hosts and2
DB application hosts). Moreover, there is no possibility of
spending the rest of the budget (which ascends to$1, 500)
Therefore, the optimisation strategy ends.

Hence, with the initial configuration and the given budget,
it is needed to increase the number of security hosts in5 units
and the number of DB application hosts in2 units for getting
the system resources optimally distributed and the throughput
maximised.

Figure 8 plots the upper throughput bound (dash line) of
each configuration of resources, its associated cost (dot line,
in dollars) and the total assigned budget (solid line).Initial cfg.
(initial configuration) is5 security hosts,10 policy hosts,10
coordination hosts,5 application hosts and2 DB application
hosts. Cfg. 1 refers to the increment in one unit of DB
application hosts, whilstCfg. 2indicates the last assignment of
resources computed: the increment in5 security hosts and in2
DB application hosts. Finally,Cfg. 3refers to the configuration
which cannot be afford with such a budget ($20, 000): an
increment in6 units the security hosts, in3 units the DB
application hosts and in1 unit the application hosts with

respect to the initial configuration. As it can be observed
in the Figure 8, the cost of the last resources configuration
exceeds the assigned budget, so the solution for the resource
distribution is the previous configuration.

It is also remarkable the evolution of the upper throughput
bound. With the initial configuration, the upper throughput
bound isΘ = 0.740740. In the first configuration, the upper
throughput bound increments in a0.75% (Θ = 0.746271),
while in the second configuration it increments near to a100%
(Θ = 1.470598). Finally, with the third configuration the upper
throughput bound increases in a9.68% (Θ = 1.612920).

VII. C ONCLUSIONS

The formalism of Petri nets allows one to model the
behaviour of a large class of artificial systems in which
resources are shared by the different tasks. The performance
of these systems, which is usually measured as the number
of completed operations per time unit, is often a system
requirement. Unfortunately, in most cases of interest it isnot
possible to compute the exact performance of a system in a
reasonable time due to the state explosion problem inherent
to large discrete systems. Thus, the explosion problem poses
difficulties not only to compute exactly the performance of an
existing system, but also to design correctly new systems.

This paper has focused on the class of process Petri nets
which allows a wide variety of modelling possibilities while
offering interesting analysis properties. For this class of nets
two iterative strategies have been proposed. The first one aims
at estimating efficiently the performance of a given system.
Such an estimation is carried out by computing increasingly
larger system bottlenecks. The goal of the second strategy is,
given an initial budget and a cost of each resource, to gauge
the number of instances of each resource so that the system
performance is maximised and the budget is not exceeded.
This has been achieved by exploiting the linear dependence
of the performance bounds with respect to the number of
resources.
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Given that both techniques make intensive use of linear
programming techniques and the number of required iterations
is usually low, their complexity and computational time are
also low. The proposed strategies have been applied to a
process Petri net modelling a Secure Database System. The
performance of such a system has been evaluated for different
workloads, and a distribution of resources that maximises the
throughput for a given budget has been estimated. We have de-
veloped a tool, PeabraiN [31], which implements the strategies
here presented to make easier their use to the practitioners. It
enables to compute either performance estimation or resource
optimisation in systems modelled with Petri nets. As future
work, we plan to research on the quality of the initial upper
bound obtained and to extend both strategies to more general
Petri net classes.
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APPENDIX

The strict inequality
∑

p∈V y(p) > 0 in (10) is used to
force that the components of places which belong to the next
slowest p-semiflow are positive. Once the LPP (10) is solved,
only the strictly positive components are selected. When the
solver precision is not very high, zero components might not
be distinguishable from positive components with low values.
To avoid this,

∑

p∈V y(p) > 0 is replaced by
∑

p∈V y(p) > h,
with a strictly positiveh. Thus, we need to find a valueh > 0
that keeps the feasibility of constraintsy·C = 0, y·m0 = 1. A
possible valueh such thaty ≥ h ·1 and fulfils both equations
can be calculated in the following way:

Recall that by the process PN structure, the number of p-
semiflows is equal ton + 1, wheren = |PR| is the number
of resources in the process PN system. Note as well that the
initial marking m0 of the system will bem0(p) > 0, ∀p ∈
PR∪P0, m0(p) = 0, ∀p ∈ PS . A p-semiflowy that covers all
places can be computed by a linear combination of all minimal
p-semiflows. Remember that each resource has associated a
minimal p-semiflow (Property 3 of Definition 3).

Let us consider a system withn resources. Then, a linear
combination of all minimal p-semiflows isy = α1 · y1 +α2 ·
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y2+ · · ·+αn+1 ·yn+1, αi > 0, ∀i ∈ {1 . . . (n+1)}. As y is a
linear combination of p-semiflows, theny ·C = 0 is fulfilled.
However, factorsαi must be adjusted in order to properly
fulfil equationy ·m0 = 1. An intuitive idea to make this is the
following: asy(p)·m0(p) > 0 ⇔ p ∈ PR∪P0, theny·m0 = 1
can be reformulated asα1 ·y1(pr1) ·m0(pr1) +α2 · y2(pr2) ·
m0(pr2)+· · ·+αn+1·yn+1(prn+1

)·m0(prn+1
) = 1, wherepri

represents the place associated to resourceri, ∀i ∈ {1 . . . n},
andprn+1

is the process-idle place.
By the process PN structure, all positive values ofyi will be

equal to one. Therefore, the valuesαi that fulfil the equation
y ·m0 = 1 can be easily calculated as:

αi =
1

m0(pri) · (n+ 1)
, ∀i ∈ {1 . . . (n+ 1)}

Hence, a possible valueh that fulfils y(p) ≥ h, ∀p ∈ P

is, in this case,h = min(αi), ∀i ∈ {1 . . . (n + 1)}. Such
a value is relating the number of resources in the system
and the number of resources instances. Thus, the value ofh

for most systems of interest in practice is much higher than
the numerical tolerance of the LPP solver (in this paper, the
numerical tolerance of the LPP solver has been set to10−5).

As the objective function in LPP (11) is maximised, the
value h obtained from that LPP will be, at least, equal to
min(αi), ∀i ∈ {1 . . . (n + 1)}, that is:h ≥ min(αi), ∀i ∈
{1 . . . (n+ 1)}.
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