1,437 research outputs found

    Verifying and Monitoring IoTs Network Behavior using MUD Profiles

    Full text link
    IoT devices are increasingly being implicated in cyber-attacks, raising community concern about the risks they pose to critical infrastructure, corporations, and citizens. In order to reduce this risk, the IETF is pushing IoT vendors to develop formal specifications of the intended purpose of their IoT devices, in the form of a Manufacturer Usage Description (MUD), so that their network behavior in any operating environment can be locked down and verified rigorously. This paper aims to assist IoT manufacturers in developing and verifying MUD profiles, while also helping adopters of these devices to ensure they are compatible with their organizational policies and track devices network behavior based on their MUD profile. Our first contribution is to develop a tool that takes the traffic trace of an arbitrary IoT device as input and automatically generates the MUD profile for it. We contribute our tool as open source, apply it to 28 consumer IoT devices, and highlight insights and challenges encountered in the process. Our second contribution is to apply a formal semantic framework that not only validates a given MUD profile for consistency, but also checks its compatibility with a given organizational policy. We apply our framework to representative organizations and selected devices, to demonstrate how MUD can reduce the effort needed for IoT acceptance testing. Finally, we show how operators can dynamically identify IoT devices using known MUD profiles and monitor their behavioral changes on their network.Comment: 17 pages, 17 figures. arXiv admin note: text overlap with arXiv:1804.0435

    Novel Attacks and Defenses for Enterprise Internet-of-Things (E-IoT) Systems

    Get PDF
    This doctoral dissertation expands upon the field of Enterprise Internet-of-Things (E-IoT) systems, one of the most ubiquitous and under-researched fields of smart systems. E-IoT systems are specialty smart systems designed for sophisticated automation applications (e.g., multimedia control, security, lighting control). E-IoT systems are often closed source, costly, require certified installers, and are more robust for their specific applications. This dissertation begins with an analysis of the current E-IoT threat landscape and introduces three novel attacks and defenses under-studied software and protocols heavily linked to E-IoT systems. For each layer, we review the literature for the threats, attacks, and countermeasures. Based on the systematic knowledge we obtain from the literature review, we propose three novel attacks and countermeasures to protect E-IoT systems. In the first attack, we present PoisonIvy, several attacks developed to show that malicious E-IoT drivers can be used to compromise E-IoT. In response to PoisonIvy threats, we describe Ivycide, a machine-learning network-based solution designed to defend E-IoT systems against E-IoT driver threats. As multimedia control is a significant application of E-IoT, we introduce is HDMI-Walk, a novel attack vector designed to demonstrate that HDMI\u27s Consumer Electronics Control (CEC) protocol can be used to compromise multiple devices through a single connection. To defend devices from this threat, we introduce HDMI-Watch, a standalone intrusion detection system (IDS) designed to defend HDMI-enabled devices from HDMI-Walk-style attacks. Finally, this dissertation evaluates the security of E-IoT proprietary protocols with LightingStrike, a series of attacks used to demonstrate that popular E-IoT proprietary communication protocols are insecure. To address LightningStrike threats, we introduce LGuard, a complete defense framework designed to defend E-IoT systems from LightingStrike-style attacks using computer vision, traffic obfuscation, and traffic analysis techniques. For each contribution, all of the defense mechanisms proposed are implemented without any modification to the underlying hardware or software. All attacks and defenses in this dissertation were performed with implementations on widely-used E-IoT devices and systems. We believe that the research presented in this dissertation has notable implications on the security of E-IoT systems by exposing novel threat vectors, raising awareness, and motivating future E-IoT system security research

    A Design Approach to IoT Endpoint Security for Production Machinery Monitoring

    Get PDF
    The Internet of Things (IoT) has significant potential in upgrading legacy production machinery with monitoring capabilities to unlock new capabilities and bring economic benefits. However, the introduction of IoT at the shop floor layer exposes it to additional security risks with potentially significant adverse operational impact. This article addresses such fundamental new risks at their root by introducing a novel endpoint security-by-design approach. The approach is implemented on a widely applicable production-machinery-monitoring application by introducing real-time adaptation features for IoT device security through subsystem isolation and a dedicated lightweight authentication protocol. This paper establishes a novel viewpoint for the understanding of IoT endpoint security risks and relevant mitigation strategies and opens a new space of risk-averse designs that enable IoT benefits, while shielding operational integrity in industrial environments

    Context Aware Family Dynamics based Internet of Things Access Control Towards Better Child Safety

    Get PDF
    Today, children are increasingly connected to the Internet and consume content and services through various means. It has been a challenge for less tech-savvy parents to protect children from harmful content and services. Internet of Things (IoT) has made the situation much worse as IoT devices allow children to connect to the Internet in novel ways (e.g., connected refrigerators, TVs, and so on). In this paper, we propose mySafeHome, an approach which utilises family dynamics to provide a more natural, and intuitive access control mechanism to protect children from harmful content and services in the context of IoT. In mySafeHome, access control dynamically adapts based on the physical distance between family members. For example, a particular type of content can only be consumed, through TV, by children if the parents are in the same room (or hearing distance). mySafeHome allows parents to assess a given content by themselves. Our approach also aims to create granular levels of access control (e.g., block / limit certain content, features, services, on certain devices when the parents are not in the vicinity). We developed a prototype using OpenHAB and several smart home devices to demonstrate the proposed approach. We believe that our approach also facilitates the creation of better relationships between family members. A demo can be viewed here: http://safehome.technology/demo

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue President\u27s Message From the Editor lT-Style Alphabet Soup Software-Defined WAN (SO-WAN)- Moving Beyond MPLS loT: The lnternet of Things ls the LPWAN in Your Future? lngredient for Wireless Success: DAS Hot lssues in Communications Technology Law lnstitutional Excellence Award: CSU Fullerton\u27s Shared Cloud Services DlDs for ELINs? lSE...ERP... KnowBe

    EYECOM: an innovative approach for computer interaction

    Get PDF
    The world is innovating rapidly, and there is a need for continuous interaction with the technology. Sadly, there do not exist promising options for paralyzed people to interact with the machines i.e., laptops, smartphones, and tabs. A few commercial solutions such as Google Glasses are costly and cannot be afforded by every paralyzed person for such interaction. Towards this end, the thesis proposes a retina-controlled device called EYECOM. The proposed device is constructed from off-the-shelf cost-effective yet robust IoT devices (i.e., Arduino microcontrollers, Xbee wireless sensors, IR diodes, and accelerometer). The device can easily be mounted on to the glasses; the paralyzed person using this device can interact with the machine using simple head movement and eye blinks. The IR detector is located in front of the eye to illuminate the eye region. As a result of illumination, the eye reflects IR light which includes electrical signals and as the eyelids close, the reflected light over eye surface is disrupted, and such change in reflected value is recorded. Further to enable cursor movement onto the computer screen for the paralyzed person a device named accelerometer is used. The accelerometer is a small device, with the size of phalanges, a human thumb bone. The device operates on the principle of axis-based motion sensing and it can be worn as a ring by a paralyzed person. A microcontroller processes the inputs from the IR sensors, accelerometer and transmits them wirelessly via Xbee wireless sensor (i.e., a radio) to another microcontroller attached to the computer. With the help of a proposed algorithm, the microcontroller attached to the computer, on receiving the signals moves cursor onto the computer screen and facilitate performing actions, as simple as opening a document to operating a word-to-speech software. EYECOM has features which can help paralyzed persons to continue their contributions towards the technological world and become an active part of the society. Resultantly, they will be able to perform number of tasks without depending upon others from as simple as reading a newspaper on the computer to activate word-to-voice software

    Temperature and Humidity Control System with Air Conditioner Based on Fuzzy Logic and Internet of Things

    Get PDF
    Work is an activity that takes most of the day to earn a living and improve the standard of living. During work, many people have to work indoors, which can be a less comfortable and unhealthy place if the temperature and humidity are not well controlled. Unsuitable temperature and humidity conditions can negatively affect the health and comfort of workers, as well as interfere with productivity and work quality. However, the problem that often arises is the difficulty of controlling room temperature and humidity effectively, especially in rooms that are closed and do not get air circulation from outside. Therefore, an effective solution is needed to control the temperature and humidity of the room automatically and remotely via the internet. The contribution of this research is to develop an effective and efficient AC control system in controlling room temperature and humidity using Tsukamoto's Fuzzy Inference System (FIS) method and the Internet of Things (IoT). Tsukamoto's FIS is used to produce AC temperature values in room temperature and humidity control as measured by the DHT22 sensor directly integrated with the ESP32 microcontroller. This control system is monitored remotely using IoT concepts through a mobile application interface. The results of this study show that room temperature can be controlled under normal conditions, with an average change of -1.67°C and an overall average temperature of 25.95°C. While the average humidity is at a value of 80.16% which is included in the Wet set. This suggests that humidity cannot be controlled under normal conditions, so it still requires further development. In addition, it is also necessary to further investigate the effectiveness of the tool in various sizes and more complex layouts of rooms

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue President\u27s Message From the Editor lT-Style Alphabet Soup Software-Defined WAN (SO-WAN)- Moving Beyond MPLS loT: The lnternet of Things ls the LPWAN in Your Future? lngredient for Wireless Success: DAS Hot lssues in Communications Technology Law lnstitutional Excellence Award: CSU Fullerton\u27s Shared Cloud Services DlDs for ELINs? lSE...ERP... KnowBe

    Improving efficiency, usability and scalability in a secure, resource-constrained web of things

    Get PDF
    • …
    corecore