
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-8-2021

Novel Attacks and Defenses for Enterprise Internet-of-Things (E-Novel Attacks and Defenses for Enterprise Internet-of-Things (E-

IoT) Systems IoT) Systems

Luis C. Puche Rondon
Florida International University, lpuch002@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Puche Rondon, Luis C., "Novel Attacks and Defenses for Enterprise Internet-of-Things (E-IoT) Systems"
(2021). FIU Electronic Theses and Dissertations. 4844.
https://digitalcommons.fiu.edu/etd/4844

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F4844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4844?utm_source=digitalcommons.fiu.edu%2Fetd%2F4844&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

NOVEL ATTACKS AND DEFENSES FOR ENTERPRISE

INTERNET-OF-THINGS (E-IOT) SYSTEMS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL AND COMPUTER ENGINEERING

by

Luis C. Puche Rondon

2021

To: Dean John Volakis
College of Engineering and Computing

This dissertation, written by Luis C. Puche Rondon, and entitled Novel Attacks and
Defenses for Enterprise Internet-of-Things (E-IoT) Systems, having been approved
in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kemal Akkaya

Alexander Perez-Pons

Bogdan Carbunar

A. Selcuk Uluagac, Major Professor

Date of Defense: November 08, 2021

The dissertation of Luis C. Puche Rondon is approved.

Dean John Volakis

College of Engineering and Computing

Andres G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2021

ii

© Copyright 2021 by Luis C. Puche Rondon

All rights reserved.

iii

DEDICATION

To my parents, Luis Puche del Portillo and Adriana Puche

and my brother, Jose Puche.

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. A. Selcuk Uluagac

for his valuable guidance and tireless support throughout the entire doctoral process.

His mentoring, insights, encouragement, and experience have motivated this research

throughout the doctoral journey. My deepest gratitude to the committee members;

Dr. Kemal Akkaya for his collaboration and feedback on many publications; Dr.

Bogdan Cabunar for his role as an educator in essential security mechanisms; and

Dr. Alexander Perez-Pons being my introduction to the cybersecurity field.

A sincere thank you to all my colleagues at the Cyber-Physical Systems Security

Lab for making this journey a memorable experience throughout all these years. My

gratitude also goes to our post-doctoral researcher Dr. Ahmet Aris, whose feedback,

collaboration, and support has been invaluable for many of our publications. I would

also like to thank Dr. Leonardo Babun for his constant feedback and guidance on

several papers. Also, a thank you to Dr. Abbas Acar and Dr. Amit Kumar Sikder

for their feedback and suggestions throughout this dissertation. I would also like

to thank Florida International University for being my university since 2011. I

would like to acknowledge the NSF Scholarship-for-service and the Koerner Family

Foundation for their invaluable financial support throughout my doctoral efforts.

Finally, I would like to thank my parents Luis Puche and Adriana Puche for

their unwavering support and encouragement throughout my entire education, my

brother Jose Puche for his motivation, and the rest of my family for their heartfelt

encouragement.

This dissertation is partly based upon work supported by the National Science

Foundation (Award Numbers: NSF-CAREER-CNS-1453647, NSF-1663051).

v

ABSTRACT OF THE DISSERTATION

NOVEL ATTACKS AND DEFENSES FOR ENTERPRISE

INTERNET-OF-THINGS (E-IOT) SYSTEMS

by

Luis C. Puche Rondon

Florida International University, 2021

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

This doctoral dissertation expands upon the field of Enterprise Internet-of-Things

(E-IoT) systems, one of the most ubiquitous and under-researched fields of smart

systems. E-IoT systems are specialty smart systems designed for sophisticated and

high-end automation applications (e.g., multimedia control, security, lighting con-

trol). E-IoT systems are often closed source, costly, require certified installers, and

are more robust for their specific applications. This dissertation begins with an anal-

ysis of the current E-IoT threat landscape and introduces three novel attacks and

defenses for under-studied software and protocols heavily linked to E-IoT systems.

For each, we review the literature for the threats, attacks, and countermeasures.

Based on the systematic knowledge we obtain from the literature review, we pro-

pose three novel attacks and countermeasures to protect E-IoT systems. In the

first attack, we present PoisonIvy, several attacks developed to show that malicious

E-IoT drivers can be used to compromise E-IoT. In response to PoisonIvy threats,

we describe Ivycide, a machine-learning network-based solution designed to defend

E-IoT systems against E-IoT driver threats. As multimedia control is a significant

application of E-IoT, we introduce is HDMI-Walk, a novel attack vector designed

to demonstrate that HDMI’s Consumer Electronics Control (CEC) protocol can be

used to compromise multiple devices through a single connection. To defend de-

vi

vices from this threat, we introduce HDMI-Watch, a standalone intrusion detection

system (IDS) designed to defend HDMI-enabled devices from HDMI-Walk-style at-

tacks. Finally, this dissertation evaluates the security of E-IoT proprietary protocols

with LightingStrike, a series of attacks used to demonstrate that popular E-IoT pro-

prietary communication protocols are insecure. To address LightningStrike threats,

we introduce LGuard, a complete defense framework designed to defend E-IoT sys-

tems from LightingStrike-style attacks using computer vision, traffic obfuscation,

and traffic analysis techniques. For each contribution, all of the defense mechanisms

proposed are implemented without any modification to the underlying hardware or

software. All attacks and defenses in this dissertation were performed with imple-

mentations on widely-used E-IoT devices and systems. We believe that the research

presented in this dissertation has notable implications on the security of E-IoT sys-

tems by exposing novel threat vectors, raising awareness, and motivating future

E-IoT system security research.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Research Purposes . 5
1.2 Research Problems . 5
1.3 Significance of the Study . 7
1.4 Organization . 8

2. BACKGROUND . 9
2.1 Enterprise Internet-of-Things . 9
2.1.1 General E-IoT . 9
2.1.2 Architecture of E-IoT Systems . 11
2.1.3 E-IoT Lighting Control Systems . 13
2.1.4 The Layered Architecture of E-IoT . 15
2.1.5 E-IoT Proprietary Protocols . 17
2.1.6 E-IoT Drivers . 18
2.1.7 Consumer IoT vs. E-IoT . 21
2.2 Overview on Multimedia Communication 23
2.2.1 The High Definition Multimedia Interface (HDMI) 23
2.2.2 HDMI Distribution Networks . 24
2.2.3 The Consumer Electronics Control (CEC) Protocol 25

3. LITERATURE REVIEW . 26
3.1 Attacks and Defenses on Smart Devices 26
3.1.1 Attacks on Alternative Threat Vectors 26
3.1.2 Surveys on IoT System Security . 27
3.2 Threats and Vulnerabilities on Multimedia Devices 28
3.3 Industrial Communication Bus Threats and Security 29

4. ANALYSIS OF CURRENT E-IOT LANDSCAPE 31
4.1 Introduction . 31
4.1.1 Differences from Existing Works. 33
4.2 Taxonomy and Scope . 34
4.2.1 Taxonomy . 34
4.2.2 Scope . 34
4.3 E-IoT Devices Layer: Components and Security 35
4.3.1 Elements of the E-IoT Devices Layer 36
4.3.2 Threat Model for E-IoT Devices Layer 36
4.3.3 E-IoT Devices Layer: Attacks and Vulnerabilities 38
4.3.4 Mitigation of E-IoT Devices Layer Attacks 44
4.4 Communications Layer . 50
4.4.1 Elements of the E-IoT Communications Layer 50

viii

4.4.2 Threat Model for E-IoT Communications Layer 56
4.4.3 Communication Layer: Attacks and Vulnerabilities 57
4.4.4 Mitigation of Communication Layer Attacks. 67
4.5 Monitoring and Applications Layer . 72
4.5.1 Elements of the Monitoring and Applications Layer 72
4.5.2 Threat Model for E-IoT Monitoring and Applications Layer 74
4.5.3 Monitoring and Applications Layer Attacks and Vulnerabilities 76
4.5.4 Mitigation of Monitoring and Applications Layer Attacks 78
4.6 Business Layer . 80
4.6.1 Elements of the E-IoT Business Layer 80
4.6.2 Threat Model for E-IoT Business Layer 82
4.6.3 Business Layer Attacks and Vulnerabilities 83
4.6.4 Mitigation of Business Layer Attacks 84
4.7 Lessons Learned and Open Issues . 85
4.7.1 Lessons Learned . 86
4.7.2 Open Issues . 89
4.8 Conclusion . 93

5. DRIVER-BASED NOVEL ATTACKS AND DEFENSES FOR E-IOT SYS-
TEMS . 95

5.1 Introduction . 95
5.2 Differences from Existing Works . 98
5.3 Problem Scope and Threat Model . 99
5.3.1 Problem Scope . 99
5.3.2 Threat Model . 100
5.4 PoisonIvy Architecture . 101
5.4.1 PoisonIvy Overview . 102
5.5 Evaluation and Realization of PoisonIvy Attacks 105
5.5.1 PoisonIvy Implementation on Real E-IoT Devices 105
5.5.2 Software Modules . 107
5.5.3 PoisonIvy-based Attacks . 109
5.6 Attack Discussion . 114
5.7 Ivycide Architecture . 117
5.7.1 Design Considerations and Challenges 117
5.7.2 E-IoT Devices, Drivers, and Expected Traffic 119
5.7.3 Terminology . 120
5.7.4 Ivycide Overview . 121
5.7.5 Network Collector . 122
5.7.6 Traffic Handler . 123
5.7.7 Model Container . 126
5.7.8 User Notification . 127
5.7.9 Logged Activities . 127
5.8 Ivycide Implementation . 128

ix

5.8.1 Network Collector Implementation . 128
5.8.2 Traffic Handler Implementation . 129
5.8.3 Model Container Implementation . 130
5.8.4 Other Implementations . 132
5.9 Performance Evaluation . 132
5.9.1 Attack Data Collection . 133
5.9.2 Ivycide Performance for Different Classifiers (RQ1) 134
5.9.3 Ivycide Signature Classification Performance (RQ2) 136
5.9.4 Detection Time and Overhead . 137
5.10 Ivycide Benefits and Discussion . 137
5.11 Conclusion . 139

6. NEW HDMI ATTACKS AND DEFENSES FOR E-IOT SYSTEMS . . . 141
6.1 Introduction . 141
6.1.1 Differences from Existing Works. 144
6.2 Problem, Assumptions, and Threat Model 144
6.2.1 Problem Scope . 144
6.2.2 Definitions . 146
6.2.3 Assumptions . 147
6.2.4 Threat Model . 147
6.3 HDMI-Walk . 149
6.4 Evaluation and Realization of HDMI-Walk Attacks 152
6.4.1 The implementation of HDMI-Walk . 152
6.4.2 Software Modules . 153
6.4.3 Attacks . 157
6.5 HDMI-Watch Architecture . 166
6.5.1 HDMI-Watch Overview . 166
6.5.2 CEC Collector . 167
6.5.3 Data Handler . 168
6.5.4 Model Container . 171
6.5.5 User Notification . 174
6.5.6 Logged Violations . 174
6.6 Implementation of HDMI-Watch . 175
6.6.1 CEC Collector . 176
6.6.2 Data Handler . 176
6.6.3 Model Container . 177
6.6.4 User Notification . 179
6.6.5 Logged Violations . 179
6.7 Performance Evaluation . 180
6.7.1 Performance of HDMI-Watch Classification for Different Violation Thresh-

olds (RQ1) . 182
6.7.2 Classification of Malicious CEC Behavior (RQ2) 184
6.7.3 Benefits and Discussion . 185

x

6.8 Conclusion . 187

7. SERIAL-BASED ATTACKS AND DEFENSES FOR E-IOT COMMUNI-
CATION BUSES . 189

7.1 Introduction . 189
7.2 Differences from Existing Works . 192
7.3 Problem Scope and Threat Model . 193
7.3.1 Problem Scope . 193
7.3.2 Definitions . 195
7.3.3 Threat Model . 196
7.4 LightingStrike Architecture . 197
7.4.1 LightingStrike Overview . 197
7.5 LightingStrike Attacks Implementation 200
7.6 LightingStrike Attacks Evaluation . 204
7.7 Attack Discussion . 211
7.8 LGuard . 214
7.8.1 Design Considerations and Challenges 214
7.8.2 Terminology . 217
7.8.3 LGuard Overview . 217
7.8.4 Serial Collector . 219
7.8.5 Obfuscator . 219
7.8.6 CCTV Collector . 221
7.8.7 Data Handler . 221
7.8.8 Notifier . 224
7.9 LGuard Implementation . 224
7.9.1 Serial Collector Implementation . 225
7.9.2 Obfuscator Implementation . 225
7.9.3 CCTV Collector Implementation . 226
7.9.4 Data Handler Implementation . 227
7.9.5 Notifier Implementation. 230
7.10 Performance Evaluation . 230
7.10.1 Attack Data Collection . 231
7.10.2 DoS Detection Performance (RQ1) . 233
7.10.3 Impersonation Detection Performance (RQ2) 233
7.10.4 Replay Detection Performance (RQ3) 234
7.10.5 Traffic Obfuscation Performance (RQ4) 235
7.10.6 Detection Time and Overhead . 235
7.11 Benefits and Discussion . 236
7.12 Conclusion . 238

8. CONCLUDING REMARKS AND FUTURE WORK 240

BIBLIOGRAPHY . 243

xi

VITA . 287

xii

LIST OF FIGURES

FIGURE PAGE

2.1 Common use-cases of of E-IoT systems. 10

2.2 Architecture of a typical E-IoT system with user interfaces, controller,
and physical devices. 11

2.3 An example E-IoT system with wired bus communication and two daisy-
chain paths. Restricted areas highlighted in red, common areas in
blue. 13

2.4 E-IoT system four-layer model used in this dissertation. 14

2.5 E-IoT system with four different control drivers, controller, and user in-
terfaces. Individual devices are controlled through the user interfaces
after being integrated. 19

2.6 Example HDMI device distribution network including three displays
sharing the same source image (Laptop). Usually, in bars and con-
ference rooms, displays are chained via the HDMI cables. 23

2.7 The CEC stack and structure as used in HDMI 25

5.1 General end-to-end implementation for PoisonIvy-based attacks. Attack-
related components are highlighted in gray, E-IoT system compo-
nents are in blue. 101

5.2 E-IoT system testbed used to implement PoisonIvy attacks in a smart
building setting. 104

5.3 Swagger interface for PoisonIvy remote attack execution with JSON
object. The messageType field determines the attack type and mes-
sageContent for extra parameters. 106

5.4 Attack 1 (Memory Exhaustion) implementation results. Figure shows
items being inserted into a LUA table, creating resource exhaustion. 110

5.5 Implemented botnet attack model for Attack 2. The remote attacker
initiates the attack as shown in this figure. 111

5.6 Hashing process as executed by PoisonIvy attacks. 113

5.7 Architecture of Ivycide, modules numbered. 121

5.8 Ivycide classification process. 123

6.1 Possible examples of HDMI distribution use cases where HDMI-Walk
could present a novel threat. 143

6.2 General architecture for HDMI-Walk-based attacks. 149

xiii

6.3 HDMI-Walk testbed implemented with various commodity HDMI devices.153

6.4 Attack 2–File I/O Module transfer of audio data. 159

6.5 Attack 3–Running handshake capture with Aircrack-ng. 161

6.6 Attack 4–TV Power state change and execution of targeted attack. . . . 162

6.7 Attack 5–Input-change induced DoS attack. Executed by remote at-
tacker with command DOS1. 164

6.8 Architecture of HDMI-Watch. Each module numbered. 166

6.9 HDMI-Watch classification process. 168

6.10 Three command types are shown as states in a CEC Markov Model.
Probabilities given (P1 to Px) as the possibility one command type
following another command type. 172

6.11 HDMI testbed, including two targeted displays, an attacker device, and
the HDMI-Watch device within the same distribution. 175

6.12 User notification shown when detection threshold is exceeded in HDMI-
Watch. 178

7.1 General end-to-end implementation for LightingStrike-based attacks.
Attack-related components are highlighted in gray, E-IoT compo-
nents are in blue. 197

7.2 Testbed used to implement LightingStrike attacks, including a con-
troller, power supply, smart modules, and keypad interfaces. 202

7.3 A snapshot of the captured periodic query-response traffic during Attack
2 (Malicious Eavesdropping) where the Cresnet IDs are highlighted. . 206

7.4 Cresnet ID change window in D3 Pro Crestron software during Attack
3 (Impersonation-based DoS). 208

7.5 A snapshot of the messages captured from Cresnet bus during Attack 4
(Replay Attack). 209

7.6 LGuard architecture, components numbered. 218

7.7 Architecture of the Detection Engine component of LGuard that detects
DoS, impersonation, and replay attacks via DoS Detector, Tamper
Detector, and Interaction Detector modules respectively. 221

7.8 LGuard pose detection on a keypad from CCTV footage. Red highlight-
ing right hand, green point highlighting left hand. The green square
highlights the interface location. 229

xiv

7.9 Side and front views of CCTV used for LGuard evaluation, keypads
highlighted in green. Different angles were tested to evaluate pose
estimation efficacy. 232

xv

CHAPTER 1

INTRODUCTION

The introduction of smart consumer electronics has led to the widespread adop-

tion of smart devices, with over 45 million of smart home components distributed

and deployed worldwide [ABC+18, IoT18]. Many researchers and users are familiar

with commodity, off-the-shelf smart systems that can be purchased and installed

by the average end-user without specialized training. However, for more complex

applications, where reliability in smart solutions is needed, Enterprise Internet-of-

Things (E-IoT) have become an accepted solution. E-IoT systems offer customized

deployments, with numerous use-cases and applications, offering users a broad set

of compatible devices, custom-programmed behavior, user interface customization,

and proprietary protocols. Further, E-IoT systems have been increasingly popular

in smart installations, with Crestron growing to 1.5 billion dollars of annual rev-

enue in 2018 and Control4 deploying over 15 million smart products in over 400,000

installations worldwide [Mar18, Con20b]. With many of these systems present in

high-profile locations such as luxury smart homes, yachts, smart buildings, smart

offices, and secure conference rooms the security of E-IoT is of utmost importance.

Nonetheless, while recent works have examined well-known components (e.g.,

software, apps) from widely-available smart systems [LBAU17, KBAU18, SBAU19,

CBS+18a, AADB17, AFA+20, AAUA18, SAU20, SPA+18, USB, CBS+18b, NSRU19,

NSRU20, NSBU20, CMT+, SBC+20, BAR+20, MBY+19, DBU20], very little re-

search has been conducted on E-IoT systems and their associated components. The

lack of research into E-IoT systems has led many users and researchers to overlook

E-IoT system vulnerabilities and mistakenly assume that these systems are secure.

There are several challenges related to E-IoT research. First, the closed-source

nature and availability of E-IoT software, technical documentation, and compo-

1

nents makes research into E-IoT threats challenging. Further, without access to

API/system call hooking, source code, or special permissions, many traditional de-

fense mechanisms are not viable for E-IoT. As such, proposed solutions must not

intrude with E-IoT operation and consider the limitations of working with E-IoT

systems without vendor support. To address this research gap, we first identify

three new attacks to common E-IoT components (e.g., protocols, software) and

demonstrate how these novel threats can be used by malicious actors to compromise

devices. Finally, we account for the limitations of closed-source E-IoT architecture

and propose novel defense solutions to address these new-found threats.

The Landscape of E-IoT Threats and Defenses

The evolution of smart technology has yielded to incremental improvements and

advancements in the field of E-IoT since their inception. However, as systems grow

more complex, this added complexity creates more threat vectors for the target

system. Thus, numerous attacks, threats, and vulnerabilities have been discovered,

creating several novel vectors of attack against E-IoT systems. For instance, at-

tackers can attempt to compromise E-IoT through supply chain attacks, software

vulnerabilities, or side-channel attacks. To better defend E-IoT, the threats and

defenses that can impact E-IoT security must be identified. However, while prior

research may be applicable, E-IoT systems are unique in their design, architecture,

components, and challenges. As such, known threats and defenses as applied to

E-IoT can create different implications and should be treated as a separate field

of study. For instance, if a large E-IoT system relies on Zigbee communication for

some components, other integrated components may be affected. As a result, an

analysis of current threats and defenses in the context of E-IoT is needed.

2

E-IoT Drivers

The need for E-IoT systems to become compatible with third-party devices has led

to the need for software modules known as E-IoT Drivers. E-IoT drivers are used to

give E-IoT systems a higher level of customizability and they easily integrate soft-

ware services and hardware to an E-IoT system. As such, drivers are programmable

components in E-IoT that include all the relevant information (e.g., model, com-

mands, inputs, protocol, outputs) needed to integrate a device into an E-IoT system.

However, while most drivers originate from trusted sources such as the E-IoT ven-

dor or device manufacturer, there are many forums and external third-party sites

where unverified drivers can be found [C4F]. Unverified drivers can be developed by

unknown third parties and then later installed in E-IoT systems for several reasons.

For instance, unverified drivers may be installed if no verified drivers are available

or verified drivers show to be costly. Prior research on IoT apps has shown that

any programmable module for a larger system can act as a threat vector for an

attacker. However, earlier works have never researched the possibility of malicious

E-IoT drivers as a threat vector, or proposed any defenses.

E-IoT Multimedia Control

A common use-case of E-IoT is complete multimedia control in spaces such as of-

fices, conference rooms, and home theaters. In such cases, E-IoT systems will often

integrate multimedia devices (e.g., amplifiers, switchers, receivers, theater systems,

speakers). With multimedia control, users and guests may control conference room

systems, audio, and video of multiple rooms at the press of a button without the

need to understand the underlying operation of the multimedia system. This ab-

straction is necessary, as E-IoT systems may manage increasingly complex multime-

dia systems, some extending to control over one-hundred displays (e.g., televisions,

projectors), video sources, and audio zones. Thus, a user or guest cannot be ex-

3

pected to understand the underlying multimedia system. For many of these systems,

the High Definition Multimedia Interface (HDMI) is the backbone and the de-facto

standard for A/V connections between video-enabled devices. An important com-

ponent in HDMI is the Consumer Electronics Control (CEC) protocol, which allows

HDMI devices that share an HDMI connection to communicate and interact with

each other [Hol05]. However, as widespread as E-IoT systems and distributed HDMI

networks are, current research has not examined possible threats with CEC, or pro-

posed any defense mechanisms. An attacker that uses CEC to compromise devices

may remain completely undetected from traditional network intrusion mechanisms

and cause undesired operation to HDMI-enabled devices.

Proprietary Communication Buses

The need of custom E-IoT solutions has led to the development of custom devices

(e.g., controllers, interfaces) by E-IoT vendors. Similarly, when protocols are not

available, E-IoT vendors will often develop their own protocols to fit their purpose.

For instance, E-IoT vendors such as Lutron created RadioRA as a proprietary wire-

less solution, while Cresnet was developed by Crestron for wired communication

between Crestron devices [Bla20, Cre17a]. A common use case of proprietary tech-

nology are communication buses, used to establish communication between multiple

E-IoT devices (e.g., touchscreens, keypads). These buses rely on proprietary pro-

tocols such as Cresnet to relay information from connected devices to the E-IoT

controller. For instance, when a keypad button is pressed, the keypad will trans-

mit a packet through the communication bus notifying the system controller that a

button has been pressed. The E-IoT controller with then actuate the programming

associated with that button press (e.g, turn on a light). Thus, E-IoT systems rely

heavily on proprietary protocols for communication and functionality. However, no

current research has investigated how secure these closed-source protocols are. Fur-

4

ther, if any vulnerabilities are found, no defense mechanisms exist for proprietary

E-IoT serial-based protocols.

1.1 Research Purposes

This doctoral dissertation introduces novel threats and defense mechanisms for E-

IoT systems and relevant E-IoT sub-components. With this dissertation, we cover

six fundamental contributions towards E-IoT security: (1) the introduction of E-

IoT drivers as a novel threat vector; (2) a smart, machine learning-based solution to

new-found E-IoT driver threats; (3) the demonstration of HDMI’s CEC protocol as

a viable threat vector; (4) a novel HDMI-based defense mechanism to defend devices

against CEC-based attacks; (5) the demonstration of E-IoT proprietary serial-based

protocol vulnerabilities and threat vectors; (6) a defense framework to protect E-IoT

against newly discovered proprietary protocol threats. For each contribution, this

dissertation introduces novel proof-of-concept attacks and defense systems that can

be realistically applied to live E-IoT system and raise the overall awareness of the

current state of E-IoT security.

1.2 Research Problems

The research problems for this dissertation have four components:

• Identification of E-IoT Threats: E-IoT is a novel field of research, with many

components that make E-IoT a unique threat vector. Thus, it is fundamental

to first find understand the architecture for E-IoT. Further, known threats and

defenses must evaluated in the context of E-IoT architecture.

• E-IoT Driver Threats and Defenses: Drivers are frequently utilized in E-IoT

systems to easily integrate third-party devices and services. However, drivers

5

are used in E-IoT systems without any consideration for malware threats.

As drivers are programmable and modular, an attacker can easily create a

malicious driver to compromise an E-IoT system. Thus, PoisonIvy is presented

to show that an external attacker can use E-IoT drivers to compromise an E-

IoT system. To address the threat of malicious drivers, a network-based IDS

is introduced called Ivycide.

• E-IoT Multimedia Control Threats and Defenses: As E-IoT integrates a wide

variety of devices and employs countless protocols, some overlooked threat

vectors can severely impact E-IoT system performance. In effect, E-IoT’s

emphasis on multimedia control makes E-IoT systems susceptible to threats

from multimedia-based protocols such as HDMI. We show that CEC, an inte-

gral part of HDMI, can be used to assume arbitrary control of HDMI-enabled

devices using HDMI-Walk. To solve this research problem, HDMI-Watch, a

defense mechanism is proposed to protect HDMI-enabled devices and distri-

bution networks.

• E-IoT Communication Bus Threats and Defenses: In E-IoT environments,

communication buses are used to connect devices such as interfaces in an

effective and reliable manner. Moreover, E-IoT vendors will create proprietary

communication protocols for these communication buses and their devices.

However, many of these proprietary protocols rely solely on security-through-

obscurity, as the design and implementation are unknown. To verify if major

protocols are secure, LightningStrike is introduced, showing that an E-IoT

system can be compromised due to weak proprietary protocols. To defend

against novel threats, a custom defense called LGuard is introduced.

6

In general, to understand E-IoT as a threat vector and properly mitigate future

threats, components need to be evaluated individually. As such, finding attacks on

E-IoT components is the first step to securing E-IoT devices against threats and

attackers. Once threats are identified, new defense mechanisms need to be proposed

to mitigate attacks, considering the limitations of working with E-IoT (e.g., lack of

vendor support, closed-source design).

1.3 Significance of the Study

Currently, E-IoT systems see widespread deployments, with common usage in pro-

tected locations (e.g., smart buildings, luxury smart homes, expensive yachts, class-

rooms, meeting rooms, government offices, and business establishments). These

systems and their associated protocols may integrate multimedia, lighting control,

motorization, security, sensors, and other sensitive systems. However, the closed-

source nature of E-IoT makes researching E-IoT and its associated components a

challenge. This lack of research has led many users to mistakenly believe that E-

IoT systems and their components are secure. Thus, investigating threats that can

affect millions of E-IoT systems and finding defense mechanisms for these threats,

is of utmost importance. In this dissertation, we aim to resolve this research gap

by first investigating existing, unexplored threat vectors closely tied to E-IoT. We

then acknowledge the limitations of E-IoT and find defense mechanisms that do not

alter the original closed-source systems as a defense strategy. Specifically, we focus

on three main areas: (1) E-IoT-specific software (e.g., drivers) threats and defenses;

(2) Multimedia control and complex HDMI distributions threats and defenses; and

(3) E-IoT proprietary communication (e.g., serial buses) threats and defenses.

7

1.4 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present back-

ground information essential to the understanding of this dissertation. In Chapter 3,

we discuss the related work. Then, in Chapter 4 we overview E-IoT systems, threats,

and defenses at each layer. In Chapter 5, we evaluate the security of drivers with

PoisonIvy and introduce Ivycide as a defense mechanism for these novel threats.

Later, in Chapter 6, we demonstrate HDMI-Walk attacks and the HDMI-Watch

defense mechanism. Further, Chapter 7 investigates E-IoT communication bus pro-

tocol security with LightningStrike and introduces a defense mechanism, LGuard

to mitigate these threats. Finally, we conclude this dissertation and propose future

research paths in Chapter 8.

8

CHAPTER 2

BACKGROUND

2.1 Enterprise Internet-of-Things

In this section we introduce concepts on E-IoT systems essential for this dissertation.

2.1.1 General E-IoT

The need for automation in smart buildings, luxury homes, commercial, and indus-

trial applications has existed since the 70’s [Sul]. As such, there are many different

use-cases where E-IoT is the best solution for automation and integration of multiple

devices. Automation may be done in a single-room systems (e.g., a theater, a confer-

ence room) or have multiple rooms or floors under the same system. The expandable

nature of E-IoT systems allows for small or large smart systems and integration be-

tween these systems. Figure 2.1 highlights applications of E-IoT in smart buildings.

For instance, a smart office may be automated with CCTV systems, lighting control

systems, and access control components with an E-IoT system. As such, E-IoT

systems are customized for each specific application and deployment. We highlight

some E-IoT use-cases on smart buildings, where these use cases can work together

under a single E-IoT system. As such, if the E-IoT system is compromised, the

integrated devices may also be compromised.

Lighting Control. Any control of physical lighting or electrical loads by an E-IoT

system (e.g., lights, fans, outlets). E-IoT systems may be used in this use-case to

schedule light events, program independent keypads, and allow remote control of

lighting functions. E-IoT allows users to control their lights remotely, schedule light

9

Figure 2.1: Common use-cases of of E-IoT systems.

events (e.g., wake up, turn outdoor lights on sundown, and trigger light-based events

from other devices.

Security and Safety. E-IoT systems are often integrated to control security com-

ponents. This integration grants authorized users the ability to control security

aspects of a location (e.g., CCTV systems, access control systems, motion sensors,

fire alarms, security alarm systems). As such, E-IoT systems allow for remote access,

control, and camera activation based on motion sensor triggers. E-IoT allows users

to integrate other components such as lights with security systems. For example,

an E-IoT system may start flashing lights when the alarm system is triggered.

Advanced Media Control. The control and management of media and au-

dio/video (A/V) components with E-IoT systems (e.g., projectors, televisions, video

distributions, HDMI networks, audio matrix management). E-IoT systems man-

age complex audio/video distribution networks from a single interface through au-

dio/video zones, audio switchers, video switchers, and amplifiers. With the com-

plexity of many A/V systems, E-IoT is a reliable method of control through a single

user interface.

10

Figure 2.2: Architecture of a typical E-IoT system with user interfaces, controller,
and physical devices.

2.1.2 Architecture of E-IoT Systems

Figure 2.2 depicts the general architecture of an E-IoT system. E-IoT systems

have unique design and deployment practices that discriminate them from regular

consumer IoT systems. In its most basic form, the E-IoT solution contains four core

components: the physical devices, the controller, user interfaces, and drivers. As

all installations are custom-made, E-IoT system deployments vary from system to

system. The first component of E-IoT systems is the physical devices, which include

any device integrated into the central system (e.g., sensors, televisions, lighting

modules). To integrate physical devices, E-IoT systems use drivers, which provide

the system with all the necessary information to integrate a device to an E-IoT

system. Drivers contain information such as model number, protocol type, code,

commands, and physical connections. Each device requires a driver to be integrated.

In E-IoT systems, the controller serves as the central processing unit and stores

all the drivers as well as user-specific custom programming required for the E-IoT

system (e.g., scheduled events). Finally, user interfaces serve as the main point of

interaction between users and the E-IoT system. After any third-party devices are

11

integrated, the end-user can use user interfaces such as tablets, phones, and remotes

to control integrated devices. For instance, if an E-IoT user wants to turn a light on,

he/she may use a phone app as the interface to communicate with the controller.

The controller then uses a smart light driver of an integrated E-IoT light to toggle

the light at a user’s request. As such, with any E-IoT actions many components are

involved (e.g., hardware, networking, drivers, proprietary, wireless).

As designed, E-IoT systems may fulfill different purposes. One such purpose is

specialization, such as centralized lighting control systems designed to control elec-

trical loads in locations such as yachts or offices [Con14, oE18]. Another purpose

of E-IoT systems is integrating previously separate components into a smart sys-

tem (e.g., Savant, Crestron, and Control4); components integrated can then work

together and interact as a single system [Aud]. For instance, integrating an alarm

system with a lighting system allows a use case such as turning off all the lights when

the alarm is activated. As such, E-IoT systems require trained installation and come

at a higher cost than standard off-the-shelf systems. This added functionality over

commodity systems has led E-IoT systems to become popular in expensive loca-

tions such as yachts, classrooms, smart offices, conference rooms, and luxury smart

homes. Further, the installation of an E-IoT system is done by an integrator, a

certified installer that performs the physical and software configuration for such a

system. The configuration process requires specialized training and tools, which are

provided by the system vendor to the integrator [Crea, Con10b]. However, hardware

and software (e.g., integrated devices and drivers) used in E-IoT may also come from

unverified third-party vendors and sources [Bla08].

12

Figure 2.3: An example E-IoT system with wired bus communication and two daisy-
chain paths. Restricted areas highlighted in red, common areas in blue.

2.1.3 E-IoT Lighting Control Systems

One specialized application of E-IoT systems are Lighting Control Systems (LCSs).

LCSs are primarily used in custom-wired smart deployments to control and manage

high and low-voltage wiring (e.g., lighting, motors, dimming, relays, magnetic locks).

A generalized implementation of an LCS is shown in Figure 2.3, which consists of

E-IoT components deployed in different rooms in a smart environment such as a

business office in a smart building. The equipment room usually contains the core

LCS E-IoT components, such as a controller, a power supply, and light control

modules. In a similar manner to standard E-IoT systems, the controller is the

core processing unit of an LCS and contains the execution logic for user actions

on controlled devices (e.g., pressing button 1 on a keypad opens a security door,

pressing button 6 turns off all the lights). This highly-programmable component

is configured by the integrator during deployment or maintenance stages of an E-

IoT LCS according to a user’s specification. The power supply powers keypads and

other interfaces integrated into the core system as well as the controller and light

13

Figure 2.4: E-IoT system four-layer model used in this dissertation.

control modules. The lighting control modules are the physical high-voltage and

relay based interfaces between the system and controlled devices. Controlled devices

are any light fixture, shade, relay-operated door, or any physical device controlled

by the LCS system. Finally, the communication buses are the daisy-chain lines

that traverse through different equipment, rooms, and multiple connection endpoints

where devices such as keypads, touchscreens, and other user interfaces connect to

the communication bus. Such interfaces can be accessible by general users while

other interfaces are only accessible in restricted locations. As Figure 2.3 shows,

the daisy chain wiring saves integrators the need to wire all interfaces back to the

main equipment room. With daisy chain, the physical wiring can connect from

device to device instead of requiring that every individual device is wired back to

the equipment room, saving in labor and wiring costs.

14

2.1.4 The Layered Architecture of E-IoT

As depicted in as depicted in Figure 2.4, the layered E-IoT solution as described

includes four distinct layers: (1) E-IoT Devices Layer, (2) Communications Layer,

(3) Monitoring and Applications Layer, and (4) Business Layer. The lowest layer,

E-IoT devices layer includes the integrated E-IoT devices, physical interfaces used

by devices, sensors, and any physical components of E-IoT systems. Next comes the

communication layer, which possesses all the communication protocols (e.g., open-

source and proprietary) used by integrated devices in the E-IoT devices layer. To

manage communication, configuration, software, and programmed events in E-IoT

systems, the monitoring and applications layer contains all software-based compo-

nents (e.g., drivers, E-IoT applications, and configuration software) of E-IoT systems

used by integrators and users. Finally, the business layer includes cloud components

of an E-IoT system, for instance, remote services or remote storage used by an E-IoT

system. The combination of these layers creates a unique technology solution that

is highly customizable to any user’s need. For instance, with an E-IoT system, a

user can configure events such as a good morning timer which simultaneously plays

a specific song, opens the shades, and turns on the lights every morning or a panic

button to call the police, blare the alarms, and flash all the lights integrated to a

system. Additional details on the four layers are as follows:

E-IoT Devices Layer. The E-IoT devices layer consists of all physical components

of E-IoT systems. A physical component may be physical wiring, sensors, physical

interfaces, or connection endpoints. E-IoT systems use many physical devices as

part of their systems (e.g., motorized lifts, HVAC, sensors). These devices may be

integrated for different applications. In some cases, they may be simply controlled

15

by the system such as motorized projector lifts. Other cases may be external sensors

such as water leak sensors to automatically shut off water valves prevent flooding.

Communications Layer. The communications layer contains all protocols, inter-

faces, and communication services used by E-IoT systems. This includes protocols

in any component of E-IoT systems. To integrate a wide range of smart devices

into the central system, E-IoT systems must support a multitude of communication

protocols (e.g., Zigbee, Cresnet, Serial) used by smart devices. For instance, to inte-

grate alarm systems to larger E-IoT systems, integrators will often use serial-based

adapters, or an available IP interface [ADI20, Hon01].

Monitoring and Applications Layer. The applications and monitoring layer

contains software-based components of an E-IoT system. For instance, E-IoT sys-

tem configuration, drivers, firmware, or programmable behavior all can be consid-

ered part of the application layer. E-IoT systems must have the capability to be

customized for every installation. As all deployments may be different and fit for

different purposes, custom applications are a large part of E-IoT systems.

Business Layer. The topmost layer for E-IoT systems is the business layer, which

handles all external cloud services used by E-IoT solutions. While not used in all

implementations, some E-IoT systems rely on cloud computing and online services

for features and integration. For instance, some E-IoT system use-cases require

’always offline’ configuration after being deployed (e.g., yachts, remote locations,

secure locations). Cloud services provide E-IoT systems with expanded capabilities,

remote connections, and other services. For instance, E-IoT systems with Closed-

Circuit Television (CCTV) components may use cloud storage services to store video

feed in case the local video recorder is damaged or stolen [Cam20].

16

2.1.5 E-IoT Proprietary Protocols

E-IoT supports a variety of protocols, while some supported protocols are widely-

known and well-documented (e.g., Zigbee, Z-wave, and TCP/IP), other protocols

used by E-IoT systems are entirely proprietary in nature. As E-IoT system ven-

dors need protocols designed for their specific purposes, they may modify existing

known protocols or design entirely new protocols. Specifically, user interfaces such

as keypads and touchscreens use wired and wireless protocols for communication

purposes. For instance, in 2013, before Zigbee’s rise in popularity, Control4, a ven-

dor that offers E-IoT solutions, used a version called Embernet as a wireless solution

[Con10c]. Lutron, a vendor that focuses on E-IoT lighting control systems, imple-

mented a proprietary wireless communication known as Somfy’s Radio-Technology

Somfy (RTS) [Som20, Lut20]. E-IoT systems also use proprietary wired protocols

that use E-IoT communication buses. For instance, Litetouch smart systems use a

proprietary protocol for user interfaces [Lit06]. For similar purposes, Control4 em-

ploys a proprietary communication protocol [Con13a]. Savant uses communication

buses and proprietary protocols for interfaces [Sav14]. Finally, Crestron, one of the

most prolific E-IoT vendors, uses Cresnet, a form of a proprietary protocol over

communication buses for interfaces and other components [Cre06]. The technical

specifications of these highlighted protocols are not publicly available, and thus their

security, if any, is largely unknown. Since the communication is simple, reliable, and

allows daisy-chain wiring between interfaces, this communication is very prevalent in

E-IoT. In comparison to protocols such as Z-wave and ZigBee, wired communication

buses are preferred for E-IoT devices for three reasons. First, communication buses

often provide power to the connected devices through the same communication line

[Cre20a]. Second, communication buses are seen as more reliable than wireless pro-

tocols over long distances where mesh networking has range limitations (60 feet)

17

[Hen18]. Third, wired E-IoT communication is not as susceptible to interference as

wireless communication, creating a more reliable system [WG06]. However, commu-

nication buses require physical cabling. As such, mesh wireless may still be used in

E-IoT for smaller or retrofit deployments, where physical wiring is not a possibility.

2.1.6 E-IoT Drivers

One of the primary components of many E-IoT systems is the inclusion of drivers

which may have different names depending on the manufacturer (e.g., Crestron mod-

ules, Control4 drivers). Drivers provide all the information and software modules

necessary to integrate a device into a centralized E-IoT system. For instance, to

integrate a Sony television into an E-IoT system, the controller must know what

the protocol of communication is (e.g., IR, Serial, IP, Zigbee, Zwave), the physical

inputs (HDMI ports, analog ports, etc), and the vendor-specific proprietary com-

mands to interface with a device. Drivers are not limited to simply integrating

physical devices and they also integrate services such as Weatherbug to add more

functionality to an existing system [Con10a, Con].

Vendor Drivers. Drivers are inserted and configured during programming or

maintenance stages of a smart environment by the integrator. Integrators may

obtain drivers in three different ways: (1) they may get drivers directly from the

E-IoT system software (pre-loaded drivers), (2) directly from a catalog hosted by

the manufacturer of the E-IoT system devices, or (3) download from a third-party

site in the Internet (from a third-party vendor or a developer). Vendors of E-IoT

systems often validate drivers distributed in their platforms for functionality such

as Control4’s certified drivers [Con19]. However, with millions of different devices

to be integrated, certifying every driver is not possible. In effect, integrators may

18

Figure 2.5: E-IoT system with four different control drivers, controller, and user
interfaces. Individual devices are controlled through the user interfaces after being
integrated.

be forced to use third-party drivers for their installations if no drivers are available

for their specific solutions from the vendor or manufacturer. In this chapter, we

focus on unverified drivers, or drivers available on third-party sites that have not

been checked for malicious content.

Driver Verification Mechanisms. Many operating systems and platforms of-

fer signature and verification mechanisms to guarantee the authenticity and integrity

of software components. Microsoft uses digital signatures to guarantee the integrity

of Microsoft drivers [Mic20]. Apple requires XCode and developer ID certificates to

sign software available for MAC computers [App20]. In Linux, the kernel module

signing facility secures Linux modules with signatures before installation [Ker20].

Further, Android developers have the ability to sign apps to guarantee the integrity

of installed applications [And20a]. In contrast to these well-documented practices,

E-IoT vendors do not offer validation for E-IoT drivers for their systems. As E-IoT

drivers often operate strictly on the proprietary software, traditional hardware-level

driver defenses do not apply to application-layer based E-IoT drivers. As such,

integrators are forced to trust unverified software which may be malicious in nature.

19

Unverified Drivers. Integrators may opt for unverified, third-party drivers

due to several reasons:

• Driver Availability. Verified drivers may not always be available to an in-

tegrator. Therefore, the only recourse to integrate a third-party device to

an E-IoT system may be with an unverified driver from an untrusted source.

Additionally, to integrate less-known devices, the driver has to be made by

the manufacturer, who may be untrusted and their code closed-source. For

instance, available integrator forums, offer a floury of unverified drivers for

projectors, televisions, and other devices [C4F]. Additionally, many vendors

do not offer E-IoT drivers for their devices, leading to third-party developers

to offer their own drivers.

• Cost. Developers may charge for verified drivers (e.g., Atlona HDMI Switcher

drivers for 110 USD), which in turn has to be paid by the integrator and end-

user [dri20]. Integrators may be tempted to use free unverified drivers available

on forums and online storefronts. Further, while paid drivers may be made by

trusted developers, they are not necessarily verified by the E-IoT vendor.

• Compatibility. Devices may change commands and specifications when their

firmware is updated [Pin19]. As such, verified drivers need to be updated

to remain compatible with the latest models and firmware. To get a system

running quickly after an update, an integrator may use an unverified driver

that claims to run perfectly with a newer firmware version of the device when

a verified driver is not available.

• Phishing. It is possible that an integrator may install an untrusted driver

through a phishing link offering a “driver update” or a tampered vendor web-

20

site. It is possible to receive drivers through email attachments, impersonating

a trusted vendor.

2.1.7 Consumer IoT vs. E-IoT

As commodity IoT smart systems have some limitations (e.g., scale, compatibility),

E-IoT offers a solution for complex and reliable deployments. In this subsection we

highlight the differences and benefits of E-IoT and why E-IoT solutions are chosen

over commodity IoT. As such, E-IoT has some unique security concerns and threats.

We outline some of these differences in Table 2.1.

Compatibility. As smart systems grow in scale, a user must determine the best

solution to easily control many different devices. While commodity systems are

limited in scale and compatible products, there are fewer limitations on what can

be integrated into E-IoT. As E-IoT vendors offer components such as drivers, which

are used to integrate third-party devices with E-IoT systems, many third-party

devices are compatible with E-IoT systems. However, from a security standpoint,

broad support of protocols can pose a threat as an attacker may be able to attack

through many available protocols. This is true as more diverse systems have more

possible points of failure.

Complexity. Commodity smart systems are designed to handle small deployments

of IoT devices. While this use case is sufficient for most consumers, commodity

smart systems are not a viable solution for large, complex deployments. For instance,

multi-room video and audio distribution is one of the more complex applications of

E-IoT. With audio/video switchers that can control up to 164 inputs and outputs,

E-IoT becomes a reliable way to manage large systems and deployments. E-IoT

systems also allow for a high degree of flexibility and customization. A number of

21

Table 2.1: Commodity IoT vs. E-IoT Solutions.

Commodity IoT Solutions E-IoT Solutions
Simpler, easily deployable solutions More complex, diverse smart solutions
Less compatible, approved devices More compatible 3rd-party devices

Lower cost of installation and maintenance High cost of installation, maintenance,
and programming

User-deployed and maintained smart systems Installer-deployed and maintained smart
systems

More often open-sourced documentation available publicly Closed-source systems, with no technical
documentation available

Often cannot be deployed as completely offline systems Must be deployed as always-offline systems
in some use-cases

protocols and modes of communication are supported with drivers and expandable

hardware components [dri20]. As a result, E-IoT can integrate more devices than

consumer systems. All in all, the unprecedented level of complexity can mean that

more vulnerabilities may occur at more stages and sectors of the E-IoT system in

comparison to commodity IoT systems.

Delegation. As the installation of E-IoT components is often complex; many users

opt to have installation and maintenance of E-IoT systems delegated to a dedicated

contractor. As such, in a similar manner to electricians, plumbers, and other spe-

cialists, E-IoT integrators are contracted only for the installation and maintenance

of E-IoT systems. In fact, the end-user does not need to understand the technical

details of the E-IoT system, but he only needs to know how to operate the system,

removing layers of complexity for any visitors. The delegation of installation and

maintenance of E-IoT means that in addition to technical expertise, integrators must

consider the security aspects of E-IoT systems. Thus, clients depend on their hired

integrators for the security of their systems. As such, if an integrator is careless,

or does not keep security in mind, the E-IoT system will be insecure without the

owner’s knowledge.

Cost. As E-IoT requires specialized integrators, custom programming, proprietary

hardware, and dedicated technical support, the systems come at a higher cost. Fur-

ther, the physical installation of E-IoT often involves fully rack-mounted, cable-

22

Figure 2.6: Example HDMI device distribution network including three displays
sharing the same source image (Laptop). Usually, in bars and conference rooms,
displays are chained via the HDMI cables.

managed systems throughout a building or home. While consumer IoT solutions

are designed be affordable by end-users, E-IoT installations may be valued at hun-

dreds of thousands of dollars depending on the complexity [Aud18]. The high cost

of E-IoT systems may lead some users to wrongly assume their systems are secure.

2.2 Overview on Multimedia Communication

In this section, we present some necessary concepts about the Consumer Electronics

Control (CEC) protocol and distributed HDMI-based multimedia.

2.2.1 The High Definition Multimedia Interface (HDMI)

The High Definition Multimedia Interface or HDMI, was developed with the pur-

pose of digital Audio/Video transfer with seamless integration of communication

features through the same connection [HDM09]. Through the 19-pin connector,

23

HDMI transfers Audio, Video, Network, and CEC communication signals [HDM18].

With almost ten billion HDMI-capable devices distributed around the globe, HDMI

has found a place in countless residences, offices and secure facilities and has become

one of the most widely-deployed protocols worldwide [Wri18]. In its current form,

HDMI is primarily used in high-bandwidth, video distribution applications between

vastly different types of devices (e.g., Televisions, Bluerays, Media Centers).

2.2.2 HDMI Distribution Networks

HDMI deployments are not limited to one-to-one connections. Similar to Ethernet

networks, there are many devices which control the HDMI signal flow and distribute

signal in a controlled and organized manner. For instance, in Figure 2.6 the user

maintains the same visual image over three displays, and switches between three

source devices. This figure also shows the laptop selected as the active source over

multiple displays. Depending on the device setup, there is a distribution of CEC

through the same connection. We note the following components in an HDMI

distribution and will refer to them during our dissertation.

Displays: Any device with a primary purpose of being an end-display such as a

television or a projector.

Hubs/Splitters: Any device which primarily allows multiple video signals to be split

to various displays from a single video input without switching.

Switches: Any device with a primary purpose of allowing various source device

inputs to one or more display device outputs. They also perform switching between

these sources to a different output(s).

Source Devices: Any device which is primarily an HDMI output-only devices such

as a Chromecast or a laptop.

24

Figure 2.7: The CEC stack and structure as used in HDMI

2.2.3 The Consumer Electronics Control (CEC) Protocol

CEC was developed in to enable interoperability between HDMI devices, with full

specification in 2005 [Hol05]. CEC signals are carried through Pin 13 as part of

the HDMI interface [HDM18]. The communications in CEC are divided into 10-bit

blocks that include a header, opcode, and data blocks. The flow of information is

dictated by the header, the first eight bits note the source and destination. Message

Destination may refer to a specific device by logical address or broadcast. Figure 2.7

shows how the CEC header allows for 16 unique IDs (4 bits). IDs 0-E specify device

addresses while the last logical address (F) is reserved for broadcast within the

HDMI distribution. This logical address assignment usually follows certain device-

type guidelines. For example, displays are usually assigned to the logical address

(0) and additional displays self assign to “free use” address (E).

25

CHAPTER 3

LITERATURE REVIEW

In this chapter, we present related work that is closely related to the research

presented in this dissertation.

3.1 Attacks and Defenses on Smart Devices

Attacks and defenses against smart devices have been an ongoing topic of research

in recent years.

3.1.1 Attacks on Alternative Threat Vectors

As early as 2013, works have highlighted various threats in smart devices and how

attackers are in constant search of new threat vectors to infect and compromise

smart devices [AP13, CBS+18a, BCMU19, LBAU17, KBAU18, BAU19, SBAU19,

ALAM19]. Further, research in alternative threat vectors such as USB shows how an

attacker can easily compromise devices using insecure protocols [DEB+19, DEBU19].

Very little research exists on the specific vulnerabilities of E-IoT systems or propri-

etary protocols. Coverage referring to such systems often comes in the form of

vendor guarantees for security on traditional network attacks (e.g., TCP/IP com-

ponents) [Cre20g]. Research on proprietary smart system protocols and threats

has been mostly reserved to reverse engineering of protocols or encryption such as

Somfy RTS [Pus16a, Pus16b]. Specifically for Crestron, the Cresnet protocol is

closed-source; thus, the only prior research we identified is an attempt at creating a

Cresnet protocol monitoring tool [Ste15]. Prior research on E-IoT lighting control

systems (LCSs) by the U.S. Department of Energy has highlighted some security

risks that come from LCSs [oE18].

26

3.1.2 Surveys on IoT System Security

The security of IoT smart devices have been an ongoing topic of research in the

recent years. As such, a number of IoT security surveys have been conducted

[ARC18, LYZ+17, AOHA17, H+19, HCS+19, ODO17, DV17, BKP15, ZG13, KT15,

YWY+17, PG16, JVW+14, BMV17]. Most of these surveys cover attacks, defenses,

security challenges and general counter-measures in IoT, others are more specific.

For instance, a survey by Hassan et al., highlights current research trends in IoT se-

curity [H+19]. Other work has focused on IoT security aspects, such as the survey by

Deogirikar et al., which focused specifically on known IoT attacks [DV17]. A survey

by Yan et al. also covered the topic of IoT trust management, which may be applica-

ble to E-IoT systems in some deployments [YZV14]. Individually, as early as 2013,

works have highlighted threats in smart devices, and how attackers always search for

new, unexplored threat vectors [CBS+18a, BCMU19, LBAU17, KBAU18, BAU19,

BAU18, Bab19, SBAU19]. We refer readers to the surveys Aris et al. [AOV18] for

the intrusion detection and mitigation mechanisms applicable to 6LoWPAN-based

IoT networks. For existing ML-based and traditional network intrusion detection

systems (NIDS) we refer to the survey by Chaabouni at al, [CMZ+19]. For research

on attacks and defenses on wireless sensor networks, we refer to a survey by Bu-

tun et al, on emerging sensor threats and security [BÖS19]. Further, for works on

distributed IoT devices, attack techniques, and defenses are covered in a survey by

Vishwakarma et al, [VJ20]. Finally, individual defense mechanisms such as the one

proposed by Forzin et al, investigates the use of Snort on Raspberry Pis to create an

IDS for IoT systems [SMCB16]. Another notable example is Flowguard, an edge-

defense mechanism proposed by Jia et al, to mitigate against IoT DDoS attacks

[JZA+20].

27

Some topics covered in this dissertation have had dedicated surveys examine at-

tacks, defenses and threats for each topic. For instance, several surveys have covered

jamming attacks, and defenses against wireless communication [BPP13a, MRR18,

MGKP09, GLY14]. Surveys on communication are also relevant, with a number

of surveys covering attacks, risks, and defense mechanisms for Bluetooth commu-

nication [LZ20, DG17, MT12, Dun10]. Sensory channels are also an active subject

of research and relevant to E-IoT. As such, related surveys on the security of sen-

sory channels touch upon subjects beyond E-IoT applications such as WSNs and

large-scale sensor deployments [XSJ+10, SJRB17, SPA17, PS+09, MG10, SSS11,

BT11, MOG11, VDM13, WS04, RM08]. Surveys such as the survey by Zhang

et al. cover advances on the current security issues of industrial cyber-physical

systems (ICPSs) [ZWF+21]. Further, as cloud computing is an active topic of re-

search, a number of relevant surveys have also covered cloud computing threats and

challenges [DDGD+19, LSR+15, Rya13, Sha14, SK11, GWS10, MPB+13, SJP16,

FSG+14, PAS14, SC17, XX12, AADV15, HRFMF13]. Other works focused on cloud

defense mechanisms, applying to different use cases beyond the scope of this survey

and E-IoT applications [FSG+14, Rya13, SC17, AADV15, MPB+13, CDG+20]. Fi-

nally, some works have focused on security mechanisms for lesser-known IoT threat

vectors, providing insight and defense strategies in fields such as medical implants

[WDK+17], vehicular networks [SDWV20], mobile networks [NZV20], and smart

grids [BSDV21].

3.2 Threats and Vulnerabilities on Multimedia Devices

Ongoing research in compromising A/V through unconventional means has been

a topic of discussion among researchers. Within the scope of Smart TVs, Oren

28

& Keromytis describe a method of compromising connected Smart TVs through

Hybrid Broadcast-Broadband Television (HbbTV) and web-based code injections

[OK14]. Related work from Niemietz et al., on Smart TVs explores the attacks on

Smart TVs through app-based approach [NSMS15]. Parts of this dissertation center

on TV embedded applications, and the security flaws which may come from vendor-

specific apps. On the topic of HDMI, research related to HDMI systems and their

security issues has remained a relatively uninvestigated avenue or not systematically

investigated by the research community. The most relevant work in HDMI systems

is a 2012 work published by NCC Group, which focused on vulnerabilities with

fuzzing [Dav13]. Similarly, Smith et al., presented HDMI-CEC as an avenue of

attacks through fuzzing [Smi15]. Finally, a BlackHat presentation by Smith et al.,

covered CECSTeR, a fuzzing framework designed specifically to compromise HDMI-

enabled devices through the HDMI-CEC communication bus [Dav12].

3.3 Industrial Communication Bus Threats and Security

Industrial Bus Security. In terms of industrial bus security, several researchers

have proposed works in industrial control networks, in-vehicle networks, and other

serial-based networks. Well-known industrial protocols, such as Modbus, DNP3,

S7comm, and IEC 60870-5 employ serial-based communication buses for industrial

devices. Industrial networks can be targeted by several threats such as man-in-the-

middle (MITM). In this regard, the survey of Conti et al. [CDL16] highlighted

MITM attacks. In terms of the studies aiming to protect industrial networks, the

works of Dudak et al. [DGS+19] and Wilson [Wil18] aimed to incorporate confi-

dentiality, integrity, and authenticity to industrial protocols against threats such as

MITM attacks. As a standardization effort to ensure the security of industrial pro-

29

tocols, including serial-based communication buses, the IEEE 1711.2 working group

proposed the Secure SCADA Communications Protocol [IEE20]. A comprehensive

review of security challenges regarding both serial and non-serial-based communi-

cation buses used by the industrial protocols can be found in the study of Volkova

et al. [VNBd19]. Further, solutions were proposed by researchers to detect attacks

targeting serial-based communication buses. To name a few, Eigner et al. [EKT16]

proposed an ML-based defense approach using K-nearest neighbors towards detect-

ing MITM attacks against industrial control networks (i.e., Modbus). Similarly,

Lan et al. [LZSL20] proposed a method of classifying S7comm traffic to detect data

tampering caused by MITM attacks. Controller Area Network (CAN) bus used in

in-vehicle networks employs serial communication [SKK16]. CAN bus security has

been a very active topic of research, and an extensive analysis of intrusion detection

systems in this regard can be found in the work of Young et al. [YZOB19]. In the

work of Buttigieg et al. [BFM17], the researchers investigated security issues and

executed MITM attacks against a CAN network. Morgner et al. [MPSB18] pro-

posed a novel attack that is based on third-parties deploying a malicious implant

that tampers with the serial communication of the target hardware. In their study,

the malicious implant is controlled by a remote attacker via IoT communication

protocols and is used to conduct various attacks.

30

CHAPTER 4

ANALYSIS OF CURRENT E-IOT LANDSCAPE

4.1 Introduction

The introduction of modern smart consumer electronics has led to the widespread

adoption of smart devices, with over 45 million smart home components sold world-

wide [ABC+18, IoT18]. Most users are familiar with commodity systems, off-the-

shelf smart systems that are easily installed by the average end-user without special-

ized training (e.g., Samsung SmartThings, Google Home) [Sul, BSAU18]. However,

in more complex installations, where robust, secure, and reliable smart solutions

are needed, Enterprise Internet-of-Things (E-IoT) systems (e.g, Crestron, Control4,

Savant, RTI) are accepted solutions. In contrast to commodity systems, E-IoT of-

fers customized deployments, with more use-cases and applications. Offering users a

broad set of compatible devices (e.g., sensors, Audio/Video equipment, interfaces),

protocols (e.g., Zigbee, Z-wave, IP, proprietary protocols), custom programmed be-

havior, and system User Interface (UI) customization. As such, E-IoT systems

are found in locations such as smart offices, smart buildings, luxury smart homes,

yachts, and secure conference rooms (as illustrated in Figure 6.1).

While the security of many emerging commodity systems is well-understood due

to prior research and mainstream knowledge, the security of E-IoT systems has been

largely overlooked [BAU18, Bab19, BAU19, DEBU19, BCMU19, DEB+19, LBAU17,

KBAU18, SBAU19, CBS+18a, AADB17, AFA+20, AAUA18, SAU20, SPA+18, USB,

CBS+18b, NSRU19, NSRU20, NSBU20, CMT+, SBC+20, BAR+20, MBY+19, DBU20].

As such, the lack of research and awareness coupled with the cost of devices and

installation of E-IoT has led many users to mistakenly assume that E-IoT systems

are completely secure. As E-IoT systems follow a unique design with specialty de-

31

vices, proprietary software, and a large number of compatible protocols, there is a

need to research unique threats and security of E-IoT systems. Further, E-IoT sys-

tems have been increasingly popular in smart installations, with Crestron growing

to 1.5 billion dollars of annual revenue in 2018 and Control4 deploying over 15 mil-

lion smart products in over 400,000 installations worldwide [Mar18, Con20b]. With

many of these systems present in high-profile locations, understanding threats and

defense strategies for E-IoT systems should be of great importance. However, no

current research focuses on E-IoT system components, attacks, threats, and relevant

defenses of E-IoT systems. We believe that this research gap in the literature is no-

table considering the prevalence of E-IoT deployments and ever-increasing attacks

against smart systems. To address this research gap and analyze the security of

E-IoT systems, we first divide E-IoT into four distinct layers: E-IoT Devices Layer,

Communications Layer, Monitoring and Applications Layer, and Business Layer.

As such, we consider E-IoT components at each layer, the associated threats, at-

tacks, and defense mechanisms. Additionally, we present key observations in E-IoT

security and provide a list of open issues that require further research.

Although there are existing studies on IoT systems, this chapter focuses solely on

relevant threats and solutions to E-IoT systems. This study aims to provide users

with adequate information on E-IoT system components, vulnerabilities, attacks,

and defenses. With this chapter, we also aim to encourage further research and de-

velopment from the research community on the topic of E-IoT systems. For instance,

this chapter highlights widely-used E-IoT proprietary technologies that have seen

no security scrutiny and thus have relied on security through obscurity for decades.

This chapter may be valuable to researchers, E-IoT vendors, users, installers, and

manufacturers that want to improve their security practices. Further, users who

do not know about E-IoT concepts may find this study a beneficial resource. Ulti-

32

mately, this chapter sheds light on the security implications of E-IoT systems and

raises awareness of security practices, protocols, and viable threats against E-IoT

systems.

The contributions of this chapter are as follows:

• We highlight popular E-IoT system platforms and identify security challenges

in these systems.

• We categorize and analyze E-IoT components, threats, attacks, and defenses

by dividing E-IoT systems into four distinct layers.

• We present the need for further research in E-IoT systems and a number of

proprietary technologies used in E-IoT.

• We open discussion on the security of E-IoT systems, and related defense

mechanisms.

4.1.1 Differences from Existing Works.

This chapter differs from previously discussed works as it focuses on the insecurities,

possible threats, and defenses applicable to E-IoT. To the best of our knowledge, this

is the first study that focuses solely on E-IoT systems and their security, categorizing

E-IoT systems into four unique layers. Specifically, we categorize E-IoT components

into four distinct layers, (1) the E-IoT Devices Layer, (2) the Communications Layer,

(3) the Monitoring and Applications Layer, and (4) the Business Layer. We take

this approach as E-IoT system architecture differs from many IoT systems. Further,

we present a threat model for each distinct layer of E-IoT, as each layer may present

different threats and require different capabilities from attackers.

33

4.2 Taxonomy and Scope

In this section, we firstly explain the taxonomy we employed for the categorization

of the security issues and the associated defenses for E-IoT systems. Following that,

we highlight the topics covered in this chapter. While covering the topics that are

closely related to E-IoT, we do not consider the topics that are not directly related

to E-IoT or that are common to general computer systems in the scope of this study.

4.2.1 Taxonomy

In this chapter, we divide E-IoT into four distinct layers: E-IoT Devices Layer,

Communications Layer, Monitoring and Applications Layer, and Business Layer.

Based on the layers of E-IoT, we consider E-IoT components and we categorize the

associated threats, attacks, and defense mechanisms accordingly.

4.2.2 Scope

Scope of E-IoT Devices Layer. For the E-IoT devices layer section, we cover

attacks (e.g., sensory attacks, node theft, battery exhaustion) and defense mecha-

nisms that target components at the E-IoT devices layer. Included in these topics

are E-IoT devices, supply chain attacks, and physical access attacks relevant to

E-IoT systems. Topics outside of the scope of E-IoT devices layer are attacks on

chipsets (e.g., processor side-channel attacks) and other physical devices that are

either widely researched or not unique to E-IoT.

Scope of Communications Layer. This chapter covers communication interfaces,

publicly-documented protocols, proprietary protocols, and other relevant communi-

cation components as part of the communications layer. As such, this chapter covers

34

jamming attacks and other well-known attacks against public and proprietary pro-

tocols used in E-IoT. Finally, communication protocols such as TCP/IP, cellular

communication, long-range radio protocols such as LoRaWAN, and their respec-

tive attacks are outside of this chapter’s scope as they are not common in E-IoT

use-cases.

Scope of Monitoring and Applications Layer. Topics in the monitoring and

applications layer include E-IoT software, configuration, and software services. Top-

ics outside of this layer’s scope are operating systems as they are a common topic

of research and not exclusive to E-IoT systems. For instance, Linux-based op-

erating systems are common in E-IoT and other smart systems, making Linux a

common topic of research. Also, outside of this layer’s scope, web-based Distributed

Denial-of-Service (DDoS) attacks, mobile application threats, ransomware, firmware

attacks, and common software vulnerabilities.

Scope of E-IoT Business Layer. Relevant topics to the E-IoT business layer in-

clude remote access cloud services, maintenance services, and CCTV data storage.

As the E-IoT business layer is not employed by all E-IoT systems, and cloud security

is a diverse field, some topics are not covered. Topics outside of this chapter’s scope

are encrypted storage access, computation of stored E-IoT content in cloud environ-

ments, online microservices, advanced persistent threats, virtualization technologies,

general data storage, and other cloud concepts that are uncommon for E-IoT.

4.3 E-IoT Devices Layer: Components and Security

In this section, we cover the E-IoT Devices layer, threats, defenses, and their impli-

cations. First, we introduce components of the E-IoT devices layer, and then cover

35

threats and attacks. Finally, we give an overview of possible defense and mitigation

mechanisms.

4.3.1 Elements of the E-IoT Devices Layer

E-IoT Devices. Many devices, such as sensors and lighting controllers, are inte-

grated into E-IoT systems to expand the use cases and functionality. Integrated

devices may serve specific purposes (e.g., television, media player) or be a part of

larger use-cases such as power control modules for lighting control systems.

Sensors. E-IoT and E-IoT-integrated devices will very often have sensors used

to trigger programmed actions in an E-IoT system. Sensors may play a role in

E-IoT in several different ways. For instance, individual sensors (e.g., glass break,

motion, contact) can be integrated directly into an E-IoT system thanks to the

official support of E-IoT vendors for several protocols (e.g., Zigbee, Bluetooth, Z-

wave) [Con20c, Sav20a, Cre20c]. In addition, an external system, such as an alarm

system, can be configured to work with an E-IoT deployment. For instance, an

E-IoT deployment with water leak detection sensors and automated valves can be

configured to close a leak, inform the user via text, and display a message on E-IoT

interfaces about the issue [Con15b].

4.3.2 Threat Model for E-IoT Devices Layer

For this chapter, we consider Mallory to be an attacker that targets E-IoT systems

through different E-IoT layers. In the E-IoT Devices Layer, Mallory compromises

the E-IoT system solely through physical access to interfaces, devices, cabling, and

unattended equipment. To compromise an E-IoT system through the E-IoT devices,

Mallory is assumed to have physical access to devices during the manufacturing, in-

36

stallation, operation, or maintenance stages of the E-IoT system. Mallory is capable

of this, as security for device-layer components in E-IoT environments relies on the

specific devices and the integrator’s installation practices (e.g., directional anten-

nas, access restriction, tamper-proofing). We explain Mallory’s possible actions at

different stages of the E-IoT devices as follows:

Manufacturing and Transportation. In the manufacturing or transportation stages

of E-IoT equipment, Mallory may have several opportunities to compromise a de-

vice. During these stages, insiders (e.g., manufacturing workers, delivery drivers,

packaging personnel) all have direct access to the E-IoT device before a device is in-

stalled, making supply chain attacks possible for Mallory, who may be in the role of

an insider attacker. Further, Mallory could be an employee of outsourced manufac-

turing, and as such, it may be particularly difficult to prosecute Mallory during the

manufacturing and transportation stages. In this role, Mallory may target E-IoT

devices specifically if she has prior knowledge that E-IoT components may be in-

stalled in sensitive locations (e.g., secure conference room, access control, enterprise

network).

Deployment, Operation, and Maintenance. E-IoT installations may see visitors such

as presenting guests or maintenance workers that have direct access to E-IoT equip-

ment. As such, Mallory as a visitor may perform a node capture attack and further

compromise an E-IoT system. Additionally, if Mallory is a more knowledgeable at-

tacker, she may perform sensory channel and side-channel attacks. In other roles,

such as a role where Mallory is an IT professional, she could compromise devices in

the same manner.

37

4.3.3 E-IoT Devices Layer: Attacks and Vulnerabilities

In the following subsection, we cover attacks and vulnerabilities relevant to the E-

IoT Devices Layer. These attacks can be performed by Mallory as highlighted in

the threat model.

Supply Chain Attacks. Even before E-IoT devices reach integrators, installers,

and consumers, devices may be compromised during manufacturing and distribu-

tion stages. Several articles have highlighted supply chain threats and provided

examples of how systems in different industries (e.g., medical, banking) have been

targeted and compromised through supply chain attacks [Mil13, Nat20a, Edw20,

FH18, Mar19, YMF20]. As specific industries have been targeted, it is reasonable

to assume that E-IoT systems may be a future target for supply chain attacks. With

the price-point of E-IoT systems and high-profile clients, attackers may find E-IoT

systems an attractive target for supply-chain attacks. Work by Farooq et al. ana-

lyzed the risks and research challenges in IoT supply chain security [FZ19]. Their

work highlighted three types of interactions in the supply chain: device-supplier in-

teractions, supplier-supplier interactions, and device-device interactions. In device-

supplier interactions, a supplier provides maintenance, security patches, and up-

grades to devices. Supplier-supplier interactions are when suppliers use different

companies to distribute devices. Finally, device-device interactions occur due to the

inter-connectivity of devices in the supply chain, that is, communication between

devices (e.g., configuration) in the supply chain. As such, an attacker could compro-

mise a device at any of these interactions. The UK’s National Cyber Security Centre

highlighted several attacks that can occur from supply chain interactions [Nat20b].

For instance, malware inserted into vendor websites or devices can “trojanize” de-

vices before the devices leave the supply chain. As compromised software is very

difficult to detect at the source, target companies may not suspect the software

38

is altered or illegitimate. Supply chain threats also extend to embedded hardware

such as chipsets, unauthenticated parts, and counterfeit components inserted in the

supply chain. These counterfeit components may impact systems by being of lower

quality [Gor12]. In other cases, hardware threats extend to hardware trojans, which

have been an ongoing topic of research [BR15, TK10, KTC+08]. In this case, ma-

licious chipsets and electronic components are inserted into devices, usually during

manufacturing stages, compromising the integrity of the device. These types of

attacks have been observed, in a notable case where Chinese manufacturers infil-

trated 30 large U.S companies using malicious hardware components embedded in

networking devices [RR18]. As such, E-IoT can easily become a target to a variety

of supply chain attacks, as distribution, manufacturing, and installation stages of

E-IoT provide wide opportunity to compromise E-IoT devices.

Physical Attacks. In any E-IoT deployment, E-IoT devices will be found through-

out the location or establishment. Some of these devices may be installed in private,

unsupervised areas (e.g., a keypad in a closet, an empty conference room). As such,

it may be possible for visiting attackers to interact with physical devices integrated

into E-IoT systems. As several vulnerabilities against physical devices rely on phys-

ical access to E-IoT devices and interfaces (e.g., node capture, tampering, button

resets, theft). Physical access to devices and E-IoT components may allow an at-

tacker to perform malicious actions on E-IoT devices, enabling programming mode,

hard resets, or otherwise, change the configuration in E-IoT devices that can ren-

der them inoperable. For instance, “button sequences” may present a vulnerability

to E-IoT devices. Reset sequences are used for purposes such as changing a de-

vice’s configuration, resetting a device to factory settings, or even gain information

about devices [Cre20h, Con13b]. As such, an attacker can use these sequences to

39

alter physical devices’ configuration, gather information, or otherwise cause E-IoT

components to become unavailable to the E-IoT system.

Physical access to E-IoT devices allows malicious actors to perform node cap-

ture attacks, where devices are physically captured (or stolen) to gather sensitive

information about a system [BTJS12]. Although there is no study on node capture

attacks in E-IoT, attacks applied on related domains may be applicable to E-IoT as

well. In this respect, work by Wang et al. covered the implications of node capture

attacks in wireless sensor networks (WSNs), which are relevant to wireless E-IoT

devices (e.g., sensors, interfaces, remotes) as they often share the similar commu-

nication technologies [WWT+20]. The authors of the work identified ten unique

vulnerabilities that can be exploited through node capture attacks affecting session

keys, users, sensor nodes, gateways, and availability of the network. As such, the

attacks could acquire communication keys, eavesdrop on messages, impersonate de-

vices, track user activity, and impersonate users. Several other pieces of literature

have discussed node capture attacks that exploit vulnerabilities to gather keys from

connected devices [BBP10b, BBP10a, DLD09, KSP07, MT11, RAL+17]. The work

of Lin et al. focused more on the efficiency of node capture attacks and introduced

the full graph attack (FGA), with two optimal algorithms for this attack [LWYY15].

The attack specializes in compromising relationships between nodes and paths. As

such, the attacks reportedly increased the efficiency by 50% compared to previously

proposed attacks.

Side-Channel and Sensory Channel Attacks. Side-channel attacks are threats

against the implementation of computer systems, rather than inherent weaknesses.

These attacks allow attackers to compromise a system or component through an in-

direct channel (e.g., timing information, power consumption, electromagnetic leaks,

auditory channels) [Sta10]. A number of E-IoT components may be vulnerable

40

to side-channel attacks through electromagnetic (EM) approaches. For instance,

a study by Smulders et al. on serial-based communication suggested that electro-

magnetic radiation can be used to eavesdrop on physical cables and serial-based

communication as a type of side-channel attack [Smu90]. These methods take ad-

vantage of a known fact that most electronic equipment emits electrical radiation,

and bit amplitude in serial-based communication is relatively larger than other sig-

nals [HW88]. Their tests performed with a standard AM/FM receiver antenna al-

lowed intercepting and reading signals going through the wire. The work concluded

that data signals transmitted over serial-based communication could be intercepted

from several meters away. Further, this work noted that the equipment required

to perform these scans is inexpensive and readily available, as such, similar attacks

may be possible in similar unsecured networks with improved equipment and tech-

niques. Legacy systems, or systems without authentication or encryption may be

especially vulnerable to these or similar attacks. Electromagnetic attacks are not

limited to wiring, as work published as early as 1986 by Eck et al. noted that

electromagnetic radiation eavesdropping attacks are possible in video display units

[VE85]. Further work by Kuhn et al. noted that while technology has changed,

electromagnetic eavesdropping can work on more modern LCD displays [Kuh04].

Researchers have found other ways to compromise systems that may be relevant

to E-IoT. For instance, Savage et al. showed that with recorded video (e.g., from

a CCTV system, intercom systems), an attacker could use passive sound recovery

to eavesdrop on conversations [Sav15]. Further work by Davis et al. demonstrated

that an attacker could also use vibrations on object surfaces for eavesdropping under

certain conditions (e.g., visible glass or water)[DRW+14].

As E-IoT may control smart lights, light-emitting devices, and light sensors,

threats posed by visible-light side-channels may affect E-IoT deployments. Infor-

41

mation leakage through optical side-channels has been an active topic of research.

For instance, Xu et al. created a video recognition attack where they were able to

identify a video being watched on a television using the light emitted by the tele-

vision through a window [XFM14]. Similar works as presented by Schwittmann et

al. used ambient light sensors on smartphones and smartwatches to perform similar

attacks [SBM+17, SMW+16]. Alternatively, Light Ears, presented by Maiti et al.,

proposed a new attack vector designed to infer a user’s private data and preferences

from smart lighting media visualization features [MJ19]. Based on this research,

researchers used the light and sound intensity of smart lights to infer ongoing au-

dio and video. Alternatively, covert optical channels have been researched, with

Loughry et al. providing the first call of attention to possible information exfiltra-

tion attacks on air-gapped systems by using LED light indicators [LU02]. Similar

data-exfiltration attacks have been demonstrated using LCD displays [GHKE16], in-

frared [ZZY18], security camera infrared lights [GB19], air-gapped systems [GE18],

and smart lights [RS16].

As E-IoT systems rely on sensors for accurate measurements and to trigger pre-

programmed events, physical sensor threats are a concern for E-IoT. Sensor threats

and security have been an active topic of research with multiple surveys. However,

most of these surveys focus on sensor communication and wireless sensor networks

[XSJ+10, SJRB17, SPA17, PS+09, MG10, SSS11, BT11, MOG11, VDM13, WS04,

RM08]. As sensors are a vast research topic, different attacks and vulnerabilities on

sensors have been discovered that can be applicable to E-IoT. Analog threats such

as sound waves can maliciously influence an accelerometer’s output and cause unin-

tended effects in an E-IoT system configured to respond to specific readings [KF18].

Other proposed attacks, such as DolphinAttack, target microphones through

inaudible voice commands, can be effective against E-IoT systems that integrate

42

voice recognition and microphones [ZYJ+17]. With many sensors lacking security

mechanisms, E-IoT systems may be particularly vulnerable to sensor attacks. Work

presented by Uluagac et al. summarized several sensory channels in cyber-physical

systems (CPS) and devices that can be targeted by an attacker [USB14]. These

channels are the light, seismic, acoustic, and infrared channels. The light channel

functions through light sensors and ambient light temperatures. The light channel

may be used in E-IoT to trigger programmed events at nighttime. Seismic channels

are vibrational channels that can be detected by devices such as accelerometers that

detect the physical movements of a device. Acoustic channels are based on sound

waves and can be comparable to sonar technologies. Finally, infrared channels use

infrared emitters for navigation assistance and can present a covert side-channel for

attacks as it is not visible to the human eye. Further, this work highlighted that

these sensory channels can all be used to trigger malware (e.g., keyloggers, DoS,

spyware) already implanted into devices by attackers and that traditional security

mitigation strategies do not defend against sensory channel attacks.

Other physical attacks on sensors rely on multiple sensors to function. One of the

most researched examples is keystroke inference on devices with unprotected sen-

sors [Spr14, CC12, AHIN13, HGC+19, OHD+12, MVCT11, NSN14, LS19, XBZ12,

MVBC12, Ngu15, HB18, LCY+18, RRC16, VP09]. While keystroke inference re-

search centers around mobile devices, it may be relevant to E-IoT. Many E-IoT

interface devices (e.g., dedicated touchscreens, keypads, remotes) have similarities

with mobile devices as they possess several sensors and receive user input. Many of

these keystroke inference attacks rely on multiple sensors in different sensor channels

to infer sensitive information (e.g., what a user is typing from sensor activity). For

instance, a work presented by Han et al. introduced PitchIn, a method for exploit-

ing non-acoustic sensors used in smart environments that can allow an attacker to

43

perform speech reconstruction attacks [HCT17]. With this method, multiple sen-

sors (e.g., geophones, accelerometers, gyroscopes) were used to reconstruct audio

and perform word recognition in the mentioned work.

Battery Exhaustion Attacks. As a number of E-IoT devices are battery-powered

(e.g., remotes, interfaces, sensors, etc.), an attacker could use battery exhaustion

attacks to impact the operation of E-IoT systems negatively. Battery Exhaustion

attacks are a type of DoS attack that aims to deplete the batteries of devices by

forcing the device to perform an excess amount of tasks [SKR17, BCM15]. Moyers

et al. presented the effects of wireless and Bluetooth battery depletion attacks

on mobile devices [MDMT10]. This work classified three distinct types of battery

exhaustion implementations, service request power attacks, benign power attacks,

and malignant power attacks. For service request power attacks, attackers target

devices by making repeated requests to these devices and exhaust power through

the wireless network interface card. In benign power attacks, victims are forced

to perform repeated tasks (e.g., data processing, diagnostics) and consume large

amounts of power. Finally, malignant power attacks are usually implemented with

malware designed to increase power consumption in a device (e.g., increasing the

CPU clock). Other work by Martin et al. highlighted the effects of these attacks

on wireless devices, noting that damage caused by battery exhaustion attacks may

also cause long-term damage to battery life in addition to a DoS condition when a

device becomes unavailable [MHDK04].

4.3.4 Mitigation of E-IoT Devices Layer Attacks

In this subsection, we highlight possible mitigations to E-IoT devices-layer threats.

44

Supply Chain Defenses. A few solutions were proposed in the literature to de-

fend against supply chain attacks. In order to secure the device endpoints, Yang

et al. proposed an RFID-based solution that authenticates devices once they are

deployed [YFT15]. This work was taken further with the introduction of ReSC

by the same authors, a solution proposed to defend against the theft of authentic

smart devices, and the insertion of counterfeit malicious devices [YFT18, YFT17].

Another approach by Chamekh et al. proposed the use of a Merkle tree manage-

ment framework applied to supply chain architecture to provide a more trusted

system and defend against supply chain attacks [CHEK18]. Alternatively, Chao Lin

et al. proposed a blockchain-based framework to protect and guarantee anonymous

authentication, auditability, and confidentiality for the supply chain [LHH+18]. An-

other solution proposed by Jangirala et al. proposed the use of blockchain-enabled

RFID-based authentication protocol (LBRAPS) for supply chain security [JDV19].

During transportation stages, tamper-proof and tamper-evident packages and equip-

ment may also prevent unauthorized attackers from tampering with devices before

they reach a client [EEEE07, Rob19]. The European Union Agency for Cyberse-

curity (ENISA) provided comprehensive guidelines for IoT supply chain security

[Eur20]. These guidelines divide defense strategies into several relevant stages rele-

vant to E-IoT: product design, component assembly and embedded software, device

programming, platform development, distribution and logistics, technical support

& maintenance, and device recovery & repurpose. For product design, guidelines

dictate that secure software libraries and cryptographic practices, sabotage preven-

tion, tamper-resistant software and hardware, and chain of trust are design practices

that may prevent supply-chain attacks. Further the ENISA guidelines highlight that

vendors can take some preventative measures such as, working with suppliers that

45

provide security guarantees, maintaining transparency, having a skilled workforce,

promoting security awareness, and developing novel trust models.

One of the largest topic of research is counterfeit components inserted in the sup-

ply chain, as such best practices and solutions have been proposed. For instance,

ENISA guidelines highlight that parts used during manufacturing should be authen-

ticated to prevent counterfeit components from entering the supply chain. Further,

to prevent defective components, ENISA also advises for quality control and test-

ing of parts to prevent defective components [Eur20]. Surveys conducted on the

topic of counterfeit devices and hardware Trojans have suggested several solutions

[BR15, TK10]. First, optical inspection-based detection relies on reverse engineer-

ing to detect Trojans. As such, techniques such as scanning optical microscopy,

scanning electron microscopy, and pico-second imaging circuity analysis are used.

Images captured with these techniques are then compared to benign chipsets pro-

vided by the designer. Testing-based detection techniques use functional testing to

detect Trojans. As such, a functional set of vectors need to be designed for each

chipset. Side-channel detection approaches rely on factors such as power consump-

tion, EM emissions, and time delays to detect anomalies. Such approaches can also

be used to detect Trojans. For instance Agarwal et al. used Principle Component

Analysis to create a side-channel fingerprint of a circuit and compare it to a known,

benign model [ABK+07]. Run-time detection approaches are also used, usually

combining hardware and software to detect Trojans. For instance, DEFENSE is a

proposed monitoring framework that operates at device run-time to detect hard-

ware anomalies and Trojans [AB09]. Finally, invasive techniques modify integrated

circuit’s structures to avoid the insertion of hardware Trojans. The studies have

shown that hardware obfuscation methods can prevent Trojan insertion and assist

other detection methods [CB08, CB09a, CB09b].

46

Physical Security. Physical security of cabling and devices is an important part

of E-IoT deployments as E-IoT devices can be stolen, tampered with, or other-

wise damaged. Vendors implement some physical mitigations and best practices for

many of their devices. Additionally, E-IoT systems make an effort towards tamper-

proofing their systems and offer suggestions on physical installation. For instance,

Control4 released an exterior installation security best practices document [Con12].

This document highlights several important points on exposed devices such as door

stations used for gate access and intercom. First, installers are encouraged to use

standard tamper-resistant security screws shipped with devices to prevent oppor-

tunists from stealing or tampering with devices. Second, relays used to open security

gates should not be connected at the door station itself and instead to a relay inside

the building. Relays’ endpoints should be in a secure location as physical attackers

may compromise devices by tampering with relays and gain unauthorized access to

locations. Finally, they acknowledge the risks associated with the network cable

running to public interfaces (e.g., door stations, intercoms) and highlight solutions

such as network isolation, MAC address filtering, and wireless door station access as

possible solutions. In some instances, E-IoT components may only be removed with

custom tools to prevent theft and tampering. For instance, touchscreens may come

with a special tool so that an unprepared attacker cannot easily remove the inter-

face [Con15a]. Finally, integrators and users should take advantage of monitoring

tools (e.g., wireless monitoring, IP monitoring) to identify devices that fall offline

to know if they have been tampered with. Practices used for loss prevention may

also be useful for E-IoT. Concepts such as beacons, smart tags, and geo-fencing may

prevent node capture attacks and alert integrators before an attack occurs [Ing19].

Integrators may also take certain steps in the installation to make sure that E-IoT

devices are secure. For instance, installers should follow best practices, place sensors

47

in places where they are not easily reachable and do not leave any exposed wiring in

installations. As noted earlier, physical access to exposed wiring and devices would

make it trivial for an attacker to compromise an E-IoT system in public and unmon-

itored areas. Further, installers and users should consider physical access control to

prevent access by unauthorized users.

Side Channel and Sensory Channel Defenses. There exist a number of de-

fense solutions against side-channel attacks. For instance, for EM and many side-

channel eavesdropping attacks, physical security and encryption provides a level

of defense. For attacks that rely on sound, AuDroid is a policy-based framework

for smart devices proposed by Petracca et al. [PSJA15]. AuDroid controls infor-

mation flow in audio channels and notifies users when audio access is requested.

Access control frameworks such as these may present a viable solution for side-

channel attacks where sensory and audio channels can be abused. A number of

defense mechanisms proposed for sensors and wireless sensor networks may be ap-

plicable to E-IoT against side-channel attacks. For instance, for sensors in mo-

bile devices such as phones, security mechanisms have been an ongoing topic of

research [SZLJ14, WYZ+15, EGH+14, WH14, XZ15]. However, many of these pro-

posed solutions rely on software-based approaches to defend against sensor-based

attacks. Alternatively, solutions such as frameworks and intrusion detection sys-

tems have been proposed for wireless sensor networks and may apply to large E-

IoT deployments configured to rely more heavily on sensors for programmed events

[Str07, IDF07, FKWL13, PAL+08, YT08]. One example, 6thSense, a sensor-based

defense mechanism by Sikder et al. takes a machine learning approach to detect ma-

licious behavior occurring in smart devices [SAU20, SAU19, SAU17]. The proposed

solution relies on sensor co-dependence, sensor sampling, and real-time monitoring.

Since E-IoT systems may share some similarities to proposed solutions (e.g., multiple

48

sensors, centralized design), these defense mechanisms may apply to E-IoT against

side-channel and sensory channel attacks. While many of these solutions may pro-

tect against side-channels, some side-channel attacks (e.g., LightEars) do not have

direct solutions proposed beyond physical security and require future research.

Battery Exhaustion Defenses. A number of mitigation strategies have been

proposed to combat battery exhaustion attacks on wireless devices. The solution

for E-IoT may be entirely dependent on the type of the system. For instance,

battery exhaustion defenses may be different in a Zigbee vs another wireless-based

deployment. Buennemeyer et al. proposed Battery-Sensing Intrusion Protection

System (B-SIPS) that focuses on small mobile hosts and correlates power consump-

tion with wireless activity [BGMT07]. Moyers et al. proposed an intrusion detec-

tion system (IDS) to protect against malicious activities [MDMT10]. The proposed

Multi-vector Portable Intrusion Detection System (MVP-IDS) works by monitoring

electrical current changes and correlating this with malicious traffic. Other IDSs

have been developed, such as the one proposed by Nash et al. that uses CPU load

and disk access to estimate power consumption and detect if battery exhaustion

attacks are occurring [Nas05]. In situations where devices may be homogeneous, de-

fenses against battery exhaustion attacks can be based on comparing these devices

to create a realistic baseline and find anomalies that may be effective in wireless sen-

sors and interfaces [UKTB15]. Finally, work by Hristozov et al. using rate limiting

approaches to defend against battery exhaustion attacks reported to be successful

for devices supporting RESTful services [HHS19].

49

4.4 Communications Layer

In this section, we firstly cover components of the E-IoT Communications Layer

such as interfaces and protocols. We follow up with the threat model for this layer.

Moreover, we introduce E-IoT Communications Layer threats and attacks. Finally,

we highlight mitigations and security mechanisms applicable to the E-IoT Commu-

nications Layer.

4.4.1 Elements of the E-IoT Communications Layer

Ethernet. Internet Protocol (IP) communication has become one of the most

widely deployed standards in internal and external networks. Often, modern homes

and offices already have the physical Ethernet wiring and infrastructure for Inter-

net Protocol. As such, an E-IoT system installer can use both standards (IPv4 or

IPv6) for Ethernet-based communication [FS18]. Additionally, with IP, integrators

have the flexibility to divide traffic flow of connected devices with subnetting and

virtual LANs (VLANs). For instance, an integrator can divide a larger network

into segmented sections with subnetting, determining the maximum number of de-

vices in each segment through network configuration [MP85]. Similarly, VLANs

are used to improve information flow, security and better manage an IP network

[Sup20]. For instance, Pakedge, a vendor of E-IoT-centered network solutions, en-

courages VLANs for E-IoT installations and network segmentation [Pak20b]. As IP

is popular and widely supported by many vendors, E-IoT systems will often use IP

communication in some of their components. Ethernet provides the advantage of a

superior level of reliability and speed compared to the wireless counterpart. Further,

Ethernet can power devices through Power-over-Ethernet (PoE) technology [Ver16].

As such, integrators only need to cable a PoE-capable connection to a device, such

50

as a touchscreen, to provide data and power through a single connection. Physical

cabling has proven to be a reliable communication method between smart compo-

nents and remains popular for high-bandwidth, high-reliability applications. For

instance, Ethernet may be used to control devices in the equipment rack such as

IP-capable A/V receivers, Ethernet-powered IP cameras, or hardwired touchscreens

[Mar14]. Moreover, Ethernet offers different networking topologies (e.g., star, ring,

single-switch), which grant integrators the flexibility needed for custom E-IoT in-

stallations [MLM+99].

WiFi. Wireless Fidelity (WiFi) is a frequently used communication protocol for

smart devices where Ethernet cabling endpoints are not viable. Various modes

within IEEE 802.11 have allowed for increased speeds and frequencies. The main

advantage of wireless communication is that E-IoT devices (e.g., thermostats, con-

trollers, A/V) may use a wireless connection without requiring an extra physical

connection to integrate into an existing system. Similarly to Ethernet Category

cables: 802.11 generations b, a, g, n provide different levels of data rates, as well

as operate in 2.4 GHz or 5.0 GHz[Int17]. In many E-IoT systems, WiFi serves dif-

ferent purposes due to its widespread nature. Many smart device vendors enable

wireless network connections natively on their devices, making such devices easy

to integrate into E-IoT systems. Examples of WiFi usage in E-IoT systems may

include interfaces (e.g., phones, touch screens, tablets) and physical devices (e.g.,

displays, receivers, projectors). In terms of WiFi security, a number of configurations

are available for accepted WiFi security standards, such as the Wireless Equivalent

Standard (WEP) which is obsolete now or WiFi Protected Access (WPA), with

the latest release being WPA3 security [BSK04, AMA20a]. Furthermore, in larger

and more complex network deployments, enterprise solutions exist and are usually

installed by trained integrators [Li 18]. As such, a number of different configura-

51

tions are possible with WiFi communication dependent on the equipment, level of

security, and installation requirements of an E-IoT deployment.

Zigbee and Z-wave. Two of the most popular mesh-network protocols for smart

devices are Zigbee and the proprietary Z-wave [Z-W18, Zig18]. Various vendors have

embedded radio communication hardware on their thermostats to connect their de-

vices to more extensive mesh networks. While Zigbee and Z-wave are different

protocols, they are used for similar purposes in E-IoT systems. For instance, these

protocols are often used in low-bandwidth applications to integrate devices such as

thermostats, light dimmers, relays, and sensors to a larger system. Mesh networking

allows users to retrofit existing installation by replacing existing components such as

light switches for wireless-enabled components. For Zigbee, usually, there are three

types of devices within the Zigbee mesh network: a coordinator, routers, and end

devices [RSP11]. The Zigbee coordinator is the root of the Zigbee network and man-

ages components necessary for Zigbee to operate (e.g., security keys, access control,

security policies, stack profile). The Zigbee Router relays information and routes

Zigbee packets among devices. Some Zigbee routers may also have the functions of

end-devices. Finally, the end-devices send and receive communication from parent

nodes and are usually designed for a specific purpose (e.g., door locks, light bulbs,

sensors). Z-wave follows a similar device architecture with three basic device types,

controllers, routers, and slaves. These devices fulfill similar purposes as their Zigbee

counterparts [Dav20].

Bluetooth/BLE is a wireless standard for data exchange between portable and

fixed devices. A short-wavelength protocol, Bluetooth operates from the 2.4 to 2.485

GHz range [Blu20a]. Additionally, Bluetooth may operate as Bluetooth Low-Energy

(BLE) or Bluetooth Mesh, which allow for more varied applications to the protocol

[Blu20b]. With the number of Bluetooth devices in the market, E-IoT systems are

52

compatible with the protocol for different purposes. For instance, Savant may use

Bluetooth Low Energy for their smart lighting solutions, while other systems use

Bluetooth for connecting mobile devices and stream music to the central system

[Sav]. Bluetooth networks, commonly known as piconets, follow a master and slave

architecture where up to seven active slave devices can be connected to a master

device [SP08].

IR Infrared (IR) is a wireless optical communication medium used to control de-

vices over short, line-of-sight ranges [Tec20]. While limited, as it cannot penetrate

through walls and the short transmission rate, IR remains popular in many con-

sumer devices (e.g., A/V, televisions remotes, motorized components). As such,

because of this widespread support, IR sees common use in many E-IoT systems

that need to integrate these devices into centralized E-IoT systems. E-IoT systems

integrate these devices using IR flashers placed on physical devices; these flashers

relay messages directly to the receiving device [Sna20]. As some devices can only

be controlled through IR, E-IoT makes widespread use of IR communication.

Proprietary Wireless. Not all protocols used by E-IoT systems are well-known or

open-source. Proprietary wireless communication protocols are often used in E-IoT

systems and have not seen much research. For instance, the Radio Technology Somfy

(RTS), is used by Somfy, one of the major vendors of E-IoT motorized blinds [Som].

Similarly, popular system vendors such as Lutron, Levitron, Legrand, and Crestron

also use proprietary wireless protocols that have remained mostly unexplored [Bla20,

Creb, Leg19, Lev]. Table 4.1 highlights some proprietary wireless protocols used by

E-IoT systems and their usage in E-IoT.

Serial-based. Serial-based communication is a precursor to several modern device

communication standards. While many may consider the use of serial-based com-

munication as deprecated, various E-IoT systems and connected devices officially

53

support serial-based communication for system-to-device integration. Further, some

E-IoT systems have built their systems on top of existing serial-based communication

for proprietary devices. For instance, since the accepted inception in 1969 [fCo02],

Recommended Standard 232 (RS-232) has been a well-known medium for device-to-

device communication. This standard is often used in E-IoT environments for com-

munication between devices. Some of these devices include thermostats, projectors,

A/V receivers, A/V switchers, motorized lifts, displays, pool controllers, motorized

drapery, and alarm systems that interface with other devices directly through serial-

based links. A more specific example is the Carrier Infinity Series systems module

for HVAC units. This module allows an E-IoT system to communicate with Carrier

HVAC systems through serial interface or allow for remote access using a physical

Ethernet connection [Car13]. In many cases, serial-based communication is wired

in a “daisy-chain” bus configuration where the cabling goes from device-to-device

instead of each device is individually wired to the E-IoT controller.Such a wiring

configuration is a common practice in E-IoT, as daisy-chain is easier to wire and

saves the integrators and users in labor and wiring costs.

The use of serial-based protocols for a variety of use-cases is widespread among

E-IoT vendors. For instance, Crestron’s Cresnet has become a ubiquitous name

in residential, marine, and commercial installations [Cre17a]. Cresnet uses RS-485

half-duplex communication used for communication between devices (e.g., interfaces,

components, keypads) and the controller [Cre17b]. Similarly, vendors such as Con-

trol4 [Con13a], LiteTouch [Lit06], and Savant [Sav14] use proprietary serial-based

protocols to communicate with interfaces. These connections usually are daisy-

chained together and work with multiple lines. In addition to these examples, many

product vendors manufacture devices with native serial communication to where

many devices and systems are integrated into E-IoT through serial communication.

54

For instance, shades [Som20], advanced audio receivers [Mar14], televisions [Sam20],

and alarm systems [ADI20] can all be integrated into E-IoT using serial-based com-

munication. The technical specifications of many of these highlighted serial-based

communication protocols are not publicly available, and thus any security mecha-

nisms remain largely unknown.

Another type of serial-based communication are building automation protocols

such as BACnet. BACnet was designed specifically to meet the requirements for

automation and control within corporate offices, buildings, and other commercial

establishments. BACnet can be integrated into some E-IoT systems, with many

devices available. The protocol is also used for communication in sensors, security

systems, energy management, lighting control, physical access systems, and elevator

controls [ASH16]. BACnet operates on top of RS-485 and RS-232 to provide appli-

cation and networking layers for device operation. BACnet implements four layers:

Application Layer, Network Layer, Data Link Layer, and Physical Link Layer. In

this protocol, RS-232 is used for point to point communication while RS-485 handles

Master/Slave Token Passing [Tex14]. Since BACnet is an open protocol, it has been

adopted by various device vendors and manufacturers as a form of external control.

HDMI. The High Definition Multimedia Interface (HDMI) is one of the core com-

ponents of audio/video systems. It acts as the main physical connection between

multiple devices (e.g., televisions, projectors, video players, receivers). As such,

HDMI is one of the most common interfaces used worldwide, with billions of com-

patible devices in the wild [Ven15, Wri18, Tsu08]. Per HDMI design, communica-

tion transmitted is not limited to audio and video, as HDMI transmits control and

information signals through the cabling through the 19-pin connector [HDM18].

Further, HDMI can be a part of distribution networks with switchers, splitters, and

other interconnects that allow multiple HDMI-enabled devices to share A/V sig-

55

Table 4.1: Examples of E-IoT system proprietary RF protocols.

Vendor Protocol Product Lines
Lutron Clear Connect Technology RF [Bla20] Lighting, Shades, Interfaces
Somfy Radio Technology Somfy [Som] Lighting, Shades, Interfaces

Levitron LevNet RF [Lev] Lighting, Shades, Interfaces
Legrand TopDog RF [Leg19] Lighting, Shades, Interfaces
Crestron infiNET EX/ER [Creb] HVAC, Lighting, Shades, Interfaces

nals and communicate. As A/V distribution is an important part of E-IoT, HDMI

serves a major role in E-IoT systems [Con20d, Cre20d, Sav20b]. Further, some

E-IoT systems use communication protocols embedded in HDMI to control and in-

tegrate devices into an E-IoT system [Cre20b]. For instance, the HDMI connection

includes the Consumer Electronics Control (CEC) to expand the functionality of

HDMI systems [HDM09]. The CEC protocol is a component of HDMI communi-

cation and was developed to enable interoperability between HDMI devices. CEC

is a low-bandwidth protocol with a maximum of 16 devices and functions in a bus

architecture. Some E-IoT systems use CEC to control A/V devices such as re-

ceivers, televisions, and projectors. Thus, many vendors implement CEC features

on their devices under different trade names, including Anynet+ (Samsung), Aquos

Link (Sharp), BRAVIA Link/Sync (Sony), CEC (Hitachi), CE-Link and Regza Link

(Toshiba), SimpLink (LG), VIERA Link (Panasonic), EasyLink (Philips), Realink

(Mitsubishi) [Goo18].

4.4.2 Threat Model for E-IoT Communications Layer

In this layer, we consider Mallory compromising an E-IoT system through the com-

munications layer, targeting the confidentiality, availability, and integrity of the

system. Thus, Mallory compromises the E-IoT system through communication com-

ponents, often without the need of physical access. Attacks on this layer may benefit

56

weak protocols, protocol vulnerabilities, flaws in implementation, and other similar

factors. As such, Mallory, in this case, is knowledgeable in communication vul-

nerabilities and has the equipment necessary to compromise E-IoT. For instance,

Mallory may carry sniffers and the software necessary to eavesdrop on communica-

tion channels and inject messages into E-IoT communication. We explain Mallory’s

possible roles in attacking E-IoT communication layer as follows:

Visitors and Unprivileged Users. Some users (e.g., visitors, insiders) may not have

sufficient privileges to interact with all of the components of a deployed E-IoT sys-

tem. Mallory, as a malicious unprivileged user, may use protocol vulnerabilities

to gain unauthorized access to devices near her. As such, attacks on serial-based

protocols, short-range wireless, and HDMI are feasible. An unprivileged user may

just need some preliminary knowledge of the protocols used.

IoT Hackers. Malicious actors such as hackers may target E-IoT systems specifi-

cally in public locations (e.g., presentation rooms, bars, campuses). In this scenario,

Mallory as a malicious hacker, may choose to perform reconnaissance of an E-IoT

deployment without direct physical access to the system. Additionally, more sophis-

ticated attackers may attempt to compromise a system, gain unauthorized access,

cause DoS attacks, or otherwise disrupt E-IoT operations through the communica-

tions layer. In this case, Mallory only has unauthorized access to all E-IoT system

components.

4.4.3 Communication Layer: Attacks and Vulnerabilities

In this subsection, we give an overview of the attacks and vulnerabilities of the E-

IoT Communications Layer. Specifically, we cover attacks to serial-based protocols,

wireless protocols, HDMI-based protocols, and building automation protocols.

57

Serial-based Protocol Attacks. One of the challenges of properly evaluating

serial-based protocols in E-IoT is the proprietary nature of many of these protocols.

Many proprietary protocols are long-lived and do not advertise any form of security

mechanism to the communication. Information on many of these protocols (e.g.,

Cresnet) is sparse. These protocols rely largely on security through obscurity as

many of these protocols were designed for functionality but not security in mind.

Even with this lack of research, online communities and integrators have explored

E-IoT protocols and managed to create sniffers to capture serial-based communi-

cation for debugging [Ste15]. As such, these sniffers work without any form of

authorization beyond physical access and expose possible threats to E-IoT serial-

based protocols. In relation to industrial control protocols, a comprehensive review

of the security channels for industrial control protocols can be found in a study by

Volkova et al. [VNBd19]. This study highlighted that aging serial-based communi-

cation technologies such as Modbus can be attacked (e.g., credential theft attacks,

replay attacks, Man-in-the-middle attacks) by a knowledgeable attacker.

An analysis in 2003 by the Department of Commerce found some threats to build-

ing automation protocols such as BACnet. While most systems were not connected

to the Internet, there was still backdoor access via modem connections to con-

trollers [Hol03]. The study also noted various attacks on passwords, confidentiality,

integrity, DoS, spoofing, and eavesdropping within a BACnet installation. Gasser

et al. discussed research on Internet-exposed BACnet systems [GSD+17]. BACnet

is often an integral part of connected Industrial Control Systems (ICS); these are

critical infrastructural systems for any size business and offices [MMA+16]. BACnet

operates on UDP ports 47808-47823 by default [ASH16]. Researchers used a pre-

rendered BACnet payload in conjunction with Zmap [DWH13] to scan for devices

in the IPv4 address space for valid responses. Using this methodology, researchers

58

managed to confirm a total of 15,429 exposed BACnet devices on the Internet. A

notable characteristic of BACnet/IP UDP protocol is that it is both stateless and

does not require handshake nor authentication. The previously mentioned char-

acteristics of BACnet make it susceptible to Amplification Attacks, a DoS attack

where a response payload is larger than the request payload [GSD+17].

WiFi Attacks. WiFi communication has been an active topic of research due to

its broad appeal and uses in many connected devices. Many WiFi attacks have

been covered in different publications, surveys, and technical documents. Addi-

tionally, attacks may be dependent on installed hardware, firmware, security used

(e.g., WEP, WPA, WPA2, WPA3), and specific implementation. A survey by

Lashkari et al. highlighted weaknesses to security mechanisms in WiFi commu-

nication [LDS09b]. Specifically, this work notes that WEP is susceptible to attacks

(e.g., packet forgery, replay attacks, de-authentication) and vulnerabilities such as

improper key-management and problems with the RC-4 algorithm. Other work

from Borisov et al. goes further into the insecurities of the WEP protocol and

how poor security practices (e.g., keystream reuse, key management) allows an at-

tacker to compromise WiFi with WEP security [BGW01]. Specifically, WEP is

vulnerable to eavesdropping attacks, message modification, message injection, mes-

sage decryption, authentication spoofing, and reaction attacks against WEP. While

considered more secure, WPA vulnerabilities also exist. Lashkari et al. note that

WPA/WPA2 has definite security improvements over WEP, such as the use of the

Advanced Encryption Standard (AES) and the Temporal Key Integrity Protocol

(TKIP) [LDS09b].

However, even with improvements, WPA and WPA2 can be susceptible to at-

tacks (e.g., brute force attacks, dictionary attacks). A related attack for WPA/WPA2

is a handshake capture attack. An attacker can capture the communication hand-

59

shake and attempt to perform brute force attacks or dictionary attacks against the

captured handshake [KKAA14]. An attack proposed by Vanhoef et al. introduces

key re-installation attacks against WPA/WPA2 where attackers can force a WiFi

network to reuse old keys and compromise confidentiality in the network [VP17].

As such, key re-installation attacks would allow Mallory to perform actions such as

packet replay, decryption, and forging in some implementations, severely impacting

the confidentiality and integrity of WiFi communications. Other attacks such as

the Reaver and Pixie-Dust attacks also target WPA-based security, specifically ex-

ploiting the WiFi Protected Setup (WPS) protocol in routers [Kod18]. Finally, as

a newer security mechanism, some weaknesses have been found in WPA3 [KH18].

As such, DoS attacks [LZ19a], connection deprivation attacks [LZ19b], and hand-

shake attacks [VR20] can compromise WiFi communication with WPA3 security.

As many E-IoT devices use WiFi communication, any WiFi attacks could compro-

mise the confidentiality, integrity, and availability of E-IoT and E-IoT-integrated

components.

Zigbee and Z-Wave Attacks. Wireless technologies are common in E-IoT sys-

tems in many different use cases and have been an active topic of research in the

security community. As described in [KHS17], various communication protocols

(e.g., Zigbee, Z-Wave) can be attacked, negatively impacting E-IoT systems by di-

rectly affecting user interfaces. There have been known security breaches in Zigbee

devices. The Zigbee Light Link (ZLL) standard was designed with easy client in-

tegration, and installation in mind [Wan13]. One known breach in 2015 involved

the leakage of the master key for light-based Zigbee devices. This leak made ZLL

devices insecure [ZS15]. It must be noted that there are variations between Zigbee

systems, software, hardware, and chipsets; not all attacks may be effective on all

Zigbee systems even if the Zigbee stack is an accepted standard.

60

Energy depletion attacks such as Ghost-in-Zigbee [CSC+16] may prove to be

effective against battery-powered E-IoT components. In addition to depleting Zig-

bee devices’ power, it can facilitate threats such as DoS and replay attacks on a

Zigbee network. The attack method involves sending false messages to nodes within

a Zigbee network to trigger processor-intensive computations (e.g., cryptographic

operations). These unnecessary computations cause power and performance losses

on the affected device. Ghost-in-Zigbee attacks also demonstrate three unique types

of DoS attacks. First is a computational load attack, which can be done by sending

numerous messages at the same time to trigger the depletion of a node’s energy.

However, such an attack could be easily detected with abnormality detection. The

second type of DoS is referred to as MAC misbehavior, which takes advantage of

Zigbee channel sensing. When a targeted node receives continuous traffic, all nodes

within that region will not communicate through that node. The third is a replay

attack in which a malicious attacker may use frame counters greater than valid

values in their message. Since Zigbee keeps an Access Control List (ACL) table,

this table will be updated to match the malicious counter values. Any legitimate

node trying to make contact after the alteration will be rejected due to their frame

counter values being less than the altered values, leading to a malicious spoofing

attack. The article [KHS17] mentions a third attack on Zigbee spanning from hard-

ware implementations. Going further in-depth, in [RSWO18], researchers attacked

an implementation of an Atmel chip used with Phillips Hue bulbs and Zigbee Light

Link (ZLL) mode. In this attack, the researchers created a custom circuit board to

target the igbee chipset used with smart bulbs and created a worm to spread the

infection among light nodes.

In [OHA+14] three types of attacks on igbee were demonstrated using the Killer-

Bee toolkit [Riv17]. The first attack takes advantage of Zigbee’s discovery process

61

and mimicked a legitimate device to gather information about other devices within

the Zigbee network. This information spans various channels and will yield responses

from Zigbee nodes within a channel. The second attack is the interception of pack-

ages. This attack functions on the basis that some Zigbee networks use weak or no

encryption. As such, an attacker can eavesdrop on communication using the toolset

and a USB adapter to capture traffic on a given channel. As the third proposed

attack, if the previous two attacks are successful, an attacker can intercept and

record Zigbee traffic. As such, an attacker can replay previously recorded packets

and have Zigbee devices accept sent messages. Z-Wave vulnerabilities may depend

on implementation practices, firmware, and hardware. Using reverse engineering

methods, Fouladi et al. in [FG13] provided some examples of available exploits that

could compromise entire devices. The attack used Z-force, a packet interception,

and injection tool, to reset the established network key and take advantage of the

protocol’s steps. The researchers describe the issue as a lack of ’state validation’ in

some Z-Wave devices. An attacker can use packet injection to force Z-Wave devices

to overwrite their current shared network key with an attacker-specified key. They

demonstrated a successful attack on a connected door lock. While follow-up publi-

cations note that some of the attacks described have been patched, devices that have

not been updated and usage of older firmware may be vulnerable to these attacks

[KHS17].

The research by Fuller et al. explored vulnerabilities of rogue controllers within

Z-Wave established networks ranges [FR15]. This work introduced an attack that

used a malicious Z-Wave controller to attack unsecured devices. To begin, the

authors established a Home Automation Network (HAN) using Z-Wave devices such

as connected door locks, smart lights, and connected water valves. The attacker

must first gain access to the local WLAN network to perform this attack, assuming

62

the network is improperly secured. Once access to the network has been granted,

an attacker can scan the network and retrieve the address of the Z-Wave gateway

and any other gateways. The researchers then took advantage of known gateway

vulnerabilities and, in this case, attacked a VeraEdge Z-Wave controller. Further,

they retrieved and saved a backup file for the entire system. With this information,

the researchers could then duplicate a legitimate Z-Wave controller with a malicious

one in the same network. This rogue controller could then communicate to Z-

Wave devices within that network, compromising all of the available devices. The

study also noted that with this backup file, there is the possibility that sensitive

information and activity can be retrieved. Further, log files could also prove valuable

to an attacker gathering information in usage or future attacks.

Bluetooth/BLE Attacks. Other popular short-range wireless solutions are Blue-

tooth and BLE. As mentioned earlier, Bluetooth is used by some E-IoT systems

during standard operation and device configuration. Due to mobile devices, IoT,

and other common use-cases of Bluetooth, attacks on Bluetooth have been widely

documented, with a number of surveys written on the topic of Bluetooth secu-

rity [SW05, DG17, MT12, Dun10, JSSN18]. Relevant to E-IoT, attacks high-

lighted in these surveys include man-in-the-middle attacks that can occur by com-

promising Bluetooth’s Secure Simple Pairing (SSP) to impersonate trusted par-

ties [HH07, SMS18, HT10, HT08, HH08, BWM12]. Further, another attack relevant

to E-IoT is Bluesniping, which uses specialized antennas to sniff Bluetooth commu-

nication beyond the expected Bluetooth range [Her04]. Bluesniffing attacks may also

be a concern, as attackers may be able to infer E-IoT activity from sniffing pack-

ets coming from Bluetooth-based interfaces and devices [SB07]. Disruption attacks

such as Bluechopping, Bluecutting, and Bluedepriving may also affect the availabil-

ity of E-IoT devices as these attacks all work to disrupt Bluetooth communication

63

through different approaches [LZ20]. For instance, for bluechopping, an attacker

spoofs the identity of a connected Bluetooth device to cause a DoS condition. Blue-

cutting, an attack that disrupts Bluetooth communication by spoofing a Bluetooth

device and requesting a target device begins re-pairing. As attacker then discards

the stored link key and pairing cannot be performed [LZ18]. Finally, bluedepriving

interrupts Bluetooth communication by causing a conflict between a spoofed device

and a legitimate device so that this legitimate device cannot pair through Bluetooth

connection [AK18]. It must be noted that similar to other protocols, many Blue-

tooth attacks are dependent on implementations, software versions, and use cases

of Bluetooth devices. The differences between Bluetooth and BLE have led to some

unique attacks for BLE. For instance, a work by Lounis et al. demonstrated that

the “Just Works” pairing mode for BLE can be exploited to perform interception,

interruption, fabrication, and modification attacks on BLE devices. Another notable

example by Wu et al. is BLE Spoofing Attacks (BLESA)[WNK+20b]. In this work,

the authors demonstrated that with BLESA, an attacker can impersonate a BLE de-

vices and provide spoofed data to previously-paired devices. In another work, Zhang

et al. showed that BLE is susceptible to a downgrading attack with Android-based

systems, where devices can be forced to run in an insecure communication mode

without a user’s knowledge [ZWD+20].

IR Attacks. IR communication is used in E-IoT in the form of IR flashers to

control integrated devices (e.g., displays, projectors, blinds). As such, most of these

systems use simple, line-of-sight receivers without any form of authentication from

the remote. Many of the controlling codes are available from online sources in web-

sites such as remote central [Rem20]. As such, it is trivial for an attacker to capture

or emit IR commands through line-of-sight [Adm11]. A malicious attacker could

simply use an IR blaster to control IR-enabled devices and disrupt the operation

64

of E-IoT systems [Ind08]. In other cases, attackers may be able to reconfigure IR-

enabled devices as if they had the original device remote. In terms of E-IoT, if a

device is reconfigured or reset, an E-IoT system may not be able to communicate

with these devices.

General Wireless Attacks. In this category, we cover any attacks that can apply

to wireless in the Industrial, Scientific, and Medical (ISM) frequency bands and are

not unique to any communication protocol. Jamming attack can negatively impact

E-IoT system communication in multiple modes of communication and falls under

a specialized DoS attack. Specifically, jamming presents a major threat to wireless

networks and any E-IoT device that uses wireless networks (e.g., interfaces, sensors,

relays), causing the devices to fall offline. Several works and surveys have covered

jamming attacks against wireless communication that can be relevant to E-IoT sys-

tems [BPP13a, MRR18, MGKP09, GLY14]. Specifically, these surveys highlight

several proven jamming techniques against wireless networks (e.g., spot jamming,

sweep jamming, barrage jamming, deceptive jamming). Further, jamming attacks

are often cheap, easy to perform, and difficult to mitigate. The capabilities of more

elaborate jamming attacks such as reactive jamming are covered by Wilhelm et al.,

highlighting the dangers of reactive jamming in wireless networks, where jamming

techniques can target specific packets in wireless communication [WMSL11]. While

reactive jamming may have limitations due to cost, demonstrations of jamming at-

tacks show that an attacker can target specific wireless communication (e.g., Zigbee)

with some technical knowledge and widely-available low-cost devices [Bas19].

HDMI-Based Protocol Attacks. HDMI is one of the core connections of video

distribution and contains various protocols that can pose a threat to E-IoT systems.

In HDMI-Walk, Puche et al. demonstrated that the CEC protocol can be used

to gain arbitrary control of CEC-supported device functions [RBAU19a]. Specif-

65

ically, the authors demonstrated that CEC can be used with HDMI distributions

to attack multiple HDMI devices. The HDMI-Walk attacks further showed that an

attacker might control devices, transfer information, cause DoS conditions, eaves-

drop, and otherwise harm HDMI networks through a single point of connection

or compromised device. For all of the attacks, the researchers inserted a device

into an HDMI-capable distribution. The first attack used the inserted device to

gather information about all of the connected HDMI devices, returning details such

as the language, model number, power state, and running version. Two more at-

tacks proved that eavesdropping and facilitation of existing attacks are possible with

CEC. The authors showed that CEC could be used for unauthorized data transfer

by transferring audio information and WPA handshakes from one end of the distri-

bution to another rogue device. Finally, there were two DoS attacks demonstrated

in HDMI-Walk. On the first attack, the attacker device was configured to iden-

tify televisions powering on through CEC broadcast and shutting the displays down

before they initiated. The second DoS attack abused television input change and

overwhelmed displays through CEC, causing them to become inoperable. Further,

the authors of HDMI-Walk noted that CEC propagation is not obvious and diffi-

cult to mitigate, creating networks without the user’s awareness. Other relevant

work on HDMI sub-protocols was published by the NCC group identified on CEC-

based fuzzing vulnerabilities through CEC, and other viable threats through HDMI

[Dav13]. Specifically, the NCC Group identified that HDMI’s HEC channel could be

used for corporate boundary breach, endpoint protection circumvention, and unau-

thorized network extension. Similar work presented by Smith et al. contributed

to further CEC-based fuzzing with the development of the tool CECSTeR, used to

execute CEC-based fuzzing attacks on CEC-supported devices [Smi15, Dav12].

66

4.4.4 Mitigation of Communication Layer Attacks.

Serial-based Communication Defenses. While not specific to E-IoT, research

in serial-based communication defense mechanisms may apply to E-IoT. Studies by

Dudak et al. [DGS+19], and Wilson et al. [Wil18] provide insight into securing serial-

based protocols and considerations that must be taken to design protocols securely.

Further, as standardization may help secure serial-based communication in ICS, the

IEEE 1711.2 working group’s efforts have focused on creating the Secure SCADA

communications protocol [IEE20]. A similar approach has not been taken for pro-

prietary E-IoT communication protocols yet, but could guarantee interoperability

and secure protocol design in the future. In a survey by Volkova et al. highlight-

ing attacks and defenses [VNBd19], the authors noted that network security, best

practices, and software updates may help mitigate threats to Modbus and similar

serial-based protocols. However, the authors noted that even with existing mitiga-

tion strategies, there are vulnerabilities that have to be mitigated by the protocol

specifications. Finally, many proprietary protocols may require physical access to

compromise, so controlling physical access may be a viable mitigation strategy.

For building automation protocols, vulnerabilities are often dependent on the

implementation and installation. ASHRAE, the compendium behind BACnet, has

released a security architecture to its initial construction for the deployment of

a security layer for BACnet networks [ASH17]. In the addendum, ASHRAE ac-

knowledges the need to update the 56-bit DES cryptographic standard used for

communication since 2004 to AES-128 bits. As several threats have been found in

DES encryption, protocol updates are needed. Further, the BACnet specification

explicitly notes that BACnet security encryption is optional and dependent on an

integrator to be deployed [NBGT19]. If the integrator does not choose to deploy

the BACnet security encryption, then the BACnet deployment will be insecure. As

67

such, an improperly configured system may be insecure without the user’s knowl-

edge. To keep E-IoT systems and related components secure, integrators should

configure systems to use available encryption. Further, entities that create and

maintain communication standards must update their protocols to newer crypto-

graphic standards.

WiFi Defenses. In a similar manner to many technologies, one of the best solutions

to defend against WiFi and other wireless vulnerabilities is ensuring that the most

secure protocol implementations are in place in E-IoT devices. For instance, at-

tacks and vulnerabilities such as Reaver have been patched in many modern routers

[Kod18]. Literature also references other solutions such as experimental defense

mechanisms (e.g., custom key generation practices, modified WiFi standards); how-

ever, as most vendors and integrators cannot realistically implement these mecha-

nisms, they are outside of the scope of this chapter [WJZ10]. In a similar manner to

the individual network configuration of devices, integrators should follow accepted

best practices when configuring WiFi security, such as the ones suggested by the

United States Federal Trade Commission [Fed15]. For instance, access to a network

should be limited, and routers should be secured with strong passwords, custom

SSID names, with management features. Strong passwords practices can help mit-

igate handshake cracking and brute force attacks on WiFi. Further, using WEP is

considered insecure and outdated, and as such, it should be avoided unless com-

pletely necessary. Other best practices were also highlighted by the Cybersecurity

& Infrastructure Security Agency (CISA) [Cyb20]. Some defenses proposed include

installing firewalls, maintaining anti-virus software, frequent networking equipment

updates, and following wireless configuration recommendations from manufacturers.

Several attacks can be prevented through best practices and proper configuration in

WPA/WPA2 devices. For instance, disabling features such as WPS in routers may

68

be a good practice to prevent threats such as the Reaver and Pixie-dust attacks

[SNN13]. Surveys conducted on WiFi security also suggest that if it is possible,

users should update their systems to the latest WPA3 security standard, however

acknowledge that this is not ideal in all cases [LZ20, LDS09b]. Further, these surveys

note that proper configuration of WPA3 can prevent key cracking attacks.

Zigbee/Z-Wave Defenses. One of the best solutions to Zigbee and Z-Wave pro-

tocol vulnerabilities is verifying that vendors use the latest and the most secure pro-

tocol implementations. Further, E-IoT integrators should follow the best practices

offered by E-IoT vendors and manufacturers. A survey by Lounis et al. highlighted

how updated protocols have resolved many attacks for short-range wireless proto-

cols [LZ20]. This chapter also highlights that network administrators (integrators

- in E-IoT systems) should monitor and verify that devices are properly configured

and updated. However, as users and integrators of E-IoT systems rely on E-IoT

device manufacturers and vendors, solutions for vulnerabilities will come from ven-

dor updates and best practices. For instance, manufacturers of E-IoT controllers

must make sure that short-range wireless nonces are not reused to prevent key gen-

eration attacks [WAM14]. Additionally, a work by Benzaid et al. highlighted that

polling messages and responses should also be authenticated to prevent spoofing

attacks on short-range wireless networks [BLAN+16]. An article published in 2006

on Z-Wave security highlighted the main differences between Zigbee and Z-Wave

security [Kni06]. The article noted that Z-Wave protocol encryption is optional and

for that reason, encryption should always be enabled as a security measure. The

study also noted that older Z-Wave systems are open to various attacks, especially

if encryption has not been enabled. As such, maintaining systems properly updated

and securely configured should be a priority for E-IoT communication.

69

Bluetooth/BLE Communication Defenses. In a similar manner to other wire-

less defenses, one of the best solutions for Bluetooth attacks are updates and making

sure that best practices are followed in Bluetooth configuration. A set of Bluetooth-

specific best practices have been proposed in [Lyn07]. For instance, disabling Blue-

tooth functions when they are not in use, disabling device ID broadcast, strong

passwords, and verifying incoming transmissions have been suggested to mitigate

Bluetooth-based threats. Further, a survey by Lounis et al. [LZ20] notes that

Bluetooth software updates are necessary to defend against well-known Bluetooth

attacks (e.g., bluechopping, bluecutting, bluedepriving). Similarly, some defense

mechanisms have been proposed for BLE-specific threats. For instance, to address

Android-based downgrading attacks against BLE, Zhang et al. proposed some mod-

ifications to the Secure Connection Only (SCO) configuration for BLE [ZWD+20].

Another example by Wu et al. is BlueShield, a monitoring system designed to detect

spoofing attacks on BLE communication [WNK+20a].

IR Communication Defenses. As IR communication is line-of-sight, physical

security may be one of the best defense approaches. With very little literature

on IR communication and defenses, it may be an idea for integrators to cover IR

receivers when not in use to prevent attackers from tampering with devices. Further,

access control may prevent unauthorized users from disrupting the operation of E-

IoT-controlled devices using IR emitters. As IR requires line-of-sight, it may be

easy to discern when an attacker is meddling with a device. Further, as CCTV can

display the IR spectrum, it may be possible to use cameras to identify an attacker

using IR to communicate with devices [Car20].

General Wireless Communication Defenses. Securing wireless communica-

tion from jamming attacks has been a topic of research with a number of dif-

ferent approaches suggested. Numerous surveys are available on wireless jam-

70

ming defenses and counter-measures [BPP13a, MRR18, MGKP09, GLY14, LKP07,

BPP13b, MS12, OAH18]. As such, a solution for E-IoT deployments will depend

on the wireless technology used and the particular wireless use cases. A survey on

this topic by Aristides et al. divides anti-jamming approaches into three different

types: proactive, reactive, and mobile agent-based solutions [MGKP09]. Proac-

tive counter-measures in the background cannot be initiated, stopped, or resumed

on demand and require prolonged implementation time and high implementation

cost. An example of proactive measures are software and hardware-based solutions

that detect jamming attacks before they occur (e.g., DEEJAM) [WSZ07]. Reac-

tive anti-jamming approaches reduce computation energy costs compared to proac-

tive counter-measures. Reactive jamming defenses rely on active jamming attacks

and aim to mitigate attacks (e.g., JAM) [WSS03]. However, in the case of some

jamming attacks, reactive-anti-jamming may have some detection delays. Finally,

mobile agent-based solutions employ anti-jamming agents that move between hosts

to detect jamming attempts. For different protocols, there exist different jamming

approaches, subject to surveys of their own. Vendors of E-IoT should consider the

best defenses for their supported devices and implement them in their systems.

HDMI-based Communication Defenses. While HDMI sub-protocols are usu-

ally secured through restrictions to physical access; other options have been ex-

plored. For instance, in work proposed by Puche et al., the authors created a pas-

sive intrusion detection system framework designed to protect against HDMI-based

threats [PBAU20]. The framework uses features in CEC communication to build a

machine learning classifier and does not require modification to the original proto-

col, as a modification to the protocol is problematic, with billions of HDMI devices

distributed worldwide. Physical defenses against these attacks involve the use of

CEC-less adapters, which can prevent CEC signal from propagating over large dis-

71

tributions [Ama20b]. As such, an integrator may use a CEC-less adapter to prevent

public, easily-reachable HDMI endpoints from receiving CEC communication.

4.5 Monitoring and Applications Layer

In this section we highlight the monitoring and application layer of E-IoT systems.

First, we cover elements of the E-IoT monitoring and applications layer then intro-

duce the threat model at this layer. Next, we cover monitoring and application-layer

threats and attacks. Finally, we provide relevant defenses and mitigation mecha-

nisms.

4.5.1 Elements of the Monitoring and Applications Layer

E-IoT Monitoring and Applications Layer consists of E-IoT drivers, E-IoT software

and services, and E-IoT configuration.

E-IoT Drivers. As introduced in Chapter 2.1.6, drivers are an important part

for E-IoT system functionality. As a software-based component of E-IoT systems,

drivers provide all the information necessary for an E-IoT system to integrate a

device or web service into the system. As such, E-IoT drivers are not standardized

from system-to-system and may be known under a different name (e.g., Crestron

modules, Control4 Drivers) [RBA+20]. Drivers are inserted and configured in an E-

IoT system during programming or maintenance by integrators. Thus, drivers can

be obtained in three different ways. (1) Drivers may be acquired directly from the

E-IoT configuration software. (2) Drivers may be acquired from a catalog of drivers

provided by the main E-IoT vendor. (3) Drivers can be downloaded from third-party

sites (e.g., forums, device vendors, third-party developers). However, while many

vendors will validate drivers acquired from their software or repositories, drivers

72

from third-party sources are often not checked for malicious content. Additionally,

some drivers are not free which may tempt integrators to use a free, unverified driver

with malicious code available online [Bla08].

E-IoT Software Services. E-IoT systems use several software services for config-

uration and maintenance. Beyond proprietary tools used by E-IoT vendors, such as

Control4’s composer and Crestron’s Simpl, E-IoT uses common application services

[Con10a, Cre20e]. Available software services may vary from system to system.

While E-IoT systems may have well-known, documented software services such as

File Transfer Protocol (FTP), Secure Shell (SSH), and Telnet communication, E-IoT

solutions may also run unknown proprietary services. With the closed-source na-

ture of many E-IoT systems, documentation and details of these proprietary services

remain mostly unavailable. As such, operating manuals available online and trou-

bleshooting guides are among the few sources of information on these services. In

contrast, well-known and commonly-used services are easier to identify. For instance,

file transfer is necessary for E-IoT tasks such as firmware upgrades, image uploads,

and vendor software configuration. As such, one of the accepted file-transfer services

is FTP, and for more secure communication, Secure FTP (SFTP) [Jon20, Edu20].

Another requirement for E-IoT is diagnostics and configuration; thus, integrators

need to communicate directly to the E-IoT system. Secure shell services may be

used for diagnostics and configuration as integrators use secure shell clients such

as PuTTy to connect to, diagnose, and configure E-IoT system and system compo-

nents through services such as Telnet or SSH [Nit13, Sim20]. Another use-case of

software services is webservers and web interfaces using HTTP or HTTPS. E-IoT

systems may host webservers and web interfaces to allow integrators to configure,

diagnose, or monitor devices. For instance, CCTV systems host a web interface to

configure cameras, view recordings, view a live feed, and manage CCTV systems

73

[Mar20]. Finally, software suites such as Busybox are common in IoT and E-IoT

alike, as BusyBox provides many common UNIX utilities in a compact executable

with size optimization and a modular design [Eru20, Wel00]. Due to the convenient

design, E-IoT vendors such as Control4 run BusyBox on their main controllers and

devices [Joh14].

E-IoT Configuration. Beyond software, configuration of E-IoT systems can im-

pact the overall security of the system. Some E-IoT users may need to access E-IoT

system features remotely. Additionally, remote access aids integrators, as it allows

them to provide remote technical support, especially in moving installations such

as yachts. As such, E-IoT vendors and integrators permit remote access through a

variety of different methods. While the configuration is different for each system,

most E-IoT systems are accessed remotely through subscription services, virtual

private networks (VPNs), or port forwarding. First, some vendors offer subscrip-

tion services, creating a secure and easy way for clients and integrators to connect

remotely to an E-IoT system (e.g., Control4’s 4Sight) [Con20a]. VPNs are another

popular solutions recommended by many vendors, granting users remote access to

the E-IoT network and equipment. For this reason, vendors will recommend routers

with VPN functionality to integrators. Finally, as E-IoT devices (e.g., controllers,

CCTV NVRs) often use ports for control and configuration, integrators often port

forward these devices to allow remote access [Ver20, Mar20, Cre20g].

4.5.2 Threat Model for E-IoT Monitoring and Applications

Layer

For Monitoring and Application Layer threats, we consider Mallory, an attacker

knowledgeable on configuration and software vulnerabilities of E-IoT systems. As

74

such, an attacker on this layer compromises E-IoT functionality and may gain access

to unauthorized resources without any physical contact with E-IoT systems. For

this layer, an attacker needs technical knowledge of E-IoT systems and software-

based attacks. Mallory can be in the roles of malicious users, integrators, or remote

attackers.

Users. Mallory, in the role of a frequent or visiting malicious user, could attack E-

IoT systems through the Monitoring and Applications Layer. As malicious actors,

these users may attempt privilege escalation, modify E-IoT systems, or otherwise try

to cause unintended operation. As regular users are meant to operate E-IoT systems

and not alter any configuration, vulnerabilities may allow Mallory to compromise

E-IoT system components as an unprivileged user. Further, in an improperly config-

ured network, if Mallory has network access and proprietary configuration software,

she may modify E-IoT software, remote access configuration, or compromise an

E-IoT system through software (e.g., malicious drivers).

Integrators. Integrators often will have full access to E-IoT systems. As a malicious

integrator, Mallory may become the attacker in certain situations (e.g., bribed or

disgruntled employees [And20b]). In this scenario, Mallory already has the propri-

etary tools and access to one or many E-IoT systems through maintenance software.

Mallory could inadvertently compromise multiple systems using malicious drivers

or remote access tools. Further, Mallory may target wealthy or famous clients and

eavesdrop on information for personal gain or otherwise disrupt E-IoT system op-

eration.

Remote Attackers. Mallory may be a remote attacker seeking systems to compro-

mise. She may find E-IoT systems exposed to the Internet. If Mallory is a more

capable attacker, she may use configuration tools and manuals used by E-IoT ven-

75

dors to gain complete access to E-IoT systems, install malicious E-IoT drivers, and

otherwise compromise exposed systems.

4.5.3 Monitoring and Applications Layer Attacks and Vul-

nerabilities

In this subsection, we cover Monitoring and Application Layer attacks and vulner-

abilities.

E-IoT Driver Attacks. E-IoT drivers contain all the programming necessary for

E-IoT systems to integrate third-party components such as devices, APIs, and web

services [Con10a, Con]. Research on the topic of E-IoT drivers by Puche et al.

demonstrated that drivers can be used to compromise E-IoT systems [RBA+20].

Specifically, the authors performed a DoS attack, maliciously expended system re-

sources, and assumed control of the E-IoT controller’s networking functions through

malicious E-IoT drivers. The authors note that an integrator may inadvertently

compromise an E-IoT system by downloading unverified drivers from third-party

vendors, forums, or any external site. Since there is no verification mechanism for

drivers in E-IoT controllers, an attacker can gain the control of the E-IoT system.

E-IoT Software Service Attacks. E-IoT systems will run a combination of pro-

prietary services and well-known services in their devices. As such, some vulnerabil-

ities have been exposed by researchers on E-IoT systems. For instance, in Defcon 26

(2017), Lawshae et al. presented several Crestron controller vulnerabilities [Ric17].

Specifically, Crestron controllers could be compromised through the CTP console, a

Telnet-like interface for Crestron E-IoT systems used to configure and diagnose Cre-

stron devices. This interface also allowed Lawshae to have direct chip communica-

tion, browser remote control, UI interaction, and microphone recording capabilities.

76

Further, as of the time of this writing, CVE Details show over twenty vulnerabilities

for Crestron devices and six for Savant systems [CVE20a, CVE20b]. For Savant

and Crestron systems, these vulnerabilities include de-authentication code overflow,

authentication bypass, remote code execution, directory traversal, cross-site request

forgery, and DoS. Vulnerabilities have also been discovered in presentation devices

and systems. For instance, Crestron presentation devices, Barco wePresent, and Ex-

tron ShareLink presentation systems have had numerous vulnerabilities discovered

(e.g., stack overflows, unauthenticated command injection) as they all share under-

lying code [Lin19]. Vulnerability research by Synack, a company that specializes

in security research, tested the now discontinued SR-250 Control4 controllers and

found several unpatched vulnerabilities described as unauthenticated management

vulnerabilities [Pau15a]. Moreover, improper implementation of encryption could

threaten the confidentiality and integrity of E-IoT data. Practices such as ’rolling

your own encryption’ (e.g., implementing self-made cryptographic functions and al-

gorithms) have left products from companies (e.g., Dualcom, Telegram) vulnerable

to attackers [Sus19]. For instance, Dualcom alarm signaling products were demon-

strated to be vulnerable and susceptible to cracking attacks due to improper use of

encryption mechanisms [And15]. As such, improperly implemented encryption can

open up E-IoT components to a great number of attacks (e.g., malicious sniffing,

brute-force, man-in-the-middle, replay).

E-IoT Configuration Attacks. One of the most notable examples of a failure in

IoT security was made abundantly clear with the Mirai botnet, which overwhelmed

high profile targets through DDoS attacks. The malware hijacked exposed IoT de-

vices and used them to create a botnet. How the Mirai malware grew to a peak of

six-hundred thousand infections so quickly is one of the reasons why users should

be wary of the security of their connected E-IoT systems and other Internet-facing

77

devices[ABB+17]. Research on this botnet revealed issues with the current state of

exposed IoT and E-IoT devices. Mirai created a bank of targeted devices with 46

unique passwords. Most of these passwords targeted exposed systems such as secu-

rity cameras, CCTV video recorders, routers, and printers. Initially, Mirai used this

bank of default passwords to brute force through Telnet and SSH authentication.

Future iterations of Mirai altered themselves to attack through known exploits in

targeted systems. Attacks such as these could also take advantage of known back-

doors, such as those seen in Dahua DVRs and IP cameras, where a firmware had

to be released for all installed devices due to the found vulnerabilities [Chr17]. An

attacker could compromise an E-IoT system through port forwarded devices. As

of the writing of this chapter, a search in Shodan.io, a search engine for exposed

devices connected to the Internet reveals over 30,000 E-IoT devices exposed online

from major vendors (Control4, Crestron, Savant, and Lutron) [Sho20].

4.5.4 Mitigation of Monitoring and Applications Layer At-

tacks

Driver Defenses. E-IoT vendors will often provide a number of drivers or val-

idate drivers developed by third-parties. As such, integrators should try to use

validated drivers to prevent driver-based threats. The work that presented driver-

based attacks highlighted that vendors should approach drivers in a similar manner

to untrusted software [RBA+20]. Further, without standardization, drivers are im-

plemented differently in each system; thus, security mechanisms that are viable for

one E-IoT system may not be viable for others. A proposed solution is a permission

system for drivers, based on the function and what a driver should be allowed to

do (e.g., a serial-based controlled device should not have a driver with network con-

78

nectivity) [RBA+20]. Finally, many users and integrators may not be aware that

malicious code could exist in drivers and thus, awareness of this possible threat is

one of the best and only current defenses.

E-IoT Software and Services Defenses. In a similar manner to any smart

system; vendors, users, and integrators should follow patching and firmware best

practices. As E-IoT vendors will note and often patch vulnerabilities with later re-

leases, integrators should install the latest software and firmware versions. Moreover,

users should schedule frequent product updates [Jac19]. Following frequent updates

and patching in E-IoT systems can help mitigate known service vulnerabilities from

software services. Further, overall awareness on running services and versions can

help integrators gauge the risk of exposing E-IoT components to a network. It may

be possible to anticipate unpatched vulnerabilities and prevent an attack before it

occurs. As such, integrators may want to isolate E-IoT systems from other net-

worked systems (e.g., guest-accessible networks) and enable proper network-based

mechanisms to prevent unauthorized access. Additionally, legacy and discontinued

equipment that cannot be upgraded or updated presents a major threat to many

smart systems beyond E-IoT, especially Internet-facing systems. Integrators need

to be aware of legacy equipment and make sure that their clients are aware of the

risks of legacy equipment. Finally, E-IoT developers should avoid mistakes during

development such as improper encryption mechanisms by using the latest libraries,

avoiding custom encryption, and following verification processes [Sus19].

E-IoT Configuration Defenses. E-IoT vendors will often release security best

practices, and integrators should follow these best practices for configuring E-IoT

systems [Cre20g]. Moreover, installers and users should avoid weak and insecure

passwords as Internet-facing devices with weak password practices have allowed at-

tackers to compromise devices in previous large-scale automated attacks [ABB+17].

79

A whitepaper published by Synack provided an outline relevant to E-IoT, and

professionally-installed systems [Syn15]. Proposed best practices from this guide

highlighted that vendors and manufacturers should not rely on users for security.

Basic password strength requirements should be enforced, as compromising a re-

mote access account could give an attacker access to an E-IoT system. Users should

also receive notifications when device statuses change or when sessions are initi-

ated. Finally, the whitepaper notes that vendors should avoid SSL pinning, self-

signed certificates, and custom encryption. One other source of vulnerabilities is

port-forwarding, which exposes devices to the Internet. E-IoT vendors have always

advised dealers and users not to port forward devices as some devices were not

designed to be exposed directly to the Internet [Pau15b]. Instead, integrators and

users should opt for VPN configuration or vendor remote access services.

4.6 Business Layer

In this section, we highlight the E-IoT Business Layer and common security con-

cerns. Specifically, we first address common Business Layer components of E-IoT

systems. Second, we highlight possible threats and attacks. Finally, we cover possi-

ble defense and mitigation mechanisms.

4.6.1 Elements of the E-IoT Business Layer

In this subsection, we highlight common elements of the E-IoT Business Layer.

Security Cloud Services. E-IoT CCTV systems usually record camera footage

in local hard disk storage in a Digital Video Recorder (DVR) or a Network Video

Recorder (NVR) for analog or IP cameras respectively [Swa18]. However, if a DVR

or NVR is damaged or stolen in traditional systems, all video recordings are lost.

80

Moreover, CCTV systems have limited storage space and will often overwrite old

recordings with new footage once storage runs out. As a solution to this issue,

vendors offer online cloud storage solutions designed specifically for security cam-

eras and CCTV. In addition to cloud storage, security cloud services allow inte-

grators and users to manage multiple E-IoT deployments from a single hub. For

instance, services beyond cloud storage include health checks, remote access, and

remote camera control for the end-user. Another feature of security cloud services is

machine-learning-based tagging and human activity recognition on recorded video,

with providers such as Camio providing these features [Cam20]. With this fea-

ture, recorded video data can be labeled by events (e.g., van passing, pizza delivery,

red shirt), allowing users to search for a specific events in stored recordings easily

[HKMA14, BKH+17].

Vendor Services. E-IoT vendors will often offer cloud services for monitoring and

maintenance of E-IoT systems. These services serve a variety of purposes as main-

tenance is an important part of E-IoT deployments. First, maintenance services

monitor integrated devices in the E-IoT system network. As such, an integrator can

know when a device falls offline and can address the issue before a client notices.

Second, maintenance services can send integrators and clients phone and email no-

tifications on needed updates, unplanned downtime, Internet failure, and ongoing

network issues. Services such as Pakedge’s Bakpak are designed to work with E-IoT

and provide vendors with many features. As such, they allow integrators to provide

both remote support, monitoring, and maintenance to multiple user E-IoT systems

[Pak20a]. Cloud services are also used in E-IoT for secure remote access to E-IoT

systems. While not all of E-IoT systems offer this service, major E-IoT vendors

or device makers always offer some form of remote access solution. For instance,

services such as Control4’s 4sight offer users remote access through mobile apps and

81

cloud support. Further, 4sight also allows integrators to service a specific E-IoT

system remotely through a secure connection.

4.6.2 Threat Model for E-IoT Business Layer

For this layer, we consider Mallory compromising an E-IoT system through the E-

IoT Business Layer. As such, Mallory is knowledgeable about cloud and remote

services. Specifically, Mallory knows how to use Business Layer services (e.g., se-

curity cloud, vendor maintenance) to compromise one or multiple E-IoT systems

remotely. As an attacker, in addition to knowledge on integrated services, Mallory

must possess an Internet connection, knowledge on business services, and capabili-

ties to perform phishing attacks, dictionary attacks, or web-based attacks. Mallory

can be in the roles of hackers or integrators to target the Business Layer of E-IoT.

Hackers. In this scenario, Mallory may be a remote attacker with or without

prior knowledge of E-IoT systems. Mallory may target E-IoT cloud and vendor

services and disrupt these systems. If Mallory is a more knowledgeable attacker,

she may be aware that E-IoT systems can be compromised through management

services. Mallory may acquire sensitive information from E-IoT systems such as

CCTV recordings, schedules, and E-IoT usage patters. Further, Mallory can also

use phishing techniques (e.g., texting, email, apps) to obtain a user’s or integrator’s

credentials and compromise one or multiple systems.

Malicious Integrators. Mallory may be a malicious integrator or an insider in an

integrator company with access to user accounts and credentials for remote support.

As such, Mallory can become a malicious actor (e.g., disgruntled employees, insiders)

and compromise a user’s E-IoT system to disrupt or for personal gain. Additionally,

as Mallory is an integrator or an employee, she may know E-IoT user’s financial

82

or societal status. This may tempt Mallory to sell information (e.g., passwords,

accounts, CCTV footage) of users to external attackers for financial gain.

4.6.3 Business Layer Attacks and Vulnerabilities

Cloud Attacks. As cloud services are a part of E-IoT, cloud service threats and

attacks are relevant to E-IoT systems. While architectures may vary from sys-

tem to system and service to service, threats to integrated cloud services could

negatively impact E-IoT system security. As an active topic of research, several

surveys have highlighted threats, attacks, and best practices in cloud computing

[DDGD+19, LSR+15, Rya13, Sha14, SK11, GWS10, MPB+13, SJP16, FSG+14,

PAS14, SC17, XX12, AADV15, HRFMF13]. Relevant to E-IoT, surveys by Liu

et al. [LSR+15], Ryan [Rya13], Shazad [Sha14], and Zhou [ZCDV17] have high-

lighted several key challenges to cloud security. For instance, these studies suggest

that cloud components are susceptible to DDoS attacks and that encryption solu-

tions will not protect sensitive data if the cloud provider cannot be trusted due to

insiders. A comprehensive survey by Fernandes et al. raised additional issues which

may occur with cloud computing [FSG+14]. Issues related to unreliable comput-

ing, data storage, availability, cryptography, sanitation, and malware can arise from

systems that rely on cloud services. Further, this chapter highlights how keylog-

gers, phishing, malicious redirects, URL-guessing attacks, browser vulnerabilities,

cross-site scripting, XML/SAML wrapping attacks, and MitM attacks may impact

cloud services. Finally, a survey by Kumar et al. highlights some of the common

cloud security threats, such as data breaches, weak access control, insecure APIs, ap-

plication vulnerabilities, account hijacking, malicious insiders, advanced persistent

threats (APT), data loss, nefarious use of cloud services, DoS, and DDoS [KG19]. In

83

terms of E-IoT, these threats could mean that E-IoT users may lose access to their

accounts, face information theft, or experience system downtime from integrated or

vendor-provided cloud services.

4.6.4 Mitigation of Business Layer Attacks

Cloud Defenses. Several defenses have been proposed for threats that can impact

cloud-based services. In this respect, several surveys have been conducted on the

topic of cloud security, often highlighting attacks, defenses, and mitigation mecha-

nisms relevant to E-IoT cloud services [FSG+14, Rya13, SC17, AADV15, MPB+13,

KG19, SJP16, YLDL17, YZG+19]. Majority of these works note that there are

many ways to attack different types of cloud systems. As such, different mitigation

strategies exist for each threat. For instance, LAM-CIoT was proposed by Wazid et

al. as a lightweight authentication system to protect cloud-based IoT environments

[WDBV20]. Alternatively, to defend against data breaches, properly implemented

encryption should be used by cloud services. Vendors should require strong pass-

words and authentication practices in their cloud services to address weak access

control that could compromise users, integrators, and E-IoT systems. Further, as

accounts may be compromised, some articles have suggested that two-factor au-

thentication may add an additional layer of security to cloud services [Ed 17]. As

browser vulnerabilities such as XSS and redirection attacks can impact web-based

GUI interfaces, users should update browsers, have malware protection, and fol-

low best practices to prevent web-based vulnerabilities. Surveys by Fernandes et

al. [FSG+14] and Kumar et al. [KG19] specify mitigation strategies against cloud

threats. For instance, APIs should be protected with good sanitation practices,

secure development standards, signatures, and encryption. To prevent intrusion in

84

cloud systems, the authors highlight that network-based, host-based, distributed,

and hypervisor intrusion detection systems can be helpful. DDoS mitigation can

improve the overall reliability of cloud services in case of volumetric attacks. Specif-

ically, DDoS mitigation strategies may take the form of rate-limiting, proxy filtering,

load balancing, crypto puzzles, and flexible network configuration depending on the

cloud system and use case. As such, E-IoT vendors and manufacturers should follow

these practices to guarantee the security of cloud-based components used in E-IoT.

Cloud hosting can also benefit from privacy-preserving techniques to protect a

user’s information. For instance, cloud service providers can provide an additional

layer of mitigation by applying Homomorphic Encryption (HE) concepts to stored

information [AAUC18]. With HE, concepts such as Partially Homomorphic Encryp-

tion (PHE), Somewhat Homomorphic Encryption (SWHE), and finally Fully Ho-

momorphic Encryption (FHE) can be applied to improve data privacy. Specifically,

PHE, SWHE, and FHE allow for a number of operations (depending on the type)

on encrypted data without the need to decrypt the data for these operations. This

allows users to store encrypted information, without the risk of exposing sensitive

information to untrusted cloud providers. While these approaches are experimental

and require further research, they should be considered for cloud services for E-IoT

systems and storage.

4.7 Lessons Learned and Open Issues

In this chapter, we analyzed the threats and defenses concerning individual layers.

However, an attacker can follow a cross-layer approach, which means he/she can

attack multiple layers at once. So the security of E-IoT systems should be considered

85

holistically. In this section, we cover lessons learned and open issues in state-of-the-

art E-IoT security research.

4.7.1 Lessons Learned

Customized Deployments. E-IoT deployments are diverse and complex. There

may be unique threats from deployment to deployment, especially with the numer-

ous use cases in E-IoT. For instance, a lightning control E-IoT environment will

be different from a smart media management system in terms of vulnerabilities.

Specifically, a lighting system may rely more heavily on serial-based communication

interfaces in every room than media management that relies on touchpanels and

mobile interfaces. Further, even in a lighting system, a purely serial-based system

will have different threats and vulnerabilities than a lighting control system with

Zigbee/Z-Wave interfaces. Many attacks (e.g., node-capture attacks, sensory chan-

nel attacks) may have unique system-to-system consequences. Namely, if safety or

motorization devices rely on E-IoT sensors, an attacker may create a much bigger

safety issue if these sensors are compromised. The degree of customization in E-IoT

means that one deployment’s solutions and security guidelines are not applicable for

all deployments.

Legacy Systems. Legacy systems are systems considered to be outdated, discon-

tinued, and that no longer receive software or security updates. With companies

such as Crestron established since the 70’s, it is expected that there are legacy E-IoT

systems installed worldwide [Mar18]. As these systems may not receive updates for

several reasons. For instance, an E-IoT system may simply be discontinued or the

manufacturer may no longer exist (e.g., Litetouch lighting control systems) [Lit06].

Alternatively, in systems with frequent updates, a user may choose not to update

86

due to the additional costs (e.g., new devices, software costs, labor costs). For ex-

ample, if an entire building is wired to function with a legacy system, it requires

hiring an integrator for re-wiring and re-programming. This added labor may be

a costly endeavor as opposed to simply keeping an older E-IoT system and using

legacy equipment. Updated software, such as drivers, may also cost money for the

end-user [RBA+20]. In other cases, discontinued devices may not work on newer

systems (e.g., driver availability) and a user might choose to keep the current E-IoT

system without updating to keep control of these integrated devices. E-IoT needs

unique solutions that can provide protection to legacy E-IoT systems which cannot

be updated.

Reliance on Integrators. In E-IoT systems, consumers rely upon integrators.

This reliance on integrators may create attack scenarios where an E-IoT is com-

promised because of this trust. For instance, bad account management could allow

attackers to compromise one or multiple systems purely due to integrators and re-

mote support tooling. Additionally, as integrators handle devices before installation,

they can be considered part of the supply chain. This adds another stage to the de-

ployment process where devices may be compromised by an attacker or a malicious

employee for an installation company. Integrators maintain and diagnose E-IoT de-

vices in case of any issues, working directly with the client. As such, there is very

little oversight on how well systems are configured. As poorly-configured devices

pose a threat to E-IoT systems, a method for auditing E-IoT system security may

be necessary to guarantee systems are properly configured. Further, more research

into E-IoT security can assist vendors in evaluating existing best practices for inte-

grators and developing new best practices. Finally, as E-IoT relies very heavily on

integrators, new solutions are needed to protect end-users against attacks that may

come from malicious insiders or poor configuration.

87

(Near) Future E-IoT Attacks. Attackers have always been in constant search of

new types of attacks, including nation-state attackers with unprecedented attack ca-

pabilities that may target E-IoT systems. Attacks have already been observed that

target E-IoT devices among other devices with Mirai being one of the most well-

known. In Mirai, research has shown that CCTV systems, specifically DVRs and

NVRs were targeted in the password banks [ABB+17]. These devices were possibly

configured with default passwords in many cases and reflects the need for auditing

and better research on E-IoT. If research is not done, E-IoT systems may end up

being used in large-scale attacks, such as DDoS. Attacks would not be limited to

DDoS, ransomware attacks may be different in E-IoT, both rendering a system inop-

erable and requiring an integrator to repair the affected system. In more advanced

attacks, it may be possible for an attacker to compromise touchscreens, keypads,

controllers, and other devices for cryptomining through malicious firmware or a ma-

licious controller. Another recent and notable example of an attack has been coined

the “SolarWinds” attack, where thousands of devices were compromised through

vendor tool updates [Ana20, Thr20]. It may be possible for E-IoT to be affected by

similar attacks in the future if precautions are note taken. This shows that trusted

software must also be held to high scrutiny. Finally, in a similar manner to IoT,

there are privacy concerns with E-IoT (e.g., sensitive data, usage data, occupancy,

subscriptions). For instance, E-IoT systems may process sensitive data that may

be used to infer a user’s systems usage, home occupancy, and daily activities. An

attacker can target E-IoT systems in various ways (e.g., malware, malicious drivers,

etc.) and obtain such sensitive information. Additionally, E-IoT systems integrate

with cloud and online services (e.g., Netflix, Spotify) that an attacker can leverage

to learn more about an E-IoT user through sniffing the network flows and using

metadata information.

88

4.7.2 Open Issues

Proprietary Communication. E-IoT supports a diversity of protocols, from

publicly-known to proprietary. However, proprietary protocols in E-IoT are often

closed-source, with no public specification. Additionally, E-IoT hardware and soft-

ware are often unavailable to the public. Researching E-IoT communication can be

difficult without vendor cooperation as much of the protocols and practices need

to be reverse-engineered. As a result, many E-IoT components and protocols have

not been properly investigated, and many attacks have not been discovered and

addressed. For instance, serial-based proprietary protocols such as Cresnet are used

extensively in Crestron systems; however, little to no security research exists on this

protocol. This case is also valid for many wireless protocols as highlighted in Section

4.4 such as RadioRa, TopDog RF, and infiNET, where the security methodology

used is unknown. It is a realistic assumption that vulnerabilities must exist with

the age and lack of oversight of many of these proprietary protocols. The absence

of known vulnerabilities is not due to strong design but through security through

obscurity. Unfortunately, once adversaries find vulnerabilities in these protocols, it

may lead to easily-compromised systems as security through obscurity provides very

little legitimate protection. Much more research and collaboration with vendors are

needed to assess the security of these protocols and develop security tools (e.g.,

monitoring, auditing).

Proprietary Software. In a similar manner to protocols, research on E-IoT soft-

ware is a challenge as much of E-IoT development is closed-source with minimal

external resources available. Further, even if research is done on one E-IoT system,

different systems will follow different integration and configuration practices. For

instance, components like drivers are different in every system, and the implementa-

tion may allow for completely different attacks in each system. We found that many

89

E-IoT systems have operated under security through obscurity for their software in

addition to communication protocols, a practice that is currently insufficient. As

such, it may be necessary to find flaws in E-IoT software components and correct

these flaws before malicious actors compromise E-IoT installations. It may be a

good idea for vendors to cooperate with research and academic communities and

provide closed-source configuration software to prevent attacks before they occur.

In comparison to more open industries, in E-IoT, an attacker that acquires source

code for E-IoT devices may have a running start in compromising these devices

before security researchers have even acknowledged the problem.

Honeypots as a Defense Strategy. It may be possible for honeypots to offer in-

sight and warnings on possible attackers against E-IoT systems and complement ex-

isting security mechanisms. Litchfield et al. noted that honeypots can vary between

different applications, highlighting that high-interaction honeypots are not suitable

in some applications [LFR+16]. Other solutions may be possible, for instance, Con-

pot, a honeypot system developed by the Honeynet Project supporting industrial

protocols such as BACnet, EtherNet/IP, and Modbus. These developments are ap-

plicable in E-IoT installations as honeypot frameworks may be expanded to work

with less-known proprietary E-IoT protocols [hon20, Luk20]. For instance, Mays

et al. proposed a solution to defend home and building automation systems using

decoy networks [MRR+17]. In this work, researchers created a honeypot network

on the smart automation Insteon protocol to hide communication using a dummy

network and hide genuine network traffic from attackers. Such approaches could

apply to E-IoT and other custom systems that rely heavily on physical components,

and hopefully to understand the behavior of attackers, thus secure E-IoT systems.

Third-Party Components. While E-IoT manufacturers often practice closed-

source and limited software access, there are third-party resources for software

90

modules and hardware devices that integrate with E-IoT systems. As such, the

security of these third-party components could directly impact the overall security

of an E-IoT system. For instance, for E-IoT systems such as Control4 and Crestron,

third-party software is required to integrate third-party devices (e.g., Televisions,

receivers) [dri20, Pin19, C4F]. Device manufacturers and third-party developers will

create these software modules. However, the software modules developed by third-

party developers can have vulnerabilities which can leave E-IoT deployments open

to attacks. In addition, since there is no security assessment for such software, ma-

licious actors can also participate such software market places and try to distribute

their benign-looking malicious software as well. For these reasons, such third-party

software resources need to go through a thorough security assessment process and

the integrators should not blindly trust such resources.

E-IoT Malware and Exploits. With any type of a smart system, software and

hardware can be compromised through malware and exploits. As such, E-IoT ven-

dors should participate more actively in hackathons and bug bounties for their own

systems. The research community should collaborate with E-IoT vendors to find

new bugs and exploits before they are compromised. As E-IoT systems integrate

high-profile and sensitive locations (e.g., government offices, schools and hospitals),

the security of these systems should be of utmost importance. Malware, such as a

ransomware attack, may disable an entire E-IoT system, preventing employees from

working and general usage of an E-IoT system. A spyware targeting E-IoT systems

can cause leakage of sensitive data in such high-profile locations. Further, as E-IoT

systems are often designed for centralization, an attacker who compromises an E-

IoT system may now have access to all other devices (e.g., streaming boxes, alarm

systems, door access systems, lighting control systems) integrated into the E-IoT

deployment.

91

Privacy Issues. In terms of privacy issues, E-IoT users can have multiple factors

to worry about. First, integrators have access to sensitive information from E-

IoT systems they install (e.g., authentication codes, remote support). Clients may

carelessly give information out and trust that the integration companies and their

employees handle sensitive information in a secure manner. Further, the liability

of integrators that do not follow proper privacy practices may need to be regu-

lated in a similar manner that healthcare professionals must protect patient data.

Secondly, E-IoT vendors who provide the E-IoT system to the users need consider-

ation. Although vendors have privacy policies, no study has analyzed the privacy

policies of E-IoT vendors in detail. Third, third-party components (apps, drivers,

devices) and their privacy implications need to be considered. Such components

can (un)intentionally leak sensitive data of E-IoT users. Fourth, cloud-integrated

E-IoT systems can store sensitive data. Such data should be kept encrypted and

processed while still encrypted in such environments in order to prevent leakage.

Finally, adversaries can try to obtain sensitive data by attacking the E-IoT system

and/or sniffing the network traffic.

E-IoT Security Assessment. Although vulnerability discovery tools exist for

traditional computing systems and IoT environments, discovery of vulnerabilities is

an unexplored topic of research for E-IoT at the moment. Due to the proprietary

protocols, proprietary software, the closed nature of the E-IoT system, and the

lack of research interests, vulnerability discovery and security assessment have been

challenging aspects of E-IoT security. Although already existing tools for well-

known protocols (e.g., Zigbee, Z-wave, Bluetooth) can be extended to work with

proprietary protocols used by E-IoT, there is still a need for fuzzing, exploitation,

and penetration testing tools developed specifically for E-IoT environments.

92

E-IoT Forensics. With existing forensic solutions have been offered for IoT sys-

tems, few solutions are catered specifically to E-IoT due to the closed-source nature

of these systems [BSAU18]. Further research should aim to create forensic tools and

mitigation frameworks in case E-IoT systems are compromised. Ideally, forensic

frameworks should be created in collaboration to E-IoT vendors, due to limitations

that span from black-box testing and closed-source projects. Additionally, E-IoT

forensics frameworks need to consider integrators with multiple clients and E-IoT

systems under their management. If an integrator’s remote access to E-IoT systems

is compromised, forensic tools should exist to know if client systems were affected

and the best strategies to effectively mitigate any possible breach. Thus, there is a

need for forensic frameworks catered specifically for E-IoT and E-IoT integrators.

4.8 Conclusion

The rising popularity of smart systems has led to millions of users worldwide in-

teracting with smart devices on a day-to-day basis. Many of these devices are

commodity, off-the-shelf systems (e.g., Google Home, Samsung SmartThings), eas-

ily maintained and installed by the average end-user in small deployments. However,

while easy to install, commodity systems are limited and do not provide a viable

solution for more sophisticated applications. For more extensive installations, E-IoT

systems provide a custom-installed solutions to fit a client’s needs. As such, systems

such as Crestron, Control4, RTI, and savant offer a solution for more sophisticated

applications (e.g., complete lighting control, A/V management, managed CCTV se-

curity), where commodity systems are insufficient. For this reason, E-IoT systems

are common in locations such as high-end smart homes, government and private

offices, yachts, and conference rooms. In contrast to commodity systems, E-IoT

93

systems are usually proprietary, costly, closed-source, and more robust for their

configured use cases. However, even with their popularity, very little research has

focused on the overall security of E-IoT systems. Namely, no study provides a com-

plete overview of E-IoT systems, their components, threats, and relevant vulnerabil-

ities in the literature. To address this research gap, motivate further research, and

raise awareness on E-IoT insecurities, this chapter focused solely on E-IoT systems.

Specifically, we discussed E-IoT components, vulnerabilities, and their security im-

plications. To provide a better analysis of E-IoT, we divided E-IoT systems into

four layers: E-IoT Devices Layer, Communications Layer, Monitoring and Applica-

tions Layer, and Business Layer. We considered E-IoT components at every layer,

the associated threat models, attacks, and defense mechanisms. We also presented

critical observations on E-IoT security and provided a list of open research problems

that require further research. We believe this study will raise awareness on E-IoT

and E-IoT security, and motivate further research.

94

CHAPTER 5

DRIVER-BASED NOVEL ATTACKS AND DEFENSES FOR E-IOT

SYSTEMS

5.1 Introduction

The introduction of modern commodity IoT devices has changed the everyday lives

of users with the deployment of millions of smart environments (e.g., smart build-

ings, offices, homes) worldwide [IoT18]. While many IoT systems are easily installed

by average end-users via Do-it-Yourself (DIY) applications, Enterprise Internet-of-

Things (E-IoT) systems exist as an automation solution for professional settings. As

such, E-IoT systems are used exclusively for applications such as smart buildings,

luxury smart homes, expensive yachts, classrooms, meeting rooms, government of-

fices, and business establishments. In these professional settings, proprietary E-IoT

systems (e.g., Crestron, Control4, and Savant) introduce a robust, reliable, and cus-

tom solutions catered to meet an enterprise client’s needs. As such, E-IoT systems

require professional installation and specialized training to deploy. Additionally,

maintenance, upgrades, and service of E-IoT systems is handled by specialized in-

tegrators and not the end-users.

Although many consumer-grade commodity IoT systems are well-understood

due to their mainstream popularity, very little security research exists on E-IoT

systems’ design, development, verification processes, and vulnerabilities. The lack

of research on these systems has led many users to overlook E-IoT systems as pos-

sible attack vectors and assume that these systems are secure. With many of these

professional systems present in high-profile locations, evaluating threats for E-IoT

systems should be of utmost importance. In this chapter, we systematically explore

E-IoT system vulnerabilities and insecure development practices, specifically, the

95

usage of drivers as an attack mechanism. In order to demonstrate that malicious

actors can easily attack E-IoT systems, we introduce PoisonIvy, a collection of novel

attacks that leverages E-IoT system vulnerabilities to an attacker’s benefit. Specif-

ically, we attack one of the integral components of E-IoT systems: drivers, which

contain all of the necessary software to integrate external software and devices into

E-IoT ecosystems. To show that E-IoT systems may be attacked through drivers,

we analyze the highly-programmable nature of drivers and the associated vulnera-

bilities. With PoisonIvy, we show that it is feasible to use malicious code in drivers

to perform attacks using E-IoT systems. As many third-party devices do not have

verified drivers, installers must sometimes opt for unverified drivers with no method

to guarantee their safety, making PoisonIvy a real and viable threat against E-IoT

systems.

To raise awareness on the (in)secure development of the drivers that control E-

IoT systems, we perform PoisonIvy attacks in a realistic E-IoT system testbed in a

smart building setting. For this, we show how with PoisonIvy an attacker can use E-

IoT system drivers to assume arbitrary control of device functions in E-IoT systems

remotely. Specifically, with PoisonIvy, an attacker may remotely (1) perform DoS

attacks on E-IoT system, (2) assume control E-IoT systems as an effective botnet,

and (3) use E-IoT system resources to perform illicit activities (e.g., bitcoin mining,

distributed password cracking). As drivers are outside of any traditional protection

mechanisms, there are no defense mechanisms against attacks in E-IoT systems.

Securing an E-IoT system against PoisonIvy attacks presents distinct challenges

as E-IoT systems are closed-source. E-IoT systems cannot be modified without

the help of the vendor to monitor the running processes or API/system calls to

detect the activities of the malicious drivers in PoisonIvy. Therefore, a passive

network monitoring solution remains as an applicable methodology to detect such

96

driver-based attacks based on the network traffic they create. Hence, to defend

against PoisonIvy-style threats we present Ivycide; a passive network monitoring-

based intrusion detection system designed to protect E-IoT deployments against

PoisonIvy-like threats using machine learning (ML) and signature-based classifica-

tion. As PoisonIvy attacks rely on network communication to communicate with

the attacker or apply the attack, Ivycide operates as a standalone framework for

E-IoT systems, passively monitoring network traffic for unexpected and malicious

behavior. Ivycide first classifies individual incoming and outgoing network packets

into four types of distinct behaviors caused by PoisonIvy attacks using ML-based

techniques. Ivycide then uses these individual network packets and signature-based

classification to determine the type of PoisonIvy attack occurring. To test Ivycide’s

performance against PoisonIvy attacks, we conducted a set of evaluations in a real-

istic E-IoT testbed using real E-IoT devices. Our results show that Ivycide achieves

an average accuracy of 97% and precision of 94% against PoisonIvy-style attacks

without any operational overhead or modification to the E-IoT system.

The contributions of this chapter are as follows:

• We demonstrate that E-IoT system drivers are a viable attack vector for smart

buildings by introducing PoisonIvy, a series of novel attacks against E-IoT

systems.

• We test and evaluate PoisonIvy attacks in a real E-IoT system and leverage

malicious drivers to cause undesired behavior in a smart building on behalf of

a remote attacker.

• We articulate the effects and implications of insecure E-IoT systems, their se-

cure development, verification, and we open the discussion to the best practices

and potential countermeasures to PoisonIvy attacks.

97

• We propose Ivycide, a novel intrusion detection system to protect E-IoT sys-

tems against driver-based threats. Ivycide monitors active E-IoT network traf-

fic and detects unexpected network traffic generated by the malicious drivers

of PoisonIvy.

• We evaluate Ivycide in a realistic E-IoT environment with a variety of E-IoT

devices, achieving an overall accuracy of 97% and precision of 94%.

5.2 Differences from Existing Works

Our work differs from the previously works as PoisonIvy focuses on the insecurity of

E-IoT system drivers, an attack vector which has been largely unexplored. In con-

trast to injecting malicious code into an operating system, our attacks rely entirely

on weaknesses available through E-IoT system design and lack of secure develop-

ment practices. We focus on the exploitation of drivers to a remote attacker’s benefit

and create proof-of-concept implementations of a malicious driver. Specifically, we

present three specific threats that are possible to implement with a malicious driver:

(1) DoS attacks on the host system, (2) remote control of a target E-IoT system,

and (3) the malicious farming of system resources for unauthorized activities (e.g.,

bitcoin mining). With PoisonIvy, we demonstrate it is possible for an attacker to

assume control of the E-IoT system in a malicious nature, solely through the use

of drivers. To address these threats, we introduced Ivycide, a defense mechanism

accounting for E-IoT system design and tailored specifically to E-IoT systems. Fur-

thermore, Ivycide poses no modification or overhead to the original E-IoT system,

and defends with a passive two-step network traffic defense framework.

98

5.3 Problem Scope and Threat Model

This section presents the problem scope and threat model for PoisonIvy attacks.

5.3.1 Problem Scope

This work assumes the existence of an E-IoT system installed in a smart build-

ing. Indeed, such E-IoT systems have experienced a rapid increase in popularity in

smart buildings, luxury smart homes, expensive yachts, classrooms, meeting rooms,

government offices, and business establishments. The E-IoT system’s controller is

connected to a network and the Internet. The attacker, named Mallory, is a mali-

cious actor with knowledge of E-IoT systems and their weaknesses. In this scenario,

Mallory develops a malicious driver for a popular device and advertises the driver

through user boards such as online forums [C4F] to integrators. Mallory also creates

fake accounts to give good reviews on the driver and mislead integrators. The driver

advertised is not available by the manufacturer or through verified drivers, making

Mallory’s driver the only way to integrate a particular device into an E-IoT system.

With this malicious driver, Mallory assumes the control of E-IoT system controllers

and uses her machine to execute remote attacks.

Additionally, we assume that an integrator uses Mallory’s unverified malicious

driver for the E-IoT system deployment, introducing it into the system without is-

sues as there are no security mechanisms in place. These assumptions are realistic as

online drivers from third-party sites are not verified, and smart systems require In-

ternet connectivity for many of their services (e.g., remote access, music streaming,

movies) [Lan18]. Anyone can upload a driver to public forums easily. As integrators

may download unverified drivers from any website, an attacker can create an attrac-

tive driver for integrators to download and install in their systems. For instance,

99

unverified drivers may be offered at a third-party website which advertises them. In

our current scenario, Mallory compromises E-IoT system devices indirectly through

the use of a downloaded unverified malicious driver.

The consequences of driver-based attacks depend on the capabilities of drivers

in a specific E-IoT system. Drivers with network capabilities may be used to attack

servers and other devices when multiple controllers are infected by the driver. Ad-

ditionally, access to system resources would allow Mallory to perform cryptographic

operations in infected controllers. In effect, Mallory could use infected devices to

mine cryptocurrency or perform other cryptographic-based operations (e.g., pass-

word cracking) [Set19]. Moreover, Mallory could simply use a driver in an attempt

to overwhelm the host system, causing a local DoS condition. Any devices inte-

grated into the E-IoT system may become unreachable through user interfaces. It is

also notable that drivers may act as a “bridge” between traditional IP networks and

other protocols. A driver may have the capability to communicate with devices with

embedded protocols (e.g., HDMI’s Consumer Electronics Control protocol (CEC),

Serial, InfraRed (IR)) making previously unreachable devices reachable. For in-

stance, work on the topic of HDMI-CEC has demonstrated that arbitrary CEC

control makes attacks on multiple connected HDMI devices viable [RBAU19b].

5.3.2 Threat Model

In this chapter, we consider the following powerful adversaries as part of the threat

model.

Threat 1: Denial-of-Service. This threat considers DoS attacks where Mallory

disrupts the availability of an E-IoT system through the use of a malicious driver.

100

Figure 5.1: General end-to-end implementation for PoisonIvy-based attacks.
Attack-related components are highlighted in gray, E-IoT system components are
in blue.

Threat 2: Remote Control. This threat considers a case where Mallory assumes

the control of E-IoT system devices to execute DoS attacks on local/remote devices

or webservers.

Threat 3: Malicious System Resource Farming. In this threat, Mallory uses

local system resources in a compromised device to perform unauthorized processor-

intensive actions to her benefit (e.g., cryptocurrency mining [Set19], password crack-

ing [Dev13])

Note that this chapter does not consider attacks that focus on traditional Linux

or other mainstream operating system malware. Similarly, this chapter does not

consider protocol-based vulnerabilities (e.g., Zigbee vulnerabilities).

5.4 PoisonIvy Architecture

To demonstrate E-IoT drivers as a viable threat vector, we developed PoisonIvy, a

series of driver-based attacks. In this section, we detail the end-to-end implemen-

tation of PoisonIvy attacks, which become practical and applicable due to E-IoT

component implementations not built with security in mind. Such implementation

involves the interaction of four modules: remote attacker, command server, mali-

cious driver, and the target environment.

101

5.4.1 PoisonIvy Overview

The proposed end-to-end implementation of PoisonIvy is highlighted in Figure 5.1.

In this architecture, the integrator has unknowingly installed the malicious unver-

ified driver, and the E-IoT system controller has been compromised. As explained

earlier, this could be achieved through a forum post advertising a malicious driver

as benign. The attack begins with the remote attacker (e.g., Mallory) initiating

an attack with a webclient such as a laptop by communicating with the command

server 1 . The command server grants Mallory an intermediary point of communi-

cation between her device and infected controllers, and includes three components:

the server API, server UI, and the command cache. The server API represents the

primary endpoints (e.g., REST Architecture) of the server, which can be requested

by Mallory or the malicious driver. Mallory uses the server UI component executed

by the webclient, which grants her a visual interface, to initiate attacks and view the

attack’s status. As the last component of the command server, the command cache

stores attack initiation requests fetched by malicious drivers through the server API

endpoints.

Once the command server receives initiation requests from Mallory, the malicious

driver can now query the command server for new attack details 2 . The Malicious

driver is the core of PoisonIvy attacks and contains the driver logic and the ma-

licious payload. As such, the driver logic controls a smart device in an expected

manner, which allows the driver to appear as a benign driver. In contrast, the mali-

cious payload contains the attacker’s malicious code for the execution of the attacks

3 . Finally, the target environment contains the smart system’s controller and the

drivers of the smart environment. Mallory takes control of the target environment’s

functions through the malicious driver. As attacks complete, the malicious driver

sends back the attack status to the command server 4 . The attack status includes

102

feedback to the attacker from the driver, such as hashing results, errors, or success

codes, and can be then queried by Mallory from the command server 5 .

Remote Attacker. In PoisonIvy, the remote attacker is the malicious actor

of the attacks. The primary purpose of the remote attacker is to send commands

to the command server to be executed by a driver-compromised controller. In this

case, Mallory uses the attacker webclient, which is any web-enabled device such

as a laptop, tablet, or phone that is used to initiate the attack. Additionally, the

remote attacker receives information from the command server such as attack results,

hashing status, or available controllers to use for attacks.

Command Server. The command server module acts as an intermediary com-

munication point between remote attacker and malicious driver. Controlled devices

query the command server for new attacks to execute. Additionally, the command

server is divided into three components: the server API logic, the server UI, and

the command cache. The server API component contains all the API programming

logic and REST paths needed for communication between the remote attacker and

the malicious driver. The server UI component, in contrast, is an interface for Mal-

lory to interact with and view reports of devices. These reports may contain results

on successful hashing attempts, controlled device status, or the current status of

an attack. The server UI component, depending on the type of attack performed,

could be implemented as a fully-dynamic website (to view reports on attacks) or as

a simple command-line interpreter for simplicity. Finally, the command cache holds

the last executed commands and other responses from controlled devices. This cache

allows multiple compromised smart controllers to fetch the same execution message

stored in the command server. Additionally, the command cache allows Mallory to

disconnect while an attack is active to retrieve the responses from an attack at a

later time.

103

Figure 5.2: E-IoT system testbed used to implement PoisonIvy attacks in a smart
building setting.

Malicious Driver. The malicious driver serves as the attack vector and per-

forms the bulk of malicious operations in PoisonIvy. When the malicious driver is

active, the driver contacts the command server for new attacks to execute, multiple

controlled devices may contact the same server. The malicious driver module con-

tains two components: the driver logic and the malicious payload. The driver logic

can be seen as a standard operating code to allow the malicious driver to appear

and operate as a non-malicious driver. A malicious driver must appear as if it is

benign, providing all standard operations a legitimate driver offers. The malicious

payload component contains all the code required to execute attacks. The malicious

payload may cause memory leaks, perform malicious requests to servers, eavesdrop,

and otherwise execute any operation beneficial to Mallory.

Target Environment. Serving as the host of malicious drivers, the target

environment is the E-IoT system itself. These include any system in a smart build-

ing, luxury home, or office, which may be compromised by a malicious driver. The

target environment is connected to the Internet and contains all of the devices of

the affected smart system, including the centralized controller. As part of the Poi-

sonIvy’s end-to-end implementation, the target environment is one of the targets

compromised by the remote attacker during attack activation.

104

Table 5.1: Hardware & software used in PoisonIvy attacks implementation and
testing.

Hardware Software
Control4 EA-1 Controller Microsoft Visual Studio Code 1.4.11

Control4 SR-260 Control4 Driver Editor 3.0.1
LG 49LX570H Control4 Composer 2.10.6

TP-Link TL-WR841N Router Jersey JAX-RS with Swagger.io
Razer Blade 15 Laptop Amazon AWS Elastic Beanstalk

5.5 Evaluation and Realization of PoisonIvy Attacks

In this section, we demonstrate the implementation of PoisonIvy attacks on our

realistic E-IoT testbed. Further, we evaluated the effects of PoisonIvy attacks on

the E-IoT system in detail.

5.5.1 PoisonIvy Implementation on Real E-IoT Devices

We created a malicious television E-IoT driver (as detailed in Figure 5.1) and an

E-IoT system testbed with real Control4 devices as shown in Figure 5.2. Control4

was selected as it is one of the most popular E-IoT systems available in the mar-

ket, named a leading brand in E-IoT for five years in a row [Con18]. The testbed

included vendor-specific devices and is configured to function as a small E-IoT sys-

tem (Table 5.1). We utilized Driver Editor, a tool available for the development of

drivers in Control4 [C4D14]. Additionally, we used LUA, an open-source program-

ming language which is the core development platform of Control4 drivers [Zap17].

We configured the E-IoT system using Control4’s Composer 2.10.6 and with an EA-

1 as the main controller. To grant Internet access to the devices included in the

testbed, we configured a network with the TP-Link TL-WR841N Router. We veri-

fied the running version of LUA in Control4 devices as LUA 5.1 programmatically

(executing a script which returned the running LUA version). To implement Poi-

105

Figure 5.3: Swagger interface for PoisonIvy remote attack execution with JSON
object. The messageType field determines the attack type and messageContent for
extra parameters.

sonIvy realistically, we created a command and control webserver with a RESTful

API in JAX-RS hosted in Amazon AWS. The Swagger-based web interface for the

server can be seen in Figure 5.3.

Execution JSON Object. A JSON object is used by PoisonIvy modules to

exchange attack details. The JSON response object consists of two fields. The

messageType field is the attack type to be executed. The messageContent field

contains additional information such as the target URL to attack.

Command and Control Webserver. To implement PoisonIvy realistically,

we created a webserver that could be queried by the malicious driver for attack com-

mands. The server hosts a RESTful API implemented using JAX-RS and Swagger

add-on as a UI interface. The Swagger-based web interface for the server can be

seen in Figure 5.3. Primarily, the webserver has one endpoint /driver/driver

with POST, GET, and DELETE. In our implementation, the REST request types

were used as follows:

• GET: Fetches the last JSON object received by the API, and is used by the

driver to poll for the last command received.

106

• POST: Submits a new JSON object to be stored by the API, overwriting the

previous values.

• DELETE: Clears the stored object fields, setting both the messageType and

messageContent to Null.

5.5.2 Software Modules

To execute PoisonIvy attacks and implement the malicious driver, we created a

number of LUA software modules.

1) Remote Polling Module: The remote polling module awaits commands from

an attacker-managed server which issues commands to execute specific PoisonIvy-

based attacks. As with all software modules, the remote polling module was written

in LUA. Pseudocode to demonstrate the polling and selection process can be seen

in Algorithm 1. As a traditional REST client, the first initialization request is

“DELETE: [URL]/driver/driver” which clears the command cache in the webserver

(Line 2). Once initialized, the module executes as a loop every three seconds. The

command server’s address is polled with the request “GET: [URL]/driver/driver”

and the response JSON object stored into a local cache (Line 4). This newly received

command is compared to the last command received if the command is different

(Line 5), then the attack specified is initiated (Line 6). After the execution, the

local cache and the server JSON messages are cleared (Line 7). After the execution

is finished, the loop waits and initiates again.

2) LUA Hashing Module: A notable challenge for the development of PoisonIvy

was the creation of a hashing module to perform cryptographic hashing (SHA-256)

operations in a LUA-based driver. LUA 5.1 does not support the bitwise operations

from the standard libraries; thus, the hashing algorithm had to be adapted for

107

Algorithm 1 PoisonIvy attack polling algorithm

1: Initialization; // Initializes driver variables

2: DELETE: [URL]; // Clear server cache

3: while true do // Operation loop

4: LocalCache ¡- GET: [URL]; // Get server cache

5: if New Command in LocalCache then

6: Execute Attack Specified;

7: DELETE: [URL]; // Clear server cache

8: end if

9: Wait 3 Seconds;

10: end while

this version of LUA. We utilized several sources of code for the implementation of

SHA-256, commonly used for password hashing and cryptocurrency mining [MO14].

The SHA-256 hashing algorithm was implemented in pure LUA for this module to

effectively test cryptography-based threats in PoisonIvy.

3) Memory Exhaustion Module: To perform attacks, we created a software

module that would allow an attacker to expend system resources in the controller.

This module was implemented as a LUA table data type and a loop that iterated

over itself, adding content to the table to expend system resources. This code caused

a DoS condition in the target system.

4) Network Request Module: The network request module was created so that

PoisonIvy could perform GET requests to remote URLs. The module was imple-

mented using Control4 specific API command C4:urlGet() to execute a GET

request to a given endpoint. The request is placed in a loop, in effect, this allows

the attacker to perform a set number of requests or continue making requests indef-

initely. While the API command returns the fetched data, the data is only used for

confirmation of a successful query.

108

5.5.3 PoisonIvy-based Attacks

In this sub-section, we realize the PoisonIvy attacks and discuss the results and

implications of each attack. All of the attacks presented begins with the initiation

of the driver and by polling the server. The attacks were executed using an EA-1

controller with a malicious driver querying the AWS-hosted server. The Razer Blade

15 laptop was used for the remote execution of the attacks.

Attack 1: Denial-of-Service. This attack was developed to demonstrate that

Threat 1 is possible through PoisonIvy. This attack implements a DoS condition in

a local system by causing memory exhaustion in the host controller.

Step 1 - Activation. The activation of the driver was executed remotely through

the attacker’s web interface. With this web interface, the messageType field of

the JSON object was set to “DOS” to initiate a local DoS attack.

Step 2 - DoS Payload. As the driver polls the server with the remote polling

module, the activation message was successfully interpreted by the driver, and the

attack was initiated. The action activated the memory exhaustion module and

begins to consume system resources in the target device.

Evaluation: This attack was entirely successful as the device hosting the driver

(the controller) was rendered inoperable within five seconds of activation, affecting

the controller in two ways. First, any configuration software connected to the main

controller lost connection and was locked up. Figure 5.4 shows the configuration

software losing connection with the controller during our attack. Second, any com-

munication with the central controller was interrupted, meaning that a user would

have no way to use the E-IoT system once this attack was active. On-screen inter-

faces (e.g., Television UI interface, computer interface) and handheld remotes lost

communication with the main controller, preventing access to any of the other smart

devices integrated with the controller. With no form of disabling the loop, the only

109

Figure 5.4: Attack 1 (Memory Exhaustion) implementation results. Figure shows
items being inserted into a LUA table, creating resource exhaustion.

option to re-establish the device was to power cycle. It is even possible to run this

attack on the controller’s initiation, effectively rendering the device inoperable even

after rebooting.

Attack 2: Remote Control. The remote control attack serves as a way to

demonstrate the feasibility of Threat 2. Primarily, we show that a remote attacker

(Mallory) can take control of one (or many) devices and command them to make

continuous malicious requests to a specific server, negatively impacting the critical

servers. We follow Figure 5.5 for the following steps.

Step 1 - Activation. This attack was activated through the use of the available

web interface by the remote attacker laptop. The JSON object messageType field

was set to “BOT” and messageContent to “www.pucherondon.com” to initiate

a repeated querying to the target site.

Step 2 - Execution. As we did not want to disrupt the functionality of the target

webserver, we used the network request module with a loop of ten requests to the

target webserver. Once the JSON object was received, the requests were made to

an external website “www.pucherondon.com”. All of the requests were successful

on the target webserver.

Evaluation. We evaluate this attack by the success of remote attack activation

and the requests to the target site. The attack received the remote commands from

110

Figure 5.5: Implemented botnet attack model for Attack 2. The remote attacker
initiates the attack as shown in this figure.

the remote attacker laptop and then performed web requests upon the target web-

site without any issues. Thus, the commands issued by the remote attacker were

executed on a target site. While the request loop was kept to ten executions, one

can easily increase to any number of requests. The purpose of this test was to

demonstrate that remote activation and querying of a page is possible via PoisonIvy

attacks. Additionally, if there are multiple controllers with the malicious driver,

infected devices could perform a more effective distributed attack on a target web-

page by increasing the number of requests, creating a Distributed Denial-of-Service

(DDoS) attack. The goal of this implementation is to demonstrate the remote at-

tacks are possible, which was proven by our attacks. Additionally, scaling is very

straightforward, which can be done by increasing the number of compromised con-

trollers with malicious drivers available to the attacker. It is possible that complex

E-IoT deployments may be compromised with drivers and used for DDoS attacks in

a similar manner to Mirai with E-IoT systems if not properly secured [AAB+17].

Attack 3: Malicious Resource Farming. Resource farming attack was de-

veloped to demonstrate that system resources may be used to Mallory’s benefit for

a purpose such as bitcoin mining. Currently, bitcoin uses a double hash SHA256

operation (Equation 5.1) where, B represents recent transactions, N represents a

nonce, and T is the target value [MO14].

111

T > SHA256(SHA256(B.N)) (5.1)

For PoisonIvy, we performed the required cryptographic operations used in bit-

coin mining. To demonstrate that such operations can be done within a driver, we

executed multiple hashing operations in the infected device.

Step 1 - Activation: This attack was activated similar to the previously in-

troduced attacks, using the web interface and a JSON object request. To initiate

this attack, the messageType field was set to “MIN” in the outgoing JSON object

from the client computer, the driver interpreting the change as a request to perform

mining-based cryptographic operations.

Step 2 - Execution: After the internal remote polling module processed by the

driver, the messageType field, the driver calls the LUA hashing module which exe-

cutes ten hashing operations using controller resources. Similarly to cryptocurrency

mining, the hashing operations were performed with a static B value and random

nonce values for T in each iteration.

Evaluation: The driver managed to perform all hashing operations successfully.

Figure 5.6 shows a sample of ten mining operations executed in the malicious driver.

In the case of multiple devices infected with malicious drivers, the number of ma-

chines performing hashing operations on the attacker’s behalf could be increased.

This type of resource farming attack could negatively impact the performance of an

E-IoT system depending on how many cryptographic operations are executed per

minute. The number of hashing operations per minute can also be adjusted to avoid

detection.

Discussion and Findings As PoisonIvy attacks were developed and tested,

we demonstrate that insecure software development, lack of built-in security, and

untrusted drivers result in malicious activities. We have found drivers to be a

112

Figure 5.6: Hashing process as executed by PoisonIvy attacks.

viable threat vector; thus, we have coordinated and shared of our findings with

Control4 for further discussion. Without any form of verification, an integrator may

download a compromised driver and allow a malicious actor to compromise an E-IoT

system to her benefit. All of the proposed attacks were implemented successfully,

the implications which could negatively impact E-IoT systems. In Attack 1, we

demonstrate that an entire system can be rendered unusable at the command of an

attacker and is possible due to the ability of drivers to consume system resources

without limitations. The attack presents a viable method of disabling access to

security systems, gates, doors, or any other system which is integrated into an E-

IoT system. For instance, if gate access or panic button is controlled purely through

an E-IoT system, a user will not be able to operate the gate access or a panic

button while a DoS attack is active. Attack 2 is made possible due to the lack

of limitations on connections to external websites and shows how an attacker can

perform DDoS-type of attacks on target webpages using multiple controllers.

There have been documented cases of malware purposely accessing illegal web-

sites to frame the system owners [New09]. An attacker with a compromised E-IoT

system may request illegal websites and frame the owners for illicit activity. In this

chapter, we cited an example of one use-case of cryptographic operations as cryp-

113

tocurrency mining. These results also imply that an attacker may also perform any

other hardware-intensive actions such as password cracking. Ultimately, our imple-

mentations show that drivers as attack vectors have many possibilities. Attack 3,

is possible due to a lack of restrictions in the LUA implementation and unfettered

access to system resources. Further, with processor-intensive operations, a com-

promised controller could also be used for cracking hashed passwords. An attacker

with a list of passwords to crack could use the processing power of compromised

controllers to attempt to reverse password hashes, a very similar operation to cryp-

tocurrency mining. As PoisonIvy-style attacks present a substantial negative impact

on E-IoT systems, acknowledging these threats and finding solutions should be of

utmost importance. We believe that a security verification mechanism is needed

for E-IoT systems that verify the integrity and origin of the drivers. In addition,

an E-IoT system controller needs inherent security mechanisms that limit external

communications, resource consumption, and access to E-IoT system resources.

5.6 Attack Discussion

In this section, we discuss the implications of these attacks and possible defense

mechanisms for PoisonIvy attacks.

PoisonIvy-based Attacks. With PoisonIvy, we explored possibilities of at-

tacks that could be implemented through E-IoT smart device drivers. Depending

on the capabilities of the driver, in addition to the attacks demonstrated in this chap-

ter, it is possible for a driver to act as a keylogger, capturing key-presses relayed to

a device from any interface. For instance, if a user has a media device with login

credentials for web services (such as Netflix in an integrated AppleTV) an attacker

may be able to capture those credentials. Specifically, if a user uses an infected

114

driver to communicate to the media device and enter their password with the arrow

keys on an on-screen keyboard, a malicious driver could intercept the key-presses

and capture the user’s credentials. Another possible attack, depending on the driver

implementation, may involve weak script interpreter implementations. If there are

weaknesses to the interpreter, an attacker may be able to perform injections through

a driver using known vulnerabilities.

Challenges in Standardization. One of the biggest challenges in E-IoT sys-

tems and IoT as a whole is standardization. There are countless companies, proto-

cols, and implementations of many technologies depending on the vendor. Drivers

are no different; how drivers are implemented from system to system are different.

As attackers become more sophisticated, manufacturers cannot rely on a closed-

source system for security. However, having multiple vendors agree in a standard to

interface with devices is not a challenging task. An effort to standardize how drivers

and how they are implemented would be the first step towards security. Further,

with many E-IoT systems deployed in the world, legacy systems present a problem

to developing defense mechanisms against any new threats. By definition, many of

these legacy systems can not be upgraded to the latest security practices [Sta19]. A

great number of systems may not longer be supported or their vendor is no longer in

business (e.g., Litetouch, X10-technology) [Jul15]. As such, there are many legacy

E-IoT systems which may be too costly or too impractical to upgrade. Legacy E-IoT

raises the issue that these systems cannot be patched easily and be compromised by

a knowledgeable attacker. Defense mechanisms must consider the limitations that

come with legacy systems and how to secure them.

Risk Awareness. Most vendors have documented best practices for the in-

stallation of their devices, discouraging risky configurations such as port forwarding

directly to their controllers. However, installers will still port-forward their devices,

115

exposing them to the Internet as it is the easiest solution. As many controllers were

not designed to be connected directly to the Internet, they could become compro-

mised by an attacker if exposed. First, the usage of VPNs needs to be documented

in a proper manner for remote access to devices. Second, E-IoT system integrators

should be wary of drivers on the Internet and favor trusted drivers provided by

E-IoT system vendors. We hope this chapter besides motivating further research

on protecting E-IoT systems from novel types of attacks, can raise awareness for

integrators on what malicious code is able to do, and allow them to evaluate the

risks of using unverified drivers. Second, integrators must be aware that because

one version of a driver is verified, updated versions may not. This could create a

false sense of security, as an attacker may be able to verify a benign driver, then

link to their own page for an updated, malicious version of a driver.

Comprehensive Driver Validation. As driver development for every vendor

is different, vendor certification of drivers is the most effective step towards the

security of the E-IoT system drivers. As of now, the development and distribution

of unverified drivers come without any form of source control, standards, or code

analysis. Existing driver certification needs to evaluate beyond functionality and

consider that code could be implemented maliciously. Additionally, E-IoT system

vendors could allow for the submission of drivers and perform code analysis to drivers

submitted to their platform. Such an idea would create a larger number of drivers

available to vendors. Vendors should then highlight that unverified drivers should

be used at the integrator’s own risk.

116

5.7 Ivycide Architecture

To address PoisonIvy attack threats, we introduce Ivycide, a passive network-based

intrusion detection system (IDS), easily configurable to detect traffic anomalies in

E-IoT controller network traffic.

5.7.1 Design Considerations and Challenges

In this section, we first include the distinct challenges of E-IoT systems that make

it difficult to protect against PoisonIvy attacks and require a specialized solution

such as Ivycide. The design considerations of the Ivycide framework are driven by

these challenges.

Closed-Source E-IoT. E-IoT systems are very often closed-source that makes

many accepted defense strategies very difficult without vendor cooperation. Further,

software for configuration is not available to researchers and consumers. As such,

a defense strategy must be designed with closed systems in mind. In the case of

Ivycide, mechanisms must be created using features available to integrators and

consumers. Without special permissions, source code, API/system call hooking,

performance analysis, and other features, a defense system is a notable challenge

to outside developers. Thus, Ivycide is needed as current defense systems may not

work with the limited access of E-IoT systems and the lack of support from E-IoT

vendors.

System-to-System Differences. There are many different E-IoT system vendors,

each E-IoT system often with their type of configuration. As such, traffic will vary

from E-IoT system to system, even if they are from the same vendor. For instance,

a system that controls a single room (e.g., conference room, theater) will be vastly

different in traffic than a large-scale system (e.g., whole home, smart office, yacht

117

complete integration). Further, systems may differ from the services integrated. For

instance, some users may opt for a fully-offline system, while other users may request

a system that integrates music services (e.g., Spotify, TuneIn, Weatherbug). Since

all systems are custom, a custom solution needs to be proposed for PoisonIvy attacks

as existing solutions may not consider or be too costly for complex. A solution for

E-IoT needs to be flexible, affordable, and needs to consider that systems may be

updated and modified by the integrator.

E-IoT Traffic. In contrast to E-IoT devices, E-IoT controllers have some unique

characteristics in E-IoT environments due to their role in E-IoT systems. First,

the controller is the hub of all communication, as such, integrated devices (e.g.,

keypads, touchscreens, televisions) communicate with the controller. Second, E-

IoT controllers will often have audio and video interfaces, such as audio out, for

streaming services and internet radio (e.g., Spotify, Rhapsody, TuneIn). Thus, in

some systems, the E-IoT controller will handle the streaming service communication

traffic. Finally, the E-IoT controller often communicates with the vendor’s web

services and configuration software. In most cases, this means that the only way

to modify the system (and drivers) for both benign or malicious purposes will be

through the E-IoT controller and a network connection. As the E-IoT controller

acts as the central communication hub, monitoring the network traffic of only the

controller instead of all of the E-IoT devices can be useful to detect PoisonIvy

attacks.

Constraints of E-IoT on the PoisonIvy Attacker. While PoisonIvy attacks

demonstrate the capabilities of attackers using malicious drivers, there are limita-

tions of E-IoT systems on PoisonIvy attacks that can be of use by a defense system

such as Ivycide. First, a PoisonIvy attacker is limited on how they may communicate

to the Internet. Namely, an attacker must rely on the driver’s API to communicate

118

Table 5.2: Examples of expected network traffic by device type.

Device/Service Type Examples Expected Traffic
Displays Televisions, projectors Power state, device state, volume state, version, media metadata.

A/V Equipment Media Centers, A/V Switchers, Receivers Power state, device state, volume state, authentication.
User Interfaces Touchscreens, Keypads Device state, user input, external communication, authentication.

Sensors Motion sensors, humidity sensors, alarms Power state, device state, sensor data, user input.
Software Services Rhapsody, Spotify Media metadata, volume state, external communication, authentication.
Lighting Control Lighting modules, dimmers, switches, relays Power state, device state, light levels, user input.

Motorization Motorized blinds, projector lifts Power state, device state.

remote servers. Second, an attacker must rely on this form of external communi-

cation for the core of Attack 2 and Attack 3 (Section 5.5). Finally, traffic from a

malicious driver originates from the controller. Thus, an attacker using the ma-

licious drivers has only one device they can establish communication to external

servers (e.g., CnC server, target servers) and cannot execute attacks from other de-

vices integrated in the E-IoT system. Knowing these limitations, a defense solution

such as Ivycide can rely on network communication from the E-IoT controller to

identify and detect malicious activities originating from a malicious driver.

5.7.2 E-IoT Devices, Drivers, and Expected Traffic

Modifications to E-IoT systems are not done frequently for several reasons. First,

there are costs associated with contracting an integrator and purchasing new drivers

after initial installations. Additionally, if a device integrated into an E-IoT system

needs a replacement (e.g., damages, upgrades), an integrator will often replace the

device with a similar device to fulfill the same purpose. As such, it may not be

necessary to retrain a learned model for an E-IoT system with similar replacements.

Devices integrated into E-IoT have expected communication traffic dependent on

the type of driver and device. In Table 5.2, we show some examples of how device

type defines the communication traffic of each integrated device. For instance, a

display (e.g., television, projector) will communicate with the E-IoT system with

information such as power state, firmware version, and volume levels. Further,

119

depending on the E-IoT devices and their drivers, network traffic will be different.

For instance, a driver for a device controlled through Zigbee by the E-IoT system

should not create any additional IP network traffic. We highlight some examples of

driver types as follows:

Driver types: We highlight three types of drivers used for devices in E-IoT, and

how each type of driver affects the E-IoT network traffic.

• Non-IP Drivers. Drivers (e.g., Zigbee drivers) that do not use any IP net-

work communication to control integrated devices. These drivers should not

add any additional traffic to the E-IoT system. Since PoisonIvy attacks require

Internet connection, they will not function as this type of driver.

• IP Drivers. Drivers that use IP network communication to connect to devices

or services (e.g., IP TV driver, Spotify Drivers). These drivers will create

network traffic relevant to the device or service. More information on expected

network traffic is highlighted in Table 5.2.

• Drivers with Remote Validation. Drivers that require online validation,

such as a licensed driver that must validate a license key with the developer

of the driver. These drivers will have communication with a remote server.

5.7.3 Terminology

In this sub-section, we provide terminology necessary to introduce Ivycide.

Expected Operation. We define the expected operation of an E-IoT system, as

usage of an E-IoT system in a manner that is benign such as selecting video sources,

listening to music, and menu navigation. Activity occurring from malicious drivers

is outside of expected operation.

120

Figure 5.7: Architecture of Ivycide, modules numbered.

Expected Traffic. We define benign traffic as any IP network communication

which is caused by the expected operation of the E-IoT system.

Unexpected Network Behavior. Unexpected behavior occurs from unexpected

network traffic due to active PoisonIvy attacks in the E-IoT system. For the scope

of this chapter, unexpected behavior is observed through the IP network communi-

cation.

5.7.4 Ivycide Overview

Ivycide is designed to protect E-IoT systems from PoisonIvy-based threats. It aims

to detect PoisonIvy attacks via passive network monitoring and a two-step classi-

fication approach. In the first step of the classification, individual attack patterns

are detected via a ML-based classifier, whereas in the second step, series of patterns

are checked against attack signatures and the type of the attack is determined via

a signature-based classifier.

The proposed Ivycide architecture is composed of five different modules as seen

in Figure 5.7. The first module is the Network Collector which captures network

traffic incoming and outgoing from the E-IoT controller 1 . Further, the Network

Collector pre-processes E-IoT network traffic and forwards it to the Traffic Handler.

121

The Traffic Handler evaluates incoming traffic and logs suspicious network activity

using two sub-modules: the Traffic Analyzer and Evaluation Logger 2 . The Traffic

Analyzer sub-module is used as the first step, performing ML-based classification of

individual E-IoT network traffic packets. These packets are classified into the four

types of behaviors; benign, Unexpected External Request (UER), Command-and-

Control (CnC), and Activation. As PoisonIvy attacks are composed of a series of

such behaviors, as the second step, the Traffic Analyzer applies a signature-based

classification on a set of classified packets within a time window to determine the

type of attack occurring. The Evaluation Logger sub-module is then used to forward

suspicious network packets and analysis results to the user notification and logged

activities modules. The Model Container stores the ML model and Signature Model

used by Ivycide’s traffic analyzer 3 . The User Notification module is used to alert

and notify the user on warnings and suspicious activities 4 . Finally the Logged

Activities module stores all the the suspicious packets and classification results from

the Traffic Handler 5 . This logged information may be queried later for reference,

or further analysis.

5.7.5 Network Collector

The Network Collector allows Ivycide to passively collect incoming and outgoing

traffic to the E-IoT controller. As such, Network Collector only captures TCP/IP

network traffic relevant to the E-IoT controller. Additionally, this capture is pas-

sive, as packet manipulation of E-IoT traffic may cause undesired operation for the

E-IoT system. Further, the captured traffic data that is irrelevant to Ivycide is

then filtered out (e.g., internal LAN communication). Relevant packets to Ivycide

(e.g., communication from controller to external servers) are parsed and features are

122

Figure 5.8: Ivycide classification process.

extracted by the Network Collector for further processing. Filtered and formatted

network data coming out of Network Collector includes all packet information and

additional attributes necessary for Ivycide training and classification (e.g., times-

tamp, data length, TCP or UDP flags).

5.7.6 Traffic Handler

The Traffic Handler acts as the classification stage for Ivycide and is composed of

two sub-modules; the Traffic Analyzer and the Evaluation Logger.

Traffic Analyzer.

The Traffic Analyzer is one of the core components of Ivycide and performs the ML

multiclass classification of incoming/outgoing data to the controller. Additionally,

the Traffic Analyzer performs signature-based classification using a series of attack

patterns/behaviors to determine the type of the attack. This two-stage process is

required since the type of the PoisonIvy attacks cannot be identified from a single

malicious packet or a single attack behavior. Further, classifying behaviors per

packet can yield to more flexibility and types of signatures for future attacks. We

refer to Figure 5.8, for the ML and signature-based classification processes employed

123

by Ivycide. The first step of the Traffic Analyzer is the Multiclass Classifier. In this

step, Ivycide attempts to classify network traffic as benign or as different types of

unexpected behaviors/patterns (unexpected external request, activation, malicious

CnC). Once network traffic is classified with ML, signature-based classification can

take place. However, if a packet is classified as benign, no further classification is

needed. For signature-based classification Ivycide follows a set of rules and attempts

to determine the type of attack that occurred depending on the unexpected activity

observed within a set timeframe. The resulting classification and timestamps are

then forwarded to the Evaluation Logger and user notification modules.

Multiclass Classifier. The Traffic Analyzer uses ML classification to infer the

type of network activity occurring with the E-IoT controller. As Ivycide is designed

to be flexible and better fit the heterogeneous nature of E-IoT systems, different ML

algorithms and models may be used for better accuracy. For Ivycide we defined four

distinct types of behaviors for E-IoT systems and PoisonIvy attacks. Specifically,

attacks can be identified by a combination of these behaviors. While we define four

distinct types of behaviors associated with E-IoT systems and attack behaviors,

more types of behaviors may be learned and added with newer threats. A more

detailed description of behaviors classified during this stage are highlighted below:

• Benign. Benign behavior is expected network traffic and does not raise any

flags for Ivycide. Benign behavior is dismissed from further analysis.

• Unexpected External Request. Traffic classified as unexpected external

requests (UER) is unauthorized traffic from the E-IoT controller to external

servers. Usually these requests are repetitive during a short span of time and

can be associated with PoisonIvy DoS attacks.

124

• Malicious CnC Requests. CnC requests are unexpected network traffic

used by a malicious PoisonIvy driver to communicate with the command

server. As such, malicious CnC requests are associated with an infected E-IoT

system actively communicating with a command server.

• Activation. Activation requests are unexpected network traffic used by Poi-

sonIvy to initiate attacks. When activation requests are detected, Ivycide can

determine that an attack was initiated. Thus, these requests may be used to

determine the type of traffic that occurs after an attack.

Signature Classifier. The Traffic Analyzer uses signature-based classification

to infer the type of attack occurring from unexpected behavior found during the

multiclass classification stage. First, the signature classifier stage will determine

if the threshold of malicious activity is reached within a given window timeframe

to begin classification. If this is the case, the classifier will refer to the Signature

Model, a set of rules that define the behaviors that make up the PoisonIvy attacks.

Ivycide will then determine the type of attack that occurred in ongoing traffic using

the Signature Classifier. As such, it is possible to configure Ivycide to classify for

future attacks using additional rulesets. For the purpose of this chapter, we only

consider PoisonIvy driver-based attacks.

Evaluation Logger.

The Evaluation Logger receives the evaluation results and any relevant packet data

from the Traffic Handler. As such, the Evaluation Logger acts as a middle stage be-

tween the evaluation and the data logs, caching and formatting data into a database

compatible format. Essentially, this module allows Ivycide users to view prior warn-

ings, see ongoing network communication, and review activity that was deemed to

be suspicious.

125

5.7.7 Model Container

Ivycide’s model container stores the classification model for the E-IoT system. The

model container uses several packet attributes as the features to classify E-IoT net-

work activity and is divided into two sub-modules, the ML model and the signature-

based model.

ML Model.

The ML model is one of the core sub-components used by the traffic analyzer for

multiclass classification. The ML model should be learned from an active E-IoT

system, or generated from expected network traffic. As such, the ML model includes

several common features in IP communication (e.g., packet size, TCP flags, UDP

flags, TCP Source/Destination port). Additionally, Ivycide includes two custom

features described as follows.

• Packet Rate. The number packets an IP source communicates with an IP

destination within a 0.1 second time window before and after the given packet.

For instance, if the E-IoT controller requests information from a Spotify service

at time t, the frequency value will show the number packets were sent from

the E-IoT controller to the Spotify servers were from time t-0.1 seconds to

t+0.1 seconds.

• External Origin. A boolean value is set to true if the packet originates from

an external source to the E-IoT controller.

Signature-based model.

Ivycide uses a signature-based model to infer the type of attack occurring from traffic

classified in the multiclass classification stage. The signature-based model contains

126

the signatures of each attack. For instance, the signature-based model would dictate

that an activation command, followed by a large number of unauthorized requests to

an external target address is likely to be a PoisonIvy DoS attack. While PoisonIvy

attacks are the focus of this chapter, there may be many more attacks in the future,

as new attacks become known, the signature model can be updated to include new

attacks. As such, the Signature Model should be flexible, and easily expandable to

include current and future attack signatures.

5.7.8 User Notification

The User Notification module is used to notify a user or the network administrator

on warnings and messages from Ivycide. After traffic is analyzed, the Notification

Module will detail the traffic logs and give the user all the information necessary

to evaluate a possible breach of security. Additionally, the user should receive a

notification (e.g., mobile notification) that suspicious activity is occurring in the

controller so that they may take action and prevent further issues.

5.7.9 Logged Activities

The Logged Activities module acts as a storage database for any information found

during Ivycide monitoring. The administrator queries the logged activities module

and can view the suspicious packets and activity detected by Ivycide. Logged Ac-

tivities only includes packets and data deemed to be of interest to the administrator

as well as Ivycide’s evaluation of the traffic data stored. This module acts as the

final stage of Ivycide and acts as a point of reference for any network administrator

that needs to review logged information and prior events.

127

Table 5.3: Hardware and Software used in Ivycide implementation and testing.

Hardware and Software
Hardware Hak5 Plunder Bug

Acer GX-785 Desktop
Software Wireshark 3.4.3

Python 3.9
Python Scikit-learn

Visual Studio Code 1.55.2
Control4 Composer 2.10.6

Python Scapy
JupyterLab 3.0.12

5.8 Ivycide Implementation

To implement Ivycide’s necessary modules, we used open source, freely-available

software and libraries. We detail software and hardware used for Ivycide in Table

5.3. Our testing environment is identical to the PoisonIvy attacks implementation,

with the addition of the Hak5 Plunder bug as an active network sniffer between

the E-IoT controller and the network router. We assume that the attacker executes

the PoisonIvy attacks in the same manner as discussed in Section 5.5, receiving

the attack initiation commands from the remote command server and executing the

attacks on the local E-IoT system.

5.8.1 Network Collector Implementation

The implementation of the Network Collector required the use of the Hak5 Plunder

Bug, Wireshark, and Python scripts to process incoming network data. For the Net-

work Collector, the Hak5 Plunder Bug was placed between the E-IoT controller and

the network router. The Plunder Bug was then connected the Acer GX-785 desktop

for data collection. Data was collected using Wireshark and then pre-processed using

Scapy, a Python-based library used to manipulate and extract data from Wireshark

128

.pcap files. This data was then passed through our pre-processing software and ex-

ported as a comma-delimited string that extracted all of each packet’s relevant data

(e.g., TCP/UDP ports, TCP/UDP flags, timestamp, source/destination IP, packet

size). Additionally, our software added additional attributes.

5.8.2 Traffic Handler Implementation

The Traffic Handler and both sub-modules were implemented using Python with

JupyterLab and Visual Studio Code.

Traffic Analyzer.

The Traffic Analyzer was implemented using JupyterLab and the Python Scikit-

learn library used for ML applications. The Traffic Analyzer receives traffic data

formatted by the Network Collector and performs classification on each individual

packet using KNN, Decision Tree and Random Forest classifiers using the ML Model

sub-module. Packets are tagged by the Traffic Handler as four distinct types of net-

work activity (e.g., benign, unexpected external request, activation, or malicious

CnC request) as highlighted in Section 5.7. Packets marked as one of the three

types of malicious behaviours are sent sequentially to the signature-based classifica-

tion stage of the Traffic Analyzer. In the signature-classification stage, the Traffic

analyzer refers to the Signature-Based Model for attack classification. All classified

packets within the cache window are converted into a string. For instance, two

activation packets and seven unauthorized request packets translate to the string

’aauuuuuuu’. If this string is beyond a threshold (e.g., seven malicious packets per

window) and falls under the known signatures of attacks in the signature-based

model, the activity is classified as one of the three well-known PoisonIvy attacks.

129

This classification is then passed to the Evaluation Logger. We chose a three minute

cache window as PoisonIvy attacks take less than three minutes to execute. Reduc-

ing the speed of the attack network throughput (e.g., less packets per second for a

remote DoS attack) would greatly reduce an attack’s effectiveness.

Evaluation Logger Implementation

The Evaluation Logger was implemented as a Python-based console notification that

provides the classification of E-IoT traffic data.

5.8.3 Model Container Implementation

The Ivycide Model Container contains two models used for classification purposes:

the ML Model and the Signature-Based Model. In this subsection we overview both

models and the data collection process used to implement these models.

ML Model Implementation

The ML Model was stored as a Python object in Jupyterlabs as a list of fitted

models. Each model was then queried by the program to process each incoming

packet sequentially. For the implementation we evaluated several classifiers includ-

ing: Nearest Neighbors, Decision Tree, and Random Forest classifiers. We chose the

Decision Tree classifier for the final implementation as it provided adequate classifi-

cation accuracy and precision for the purposes of Ivycide. For better classification,

we also introduced the following features:

• Frequency. The frequency was calculated using a sliding window during data

collection. Essentially, Ivycide stores packets for a given time window (100

130

ms), then calculates how many packets share the same source and destination

address within the time window.

• External Origin. The external origin feature was created by comparing the

known IP address of the E-IoT controller and setting this flag to ’True’ if the

E-IoT controller was the destination of the packet.

Signature-Based Model Implementation

The Signature-Based model was implemented as a set of rules in our custom Python

software. We apply these rules to the signature string generated from the first stage

of classification. We highlight the signature rule table as follows:

• Benign. A set of traffic data is classified as Benign if the attack pattern

does not contain activation commands, indicating no attack was initiated and

malicious communication was infrequent.

• DoS. A set of traffic data is classified as DoS if the final commands (last five)

in attack pattern are classified under “activation”. This behavior indicates

that the E-IoT controller became unavailable after a an activation command

was received from the attacker.

• Remote Control. Traffic data is classified as Remote Control if there is a

high frequency of packets classified as UERs in the Multiclass stage. This

signature string indicates that the E-IoT controller is making multiple UERs

in a short timeframe.

• Malicious Resource Farming. A set of traffic data is classified as Malicious

Resource farming if CnC requests are observed after activation without unau-

thorized external requests. This behavior indicates an attack was activated,

however, the E-IoT controller is still functional after attack activation.

131

Data Collection

To train Ivycide, we collected daily usage data from the E-IoT environment by

performing expected operation with the E-IoT system as defined in Section 5.7.

Expected operation involved the use of the E-IoT environment for streaming media,

volume control, menu navigation, and any use consistent with an expected smart

system usage. Benign data was collected from the E-IoT environment over the

span of two weeks, where the system was allowed to idle, turn on, turn off, and

otherwise operate in a manner consistent with expected operation. Malicious data

was captured as detailed in the PoisonIvy attacks. In total, we collected 525,705

packets from the E-IoT system for testing and training. To train the model, we

followed a supervised learning approach, requiring labeled data for the training. We

found that it was necessary to use supervised learning to properly categorize the

four types of network activity from the E-IoT controller and evaluate Ivycide.

5.8.4 Other Implementations

The User Notification module was implemented using the Python ctypes library

to create a notification on the machine running the core Ivycide software. The

Logged Activities module was implemented as direct text file exports on the local

machine, allowing for future reference of the attack logs and providing any relevant

information of the Ivycide analysis.

5.9 Performance Evaluation

In this section, we evaluate the performance of Ivycide in detecting PoisonIvy at-

tacks. Specifically, we attempt to answer the following research questions:

132

RQ1: Malicious Behavior Evaluation. How do different ML classification

algorithms perform in detecting malicious activity based on individual network pack-

ets? (Sub-section 5.9.2)

RQ2: Malicious Activity Type. How effective is Ivycide in classifying be-

tween different PoisonIvy attacks with signature-based detection? (Sub-section

5.9.3)

5.9.1 Attack Data Collection

Based on the previously mentioned PoisonIvy attacks, we performed the attacks as

specified in Section 5.5. To evaluate the Ivycide data classification, we collected

communication packets involving the E-IoT controller. The activities collected for

our evaluation included expected and unexpected traffic, as defined in Section 5.7.

The collection resulted in a total of 60 datasets of attack data, 20 for each attack.

Additionally, we recorded 20 datasets of expected network traffic from the E-IoT

system as defined in Section 5.7 for a total of 80 datasets. All of the PoisonIvy

attacks were executed as highlighted in Section 5.5. For AT1, we performed a remote

activation of DoS attack, disabling the E-IoT controller. For AT2, our attacker issued

a CnC request to the malicious driver to perform unauthorized requests to a target

webserver. Finally, for AT3, we issued a CnC request for the E-IoT controller to

begin performing resource-intensive calculations on behalf of the attacker.

Performance Metrics

Performance metrics in this chapter follow the accepted parameters: accuracy, pre-

cision, F-score, recall, True Positive Rate (TPR), True Negative Rate (TNR), False

Positive Rate (FPR), and False Negative Rate (FNR).

133

True Positive Rate (TPR). denotes the total number of correctly identified

benign traffic within the test environment.

True Negative Rate (TNR). denotes the total number of correctly identified

malicious traffic within the test environment.

False Positive Rate (FPR). denotes the total number of cases where malicious

traffic was mistaken as being benign.

False Negative Rate (FNR). denotes the total number of cases where benign

traffic is mistaken as malicious.

RecallRate =
TNR

TNR + FPR
, (5.2)

PrecisionRate =
TPR

TPR + FPR
, (5.3)

Accuracy =
TPR + TNR

TPR + TNR + FPR + FNR
, (5.4)

F1 =
2 ∗RecallRate ∗ PrecisionRate
RecallRate+ PrecisionRate

. (5.5)

5.9.2 Ivycide Performance for Different Classifiers (RQ1)

As part of RQ1, we evaluate different ML-based classifiers and their performance

on individual network traffic packets. As highlighted in Section 5.7, Ivycide may

use the most effective classifier to classify between behavior types. For RQ1 Ivycide

evaluation we implemented several classifiers, highlighting Decision Tree, Nearest

Neighbors, and Random Forest with the best performance. We refer to Table 5.4

for the performance of each classifier used with Ivycide. In these results we show

how different classifiers perform against E-IoT network traffic in terms of accuracy

134

Table 5.4: Multiclass classification of malicious E-IoT traffic behaviors.

Legend : DT = Decision Tree, KNN = Nearest Neighbors, RF = Random Forest

BEN = Benign, CnC = Command & Control, ACT = Activation, UER = Unauth. External Request

Model Class TPR TNR FPR FNR ACC PREC REC F1
DT BEN 0.98 0.91 0.08 0.02 0.96 0.97 0.98 0.98

CnC 0.92 0.97 0.01 0.09 0.98 0.97 0.92 0.94
ACT 0.99 0.96 0.00 0.00 1.00 1.00 1.00 1.00
UER 0.84 0.97 0.01 0.18 0.99 0.82 0.85 0.83

KNN BEN 0.98 0.85 0.14 0.01 0.96 0.95 0.99 0.97
CnC 0.84 0.98 0.00 0.19 0.96 0.98 0.84 0.91
ACT 0.94 0.95 0.00 0.06 1.00 0.96 0.94 0.95
UER 0.92 0.96 0.00 0.09 0.99 0.90 0.92 0.91

RF BEN 0.99 0.92 0.08 0.01 0.97 0.97 0.99 0.98
CnC 0.93 0.98 0.01 0.07 0.98 0.95 0.94 0.95
ACT 0.99 0.97 0.00 0.01 1.00 0.99 0.99 0.99
UER 0.85 0.98 0.01 0.17 0.99 0.87 0.85 0.86

and precision. For all of the covered classifiers, we observed accuracy and precision

rates averaging higher than 90%.

UER (Unauthorized External Requests) were particularly challenging to clas-

sify. In most cases, UER was misclassified as CnC attacks. This is possibly due

to the fact that the internal programming functions to perform UER requests in

the attack code are identical to CnC attacks. The Ivycide architecture (Section 5.7)

highlights that the multiclass classification is the first step for Ivycide. We note that

perfect classification accuracy on individual packets is not required for effective sig-

nature classification because attack signatures have some matching tolerance given

the rulesets. Further, the configurable design of Ivycide, means that evaluating dif-

ferent classifiers yields to valuable information. For instance, some classifiers may

have more success at classification on some E-IoT deployments and configuration

than others. As such, since E-IoT systems are highly heterogeneous, Ivycide can be

adapted with one or multiple classifiers to provide better accuracy and precision for

individual deployments.

135

Table 5.5: Signature-based classification of malicious E-IoT attacks.

Legend : BEN = Benign, BOT = Botnet, DOS = Denial-of-Service, MRF = Resource Farming

Class TPR TNR FPR FNR ACC PREC REC F1
BEN 1.0 1.0 0.00 0.00 1.0 1.0 1.0 1.0
BOT 1.0 0.98 0.03 0.00 0.98 0.91 1.0 0.95
DOS 0.75 1.00 0.00 0.25 0.94 1.00 0.75 0.86
MRF 0.95 0.95 0.05 0.05 0.95 0.86 0.95 0.90

5.9.3 Ivycide Signature Classification Performance (RQ2)

We refer to Table 5.5 for Ivycide’s signature-based classification performance in

terms of accuracy, precision, recall, and F1 metrics for each attack type. As such

we note that Ivycide achieved an overall accuracy of 97% and precision of 94%.

More notable, is that no malicious cases were classified as benign, as such, even if

an attack is misclassified as another attack, the administrator will still be alerted of

suspicious traffic. Specifically, we found that three DoS attacks were misclassified

as malicious resource farming attacks. This may be due to both PoisonIvy DoS

(memory exhaustion on the controller) and resource farming attacks low network

throughput.

In some cases, we found that the music streaming service TuneIn, caused false

positives. Ivycide improperly classified some benign data from the streaming service

as unauthorized requests. We believe that the addition of whitelisting to approved

IP addresses may further improve the accuracy of Ivycide since attackers cannot

spoof addresses using the driver API. However, even without whitelisting, the num-

ber of unauthorized requests in our proof-of-concept attacks were limited as legal

limitations with the target Amazon Web Services hosted website do not allow for

DDoS attacks. Specifically, Amazon Web Services explicitly prohibits any type of

DDoS testing what would put any stress on their servers. Traffic-based DoS attacks

performed by attackers without legal concerns would create many more observable

136

unauthorized requests within a given timeframe from an E-IoT controller and, as

such, become easier to identify using Ivycide.

We note that the classification performance was accomplished using only black-

box integration and with no modification to the E-IoT controller, drivers, or system

code. While some attacks were misclassified as other attacks, all malicious instances

of attacks were detected as suspicious activities. Similarly, benign activity was

properly classified in all cases, greatly reducing the number of false alarms by the

signature-based classification. As such, in any system implementation, network

administrators would have been alerted for all attacks, been able to investigate

attacks further, and take action against an infected E-IoT controller.

5.9.4 Detection Time and Overhead

How quickly attacks are detected is dependent on the attacks and the attack payload

through the network. For instance, a remote control (DoS) attack is much more

noticeable in network traffic than a DoS attack. As such, the maximum time it

would take for an attack to be detected is the time window given for Ivycide. We

measured the CPU usage and memory consumption of Ivycide for each stage with

4.5% CPU usage and 11.6 MB of peak usage for the multiclass classification stage;

and a 0.3% CPU and 19.2 MB peak usage for the signature classification stage. We

must note that this overhead is only applied to the computer running the Ivycide

system (16 GB RAM and i7-700 3.6 GHz) and not to the E-IoT system controller.

5.10 Ivycide Benefits and Discussion

Ivycide is designed as a defense solution for E-IoT. In this section, we highlight

Ivicyde’s benefits and further discuss their implications.

137

Passive Monitoring. Ivycide is based on passive network monitoring. This has

two advantages. First, Ivycide will not affect incoming or outgoing network traffic,

as such, the quality-of-service of the E-IoT system will not be affected. Second,

with passive monitoring, no changes need to be made to the original E-IoT system,

a process that may not be viable in some older systems. As legacy systems may

be too costly or impractical to replace, Ivycide can provide an alternative that will

evolve with newer threats.

Black-box integration. Ivycide solves one of the biggest issues with E-IoT

systems, lack of available source code and technical documentation. Ivycide does

not require knowledge of more technical aspects of an E-IoT system. As such,

Ivycide can be trained from a live analysis of an E-IoT system at the configuration

phase that uses known certified drivers. Alternatively, if drivers and communication

of the E-IoT system are known, models can be reused and configured for an E-IoT

system without the need to retrain Ivycide for every E-IoT system.

Flexible Design. It is possible to adjust Ivycide for any E-IoT deployment.

This is a necessity as most E-IoT systems are custom-built, a custom-built solution

to novel threats is needed. As such, the design of Ivycide allows to save and load

custom models depending on the components integrated into the E-IoT system

and expected operation as highlighted in Section 5.7. Alternatively, it may be

possible for Ivycide to ignore traffic originating from known vendor services and

approved addresses (e.g., whitelisting). These actions could reduce the number of

false positives and reduce the processing requirements for Ivycide in larger systems.

Independent IDS. The E-IoT controller and Ivycide are independent systems.

As such, in the case of controller failure (e.g., malicious DoS) there will be no effect

on the Ivycide system. Additionally, this means that no overhead is added to the

E-IoT controller or to E-IoT operations.

138

Model Re-usability. Ivycide relies on the ML model for accuracy and detec-

tion, it may not be necessary to retrain the model for every E-IoT system. First,

if two E-IoT systems are identical deployments (e.g., similar conference rooms in a

building as separate E-IoT systems), the same model will work for both systems.

Further, Ivycide is affected by drivers with networking capabilities. If non-IP drivers

between E-IoT systems are different, this does not affect the model used by Ivycide.

Second, devices may behave similarly. As highlighted by Table 5.2, different device

types have similar expected network traffic. As such, if similar devices are added

(e.g., replacing a faulty television) the model may not need to be re-trained as the

expected traffic is the same. Third, drivers verified can supply the traffic logs of

their drivers and that can be added to the model. As such, Ivycide may be able

to offer pre-trained models if all of the drivers in the E-IoT system are known and

have vendor support.

5.11 Conclusion

Recent years have seen a dramatic rise in IoT systems and applications that en-

abled billions of commodity IoT devices to empower smarter settings in buildings,

offices, and homes. Although commodity IoT devices are employed by ordinary

end-users in small-scale environments, more reliable, complex, customized, and ro-

bust solutions are required for enterprise customers. Those solutions called E-IoT

are offered by dedicated vendors. With the higher price, customization, robust-

ness, and scalability of E-IoT systems, they are commonly found in settings such as

smart buildings, government or private smart offices, academic conference rooms,

luxury smart homes, and hospitality applications. As E-IoT systems require spe-

cialized training, software, and equipment to deploy, many of these systems are

139

closed-source and proprietary in nature. This has led to very little research investi-

gating the security of E-IoT systems and their components. In effect, E-IoT systems

in professional smart settings (e.g., smart buildings) present an unprecedented and

unexplored threat vector for an attacker. In this chapter, we explored E-IoT system

vulnerabilities and insecure development practices, specifically, the usage of drivers

as an attack mechanism. We implemented an E-IoT system testbed in a smart

building setting and introduced PoisonIvy, a novel attack mechanism to show that

it is possible for a malicious actor to easily attack and command E-IoT system

controllers using malicious drivers. Specifically, with PoisonIvy, an attacker may

cause DoS conditions, take control of E-IoT system controllers, and remotely abuse

the resources of the such systems for illegal activities (e.g., bitcoin mining). With

this chapter, we raise awareness on the (in)secure development of the drivers that

control E-IoT systems, the consequences of which can largely impact E-IoT systems

as a result. Additionally, we discussed the (in)security of these drivers, security

implications, and possible counter-measures. To defend against these threats, we

introduced Ivycide, a novel, configurable defense mechanism designed specifically

for E-IoT systems. As Ivycide operates as a standalone framework it provides no

additional overhead to E-IoT systems. Finally, we evaluated the Ivycide perfor-

mance on a realistic E-IoT system. Our analysis showed that Ivycide achieved 97%

in accuracy and 94% precision for attack type identification.

140

CHAPTER 6

NEW HDMI ATTACKS AND DEFENSES FOR E-IOT SYSTEMS

6.1 Introduction

Audio/Video (A/V) devices have always witnessed a wide range of adoption as

consumer electronics. The High Definition Multimedia Interface (HDMI) is used

primarily for the distribution of A/V signals and has become the de-facto standard

for this purpose [Tsu08]. For instance, in many applications such as concert halls

or sporting events, large displays are chained together via HDMI to show concert

images and gameplay. Figure 6.1 shows possible use-cases of HDMI distributions.

Indeed, as of this writing, there have been close to 10 billion HDMI devices dis-

tributed, making HDMI one of the most highly deployed systems worldwide[Wri18].

With the requirement to merge control and communication over a single connec-

tion, the HDMI Consumer Electronics Control (CEC) protocol was specified with

the release of the HDMI v1.2a [Hol05]. CEC provides control and communica-

tion between HDMI devices through HDMI cabling. This has led many vendors

to implement CEC features on their devices under different trade names, includ-

ing: Anynet+ (Samsung), Aquos Link (Sharp), BRAVIA Link/Sync (Sony), CEC

(Hitachi), CE-Link and Regza Link (Toshiba), SimpLink (LG), VIERA Link (Pana-

sonic), EasyLink (Philips), Realink (Mitsubishi) [Goo18]. The adoption of CEC has

become a means of control for well-known household devices (e.g., Google Chrome-

cast, Apple TV, Sony A/V Receivers, Televisions). This rapid adoption has made

CEC into an ubiquitous protocol in many A/V installations and the adoption of

CEC enabled devices in conference rooms, homes, offices, government, and secure

facilities. Given the popularity and the penetration of HDMI-based devices, their

security is of utmost importance.

141

Nonetheless, CEC is outside the reach of the traditional networking mechanisms,

and most importantly, current security mechanisms provide no protection to CEC-

based threats. This creates a widely-available, unprotected, and unexplored threat

vector in locations (e.g., homes, government, offices) without mainstream user aware-

ness. Unprotected HDMI networks give malicious entities an attractive medium of

attack from which they can remain undetected. CEC allows them to perform ac-

tivities over an HDMI device distribution network such as information gathering,

device control, and attack facilitation. In effect, an attacker can retrieve and alter

the power state of all HDMI-Capable devices without physical or traditional network

access. While there has been abundant research on the security of traditional net-

works, this protocol has remained an under-researched communication component

in the realm of cybersecurity.

As HDMI distributions are non-traditional components of smart network sys-

tems, current security mechanisms do not offer any protection against to HDMI-

based attacks. Thus, CEC remains as a widely-available, unprotected, and unex-

plored attack surface without mainstream user awareness. To defend against these

threats, we propose HDMI-Watch; a novel passive smart intrusion detection sys-

tem that protects HDMI distributions against CEC-based attacks. HDMI-Watch

operates as a standalone framework in HDMI distributions, passively monitoring

CEC traffic for CEC malicious behavior. HDMI-Watch leverages CEC command

types and machine learning techniques to detect unexpected activities in CEC com-

munication. Additionally, HDMI-Watch accounts for expected command lengths,

associating CEC command types to their acceptable message lengths to improve

detection. To test HDMI-Watch performance, we performed an extensive set of

evaluations in a realistic HDMI testbed with a variety of consumer HDMI-capable

devices and against HDMI-Walk attacks. Our results show that HDMI-Watch per-

142

(a) Conference room
with multiple dis-
plays and points of
HDMI connection.

(b) Airport infor-
mation kiosks with
multiple displays and
HDMI connections.

(c) Concert displays,
where used may be
HDMI for multiple
displays.

(d) Sports bars where
multiple displays are
shared by a single
video source.

Figure 6.1: Possible examples of HDMI distribution use cases where HDMI-Walk
could present a novel threat.

formance achieves an average accuracy and precision of 98%, detecting unexpected

activities without any form of operational overhead or modification to HDMI de-

vices.

The contributions of this chapter are as follows.

• We introduce HDMI-Walk, a novel attack vector against HDMI distributions

to demonstrate that arbitrary control of CEC devices is feasible for an attacker

using this method.

• We implemented five unique attacks to HDMI distributions. Specifically, we

performed topology inference, DoS attacks, eavesdropping, targeted device

attacks, and facilitate existing attacks.

• We demonstrate the threat of HDMI-Walk with a specific testbed of commonly

used HDMI equipment (e.g., Google Chromecast and Sharp Smart TV) for the

evaluation of HDMI-Walk attacks.

• We propose HDMI-Watch, a novel intrusion detection system that protects

HDMI distributions against CEC-based threats in HDMI distributions. HDMI-

Watch monitors CEC communication and detects unexpected CEC behavior

occurring in an HDMI distribution.

143

• We evaluate HDMI-Watch in a realistic HDMI testbed with a variety of con-

sumer devices (e.g., Google Chromecast and Sharp Smart TV) achieving an

average accuracy and precision of 98%.

6.1.1 Differences from Existing Works.

This chapter differs from other works as follows. We introduce a novel attack method

called HDMI-Walk to HDMI devices. Our scope is entirely through CEC as the

main vector of attack and does not rely on any custom applications, software vul-

nerabilities, fuzzing, buffer-overflows, vendor-specific attacks, or traditional network

connectivity. We focus on the exploitation of the CEC protocol in both local and

remote attacks. We demonstrate proof-of-concept implementations of five differ-

ent types of attacks; specifically, (1) malicious device Scanning, (2) eavesdropping,

(3) facilitation of attacks (e.g,. WPA Handshake theft), (4) information theft, and

(5) denial of service through HDMI. Finally, we introduce HDMI-Watch, the first

IDS designed specifically for CEC threats over HDMI connections, achieving overall

accuracy and precision of 98%

6.2 Problem, Assumptions, and Threat Model

In this section, we present the assumptions, definitions, and the threat model for

HDMI-Walk-based attacks.

6.2.1 Problem Scope

This sub-section denotes an HDMI distribution network within a conference room

which may be used for confidential presentations. The topology of this distribution

144

network includes common HDMI distribution equipment such as switches, hubs as

well as HDMI devices such as displays and sources. The attacker is an invited guest

presenter Mallory, who has a small amount of time to prepare in the conference

room without any supervision. Mallory either compromises an existing HDMI de-

vice through malicious apps, or hides a malicious HDMI-capable device within the

distribution (e.g., connected behind a television). We later elaborate compromising

devices through malware in further detail. This is realistic, as A/V systems are

very rarely inspected by users, and are physically accessible by visitors. Mallory

connects her own laptop to auxiliary ports on the podium prior and during the

presentation and perpetrates the HDMI-Walk attacks. After presenting, Mallory

leaves. Sometime after her departure, further security policies are enacted and un-

supervised access to the conference room is disallowed to visitors. Mallory’s only

avenue of attack is to access her hidden device indirectly, locally or remotely.

Compromising Devices: We note that Mallory may compromise an HDMI distri-

bution without direct access to the HDMI network. Malware (e.g., firmware, app-

based) could compromise an existing device to Mallory’s benefit, acting as a link

between the distribution and their machine. For instance, privileged malware appli-

cations in an Android-based A/V device could make use of the HdmiControlManager

functionality which is available to transmit and receive arbitrary messages [Dev19].

An attacker can therefore compromise a system with a malicious app installed by a

user, or by a visitor.

Possible Payloads: CEC attacks can provide access to devices which may have

been believed secure or isolated in a conference room. Conference rooms may serve

varying purposes from unrestricted to confidential usage. When a space is in unre-

stricted usage, an attacker may disrupt operation, damage equipment and prevent

normal usage of a conference room through CEC attacks. If the space is used for con-

145

fidential purposes, an attacker may gather data about a system, gather restricted

information within a conference room, or simply facilitate more complex attacks

(e.g., wireless handshake theft, eavesdropping). In both of these cases, an attacker

may avoid traditional means of detection through the use of CEC.

Attack Mode 1 (Local Communication): Mallory only has local access when

connecting directly to the HDMI distribution network as a presenter. This case is

independent of any form of network access, it relies on Mallory’s ability to connect

to the auxiliary connection on the conference room podium. Local communication

from her laptop through the HDMI distribution with HDMI-Walk and to the hidden

or compromised device.

Attack Mode 2 (Remote Communication): In this case, Mallory has found an

open guest network connection during her first visit or later gained unauthorized

internet access. This allows Mallory to enable remote access to her hidden device.

Furthermore, this allows Mallory to perform specific attacks.

6.2.2 Definitions

In this sub-section we denote definitions for concepts used in this section.

Definition 1 - Isolated Device: An HDMI device which has no network connectivity

to traditional IP networks in any manner.

Definition 2 - Limited Access User: A limited-access user is primarily described

as a user with temporary physical access to a location and limited IP network

connectivity. This user can be a temporary visitor such as a presenter.

Definition 3 - Attacker (Temporary Visitors): An attacker is any limited-access

user which attempts malicious access to unauthorized resources. The attacker’s

motivations are to disrupt, gather information, gain unauthorized access, learn user

146

behavior, and perpetrate the attacks listed in the threat model below. In our case,

the attacker may be a temporary visitor with limited access to the facilities (e.g., a

presenter, Mallory).

6.2.3 Assumptions

To perform the HDMI-Walk attacks, we have the following assumptions.

CEC Propagation: HDMI-Walk assumes full CEC protocol propagation over the

distribution of HDMI devices. Some devices tested had no function to disable CEC

propagation, even if CEC control was disabled. In testing performed on devices with

multiple HDMI ports, we found 80% of devices provided some form of propagation.

CEC Control: We assume CEC control is active on connected devices in the dis-

tribution. This is a realistic scenario, as we found that in all CEC-capable devices

tested, CEC functionality was enabled by default. We also observed that many

devices revert to default settings after a firmware update.

Access to HDMI Components: We also assume that Mallory has access to some

HDMI components (or endpoints) in the distribution. This is a realistic assumption

as A/V components are often not as secure as networking components. Display

inputs and outputs are often visible and available to presenters. Presenters are often

given enough time to prepare and free access to A/V equipment in a conference room

without supervision or suspicion is expected. In some cases, we have found displays

(often used for information purposes) outside conference rooms which could act as

another connection point to an HDMI distribution inside a conference room.

6.2.4 Threat Model

HDMI-Walk assumes the following five threats as part of the threat model.

147

Threat 1: Malicious CEC Scanning: This threat considers the malicious use

of scanning features through CEC and exposed HDMI ports to gather information

about the connected devices. For instance, Mallory can create a topology of available

HDMI devices to control and use this information to perform further attacks.

Threat 2: Eavesdropping: In this threat, Mallory is not present but actively

eavesdrops on CEC communication through an implanted device.

Threat 3: Facilitation of attacks: This threat eliminates time and physical access

limitations in wired and wireless attacks. HDMI-Walk facilitates many of these

attacks so that they become more viable or more difficult to detect. For example,

Mallory installs a device to passively capture WPA handshakes, avoid detection,

and control through CEC remotely.

Threat 4: Information Theft: This threat considers information theft as a form

of data transfer which Mallory may find valuable. For example, information about

available HDMI devices or wireless handshake capture which would enable future

attacks.

Threat 5: Denial of Service: This threat considers DoS attacks where Mallory

disrupts the availability of a system through an HDMI connection. These attacks

may be targeted to a specific device or broadcast to multiple devices. For example,

Mallory prevents the use of a television through the repeated broadcast of HDMI

control commands.

Note that HDMI-Walk does not consider attacks which focus entirely on IP

networks; data injection attacks through CEC such as buffer overflows over CEC or

setting manipulation attacks. Similarly, other protocols such as USB or Bluetooth

are entirely outside the scope of this chapter.

148

Figure 6.2: General architecture for HDMI-Walk-based attacks.

6.3 HDMI-Walk

In this section, we present the details of the HDMI-Walk based attacks. Figure 6.2

depicts the general architecture of HDMI-Walk which comes with four main com-

ponents: local attacker, HDMI Distribution, attack listener, and remote attacker.

The first component of HDMI-Walk is the Local Attacker which runs the Client

Service in their local machine. This local hardware is temporarily connected to the

HDMI distribution. The client service contains any required modules for commu-

nication to the listener and facilitates the attacks through HDMI-Walk (1). The

second part is the HDMI Distribution, which is the core of our attacks and allows for

end-to-end communication between devices through HDMI as a medium. The user

may scan the distribution for addressed CEC devices, as well as communicate bidi-

rectionally with other devices (2). The third part of the architecture involves the

Attack Listener. The attack listener is the physical attacker device and hosts the Lis-

tener Service. The listener service includes all the required modules for HDMI-Walk

communication and listener-run attacks. This service also includes a remote access

module to enable communication to the remote client if a connection is available

(3). Finally, we have the Remote Attacker, which communicates directly through

a remote connection to the attack listener if remote access is possible (4).

149

Local Attacker: A local attacker establishes communication with the listener de-

vice through CEC and the HDMI Distribution. The local attacker places their client

device in an exposed HDMI port such as an auxiliary connection in a presentation

room or a side input of a television. In our case, the client device can be a laptop

with a CEC capable adapter. The client’s main purpose is to establish communi-

cation with the listener and serves as the main interface for an attacker to issue

commands and receive data from the listener device. The local client communicates

to the listener through HDMI-Walk derived control of the distribution. Addition-

ally, the client device hosts the client service. This service contains all necessary

software modules for specific actions within the scope of CEC such as the ability for

file transfer, arbitrary CEC communication, and CEC scanning.

HDMI Distribution: This allows for the core concepts of this chapter is the na-

ture of the CEC protocol which allows propagation and control. These are not

inherently equal or mutually exclusive; for instance, a device may be able to both

control and propagate CEC commands through auxiliary HDMI ports. In contrast,

a different device, such as an HDMI hub, may allow propagation but offer no CEC

based control. The inherent design of CEC allows for any device to transmit and

request information to and from any other device within the same distribution. Dur-

ing our evaluations, we found that CEC commands propagate from device to device,

passing through different ’hops’ in a similar fashion to a bus network while allowing

individual devices to further propagate communication to their own branched con-

nections. This is a requirement in ’scanning’ behavior, which allows for any device

to query others by logical address for a name, type, language, OSD string, vendor,

power status, CEC version, and source status. With this, the querying device is able

to build a map of available CEC devices within the distribution. Since the headers

150

signify a broadcast or a message to a specific device by logical address, this becomes

useful for targeting specific devices or broadcasting to all devices.

Attacker Listener: The listener device awaits client commands. Ideally, the lis-

tener is hidden by the attacker in a location such as behind a television, in an

equipment cabinet or anywhere where there is a connection to the HDMI distribu-

tion. The listener may establish communication with CEC-enabled isolated devices

(see Section IV) through HDMI-Walk. In the attack model, once the listener receives

expected commands from the attacker client (local or remote), it will enact actions

in the HDMI distribution on behalf of the attacker. In our proposed HDMI-Walk,

the attack listener performs the core actions for our attacks and runs all the separate

modules required for each attack. Additionally, the listener hosts all the software

modules required by the attacker for CEC communication, CEC file transfer, CEC

scanning, microphone access, wireless access, and remote access.

Remote Attacker: The remote attacker maintains a remote web interface to a

listener device. Commands and messages are relayed bidirectionally from the lis-

tener and the remote attacker. In contrast to the local attacker, the remote attacker

operates in a remote web server, has no direct CEC connectivity and only hosts

remote communication modules. The remote attacker’s server is polled via an In-

ternet connection by the listener for new commands. This allows the attacker to

perform remote execution of CEC actions using the listener. These actions may

involve CEC information gathering, targeted attacks, DoS, or any attack module

within the listener device.

151

Table 6.1: Hardware and software used in HDMI-Walk.

Hardware Software

Sharp Smart TV. Pulse Eight LibCEC 4.0.2

Samsung UN26EH4000F Python 3.6.1

Monoprice Blackbird 3x1 HDMI Switch Aircrack-ng 1.2-rc4

Wyrestorm - 1x4 HDMI 1.3b Splitter Eclipse IDE

Chromecast NC2-6A5 PyAudio v0.2.11

Sony STR-ZA2100ES Jersey JAX-RS

Raspberry 3 Model B x2 Raspbian Version 9

TP-Link TL-WN722N V1 Adapter Swagger.io

Motorola G5 Plus Phone Java 1.8

TP-Link TL-WR841N Router AWS Elastic Beanstalk

6.4 Evaluation and Realization of HDMI-Walk Attacks

In this section, we describe and evaluate the HDMI-Walk attacks in detail. The

purpose of the attacker is to leverage the HDMI-Walk capabilities to discover, ma-

nipulate, control, and cause undesired operation to devices within an HDMI dis-

tribution. The adversary also aims to use CEC as the primary medium for their

attacks. This is achieved via a connection to the listener through a remote client or

through a local HDMI connection. As explained in earlier in Sections IV and V, in

all of the attacks, the attacker plants the listener device somewhere within the CEC

distribution (e.g., behind a television).

6.4.1 The implementation of HDMI-Walk

In order to ensure the attacks are implemented in a realistic HDMI environment,

we created a CEC capable testbed with standard and widely available commodity

HDMI devices presented in Table 6.1. Here we included two displays, an HDMI

switcher, an HDMI hub, a source and the attacker devices as depicted in Figure 6.3.

We utilized LibCEC, an open-source CEC implementation [Pul18]. This library

provides Python modules which we used to create both the client and the listener

services. Due to readily available CEC support in Raspberry Pi v3 devices, we used

152

Figure 6.3: HDMI-Walk testbed implemented with various commodity HDMI de-
vices.

two Pis, one as the listener and one as the local client to perform the attacks and

evaluations. To test WiFi (handshake) and remote attacks, we created a network

with SSID Portabox. Note that even with a non-CEC-addressed TV, the TV simply

propagates any CEC commands through additional ports.

6.4.2 Software Modules

CEC File I/O

This module facilitates sensitive data transfer within the CEC protocol. We lever-

aged HDMI-Walk for data transfer between client and listener devices within the

CEC distribution. This module can be subdivided into three sections: serialization,

transmission, and deserialization. We break down a file transfer from the listener

(sender) to the attacker (receiver) below:

• Serialization: LibCEC allows the transfer of CEC packets through the distri-

bution. The attacker device (hosting client service) first begins the file request

153

with the “aa:aa:aa:aa” packet. The data is then imported into the running

service and converted into hexadecimal values. This serialized file is stored

locally within the buffer of the current sender (i.e., the attack listener).

• Transmission: The buffer is segmented into hexadecimal strings of length 28

in preparation for the file transfer by the sender. Each segment of the buffer is

sent with the data header “xx:00” over CEC to the receiver. Finally, once all

segments are exhausted, the transmission ends with “ee:ee:ee:ee”. Any packet

received without these headers are dismissed by the receiving device.

• Deserialization: packets are received in order by the receiver (i.e., the attacker

laptop), cropped and then stored locally in a clean data buffer. With trans-

mission finished, the client now deserializes the stored buffer into the original

file.

CEC SND/RCV

This module sends and receives custom CEC messages through the alteration of

the header (destination) and data blocks. These may be used to activate listener

conditions, attacks, or request a file transfer from the listener. We achieve sending

and receiving of custom CEC messages through the use of the libCEC Python

module. This library provides the communication method which allows the creation

and transmission of CEC commands within specifications. This function is used

as part of File I/O transfer or to transmit specific commands to a device over the

HDMI distribution.

CEC Scanner

This module scans a distribution to identify CEC devices. The CEC scanner imple-

ments the standard LibCEC scan command which queries all possible devices within

154

a distribution and records all valid responses. HDMI-Walk captures the available

devices and provides the attacker information on each device and the logical address

of their listener.

Microphone Module

Used to record and store anything captured by the embedded microphone on the

listener device for the purpose of audio eavesdropping. Microphone access and

recording were achieved through the use of the PyAudio library. PyAudio allows

local storage of audio data within a Python operation at pre-determined length and

bandwidths. We created this module to activate the microphone in the listener

device.

CEC Sniffer

CEC sniffer allows the listener to passively monitor all the commands and data

passing through the CEC distribution. Targeted attacks may use this feature to

trigger commands upon the action of a device. This is implemented through the

command callback in the LibCEC library which allowed us to handle any command

received through the bus. We analyze every packet for specific calls during the attack

phases. With this form of detection, attacks may target specific devices based on

their power state change.

Wireless Module

The wireless module comes in two parts. The first part provides standard wireless

access or the capability to connect to an Internet-enabled network for remote sup-

port to the attacker. The second part implements Aircrack-ng to allow for sniffing,

capture, and final cleaning of WPA/WPA2 handshakes for further cracking. We use

155

Table 6.2: Module utilization per attack

Legend : = Local Attack, = Remote Attack, = Neither, = Both

Topol. CEC Handshk. Targeted Broadcast

Infer. Eaves. Theft Attack DoS

File I/O

SND/RCV

Scanner

Mic Mdl.

CEC Sniffer

Wireless Mdl.

Remote Mdl.

a monitor mode capable adapter with this module (TP-Link) and Python calls to

automate the process in the target WiFi network.

Remote Access Module

The remote access module is utilized to allow for remote requests to the listener

device through a valid Internet connection. It is divided into two parts: Server

Component and the Listener Web Component.

Server Component: We hosted a RESTful API running Swagger GUI as the

remote client and server component within AWS’ Elastic Beanstalk service. We cre-

ate two string caches reachable with the paths /cec/listener and /cec/webclient

each with GET and POST methods. The attacker accesses this server component

and submits their commands through POST: /cec/listener with a JSON object

containing the desired command to execute remotely.

Listener Web Component: We implemented the web component using Python

threading and polling requests to our server. The listener polls GET: /cec/listener

every two seconds for new commands submitted for remote execution. This listener

component posts to POST: /cec/webclient for later retrieval by the attacker.

156

6.4.3 Attacks

In this sub-section, we realize HDMI-Walk attacks and discuss its implications. We

also present individual uses of every module aforementioned for HDMI-Walk attacks

in Table 6.2.

Attack 1: Topology Inference Attack (Local and Remote) This attack

is a demonstration of Threat 1 (Malicious CEC Scanning) possible through CEC in

online and offline scenarios. We use the HDMI-Walk architecture to move through

the distribution and gather information about every device available with malicious

intent. This attack can be executed through the local or remote client.

Step 1 - Activation: Upon initial placement within the HDMI distribution, the

listener automatically connects and begins the information gathering process with

remote and local execution of HDMI-Walk scans.

Step 2 - Information Gathering: The listener begins to perform a “walk” over

all of the devices using the CEC scanner module. This easily yields information

about HDMI device type, device, logical address, physical address, active source,

vendor, CEC version, device name, and power status from available devices in the

distribution. Once this has been processed, the listener stores the data locally.

Step 3 - Leakage: For a local client, the data is ready to be retrieved through

the File I/O module upon local client request. For the remote client, the listener

performs a call to POST: /cec/webclient with all the captured information. The

data is submitted to the remote server in the form of a JSON object to be retrieved

by a remote attacker.

Evaluation: With this attack, we used the scanning functionality to “walk”

and gather more information on the controllable devices available. The attack was

entirely successful and allowed us to learn information both locally and remotely

about each accessible device. As seen in Table 6.3, we gather information such as

157

Table 6.3: Attack 1–Information gathered through HDMI-Walk.

Info Addr 00 Addr 01 Addr 02 Addr 04 Addr 05
P. Addr 0.0.0.0 f.f.f.f 4.0.0.0 3.0.0.0 1.0.0.0
Active No Yes No No No
Vendor Unk Unk Pulse-Eight Google Sony

OSD Str TV RPI CECTestr Chromecast STR-ZA2100
CEC Ver 1.4 1.3a 1.4 1.4 1.4

Pow Status ON ON ON ON Standby
Language Eng. Eng. Eng. Unk Unk

the device logical/physical address, active source state, Vendor name, CEC Version,

OSD Name, and power status. With this information, an attacker may as well infer

usage from the power state of the equipment. For example, an attacker may be able

to infer that a room is in use when the power state of the displays is on or perform

more vendor and device-specific attacks with more research on specific devices.

Attack 2: CEC-Based Eavesdropping (Local) We perform this attack to

demonstrate Threat 2 (Eavesdropping) and Threat 4 (Information Theft). In this

local attack, an attacker has access only to the HDMI port for communication

with the listener device. The attacker walks the HDMI distribution and forwards

messages to the listener to activate and record audio using the Microphone Access

Module. This audio data is stored locally in the listener device. The audio data is

then transferred to the client at a later date through the use of the File I/O module.

Step 1 - Listener: The attacker first places a listener device in the CEC distri-

bution as noted by the architecture. The listener device awaits attacker commands

from another location in the HDMI distribution.

Step 2 - Listener Activation: The attacker sends the request to performs an

HDMI-walk to scan the devices and identifies the listener device in the CEC distri-

bution. We note the logical address of the listener device and activate the Micro-

phone module with “bb:bb:bb:bb” command received by the listener. The listener

device records audio and stores the data locally.

158

Figure 6.4: Attack 2–File I/O Module transfer of audio data.

Step 3 - Client Request: The client requests a file transfer using the File I/O

module and the command “aa:aa:aa:aa” to the listener. The listener receives this

command via the CEC distribution and serializes the stored audio data as the client

awaits the data transfer. Once the audio file is serialized the File I/O module

transmission begins.

Step 4 - Client processing: The audio data is transmitted from the listener device

to the client service through the File I/O module. Once this is finished the client

saves the audio file locally, making it available to the attacker.

Evaluation: For this attack, we had success at every stage of the attack. Tests

performed in different locations of the HDMI distribution proved successful. Script

activation began and a recording was saved locally. The listener device successfully

received the activation command from the client and a recording was successfully

stored locally within the listener device. At a later time, the client requested the

audio data from the listener device through the assigned message. The listener

successfully confirmed the receipt of this message and began the data transfer over

the CEC network to the client as seen in Figure 6.4. The client successfully stored

and deserialized this data into a valid file format. This further opens the possibility

159

to a listener which could await keywords such as “password” passively or use voice-

to-text technology to transfer days of conversations to an adversary.

Attack 3: WPA/WPA2 Handshake Theft (Local) This attack was spec-

ified in order to demonstrate the concepts of Threat 3 (Facilitation of Attacks) and

Threat 4 (Information Theft). In this local attack, the attacker uses HDMI-Walk

to facilitate WPA/WPA2 handshake capture and prevent detection by a security

system in place. In traditional handshake theft attacks, an attacker has to wait for

a handshake to occur, this can take an indefinite amount of time as the WPA hand-

shake is only transferred in specific cases [LDS09a]. If there is a time constraint,

the attacker must attempt forced de-authentication [Dor17]. This raises the issue

that forced de-authentication may be detected through a network scanner such as

Wireshark or through more complex IDS [BADA15]. In this attack, we facilitate

such a threat through the removal of time constraints.

Step 1 - Initial Configuration: The attacker must be especially careful about the

listener placement. The listener must be able to reach wireless network connections

and must also come equipped with a wireless adapter capable of “monitor mode”

for packet capture.

Step 2 - Client Trigger: The client triggers the listener’s service wireless at-

tack module. This activates the wireless adapter in monitor mode with airmon-ng,

then begins the capture with airodump-ng using the wlan1 interface and BSSID

“7C:8B:CA:49:45:D2” in the listener device. Airodump-ng process is opened in

separate terminal using Python’s os import command. This places the listener

in a passive state which awaits handshakes to naturally occur without forced de-

authentication. The attacker is not needed for the duration of this capture. At a

later time, an authorized user connects and the handshake is captured passively.

160

Figure 6.5: Attack 3–Running handshake capture with Aircrack-ng.

Step 3 - Handshake Retrieval: The attacker reconnects with the client and re-

quests the handshake from listener. The listener first cleans the capture .cap file

using wpaclean. This greatly reduces the file size and the transfer begins. The

attacker can finally receive the cleaned capture through the CEC File I/O module.

Evaluation: Local CEC client triggers for the activation of this attack proved

entirely successful. Activation of the wireless module, Airodump-ng, and cleanup

functions succeeded as seen in Figure 6.5. With the capture size reduced, the hand-

shake was transferred to the local client successfully. This process would allow the

attacker to retrieve the handshake at a later date and use more computing resources

to attempt to crack the handshake and gain unauthorized access to the network.

This would then allow the attacker to enable remote functionality to their own

listener.

Attack 4: Targeted Device Attack (Local and Remote) This attack was

developed to demonstrate Threat 5 (Denial of Service) through arbitrary sniffing

and control of a device. In this attack, the attacker uses functionality from the

Python-based listener service to target a specific device in the HDMI distribution.

She also takes advantage of the nature of CEC to sniff and detect when a device has

been turned on. This attack can be divided into three main steps.

161

Figure 6.6: Attack 4–TV Power state change and execution of targeted attack.

Step 1 - Activation: The listener awaits attack activation. It awaits commands

either from the local client (through a walk) or from a remote client to activate the

targeted attack. Once a command is received, the listener activates the attack.

Step 2 - Sniffing: The listener is set within an HDMI distribution and moni-

tors CEC packets flowing through the distribution. We particularly listen to the

data commands “84:00:00:00”, “87:1f:00:08” and “80:00:00:30:00” from any incom-

ing source. These values, usually signify a device broadcasting to HDMI distribution

devices that its power state has changed and has been turned on. More specifically,

84 reports physical address, 87 reports vendor id, and 80 reports a routing change.

In this particular attack, the attacker targets a CEC enabled display, the Sharp

television.

Step 3 - DoS attack: Once the attack is active the listener awaits commands

associated with power state change within the HDMI distribution. Once the power

state change is detected it sends the CEC shutoff command “20:36” to the display

(ID: 0) in the distribution. This automatically powers off the display as soon as it

is powered on.

162

Evaluation: The listener began in an inactive state as expected with passive

listening of the CEC commands. Powering the display did not cause any changes in

this inactive state. The listener successfully received the activation command over

remote and local clients, activating the attack mode. With this mode active, the

display was manually powered on. The module in our service successfully identified

the power state change in the display and provided the shutoff command as seen in

Figure 6.6. The display received the shutoff commands and immediately powered

off as expected. No matter which method of powering on, the attack could not

be avoided, successfully executing the DoS attack. We additionally had another

notable finding while performing this attack. That is, during DoS, the user was

prevented from disabling CEC control within the system. Additionally, this attack

may prove difficult to detect as it may be mistaken for a malfunctioning display.

Attack 5: Display Broadcast DoS (Local and Remote) We developed this

attack to demonstrate Threat 5 (Denial of Service) through broadcast functionality.

This attack abuses the broadcast function in CEC to cause a DoS condition in any

display within a given HDMI distribution. This attack specifically targets displays

by producing standard CEC commands for source and input control. We divide this

attack into three steps.

Step 1 - Insertion of Attacker Listener: The listener device is placed in any

location of the HDMI distribution. The device then awaits instructions from a

client service to begin the attack. In the case of an available wireless connection,

the listener’s Remote Access Module becomes active.

Step 2 - Activation Phase: The listener activates in two different methods: (1)

the listener receives a direct command from a client service to begin the attack. (2)

the listener receives through a remote client with the DOS1 command.

163

Figure 6.7: Attack 5–Input-change induced DoS attack. Executed by remote at-
tacker with command DOS1.

Step 3 - DoS attack phase: After activation conditions are reached, the listener

device begins broadcast of various display input change commands. These are stan-

dard CEC commands accepted by enabled televisions to adjust the active source on

the display device. The CEC distribution is flooded with a broadcast loop: power

on (“20:04”), input 1 (“82:10:00”), input 2 (“82:20:00”), input 3 (“82:30:00”), and

input 4 (“82:40:00”). This renders the displays unusable by the user, effectively

creating a DoS attack.

Evaluation: In this attack, the listener began in an idle state as intended in

the distribution. The listener successfully received the activation command over

remote and local clients. Then, it initiated the DoS broadcast loop over the entire

distribution as depicted in Figure 6.7. The attack first powered on the display if

it was powered off. The loop then began rapid input change over all inputs on

the display. The display began to flash rendering it unusable. We noticed faster

switching between inputs than if compared with manual input change. Another

effect of this condition is that it made it impossible for the user to alter any settings

in the display to disable external control after activation.

Summary and findings: During testing of HDMI-Walk attacks, we identified a

vendor-specific vulnerability, and are currently coordinating to report this finding to

164

the product’s respective manufacturer. HDMI-Walk can identify specific device in-

formation to develop further attacks. We have proven arbitrary control over HDMI

devices which could be used to an attacker’s advantage. Also, we enabled control of

the TV volume and Amplifier volume with devices in our testbed. This control is

completely feasible in an HDMI distribution with the concepts of HDMI-Walk. We

find these attacks critical as they occur over a medium without any form of security

mechanisms or existing techniques for mitigation. Via Attack 4, we found that the

input change control could become a viable form of a visual attack. With these

functions, display input changes could be used to trigger seizures (e.g., television

epilepsy) with the rapid flickering of a display switching between inputs [JIS13]. We

also consider volume control to an Amplifier device. A remote attacker with the

control of a distribution can easily adjust the volume of devices with CEC com-

mands. Extended playback at high volumes is known to damage sound equipment

[Hey13]. An implementation of Attack 1 would first allow an attacker to infer room

occupancy via power state. Combining this with Attack 4, the attacker could peak

the volume output in a room when nobody is present and cause gradual damage

to the sound system, which cause a notable financial cost to the user. Combina-

tion of HDMI-Walk and targeted device attacks such as Attack 4 could also allow

a malicious person to assume control of menu functions in specific HDMI devices.

This would allow the attacker to change menu settings, make purchases, or update

firmware through device-tailored command sequences. With attackers in constant

search for new vectors of attack, disruption, data leakage, behavioral leakage, and

any type of information leakage could present catastrophic outcomes to an organiza-

tion. A conference room while in confidential use can be a target to eavesdropping

and handshake theft, giving attackers a chance to acquire passwords, access codes,

and confidential information. In normal usage, inferring devices and disrupting func-

165

Figure 6.8: Architecture of HDMI-Watch. Each module numbered.

tionality is possible and may present a threat which many users have not considered

or anticipated.

6.5 HDMI-Watch Architecture

To address CEC-based threats, we introduce HDMI-Watch, a passive, easily config-

ured intrusion detection system. In this section, we detail the different modules of

the HDMI-Watch architecture.

6.5.1 HDMI-Watch Overview

The proposed architecture of HDMI-Watch is divided into five different modules, as

seen in Figure 6.8. The first module is the CEC collector which captures CEC pack-

ets from an HDMI distribution and supplies them to the data handler 1 . The data

handler evaluates and logs the incoming CEC traffic utilizing the two sub-modules:

the data analyzer and the data logger 2 . The data analyzer is a sub-module used

for classification, applying a machine learning model over incoming CEC traffic

to perform both binary (malicious or benign) and signature-based (scanning, data

166

transfer, power change, or input control abuse) classification. The data logger is then

used to forward this processed data (classification results, and violations) to both

the logged violations and the user notification module. The model container stores

a machine learning model of expected communication behavior for CEC-enabled

devices, which is used by the data analyzer sub-module to evaluate CEC data 3 .

Any incoming CEC data flagged as a violation by the data analyzer is forwarded to

the data logger. The data logger sends the flagged violations to the user notification

module which notifies the user on unexpected CEC activity which occurs over the

distribution 4 . Finally, the logged violations module stores all the flagged viola-

tions and relevant data found by HDMI-Watch 5 . The logged information may be

queried later for reference, or further analysis.

6.5.2 CEC Collector

The CEC collector provides HDMI-Watch the CEC traffic necessary to operate over

an HDMI distribution. Due to the design of CEC as a bus architecture, a single

point of connection allows HDMI-Watch to monitor all active CEC communication

from devices within the same HDMI distribution. Additionally, the CEC collector

parses the raw data received into a format that other modules of the HDMI-Watch

architecture can interpret. Formatted messages out of the collector include all infor-

mation necessary for evaluation: timestamp, CEC command type, and CEC packet

length. If needed for logging purposes, the entire CEC packet is also included. The

command type is the main feature and later used by the Markov model, while the

length model uses the packet length during the binary classification stage.

167

Figure 6.9: HDMI-Watch classification process.

6.5.3 Data Handler

The data handler acts as the evaluation stage for HDMI-Watch. We divide its

functionality into two main sub-modules; the Data Analyzer and the Data Logger.

Data Analyzer

The data analyzer is the core of HDMI-Watch, making the distinction on whether

incoming CEC data is from malicious or benign activities. Additionally, the data

analyzer performs signature-based classification of malicious activity into different

types of attack behaviors (see Section 6.4).

We refer to Figure 6.9 for the classification process performed by the data an-

alyzer. The first step in HDMI-Watch classification is binary classification, which

attempts to classify CEC activity as benign or malicious. To perform binary classi-

fication, the data analyzer refers to the model container which contains the Markov

and length model used for binary classification. Any violation found from the in-

coming data by the models is cached locally by the data analyzer into lists as flagged

data. The data analyzer can determine the number of violations for the number of

messages received. If the number of flagged violations exceeds the detection thresh-

168

old, the activity is deemed malicious. Once a malicious activity has been identified,

HDMI-Watch begins signature-based classification, inferring the specific type of ac-

tivity in the flagged data (scanning, data transfer, power control, or input control

abuse). To perform signature-based classification, HDMI-Watch uses a behavior

rule table where command types associated with different types of activities. For

instance, malicious activity found during the binary classification stage will be la-

beled as power change abuse if most of the violations in the flagged data are power

control commands. The resulting evaluations from both binary and signature-based

classification along with the flagged data are then passed to the data logger module

for logging and to the user notification module.

Binary Classification. The data analyzer uses binary classification in HDMI-

Watch to infer if activities within the HDMI distribution are benign or malicious.

HDMI-Watch is a flexible system with adjustments to improve classification accu-

racy and better fit the likely heterogeneous HDMI distributions where HDMI-Watch

is deployed. Thus, HDMI-Watch employs a configurable violation threshold as the

acceptable number of violations for a number of received CEC messages. In addi-

tion, the sample of received CEC messages may also be adjusted to improve the

quality of classification. Binary classification in HDMI-Watch classifies sets of vio-

lations as malicious CEC activity if the number of violations exceeds the violation

threshold for a number of received messages.

Signature-Based Classification. HDMI-Watch uses the data analyzer to perform

signature-based classification of malicious CEC behavior. We create a set of rules

for each behavior (scanning, data transfer, power control, or input control abuse)

and classify violation sets as a second step to the initial binary classification. HDMI-

Watch uses a predefined ruleset to infer the type of behavior occurring in a malicious

set of data. These behaviors were selected as they are related to HDMI-Watch attack

169

behaviors. It is possible to configure HDMI-Watch to classify other behaviors with

additional rules. We narrow down to four different unauthorized behaviors from five

attacks using command types:

• Scanning. Scanning is heavily associated with Attack 1. Scanning is required

for an attacker to gather information about a CEC distribution and devices.

• Data Transfer. Attempting file transfer over a CEC bus is not standard

CEC operation and is strongly associated with Attack 2 and 3. To the best

of our knowledge, data transfer capabilities through CEC are not commonly

used by any manufacturer.

• Power Control. While power control commands may be issued by devices

in a benign manner. We can associate the unexpected use of power control to

Attack 4.

• Input Control. Input change may be issued by devices in standard operation.

However, abuse of these commands is associated with Attack 5.

Data Logger

The data logger module receives evaluation results, violations, and relevant data

found during the data analyzer stage. The data logger serves a storage endpoint to

process these results into a database-compatible format. Additionally to formatting,

the logger is responsible for storing this data into the logged violations database.

This module, essentially allows for the users of HDMI-Watch to refer to past events

and view logs on activity which may have been deemed suspicious.

170

6.5.4 Model Container

The model container stores the HDMI-Watch models used to evaluate CEC traffic

in an HDMI distribution. This module uses the command type of CEC packets as

its main feature, with length as a secondary attribute and is used by the data an-

alyzer module to predict unexpected behaviors and also specific types of malicious

activities. Specifically, the model container is divided into two parts, the Markov

model and the length model. HDMI-Watch uses the Markov model to determine if

a command type in CEC traffic is expected after the last message received. Addi-

tionally, HDMI-Watch uses the length model to determine if the length of a CEC

packet matches expected lengths for the command type. Packets which violate these

models are flagged as violations.

Markov Model

The Markov model is the core module of the model container and is used by the data

analyzer for CEC data evaluation. Since vendors and attackers have the ability to

create CEC packets of any command type, HDMI-Watch must consider all possible

command types as states. In effect, this yields to a total of 256 (00-FF) states

for the HDMI-Watch machine learning model. The data analyzer refers to this

model to analyze CEC traffic and infer if received command type follows expected

behavior. Any CEC packet which does not follow expected behavior is marked as

a violation and acts against the detection threshold, causing CEC activity to be

deemed malicious after being reached.

Mathematical Foundations: We build a Markov-Chain-based model to perform

binary classification of the CEC behavior within the HDMI distribution. With

the Markov chain model, we evaluate the probability of changes in CEC command

171

Figure 6.10: Three command types are shown as states in a CEC Markov Model.
Probabilities given (P1 to Px) as the possibility one command type following another
command type.

behavior over time. The Markov chain model serves as the core classification mech-

anism for HDMI-Watch.

We represent the probabilistic condition of CEC state changes in Equation 6.1

where Xt denotes the CEC command as a Markov chain state at time t. Figure 6.10

illustrates a simplified version of a CEC behavior with three command types defining

Markov Chain states and probabilities (P1,...,P7) of transitions between these states.

For instance, P5 being the probability of a CEC “Power Off” command being sent

after an “Input Select” message.

P (Xt+1 = x|X1 = x1, X2 = x2..., Xt = xt) =

P (Xt+1 = x|Xt = Xt)

when, P (X1 = x1.X2 = x2..., Xt = xt) > 0.

(6.1)

In HDMI-Watch, we observe the commands transmitted by a set of devices over

time. Let us assume that C denotes a set which represents a set which contains all

transmitted command types over a CEC bus, such that C = {C1, C2, C3,...,Cn},

172

where C1, C2, C3,...,Cn = any CEC standard command value type (e.g., 36, 8f, 00).

For the function of time, t, we consider the command during time t as the state in

our model. If we consider the number of total number of unique CEC commands,

there are a total of 256 possible commands which must be considered.

If we assume that the distribution’s states are X0, X1,..., XT. at a given time of

t = 0, 1,..., T. We can then represent the transition probability Pij as shown below:

Pij = Nij/Ni,

where Nij is the number of transitions from Xt to Xt+1, with Xt = i and Xt+1 = j ;

Ni being the total number of transitions from state i. Initial probability distribution

of this Markov Chain is represented as follows:

Q = [q1, q2, q3, ..., qm],

this model denotes qm as the probability that the model is in state m at time 0.

The probability of observing a sequence of states (XT) at a given time T, can be

computed as shown:

P (X1, X2, ..., Xt) = qx1

T∏
2

PXt−1Xt .

For HDMI-Watch, instead of predicting future states, we determine the proba-

bility of a transition between states at a given time. We train our Markov Model

with a dataset collected from active CEC devices and create a prediction model to

calculate the probability accordingly. Any packet with a probability of zero from a

previous state is deemed unexpected and therefore a violation of the Markov model.

173

Length Model

HDMI-Watch uses a length model to determine if a command received is of the

expected length. This model contains mappings of associated lengths to command

types found during the training phase of HDMI-Watch, taking advantage of the

association between length and type of CEC packets in CEC communication. For

instance, messages with the command type “36” shut off should not contain addi-

tional data and the length model serves as a method to detect discrepancies in cases

such as these. The data analyzer refers to the length model in the binary classifica-

tion stage to determine if CEC packets are violations of the expected length model.

Any CEC packet which is deemed a violation of the length model acts against the

detection threshold and may cause incoming data to be classified as malicious.

6.5.5 User Notification

The user notification module is the primary form of notification to a network ad-

ministrator using HDMI-Watch. After CEC traffic is analyzed, the user notification

module details any violations to an administrator. This administrator is shown

the complete set of packets including packet source, packet destination, command

type, data, length, timestamp, violation type, and possible attack type. Ideally,

an administrator receives a text message or an email when a violation or a set of

violations occur. This information is also archived by logged violations module of

HDMI-Watch.

6.5.6 Logged Violations

The logged violations module acts as a storage database for any violations found

during HDMI-Watch monitoring. The administrator queries this module to view

174

Figure 6.11: HDMI testbed, including two targeted displays, an attacker device, and
the HDMI-Watch device within the same distribution.

a history of violations and react accordingly to any threat. This enables proper

mitigation by the administrator and allows for simple tracking of past suspicious

behavior. Logged violations only include commands deemed malicious, as well as

evaluations of what type of action is occurring with a set of these violations based

on HDMI-Walk attacks. This acts as the final stage of HDMI-Watch and as a point

of reference for any network administrator authorized to view HDMI-Watch logging.

6.6 Implementation of HDMI-Watch

To implement HDMI-Watch’s necessary modules, we used a modified version of

Pulse-Eight’s LibCEC library [Pul18] and Python extensions [Pyt19]. All the soft-

ware used is open source and freely available online. We refer to Figure 6.11 as

the testing environment for HDMI-Watch. Our testing environment uses several

commodity HDMI devices (A/V receiver, switcher, source devices, displays), an at-

tacker client, the attack listener, and a device hosting HDMI-Watch. We assume

the attacker executes all the HDMI-Walk attacks as covered in Section 6.4 of this

175

manuscript, receiving execution commands from an attacker with a connection to

the attacking device.

6.6.1 CEC Collector

Implementing the CEC collector required modification to the original LibCEC li-

brary. The original LibCEC code filters some incoming CEC packets, which was not

desirable for HDMI-Watch. For the CEC collector, we removed all forms of filtering

from the original LibCEC source code. The removal of such allowed HDMI-Watch

to monitor all ongoing CEC communication in an HDMI distribution, no matter

the source or destination. Live CEC data was received using our modified LibCEC

library. The received data was then pre-processed with Python into a comma-

delimited string that included the CEC packet’s timestamp, command type, length,

and the CEC packet itself. Once data was formatted, data was passed to the data

handler module.

6.6.2 Data Handler

The data handler includes two sub-modules, the data analyzer and the data log-

ger. Both sub-modules used by the data handler were instrumented using Python

libraries.

Data Analyzer

The data analyzer was implemented as a Python-based sub-module operating within

HDMI-Watch. Internally, the data analyzer fetches each attribute from the received

data (timestamp, packet, and length). The data analyzer takes note of the command

type of each incoming packet. For instance, the CEC packet “02:89:01” was marked

176

Table 6.4: signature-based evaluation by behavior type rule set. Malicious activity
is tagged as the case with the most occurrences by command type.

Command Behavior Characteristics
83 Scanning Scanning, eavesdropping behavior
00 Data Transfer Multiple occurrences data transfer
36 Power Control Possible abuse in power control
20 Input Control Possible input control abuse

as command type “89” and length of “8”. This sub-module then queries the model

container in search of violations in incoming data. Incoming CEC packets deemed

suspicious are flagged and logged. This flagged data was then used to infer the type

of CEC activity occurring in an HDMI distribution given the specific rules from

Table 6.4.

Data Logger

The data logger uses standard Python I/O libraries to convert data into a comma-

delimited format. This information was then exported as an external document

containing all the flagged data, classification results, and relevant information.

6.6.3 Model Container

The model container was comprised of the two models used by HDMI-Watch for

classification purposes, the Markov model and the length model. In this subsection,

we overview the Markov model, the length model, and the data process to implement

these models.

Markov Model

The Markov model was stored as a map of key pairs and probabilities created from

the training data. This model was a comma-delimited document that was imported

177

Figure 6.12: User notification shown when detection threshold is exceeded in HDMI-
Watch.

into the HDMI-Watch at runtime. For instance, an association of command 9D to

90 was stored as follows “9D-90,0.5”. The first value expresses a command type pair

(90 received after 9D). The second value was the probability of the command type

pair occurs in this trained model.

Length Model

The length of each packet was associated with the command type gathered during

the training phase. The length model was stored as a serialized Python dictionary

derived from the training data and functions as a complementary feature to the

Markov model. The length model stored the associated lengths in key-list pairs to

their respective command type. For instance, if the command type “87” has the

expected length as 11 and 14, this was stored as “’87’: [14, 11]” in the length model.

Data Collection and Training

To train the HDMI-Watch classifier, we collected daily data usage from an HDMI

environment. We performed normal operation of the HDMI equipment as defined in

Section 6.5. Normal operations involved using the environment for music, movies,

videos, and any manner consistent with an HDMI distribution system. Data from

the environment was collected over the span of two weeks, where users performed

178

normal operations using the testbed. This collected data was then used as the

training data for the model container module using a python-based software designed

for HDMI-Watch. In total, we collected 61,765 benign CEC communication packets

during the standard operations of the HDMI testbed as the training data. To train

the model, we followed an unsupervised learning approach that did not require

labeled data for training. We found that the unsupervised learning approach with

the Markov model provided more flexibility for HDMI-Watch and required fewer

system resources during the learning process.

6.6.4 User Notification

The user notification module in HDMI-Watch was implemented to notify the user

when the detection threshold was exceeded and thus, malicious activity was de-

tected. The current implementation functioned as a popup notification on the local

machine using the Python module Tkinter [Pyt19]. Figure 6.12 shows the notifica-

tion which occurs when violations exceed the detection threshold. Implementations

of email, texting and other notifications are a very straightforward task which can

be very easily implemented.

6.6.5 Logged Violations

Violations are logged directly into a comma-delimited document stored in the device

hosting the HDMI-Watch system. This file is created using standard Python I/O

libraries, appending messages to the end of the output document. This comma-

delimited document contains all relevant information to the violation: timestamp,

data, packet length, violation type, and possible attack-type of each violation.

179

6.7 Performance Evaluation

In this section, we evaluate our solution against HDMI-Watch attacks. Specifically,

we aim to answer the following research questions:

RQ1: Threshold Evaluation. How does HDMI-Watch’s detection threshold af-

fect the binary classification results in HDMI-Watch? (Section 6.7.1)

RQ2: Malicious Activity Type. How effective is HDMI-Watch in classifying

between different types of malicious behaviors? (Section 6.7.2)

Attack Implementation

Based on previously mentioned HDMI-Watch attacks, we perform the attacks as

per Section 6.4 specifications. We assume that the attacker perpetrates the attacks

following a Normal distribution. As such, we assume there is an equal probability

that any attack will occur at any given time and a valid model to emulate a single

attack executed at the time, which we consider a realistic approach to emulate

HDMI-Watch attacks. Considering t=[0,T] as the timeframe of the attack, we

present the vector of the attacks as follows, with five types of attacks:

ATi = [AT1, AT2, AT3, AT4, AT5], (6.2)

such that the probability of having an attack occurring:

P (AT) =
1

σ
√

2π
e−(AT−µ)2/2σ2

, (6.3)

where µ is the mean number of attacks per given timeframe and σ being the standard

deviation of attacks occurring within a given timeframe.

180

Attack Data Collection.

To evaluate the data classification capabilities of HDMI-Watch, we collected data

from the interaction between all CEC devices in the distribution. The activity

collected for the evaluation included regular CEC activity as defined in Section

6.5 and malicious activities from HDMI-Walk attacks. During the malicious data

collection, we executed each attack 30 times within the HDMI test environment.

The collection resulted in a total of 150 datasets of attack data, 30 for each attack.

Additionally, we recorded 30 datasets of CEC traffic from the expected operations

of the HDMI testbed as defined in Section 6.5. All of the attacks were executed as

noted in Section 6.4. For AT1, our attacker device performed CEC-based scans over

the distribution. For AT2 and AT3, we performed file transfer of the captured data

to the attacker device. For AT4, we activated the attack and attempted to power on

the display under attack conditions, recording the attacker device shutting off the

display. In AT5, we attacked a display in the distribution via rapid input change.

Performance Metrics

For performance metrics, we utilized the standard parameters: accuracy, True Posi-

tive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), False Neg-

ative Rate (FNR), recall, precision, and F-score. For instance, in the case of benign

evaluation True Positive Rate (TPR) denotes the total number of correctly identi-

fied benign CEC activity within the test environment. True Negative Rate (TNR)

denotes the total number of correctly identified malicious CEC activity within the

test environment. False Positive Rate (FPR) denotes the total number of cases

where malicious CEC activity was mistaken as being benign. False Negative Rate

(FNR) denotes the total number of cases where benign CEC activity is mistaken as

malicious.

181

Table 6.5: Binary classification performance evaluation of HDMI-Watch on varied
violation thresholds T

T Binary TPR TNR FPR FNR ACC PREC REC F1
1 Benign 0.87 1.0 0.0 0.13 0.87 1.0 0.87 0.93

Malicious 1.0 0.87 0.13 0.0 0.97 0.97 1.0 0.99
2 Benign 0.90 1.0 0.0 0.1 0.9 1.0 0.9 0.947

Malicious 1.0 0.9 0.1 0.0 0.98 0.98 1.0 0.99
3 Benign 0.97 0.99 0.01 0.03 0.94 0.97 0.97 0.97

Malicious 0.99 0.97 0.03 0.01 0.99 0.99 0.99 0.99
4 Benign 0.97 0.96 0.04 0.03 0.81 0.82 0.97 0.89

Malicious 0.96 0.97 0.03 0.04 0.95 0.99 0.96 0.98
5 Benign 0.96 0.93 0.07 0.03 0.73 0.74 0.97 0.84

Malicious 0.93 0.97 0.03 0.07 0.92 0.99 0.93 0.96
6 Benign 0.96 0.91 0.10 0.03 0.66 0.67 0.97 0.79

Malicious 0.91 0.97 0.03 0.10 0.90 0.99 0.91 0.95

RecallRate =
TNR

TNR + FPR
, (6.4)

PrecisionRate =
TPR

TPR + FPR
, (6.5)

Accuracy =
TPR + TNR

TPR + TNR + FPR + FNR
, (6.6)

F1 =
2 ∗RecallRate ∗ PrecisionRate
RecallRate+ PrecisionRate

. (6.7)

6.7.1 Performance of HDMI-Watch Classification for Dif-

ferent Violation Thresholds (RQ1)

As part of RQ1, we evaluate binary classification and the effects of the violation

threshold as defined in Section 6.6, we processed a total classification of 180 datasets

(30 malicious for each attack and 30 for benign cases) with HDMI-Watch using dif-

ferent threshold values. As highlighted in Section 6.5, part of HDMI-Watch classi-

182

fication involves the violation threshold per number of packets received. We refer

to the classification results in Table 6.5 for different detection threshold values (per

400 packets received). In these results, we show how different threshold values affect

the classification results in terms of accuracy and precision.

Table 6.6 presents the binary classification results for T=2 against malicious and

benign behavior with accuracy, precision, recall, and F1 metrics for each case. We

use this value for T as it presents no false negatives for malicious test cases. For

this case, we obtain an accuracy of 90% and precision of 100% for benign detection,

with only three benign cases misclassified as malicious out of 30 cases. In the case

of malicious activity, we achieve an overall accuracy and precision of 98%.

With the configurable design of HDMI-Watch, evaluating the behavior on differ-

ent thresholds is important and yields some interesting results dependent on attack

behavior. We observed that the violation threshold is particularly important for

attacks with fewer violations (scanning and power control). The proposed scanning

and power control attacks require less CEC packets to execute than attacks involv-

ing rapid input switching or data transfer. As a result, the number of violations is

much less for scanning and power control behaviors, making such attacks less notice-

able. Behaviors such as data transfer in CEC were more easily detectable (higher

number of violations) than power control, as an attack involving data transfer or

input change spam involves many more packets than abusing shut-off commands.

Therefore, if the threshold is too high then attacks with fewer violations may be

missed by HDMI-Watch. Inversely, a threshold that is too low, benign behavior

may be improperly classified as malicious, reducing the accuracy of HDMI-Watch.

During testing, A more interesting case was a benign case with 16 violations. This

case occurred during a manual power cycling of an AppleTV in the distribution.

183

Table 6.6: Binary performance evaluation for HDMI-Watch. Classifying expected
vs unexpected behavior for T=2.

Binary TPR TNR FPR FNR ACC PREC REC F1
Benign 0.90 1.0 0.0 0.1 0.9 1.0 0.9 0.947

Malicious 1.0 0.9 0.1 0.0 0.98 0.98 1.0 0.99

Media centers such as these are “always-on” devices thus power cycling was benign,

but unexpected operation detected by HDMI-Watch.

6.7.2 Classification of Malicious CEC Behavior (RQ2)

As part of RQ2, we refer to Table 6.7 for HDMI-Watch’s effectiveness in classifying

different malicious CEC-based behaviors. For HDMI-Watch testing, we classified

malicious activities into four different types of behaviors (scanning, file transfer,

input control, or power control) based on the command type of the violation. Our

results show that HDMI-Watch achieves an average accuracy of 98% and an average

precision of 99% for signature-based classification. Additionally, our results show

that transfer and input change behavior detection achieved perfect classification

with HDMI-Watch. In the case of power command abuse, HDMI-Watch mislabeled

one case as scanning behavior, impacting the individual accuracy for scanning and

power behavior classification.

One of the observations made is that some attacks were more easily distinguish-

able than others. We highlight that data transfer and input behaviors were classified

with better accuracy as they involve many CEC packets from the attacker. For in-

stance, in the case of file transfer, the serialization of packets and then transmission

of those packets yields to many violations of command type “00”. This command

type is matched to values on the table and the activities identified as data trans-

fer. Similarly, rapid input requests require the use of CEC command “20”, allowing

184

HDMI-Watch to easily distinguish the type of behavior being executed. In contrast,

other behaviors with a smaller footprint (less CEC packets required) such as scan-

ning and power control do not rely on a large number of CEC commands to execute.

In effect, these behaviors were more difficult to detect by HDMI-Watch compared

to other types of behaviors.

6.7.3 Benefits and Discussion

There are notable benefits to using HDMI-Watch.

Complete Passive Monitoring. HDMI-Watch is based on complete, passive

monitoring. This has two main advantages. First, HDMI-Watch does not affect

CEC performance in an HDMI distribution. Second, our method does not require

any changes to the overall protocol or to existing devices in a distribution.

Complete Black-box integration. HDMI-Watch resolves one of the biggest is-

sues of HDMI-based devices, the lack of technical documentation. HDMI-Watch

does not require knowledge of source code or operation of any device. HDMI-Watch

may learn from live analysis during the training phase of a system.

Flexible Design. It is possible to adjust HDMI-Watch to specific deployments.

For instance, the threshold used to classify if an activity is malicious or benign

can be adjusted. In addition to the threshold, the number of packets on which

the threshold is applied to may also be easily configured to fine-tune HDMI-Watch

classification. Additionally, the signature-based classification ruleset may be altered

to include different types of behaviors not covered under this chapter.

Privacy. HDMI-Watch only requires command type and length to operate. With

the ability to strip communication data from packets HDMI-Watch requires no sen-

sitive information to operate. HDMI-Watch can improve the privacy of an HDMI

185

Table 6.7: Signature-based classification performance evaluation of the proposed
IDS. Detecting behavior by type.

Behavior TPR TNR FPR FNR ACC PREC REC F1
Scan 1.0 1.0 0.008 0.0 0.968 0.968 1.0 0.984

Transfer 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0
Input 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0
Power 0.967 1.0 0.0 0.033 0.967 1.0 0.967 0.983

system by detecting the insertion of new devices and preventing malicious CEC

scanning. Even though inferring sensitive information within an HDMI distribution

from malicious scanning or passive sniffing is possible, a more formal privacy analysis

on HDMI is necessary to fully evaluate CEC information leakage. As CEC behav-

ior varies from different devices and device-to-device interaction, a future study on

privacy issues from HDMI behavior is needed.

Detection Time. HDMI-Watch attack detection is based on how quickly CEC

packets are issued during the attack, most attacks were detected before the attacks

had finished. As such, attacks that issue more packets in a shorter span of time are

going to be detected quicker. The time of detection is also difficult to guarantee

due to several factors affecting the attack behavior. For instance, an attacker may

send CEC packets at a slower rate to accomplish the same attack over a longer span

of time. Additionally, data-transfer behaviors may vary depending on the amount

of data transmitted and the rate of transmission. As attacks are detected through

the detection threshold, the threshold can be adjusted to detect slower attacks by

reducing the detection threshold. However, while this may raise the number of false

positives, attacks would also be slower and more ineffective.

Scalability. As with many machine learning systems, data must be gathered on

every testbed and on the addition of every new device. This is not unreasonable,

as new devices might not be added often within HDMI distributions. As such, the

design of HDMI-Watch allows to save and load models. It may be possible to create

186

models of combinations of devices, and just load the right model into HDMI-Watch

when a new device is added. As devices of the same make and model should have

similar behavior, models may be reused in multiple distributions. Additionally, it is

possible for HDMI-Watch to ignore certain devices temporarily while a new model

is built. Such actions could reduce false positives for devices which were not in the

testbed before. Another solution is to add a CEC-less adapters to new devices,

this would keep them from entering the CEC bus while allowing all other HDMI

functionality.

6.8 Conclusion

Today there are close to 10 billion High Definition Multimedia Interface (HDMI)

devices in the world and HDMI has become the de-facto standard for the distribution

of A/V signals in smart homes, office spaces, sports events, etc. A component of this

widely-deployed interface is the CEC protocol which is used to control devices using

the HDMI interface. With no currently known security solutions in place or security

implementations in the CEC protocol design, CEC opens a realm of possibilities to

attackers. In this chapter, we highlighted HDMI-Walk, a novel attack surface against

HDMI distribution networks and presented five different attacks using this vector.

We studied how current insecure CEC protocol practices and HDMI distributions

may grant an adversary a viable attack surface against HDMI-enabled devices. Using

HDMI-Walk, we analyzed the CEC propagation and implemented a series of local

and remote CEC based attacks as a proof-of-concept design. Specifically, we used

HDMI-Walk to perform malicious analysis of devices, eavesdropping, DoS attacks,

targeted device attacks, and facilitate existing attacks through HDMI. As current

network security mechanisms only protect traditional networks and components,

187

CEC-based threats are outside of their scope. To defend against these threats, this

manuscript proposed HDMI-Watch, a novel easily-configured security mechanism

tailored specifically for the classification of CEC-based abnormal behavior. HDMI-

Watch operates as a passive, standalone framework in an HDMI distribution and

provides no additional overhead to CEC communication. Finally, We evaluated

the performance of HDMI-Watch in an HDMI testbed under realistic conditions.

HDMI-Watch evaluation results showed levels of over 90% in accuracy and precision

for binary and signature-based classification.

188

CHAPTER 7

SERIAL-BASED ATTACKS AND DEFENSES FOR E-IOT

COMMUNICATION BUSES

7.1 Introduction

The rapid adoption of specialty smart systems has changed the lives of millions of

users worldwide [IoT18]. As part of these ecosystems, Enterprise Internet of Things

(E-IoT) are smart systems designed to allow users to integrate and control very

complex installations at a higher cost than off-the-shelf IoT systems. As such, E-IoT

systems grant users a robust, reliable, and accepted solution for smart installations

and complex deployments. Many vendors such as Savant, LiteTouch, Crestron, and

Control4 offer E-IoT solutions, which are then deployed and configured to a user’s

specification by trained installers. In effect, E-IoT systems are often found in smart

settings where security oversight is critical (e.g., smart buildings, hotels, government

and private offices, smart homes, businesses, yachts, colleges).

While the security of numerous off-the-shelf IoT smart systems is well-understood

due to prior research and mainstream knowledge, very little research exists on E-IoT

and their proprietary technologies. With many of these E-IoT systems deployed in

high-profile locations (e.g., government and enterprise offices, colleges, conference

rooms, hospitals), evaluating possible threats for these E-IoT smart systems should

be of utmost importance. However, many E-IoT systems use proprietary commu-

nication protocols that rely solely on security through obscurity. The motivation

of this paper is to shed light upon the security of E-IoT systems and uncover pos-

sible vulnerabilities of E-IoT proprietary communication protocols that can affect

millions of E-IoT deployments. To address this open research problem and deter-

mine if E-IoT systems are susceptible to attacks, we focus on one of the core E-IoT

189

components, E-IoT communications buses. E-IoT communication buses are used

by E-IoT proprietary communication protocols to carry out fundamental internal

communication functions such as interactions between user interfaces and the cen-

tral controller. Specifically, communication buses are used to trigger programmed

E-IoT events on integrated devices. In this work, we take a look at Crestron’s Cres-

net, a proprietary communication bus protocol used by one the major E-IoT system

vendors. Crestron is a great example of a globally accepted E-IoT system with bil-

lions in sales, deployments in over 90% of Fortune 500 companies, and thousands

of independent installers [Mar18]. To demonstrate that it is feasible for attackers

to compromise E-IoT systems through insecure communication protocols, we pro-

pose LightningStrike, a series of novel attacks created to leverage communication

buses against insecure communication protocols, namely Cresnet, to an attacker’s

advantage. With LightningStrike, we demonstrate that an attacker with limited

resources can (1) cause Denial-of-Service (DoS) conditions in an E-IoT system, (2)

maliciously eavesdrop system communication, (3) execute replay attacks to cause

undesired behavior (e.g., open a door), and (4) impersonate other E-IoT devices.

Our evaluations with a realistic E-IoT testbed show that LightningStrike pro-

vides attackers with effective, practical, and covert mechanism to compromise E-IoT

systems and cause great damage which can broadly impact millions of current and

future E-IoT deployments. For this reason, protecting E-IoT systems against such

attacks are imperative. However, E-IoT systems have distinct challenges. For in-

stance, E-IoT systems and underlying protocols are closed-source and cannot be

modified by third-parties. Further, modifications to existing protocols would re-

quire upgrading or replacing E-IoT systems at a great cost to the system users.

These limitations make traditional defense strategies inadequate for such threats.

Thus, a new defense mechanism is needed that considers the mentioned challenges

190

and utilizes existing system resources. Thus, we present LGuard, a defense system

designed specifically to protect E-IoT deployments against LightningStrike threats.

LGuard first increases the difficulty of eavesdropping by obfuscating E-IoT traffic

through the insertion of redundant traffic in the E-IoT communication bus. Further,

LGuard uses passive traffic monitoring to identify E-IoT device tampering against

impersonation attacks and voluminous traffic to detect LightningStrike-style DoS at-

tacks. Finally, LGuard detects replay attacks using computer vision techniques and

the video captures of existing CCTV system. To test LGuard’s performance, we im-

plemented LGuard and created a realistic E-IoT testbed. Our extensive evaluations

show that LGuard achieves an average accuracy and precision of 99% in detecting

LightningStrike-style DoS, impersonation, and replay attacks without operational

overhead or modification to the E-IoT system. In addition, LGuard effectively in-

creases the difficulty of extracting valuable information for eavesdroppers via E-IoT

traffic obfuscation.

The contributions of this chapter are as follows:

• We introduce LightingStrike, a set of attacks against E-IoT proprietary com-

munication protocols.

• We demonstrate that communication buses used by major E-IoT vendors (e.g.,

Cresnet) can be used as an attack vector against E-IoT systems using Light-

ingStrike.

• We test LightingStrike attacks in a realistic E-IoT Crestron testbed and lever-

age communication buses to cause undesired behavior on behalf of an attacker.

• We propose LGuard, a novel defense system designed to protect E-IoT deploy-

ments against LightingStrike-style threats.

191

• We evaluate the performance of LGuard in a realistic E-IoT testbed and show

that it achieves an overall accuracy and precision of 99% in detecting DoS,

impersonation, and replay attacks while mitigating eavesdropping attacks via

obfuscating the E-IoT traffic.

7.2 Differences from Existing Works

While prior works highlight threats against off-the-shelf IoT systems through well-

known attack vectors (e.g., TCP/IP, WiFi, Zigbee, Z-Wave), LightingStrike is the

first in the literature that uncovers the insecurities of E-IoT by focusing solely on

proprietary protocols used in E-IoT. By this way, we shed light upon security of

proprietary E-IoT communication through unconventional attack vectors. In or-

der to analyze the security of such systems and demonstrate realistic attacks, we

created a testbed utilizing real E-IoT devices of one of the most popular E-IoT

systems, namely Crestron. We demonstrated four attacks, specifically two distinct

types of DoS, eavesdropping, and replay attacks. The scope of our attacks relies

on proprietary communication, and does not rely on any software-based vulnera-

bilities, overflows, traditional network connectivity, or fuzzing. To address these

threats, we introduced LGuard, a defense mechanism tailored specifically to pro-

tect E-IoT communication buses against LightingStrike-style threats. Furthermore,

LGuard functions without modification or overhead to the E-IoT system, targeting

each threat individually with high precision and accuracy.

192

7.3 Problem Scope and Threat Model

In this section, we present the problem scope and the threat model for LightingStrike-

based attacks.

7.3.1 Problem Scope

This chapter assumes the existence of an E-IoT system with a communication bus

network within a smart building, with electric loads integrated to the E-IoT system.

Full integration is a realistic assumption as the purpose of E-IoT systems is to

integrate many devices into common interfaces. The topology of the communication

network includes common components such as lighting modules, switches, magnetic

relays, lights, and user interfaces. As such, users have communication bus interfaces

(e.g., keypads, touchscreens) available throughout the building to control the lights,

physical access, and other smart E-IoT functions. The attacker is Mallory, a visitor

with authorized access only to public areas of the smart building. With security

policies enacted on all traditional networks (e.g., TCP/IP, WiFi), Mallory’s only

avenue of attack is through indirect means through an available communication bus

in a smart building.

With many wired communication bus interfaces, Mallory finds an unsupervised

wired device such as a touch screen docking station. This is a viable assumption

as it is unrealistic that every communication bus endpoint and interface in the

smart building (i.e., restroom, private office) is being supervised by the building

security. Mallory may easily find an empty room with a touchscreen or a keypad

and compromise the communication bus by inserting a device such as a compact

computer with a communication adapter into a daisy-chain (communication bus)

line. The inserted device physically connects to the bus network and grants Mallory

193

the ability to eavesdrop and inject messages into the network bus. Compromising

the communication is possible as network buses often do not have any form of

security monitoring, as noted in previous sections. An inserted device will not be

detected as no intrusion detection mechanisms exist for communication buses in

E-IoT. Additionally, bus-based communication is often unencrypted and accessible

to all devices that use the same bus. This behavior allows Mallory to monitor and

broadcast arbitrary messages to all devices into the communication bus. As such,

with the compact computer (e.g., Raspberry Pi) inserted, Mallory can hide her

inserted device and begin executing her attacks elsewhere.

Attack Practicality. While we proposed an example scenario where an attacker

can compromise an E-IoT deployment, there can be many other practical scenarios.

• Third-party contractors. Repair and maintenance services often require ex-

ternal contractors (e.g., electricians, plumbers, painters, external I.T.) with

unsupervised temporary access to facilities such as smart buildings. In some

scenarios, such as re-painting walls or repairing damages, contractors must

remove fixtures and mounted E-IoT devices (e.g., keypads, touchscreens). An

attacker can be a part of the contractors or can bribe an employee to insert a

malicious device in the communication bus line.

• Rented Rooms. Some locations may opt to rent conference rooms, allowing

outsiders to gain frequent access to parts of the facility, with services such as

LiquidSpace [Liq21]. Conference rooms need E-IoT interfaces for the users to

control projects, lightning, screens, and A/V required for a presentation. If

the communication bus wiring is shared between the rented room and other

areas of the facilities, it would be trivial for attackers to insert their devices

in the line and later perform attacks.

194

• Neighbors. Locations with E-IoT systems may have neighboring offices or

other locations for rent. Cases of attackers using their proximity to their target

have occurred in the past [Dav11], as such, E-IoT systems can be attacked in

a similar manner. An attacker may temporarily rent a location (e.g., store,

office) adjacent to the target E-IoT system as a way to gain physical access to

the communication bus wiring of target location through a shared wall or a

shared low-voltage junction box. Once the attacker inserts a malicious device

into the communication bus, the boxes and the walls can be closed up and the

E-IoT system can be compromised.

7.3.2 Definitions

In this sub-section we cover essential definitions for the concepts used in the Light-

ingStrike attacks.

Limited-Access User. A limited-access user is any user, such as a temporary visitor,

with guest access to any facility. As such, he/she has restricted access and limited

permissions to a facility.

Attacker. The attacker is any user (e.g., temporary visitor) with limited access to

the facilities that attempts to gain access to unauthorized resources. The attacker’s

motivations are to disrupt, gather information, learn user behavior, gain unautho-

rized access, and perpetrate attacks.

Interface Devices. An interface device is a device that a user can use to interface

and operate a smart system (e.g., keypads, touchscreens, buttons, tablets, phones,

remotes).

195

7.3.3 Threat Model

LightingStrike considers the following powerful threats as part of the threat model.

Threat 1: Denial-of-Service. This threat considers DoS attacks where Mallory

disrupts an E-IoT system’s availability through a communication bus connection.

These attacks may target specific devices or affect multiple devices. For instance,

Mallory can prevent the usage of multiple keypads by causing conflicts in the com-

munication bus or flooding the bus with redundant messages. Hence, ordinary users

cannot use E-IoT interfaces to open/close magnetic doors, operate window shades,

trigger lights, trigger emergency panic buttons in case of an emergency situation.

Threat 2: Malicious Eavesdropping. This threat considers Mallory monitoring

the communication bus maliciously. As an unauthorized user, this threat allows

Mallory to maliciously gather potentially sensitive information about an E-IoT sys-

tem such as usage, button sequences, and user activity.

Threat 3: Impersonation. This threat considers Mallory maliciously imperson-

ating devices connected to the communication bus. For instance, Mallory altering

the identification number of a device to impersonate or cause an undesired E-IoT

system behavior.

Threat 4: Replay Attack. This threat considers Mallory replaying messages cap-

tured through the communication bus to cause undesired behavior on connected

devices. For instance, Mallory can replay a button press to unlock a door relay

controlled by a lighting system, turn all or specific lights on/off as frequently as

she wants, generate fake emergency button presses, and affect the quality of the

working/living environment in various ways.

196

Figure 7.1: General end-to-end implementation for LightingStrike-based attacks.
Attack-related components are highlighted in gray, E-IoT components are in blue.

7.4 LightingStrike Architecture

In this section, we describe the LightningStrike architecture and the end-to-end

implementation of LightingStrike-based attacks which involves the interaction of

three unique components: attacker client, attack device, and target environment.

7.4.1 LightingStrike Overview

We highlight the architecture of LightingStrike in Figure 7.1. In this architecture,

Mallory (the attacker) has compromised the E-IoT communication bus with the

insertion of a malicious device (e.g., Attack Device). The attacks against the pro-

prietary E-IoT communication protocol begin with Mallory, using LightingStrike’s

attacker client, such as a tablet, phone, or laptop, to communicate with the attack

device and initiate the attacks with the client software 1 . In our case, Mallory

sends the malicious payload and all the information necessary to initiate the attacks

to the attack device using her client software. Communication between the attacker

client and the attack device may be wireless (e.g., cellular, Bluetooth, WiFi), us-

ing a command-line interface or a VNC connection. The target environment is the

E-IoT system being attacked and contains the communication bus sub-components.

As such, attack device’s adapter sub-component acts as the physical connection

197

between the communication bus and the attack device. The software modules sub-

component is the software necessary to interface with the communication bus and

attack the proprietary communication protocol. With communication in place, Mal-

lory begins the LightingStrike attacks, transmitting attack-specific commands (using

the payload) to the target environment 2 . Finally, the status and results of ongoing

attacks are returned to Mallory’s attack client with attack device’s communication

sub-module as the attacks are executed 3 . We further detail the components of

the LightingStrike end-to-end architecture.

Attacker Client. The attacker client is any device Mallory uses to execute the

attacks, such as a phone, laptop, computer, tablet, or any device capable of running

the necessary sub-components and communicating wirelessly with the attack device.

Mallory uses this component to initiate, stop, and monitor ongoing attacks against

the target environment. As such, to execute the LightingStrike attacks, the attacker

client includes two sub-components, the client software and the malicious payload.

The client software is the primary means of communication with the attack device,

and may be a command-line interface, VNC client, IDE, or any piece of software

that can command and control the attack device. The malicious payload contains

all the necessary information to initiate the attacks; for instance, if Mallory wants

to execute a DoS attack, the payload specifies the attack type and target. In effect,

Mallory runs the client software in the attacker client, submitting her malicious

payload to the attack device through her client software, where responses and attack

statuses are displayed.

Attack Device. In the proposed architecture, the attack device is a compact device

connected to the communication bus. For instance, the attack device is connected

physically to the physical wires behind an unattended keypad, or hidden under a

docking station. The attack device is designed to act as the intermediary communi-

198

Table 7.1: Hardware & software used in LightingStrike attacks implementation and
evaluation.

Hardware Software
Crestron DIN-PWS50 Eclipse IDE 2020-03
Crestron C2N-DB12W Crestron D3 Pro
Crestron DIN-EN-2X18 Crestron Toolbox

Crestron DIN-AP3 Java RX-TX Library
Crestron DIN-8SW8-I Java 8 SDK
Razer Blade 15 Laptop VNC Viewer 6.20.529
Acer GX-785 Desktop TightVNC 2.8.27

GearMo Mini USB to RS485 -

cation point between the attacker client and the target environment. As such, the

attack device sends/receives messages through the communication bus to/from the

target environment on behalf of Mallory. Additionally, the attack device receives

the malicious payload from the attacker client software and executes the attacks.

The attack device is comprised of three sub-components, 1) the communication,

2) the adapter, and 3) the software modules sub-components. The communication

sub-component allows the attacker client to communicate with the attack device

wirelessly (e.g., Bluetooth, WiFi, cellular) or through wired communication. The

adapter sub-component, such as a USB-to-Serial interface, acts as the attack device’s

physical connection and is directly connected to the E-IoT system’s communication

bus. Finally, the software modules component contains all software logic necessary

to monitor, interface, and attack the proprietary protocol through the communica-

tion bus. It is configured to the baud rate and communication specifications of the

communication bus. We elaborate on independent software modules as follows:

• Monitoring Module. The monitoring module passively eavesdrops on active

bus communication without transmitting messages. As bus-connected devices

broadcast messages in bus architectures, the monitoring module is able to

capture all messages transmitted.

199

• Injection Module. The injection module injects arbitrary messages from Mal-

lory into the communication bus.

• Flooding Module. The flooding module is designed to cause DoS conditions in

the communication bus, by maliciously flooding the communication bus.

• Re-addressing Module. The re-addressing module has the ability to re-address

and modify the configuration in devices that use the communication bus. As

such, it may allow devices to impersonate others by setting identification num-

bers and other configurations.

• Filtering Module. The filtering module filters communication received by the

monitoring module to allow Mallory only to view the information requested

and make incoming data easier to interpret.

Target Environment. The target environment is the E-IoT system compromised

by Mallory using the LightingStrike attacks. The target environment integrates sev-

eral physical devices (e.g., lighting, shades, relays, magnetic door access, fans) into a

central system. With all the devices integrated, they are operated through any user

interface such as a keypad or a touch screen connected to the communication bus.

These interfaces are all connected through the communication bus sub-component,

which is used by the target environment.

7.5 LightingStrike Attacks Implementation

In this section, we describe the LightingStrike attacks implementation. We use

LightingStrike to attack the Cresnet E-IoT proprietary communication protocol.

As noted earlier in Section 7.3 and Section 7.4, Mallory compromises an E-IoT sys-

tem through the insertion of a malicious attacker device into the communication

200

bus. To ensure that LightingStrike attacks are demonstrated and evaluated real-

istically, we created an attack suite and a realistic E-IoT testbed. The Attacker

client was implemented as the Acer GX-785 desktop and the attack device as the

Razer Blade 15 laptop with the attached Gearmo Mini USB-to-RS485 adapter. We

established the connection from the attacker client to the attack device using a VNC

client/server.

LightingStrike Testbed. As most E-IoT systems are proprietary systems that

define their own specifications for protocols using communication buses, we had to

select a proprietary protocol which is a representative of E-IoT systems for this

chapter. To ensure that we evaluate LightingStrike attacks realistically, we selected

Crestron for implementation and evaluation. Crestron represents one of the most

flexible and highly-deployed E-IoT systems available with 1.5 billion dollars in an-

nual revenue [Mar18]. Further, 90% of Fortune 500 companies have some form of

Crestron solution in their facilities. In addition to being one of the largest players

in smart installations, Crestron highlights a commitment to security [Cre20f]. As

such, Crestron is expected to be at or above industry security standards for E-IoT

systems. Specifically, we chose Crestron’s Cresnet for analysis, a proprietary serial-

based communication protocol used in E-IoT integration and other smart use-cases.

We created an E-IoT testbed using common Crestron devices highlighted in

Figure 7.2. Crestron proprietary software was used for testbed deployment and

configuration. To configure the Crestron system, we utilized D3 Pro and Toolbox,

the software used by integrators to deploy Crestron lighting systems. We utilized a

Crestron DIN-AP3 processor as the primary logic unit of the testbed and a Crestron

DIN-8SW8-I as the lighting module (8 controlled loads) for the testbed. Crestron

devices utilize a proprietary communication protocol, namely Cresnet. To create a

single Cresnet daisy-chain, we implemented two C2N-DB12W keypads using Cresnet

201

Figure 7.2: Testbed used to implement LightingStrike attacks, including a controller,
power supply, smart modules, and keypad interfaces.

wiring. The Cresnet-based 12-button keypads and similar interfaces are common in

public areas such as restrooms and are used as user interfaces to control lights, door

access, relays, and any programmed functions. Finally, the entire system is powered

by a Cresnet-based DIN-PWS50 power supply.

The Cresnet Bus. With the need to interface multiple devices together, propri-

etary communication protocols using communication buses are commonly used in

E-IoT. Cresnet is a widely-used proprietary protocol of the popular Crestron E-IoT

smart systems. Based on RS-485 communication, Cresnet is used to power, control,

update, identify, and configure Cresnet-enabled devices (e.g., controllers, lighting

modules, keypads, touchscreens). As a proprietary protocol, not much information

is available on the technical specification of the Cresnet protocol. Cresnet comes in

a 4-wire configuration, with 24 (red, power), Y (white, TX/RX+), Z (blue, TX/RX-

), and G (black, ground) [Cre20a]. While there is no public specification given, we

found the information to support that Cresnet communication operates at a 38400

baud rate and half-duplex operation [Cre06].

Cresnet ID. Devices in a Cresnet network are addressed with a network ID. The

IDs are hexanumerical and range from 00 to FF. Cresnet IDs identify individual

202

Cresnet devices in the network. The integrator assigns unique Cresnet IDs to each

Cresnet device during the configuration.

Cresnet Protocol Analysis. As Cresnet is largely undocumented, we faced a

number of challenges in the analysis stage of this protocol. With no available doc-

umentation on the protocol, we referred to some existing open-source software and

legacy manuals to find the proper baud rate and specification of the Cresnet proto-

col. While the data structure of Cresnet communication is not publicly accessible;

our analysis shows that Cresnet devices place their Cresnet ID on packet headers.

Further, our analysis of the protocol showed that Cresnet packets end in the hex

code “02:00”. Additionally, we found that Cresnet has two distinct types of traffic

which we refer to as idle traffic and active traffic. Idle traffic is caused by packets

that are transmitted when no user interactions are occurring. For instance, the

Crestron controller periodically queries the existing Cresnet devices in the E-IoT

system every 500ms. Active traffic occurs when users interact with a Cresnet de-

vice. Actions such as button presses or disconnecting a keypad generate such active

traffic.

Software Module Implementation. In order to execute the LightingStrike at-

tacks, we developed a number of software modules. The attacks were implemented

using open-source tools available online. We used Java as the base language with

RX-TX libraries for serial-based communication [RXT20]. Java was chosen as it is

compatible with many platforms. Modules requiring communication rate specifica-

tions were configured with a 38400 baud rate, eight data bits, one stop bit, and no

parity. The software modules are implemented into the attack device, as highlighted

in our end-to-end implementation (Section 7.4).

203

1) Monitoring Module. The monitoring module was implemented in Java and

the RX-TX library for RS-485-based communication. As such, the module executes

as a loop that listens to Cresnet communication with the serial settings specified.

2) Injection Module. The injection module was implemented using RX-TX’s

write() function. The write() function allows us to inject any message as a hex

string over the Cresnet bus.

3) Flooding Module. The flooding module is implemented using a Java loop and

RX-TX broadcasting RS-485 packets over the Cresnet bus. This code was effective

in causing a DoS condition in the target E-IoT system.

4) Re-addressing Module. To perform an attack, we used existing tools to allow

an attacker to modify the configuration of Cresnet devices. This module is im-

plemented through Crestron’s D3 Pro proprietary tools, allowing us to reconfigure

Cresnet IDs in interfaces.

5) Filtering Module. The filtering module was implemented as a Java character

array ArrayList and a filtering component in the monitoring module. While software

such as Wireshark exists, programmed filtering was sufficient for testing purposes

since the protocol is proprietary.

7.6 LightingStrike Attacks Evaluation

In this section, we realize the LightingStrike attacks and analyze their effects on

E-IoT systems. Additionally, we discuss the results and implications of individual

attacks.

204

Attack 1: Flooding Denial-of-Service. This attack was created to demonstrate

that Threat 1 (DoS, Section 5.3) is viable through LightingStrike by overwhelming

the communication bus with messages.

Step 1 - Activation. Activation of this attack was executed through the attacker’s

client interface. This initiated the attack condition with the attack device and began

the execution.

Step 2 - DoS Payload. As the attack executed, the attacker’s adapter flooded the

Cresnet bus with repeated RS-485 messages to overwhelm communications. This

was accomplished with LightingStrike’s flooding module which injected messages

that did not even need to follow any special format to flood the Cresnet bus.

Evaluation. This attack was a complete success as all Cresnet communication

was rendered inoperable just in a few seconds. This caused several notable nega-

tive impacts to the system. First, all keypads connected to the communication bus

were inoperable, thus any control to any light or programmed event in the Crestron

system became inaccessible. Second, the attack is not easily traceable; there were

no messages or feedback from the system to notify a user or an integrator that the

system was being attacked. The quick activation allows the attacker to easily con-

trol the availability of the E-IoT system on activation and de-activation. As a DoS

attack is not easily identified, a user or technician may believe that there is a faulty

component in the system. This DoS attack is presented as a proof-of-concept which

can act as a part of more complex attacks.

Attack 2: Malicious Eavesdropping. Attack 2 demonstrates that Threat 2

(Malicious Eavesdropping, Section 5.3) is viable on the Crestron testbed. This

attack used the monitoring and filtering modules to observe and infer information

from Cresnet packets.

205

Figure 7.3: A snapshot of the captured periodic query-response traffic during Attack
2 (Malicious Eavesdropping) where the Cresnet IDs are highlighted.

Step 1 - Activation. With the attacker’s device inserted into the Cresnet bus, the

attack began through the attacker’s client machine. It started with the activation

of the Java client and the monitoring module began to sniff packets over the bus.

Step 2 - Monitoring. Using the monitoring module active, the attacker eaves-

dropped on active communication occurring through the Cresnet bus. The moni-

toring module operated in a loop, in an independent thread and captured Cresnet

communication.

Step 3 - Analysis and Filtering. During this step, we analyzed the ongoing

communication and performed traffic filtering using the filtering module. This al-

lowed us to filter the periodic query-response traffic between the Crestron controller

and the devices. Such filtered messages allowed us to capture the unique Cresnet

IDs 00, 02, 03, 15, and 23 in the network.

Step 4 - Final Analysis. After the periodic query-response traffic was filtered,

we focused on the remaining E-IoT traffic and we observed spikes in data packets

when user actions were occurring. The spikes signal Cresnet activity such as button

presses, disconnected keypads, or activity occurring in other rooms.

Evaluation. The attack monitored and gathered information from the Cresnet

bus successfully due to Cresnet’s lack of encryption. We highlight a snapshot of

206

the captured Cresnet communication in Figure 7.3, where communication is in the

order it was received. First, monitoring the Cresnet bus easily allowed us to gather

Cresnet IDs. As such, an attacker can easily know how many Cresnet devices are

connected to the communication bus through their unique IDs. Our eavesdropping

revealed at least four unique devices: the keypads, the lighting module, and the

controller. We could observe spikes of activity when keypad buttons were pressed

and other actions were executed on the bus. An attacker can use this informa-

tion to infer building occupancy by identifying keypads in specified locations and

listening for events originating from the associated Cresnet ID. As the attack was

performed through passive monitoring, no alarms, or any unexpected behavior oc-

curred in the Cresnet bus or any of the dependent devices (e.g., keypads, controller).

Attack 3: Impersonation-based Denial-of-Service Attack. This attack was

designed to demonstrate another form of DoS attack using Threat 1 and Threat

3 (DoS and Impersonation, Section 5.3) through LightingStrike. As such, we ac-

complished a DoS condition by creating an ID conflict between devices. The attack

takes advantage of Cresnet’s identification phase when a new device is added to

the system. Our research showed that new devices broadcast several packets upon

connection and Cresnet relies solely on the Cresnet ID to identify the individual

devices, button presses, and other actions.

Step 1 - Removal. We initiated the attack by disconnecting a keypad (Cresnet

ID: 03) from the network bus. Disconnection only disables that keypad as it is

offline. Disconnection is trivial as it can be done by simply removing a keypad from

the wall with a screwdriver and disconnecting the physical Cresnet connector.

Step 2 - Modification. Using a spare controller and software, we altered the

Cresnet ID of the keypad to “23” without any form of validation as shown in Figure

207

Figure 7.4: Cresnet ID change window in D3 Pro Crestron software during Attack
3 (Impersonation-based DoS).

7.4. We changed the ID of a keypad with the ID of an existing keypad to purposely

cause an ID conflict in the Cresnet bus. Additionally, this was also accomplished by

physically replacing the original keypad with an identical keypad with a pre-assigned

ID.

Step 3 - Re-connection. The altered keypad was reconnected to the Cresnet bus,

where the keypad attempted to advertise itself as a new keypad with ID “23”. This

caused an internal conflict in the Cresnet network between both keypads, causing

the keypads to fall offline.

Evaluation. The attack was completely successful. When the conflicting keypad

was connected the Cresnet bus, both keypads caused conflicts and stopped function-

ing. As such, this can act as a form of targeted attack over the communication bus.

Additionally, an advantage is that our attack device in this case could also be an

existing keypad and would only require re-addressing an available keypad to cause

a DoS condition.

Attack 4: Replay Attack. This attack was created to demonstrate that Threat

4 (Communication Replay, Section 5.3) is possible on the Cresnet bus. Further, we

highlight the implications of replay attacks on E-IoT systems.

208

Figure 7.5: A snapshot of the messages captured from Cresnet bus during Attack 4
(Replay Attack).

Step 1 - Activation. With the attack device connected to the Cresnet bus, the

attack was initiated through the attacker’s client using the monitoring module.

Step 2 - Monitoring. With the monitoring module active, we awaited keypad

press commands relayed through the Cresnet bus. The Cresnet communication was

recorded for later analysis.

Step 3 - Analysis. After the initial capture, we determined the packets issued

from the device with Cresnet ID 03. We successfully identified the Cresnet packet

transmitted during a button press to activate a programmed event (powering on

light 1 in the lighting module). The specific packet was identified from the header

“0300”, which notes the message from ID 03 (keypad) to ID 00 (controller).

Step 4 - Replay. With the packet captured, the same packet was replayed using

a user interface in the attack client. As such, the message was then injected into

the Cresnet bus. The testbed reacted by powering on light 1 on the DIN-8SW8-I as

if the button had been pressed.

Evaluation. We evaluated this attack on the success of replaying button presses

from a Cresnet keypad. As such, the attack was entirely successful in replaying

button presses on the Cresnet bus. The initial monitoring phase for messages was

successful as the packets were captured during physical button presses. Step 2 of

209

the attack can be observed in Figure 7.5. In this step we could easily observe spikes

in activity on button presses. With the messages captured, our attempts to replay

a button press (button 1) were successful, with the testbed reacting by turning on

a light associated with button 1 as if the button had been pressed. Further, we

could use the same captured packet to turn on the light again, demonstrating there

is no replay protection in the Cresnet bus. The implications of this attack show

that an attacker could capture a button press to unlock an Crestron-controlled door

with the same captured code, or ultimately assume control of integrated devices by

replaying the associated button presses.

Summary As LightingStrike attacks were developed and tested, we demonstrated

that insecure proprietary protocols can have many negative impacts on the security

of E-IoT. From our attacks, we concluded that without any form of security beyond

obscurity, a knowledgeable attacker can easily compromise E-IoT to their benefit.

All of the proposed attacks were implemented successfully, the implications of which

clearly show the potential of LightingStrike attacks. In Attack 1 and Attack 3, we

demonstrated that multiple Cresnet-based interfaces can be disabled by an attacker.

This is a viable form of preventing access to any user-controlled systems through

a DoS attack. As E-IoT manages light control, gate access, and other essential

components, an authorized user can be prevented from operating a connected system

through the attack proposed in our examples. Further, programmed events such as

panic buttons will not execute while a DoS attack is active on the affected interfaces.

In Attack 2 we showed that an attacker can capture communication between multiple

devices from a single point of connection, the implications of which can be abused

by an attacker. With Attack 3, creating a Cresnet ID conflict would be no issue

for attackers as all the source and destination addresses are broadcasted over the

210

communication bus. Further, if an attacker has an idea of which Cresnet IDs belong

in which locations, they can infer which room is occupied. As button presses and

messages are broadcasted no matter where the keypad is located, an attacker can

infer information on unauthorized locations and query equipment unreachable via

traditional means (e.g., TCP/IP, WiFi, Bluetooth). As Attack 4 (replay attack)

was successful, we show that an attacker can severely compromise the security of

Crestron systems. For instance, if an attacker manages to re-address a keypad using

a replay attack, it is possible to reprogram a number of devices. Understanding

the Cresnet protocol through further reverse engineering may allow future attacks

through generating Cresnet packets without the need for capture and replay.

7.7 Attack Discussion

In this section, we outline the findings and contributions, and discuss the possible

defense mechanisms and the corresponding challenges.

Findings. In this chapter, we explored the security of E-IoT and found some in-

herent vulnerabilities of proprietary communication protocols in E-IoT. Specifically,

we focused on Crestron, one of the most popular E-IoT vendors. We found that

the widely-used Cresnet protocol does not have any security mechanisms to ensure

confidentiality, authenticity, integrity, or access control. As such, we found some

notable vulnerabilities in the Cresnet protocol. First, we found that Cresnet has no

encryption in the protocol, allowing any device in the Cresnet bus to capture and

monitor ongoing traffic. Thus, it is trivial for an attacker to observe communication,

collect IDs, and infer user interactions. Second, there are no rate-limiting functions,

allowing an attacker to easily flood the communication bus and cause DoS condi-

tions. Third, Cresnet message integrity is not guaranteed. Without timestamps or

211

signatures, an attacker can replay any message anytime as the protocol does not

reject older messages. An attacker can easily abuse the protocol and replay mali-

cious packets with the E-IoT system accepting them as legitimate. Finally, Cresnet

devices do not have protections against unauthorized modification. For instance,

re-addressing a keypad for Crestron E-IoT can be done without any form of au-

thorization. An attacker can reconfigure devices to cause a DoS, or simply disrupt

E-IoT operation by altering the IDs of multiple devices. Once the devices have been

altered, the Crestnet-based system cannot self-recover. In addition, the end-users

cannot fix this issue and will be forced to contact their integrator at a cost of time

and money. LightingStrike demonstrates that it is trivial for an attacker to use

communication buses in order to compromise E-IoT through proprietary protocols.

These threats could be critical, as E-IoT systems such as Crestron, control emer-

gency equipment and physical access, the consequences of which may be as costly

and dangerous as well-known attacks with a low level of effort and knowledge from

an attacker.

Contributions. Our research provided several contributions towards the security

of E-IoT systems. As mentioned in Section 7.5, we emphasized that the Crestron

brand is currently one of the most popular E-IoT systems available worldwide with

1.5 billion dollars in annual revenue [Mar18]. With this chapter, we demonstrated

that unsecured proprietary communication protocols used in E-IoT systems can

lead to downtime, a breach of privacy, and a breach of physical security. Addi-

tionally, this chapter aimed to raise awareness on lesser-known but widely-used

protocols in E-IoT systems such as Cresnet. As such, we highlighted vulnerabili-

ties found during our research, and how the lack of common security mechanisms in

proprietary-protocols can easily lead to critical vulnerabilities in E-IoT systems. We

used the LightingStrike proof-of-concept attacks to expose these vulnerabilities, and

212

presented several practical attacks that can contribute towards more complex, larger

attacks. LightingStrike introduced a new threat vector, so that future iterations of

E-IoT systems and their proprietary protocols can be designed with secure prac-

tices in mind for communication buses. Since systems such as Crestron have been

deployed for decades, we expect that this chapter can motivate further research on

E-IoT attacks, security mechanisms, proprietary protocol security, highly-deployed

threat vectors, and other popular E-IoT systems that have not received any form of

security scrutiny.

Possible Defense Mechanisms and Challenges. Security for E-IoT must go

beyond ensuring the confidentiality, integrity, and availability but also must con-

sider the challenges associated with E-IoT design, proprietary architecture, physical

security, and software security. One of the biggest challenges in securing proprietary

E-IoT communication is that most of these systems are closed-source that use cus-

tom protocols. Without specifications available on most proprietary protocols, the

packet structure, exception cases, and communication process have to be reverse

engineered. Further, depending on the system and software versions, the imple-

mentation of proprietary protocols can differ. Additionally, many E-IoT systems

require backward compatibility, making some traditional solutions that patch exist-

ing protocols with security mechanisms (e.g., encryption, signatures, timestamps)

difficult to deploy on older systems. Ideally, proprietary communication protocols

should follow a secure communication standard stack and implement vendor-specific

functions. However, a standard would require an agreement between the top E-IoT

vendors. For newer E-IoT systems, eavesdropping can be remedied by enabling

encryption in the network. Additionally, newer protocols should protect from im-

personation and replay attacks through the use of timestamps and signed messages.

Physical-based mitigation strategies can also be helpful as there are physical actions

213

an attacker must take to compromise E-IoT devices. For instance, E-IoT systems

can use broadcast messages from devices to identify when a keypad is removed or

tampered and notify administrators before an attack occurs. Such a design could ex-

pand into a live-mode where any modifications to any devices notify administrators

as tampering. Further, it can be possible to segment daisy-chain lines depending

on the location of interfaces (e.g., all devices of a sensitive location on one line, all

devices in public locations on another line). Sensor-based solutions can also prevent

physical tampering, as well as to provide a context-aware solution to button presses.

For instance, certain messages should only be received if there is a sensor activity

near the user interface.

7.8 LGuard

To secure E-IoT systems against LightingStrike threats, we introduce LGuard, an

easily-configurable defense system designed to protect E-IoT communication buses

using traffic analysis, computer vision, and traffic obfuscation. In this section, we

firstly discuss the design considerations and challenges for LGuard. We then define

the necessary terminology and introduce our additional findings on the Cresnet

protocol over our prior study [RBA+21]. Finally, this section details the LGuard

architecture and its individual components.

7.8.1 Design Considerations and Challenges

In this sub-section, we explain the distinct features of E-IoT systems that make it

challenging to employ existing schemes to protect against threats over the E-IoT

communication buses, therefore necessitate a specialized solution like LGuard.

214

Closed-Source E-IoT. E-IoT systems are very often closed source, with no source

code or technical documents available to the end-user or integrators. Thus, a defense

strategy must work without relying on the source code constructs, system hooking,

or modification to the E-IoT system. LGuard is designed with these limitations

in mind on top of an existing E-IoT system. In this manner, an integrator or an

end-user would be able to deploy LGuard on an E-IoT system without modification

to the underlying code.

Legacy Systems. As E-IoT systems have existed for decades, there are many

deployments that are either outdated and unsupported. As buildings and homes

were pre-wired for many legacy E-IoT systems, modification (e.g., rewiring) may be

costly or impossible for users looking to install new systems. For instance, homes

wired for panelized lighting are wired differently than traditional homes, as they of-

ten have high voltage running to interfaces (e.g., keypads, touchpanels). Converting

a system such as this to traditional electrical wiring would require substantial labor

and cost. As such, a defense mechanism is needed to protect these systems without

the need for costly and impractical solutions.

Bus Architecture. The architecture of E-IoT communication buses allows attack-

ers to easily eavesdrop and compromise the communication from any single point.

An attacker can easily replay or spoof packets which causes a defense mechanism

fail to distinguish the origin of a packet. Indeed, E-IoT protocols such as Cresnet

rely on bus architecture. Although it causes challenges for defense systems, the

same attributes of bus-based communication can also be used to a defense system’s

advantage. For instance, an attacker’s replayed or spoofed messages destined to any

E-IoT device will be received by all the devices connected to the bus. Therefore, a

defense system like LGuard can monitor all messages in the E-IoT bus from a single

point.

215

Modification Costs. As the aforementioned characteristics of E-IoT allow an

attacker to compromise E-IoT systems through communication buses, defense so-

lutions may consider relying on additional data sources such as motion, proximity,

or touch sensors to detect the attacks. Although this is a viable option, it comes

with additional device and labor costs for end users. In addition, an attacker can

also compromise such additional devices to evade the detection system. However,

E-IoT systems are often installed with other integrated components such as Closed-

Circuit Television (CCTV) and alarm systems. Especially, systems such as these

may be integrated if the E-IoT system is installed in a sensitive location. A defense

mechanism may leverage access to integrated security systems to defend against

LightningStrike attacks.

Security Systems. LGuard takes two assumptions. First, that there is a CCTV

system present in the location the E-IoT system is installed. This is a valid and

feasible assumption as E-IoT systems are often designed to integrate Closed-Circuit

Television (CCTV) systems and other security systems. For instance, some of the

largest E-IoT system vendors, advertise CCTV control and integration as one of the

core capabilities of their systems with several compatible CCTV systems [Con21b,

Con21a, Cre21a, Cre21b]. Further, CCTV systems are expected to be present to

be installed in secure locations. Second, that at least one of the CCTV cameras

can see the E-IoT interface keypads. This is a viable and practical assumption, as

security cameras can be adjusted to face different keypads. Further if no cameras

are available, wireless cameras may be installed for LGuard installed in sensitive

locations.

216

7.8.2 Terminology

This sub-section introduces the necessary terminology to understand LGuard.

Interface Interaction. We define interface interaction as any interaction between

a user and an E-IoT interface. For example, a user pressing a button to turn on the

light.

Tampering. We define tampering as any manipulation or modification of an E-

IoT device (e.g., interface) or communication bus wiring such as the unauthorized

removal of a keypad.

7.8.3 LGuard Overview

LGuard is a novel defense system against LightingStrike-style attacks in E-IoT de-

ployments. It consists of tailored solutions against individual LightingStrike attacks.

First, LGuard identifies the removal of E-IoT interfaces and excessive network traf-

fic on the bus to detect impersonation and DoS attacks. Second, LGuard benefits

from the existing CCTV system to detect replay attacks. Specifically, using com-

puter vision, it performs pose estimation on the CCTV video footage to determine

if messages received from an E-IoT interface were caused by a replay attack. Fi-

nally, LGuard mitigates eavesdropping attacks by obfuscating Cresnet communi-

cation with the insertion of redundant communication packets from non-existing

E-IoT devices.

The proposed LGuard architecture consists of five distinct components as shown

in Figure 7.6. The first component is the Serial Collector 1 , which connects directly

to the communication bus of the E-IoT system. It inserts the redundant traffic

generated by the Obfuscator component to the bus and also collects the traffic and

feeds it to the Data Handler. The Obfuscator component 2 is used by LGuard

217

Figure 7.6: LGuard architecture, components numbered.

to generate redundant communication packets to obfuscate the E-IoT traffic. It

obfuscates the E-IoT traffic using two sub-components: the System Profile and the

Traffic Generator. The System Profile sub-component contains the E-IoT system

information and the device details which are used by the Traffic Generator sub-

component to generate redundant traffic. The generated traffic is fed to the Serial

Collector to be inserted to the communication bus. The third component of LGuard

is the CCTV Collector 3 . This component connects to the CCTV system and

transfers video captures for LGuard upon a request from the Data Handler. The

Data Handler 4 is the core of LGuard and is used for detection of the LightingStrike

attacks. It consists of Detection Engine and Logger sub-components. The Detection

Engine obtains the traffic of the E-IoT communication bus via Serial Collector and

detects DoS, impersonation, and replay attacks via three tailored solutions. When

an attack is detected by the Detection Engine, the details with the attack are passed

to Logger sub-component. The Logger stores the relevant attack data to its Log DB

and also forwards attack information to the Notifier component 5 , which finally

notifies the users about the attack.

218

7.8.4 Serial Collector

The Serial Collector allows LGuard to collect and transmit data packets to the

communication bus, acting as the main interface between LGuard and the E-IoT

system’s communication bus. As such, to capture and transmit packets, the Se-

rial Collector includes a physical interface connected directly to the communica-

tion bus. The Serial Collector is also responsible for pre-processing communication

packets into a format that LGuard can use. It contains a message buffer to process

concatenated, partial, and invalid packets received on the bus and format them.

These formatted packets include the raw packet information, timestamp, length,

and any other attributes necessary for LGuard to detect the LightingStrike attacks.

Serial Collector also transmits the redundant E-IoT traffic generated by Obfuscator

component as needed.

7.8.5 Obfuscator

The Obfuscator component obfuscates the E-IoT traffic against eavesdropping at-

tacks for LGuard and includes two sub-components: the System Profile and the

Traffic Generator. As an eavesdropper aims to obtain valuable information by lis-

tening the E-IoT communication bus traffic, Obfuscator component intends to make

the job of the attacker harder by generating and inserting redundant traffic to the

bus. The logic of Obfuscator is if the bus has the traffic of n real E-IoT devices, then

the Obfuscator generates the same amount of redundant traffic to show that there

are 2n devices in the E-IoT deployment. Hence the probability of obtaining valuable

information for the eavesdropper reduces, which means the adversary cannot easily

discriminate legitimate traffic from redundant traffic.

219

System Profile

The System Profile sub-component contains all the information (e.g., IDs of the

existing E-IoT devices, reserved device IDs) necessary for the Traffic Generator to

generate packets. If the E-IoT system has n devices, then this sub-component cre-

ates n additional Cresnet IDs representing non-existing E-IoT devices. The System

Profile sub-component always includes the IDs of all the existing E-IoT devices

communicating over the bus, and must be updated when new devices are added

to the deployment. As such, the System Profile sub-component should be flexible

and easily-modifiable by the administrator or integrator that perform the original

configuration.

Traffic Generator.

The Traffic Generator sub-component aids LGuard in transmitting redundant traffic

into the E-IoT system’s communication bus. This additional traffic intends to make

eavesdropping more difficult for an attacker. The Data Handler refers to the System

Profile sub-component to generate data packets then transmit them to the E-IoT

system’s communication bus through Serial Collector. Packets are only be trans-

mitted when LGuard detects user activity. To mimic interface activity, the Traffic

Generator first loads a random Cresnet ID from a non-existent device and generates

idle and active traffic (sub-section 2). To do so, the Traffic Generator first generates

redundant to mimic the controller pinging dummy device. LGuard then generates

redundant communication packets to mimic keypad-to-controller communication as

active packets every 500ms. These packets are ignored by the E-IoT controller for

two reasons: first, the devices do not exist, thus the controller has no programming

for these devices. Any packet originating from an invalid device is dropped. Second,

220

Figure 7.7: Architecture of the Detection Engine component of LGuard that detects
DoS, impersonation, and replay attacks via DoS Detector, Tamper Detector, and
Interaction Detector modules respectively.

E-IoT systems do not allow new keypads to be added without re-configuring the

controller, as such new device ID’s cannot be added by an attacker.

7.8.6 CCTV Collector

The CCTV Collector acts as the main interface between LGuard and the E-IoT

CCTV system. The CCTV Collector receives requests for video capture data and

passes this information to the Data Handler for evaluation. Specifically, this video

data is then used by to LGuard to perform all necessary valuation of E-IoT com-

munication bus traffic.

7.8.7 Data Handler

The Data Handler performs the communication bus traffic analysis and attack de-

tection for LGuard. It is composed of two sub-components: the Detection Engine

and the Logger.

221

Detection Engine

The Detection Engine is one of the core sub-components of the LGuard defense

system and performs the bulk of the detection process. As shown in Figure 7.7,

the Detection Engine includes three defensive modules each specifically designed to

address different LightingStrike attacks. As the name of it implies, the first defense

module, DoS Detector, aims to detect DoS attacks. The second module is the

Tamper Detector which intends to address the impersonation attacks. The third

module is the Interaction Detector that performs replay attack detection. Details

with the modules are as follows.

DoS Detector. Detects LightingStrike DoS attacks over the E-IoT communi-

cation bus by monitoring the network traffic and checking the size and number of

packets received in a short time interval. As LightingStrike DoS attacks depend on

high throughput, anomalies in the size and number of packets received indicate that

a DoS attack is being attempted.

Tamper Detector. Detects impersonation attacks via identifying tampering

(e.g., removal) of an E-IoT interface. It achieves this via examining the E-IoT com-

munication bus traffic for messages transmitted when E-IoT devices fall offline. For

instance, the Cresnet controller will request a response from all interfaces at 500ms

intervals. If a device does not respond, the controller starts to constantly query

the related E-IoT device. Tamper Detector identifies the impersonation attacks via

detecting these packets in the E-IoT bus.

Interaction Detector. Receives both the communication bus traffic and the

CCTV data necessary to determine if communication packets are legitimate or cre-

ated through a replay attack. As an attacker cannot physically interact with a tar-

geted E-IoT interface at the time of replay attacks and CCTV cameras are common

in secure locations, Interaction Detector uses computer vision and pose estimation

222

to determine if E-IoT traffic is legitimate or replay. For instance, if packets are

detected from keypad 23, CCTV information should display physical interactions

with keypad 23 within seconds. As such, Detection Engine monitors Cresnet packets

in the communication bus, identifying messages transmitted during events such as

button presses. Once an event is detected, the Detection Engine requests a video

capture from the CCTV Collector of the moment the interface should have been

touched by a user. The observed packets are deemed benign when a video capture

shows that a user interacted with the E-IoT interface at the time the message from

that interface was received.

Logger

The Logger component receives detection results, CCTV video captures, and the

related packet data from the Detection Engine. As such, the Logger component

acts as an intermediary step between the LGuard data and Log DB. The Logger

component is responsible for formatting important information from LGuard (e.g.,

detected attacks, errors and caught exceptions with LGuard) and storing this infor-

mation in the Log DB. Finally, the Logger component allows LGuard administrators

and users to view a history of occurrences and ongoing network communication, and

enable them to review any activity that was deemed to be attack by LGuard. The

Log DB sub-component acts as the primary storage database for data and infor-

mation for LGuard monitoring. A user or administrator can query the Log DB

component to view the malicious activity detected by LightingStrike. Thus, the

Log DB component should store communication packets and video feed used during

the evaluation process that may be relevant for the administrator.

223

Table 7.2: Hardware and Software used in LGuard implementation and testing.

Hardware Software
Raspberry Pi 3b Python 3.9

Raspberry Pi Camera OpenCV Python 4.5.3
GearMo Mini USB to RS485 Visual Studio Code 1.55.2

Razer Blade 15 Laptop VNC Viewer 6.20.529
Acer GX-785 Desktop Google MediaPipe 0.8.7.3

Redis 3.2

7.8.8 Notifier

The Notifier component notifies users or administrators about suspicious activities

using warnings and notifications from LGuard. After traffic analysis is conducted,

the Notifier component notifies the user if any attack activity has been found. Thus,

the Notifier component should give users all the information necessary to evaluate

and act upon malicious activity occurring in the communication bus. Finally, the

Notifier component is responsible for mobile (e.g., text, in-app) notifications sent to

the user.

7.9 LGuard Implementation

To implement the necessary components for LGuard we used open-source libraries

and easily obtainable hardware. We detail the software and hardware used by

LGuard in Table 7.2. Our testing E-IoT environment is identical to the environment

used for the LightingStrike implementation. We assume that the attacker executes

the LightingStrike attacks by inserting a malicious device into the E-IoT bus and

executing the attacks. The implementation details with the components of LGuard

are as follows.

224

7.9.1 Serial Collector Implementation

The Serial Collector was implemented using the Gearmo Mini USB adapter and

the Python serial library to collect raw E-IoT communication bus data. Using

Python, this information was then pre-processed and added to a data buffer. The

data buffer is then processed with the end of packet delimeter ’02:00’ to separate

individual packets. The Serial Collector shares the preprocessed data and current

size of the buffer with the Data Handler.

7.9.2 Obfuscator Implementation

The Obfuscator component contains two sub-components, the Traffic Generator

and the System Profile, that are used to insert redundant traffic into the E-IoT

communication bus to obfuscate the legitimate E-IoT traffic. In this sub-section we

cover the implementation of these sub-components.

System Profile Implementation

The System Profile was implemented using a table of the Cresnet IDs of the existing

E-IoT devices and also the reserved Cresnet IDs (e.g., 00, 01, 02). As the test

environment has four real Cresnet devices (03, 13, 15, 23), the table has the IDs of

these devices and an additional four unused Cresnet ID’s (06, 16, 26, 36) that are

used for the Traffic Generator’s packet generation. This table is easily expandable

to add or remove Cresnet devices in the E-IoT system.

Traffic Generator Implementation

The Traffic Generator sub-component was implemented using the Python serial li-

brary to receive and transmit Cresnet packets. Traffic Generator implementation

225

generates redundant traffic including both idle E-IoT traffic and active E-IoT traf-

fic. For the redundant idle traffic, Traffic Generator generates idle traffic for every

non-existing E-IoT device ID in every 200ms. In this respect, first, the Traffic

Generator generates idle packets for each non-existent device (e.g., 33:00:02:00 for

device ID 33) in the System Profile list and passes the packets to Serial Collector. In

terms of redundant active traffic generation, Traffic Generator follows a probabilis-

tic packet generation approach. Specifically, in 200ms intervals, Traffic Generator

decides to generate a redundant active traffic according to a probability function.

With 0.2 probability, it generates a redundant active traffic for a non-existing E-IoT

device ID. We selected this probability value because our analysis showed that the

redundant active traffic generated using this value does not disrupt the legitimate

E-IoT communication. If the conditions are met, the Traffic Generator then gen-

erates redundant activity traffic packets for a non-existing E-IoT device ID in the

list, mimicking button presses and controller responses. The redundant packets are

passed to Serial Collector to be sent to the E-IoT communication bus. We would

like to note that, the generated redundant activity traffic does not cause any issues

as the controller ignores such messages.

7.9.3 CCTV Collector Implementation

The CCTV Collector was implemented using a Raspberry Pi 3b, with an integrated

camera and Python scripts to act as a CCTV source for LGuard. The CCTV Col-

lector communicates with the Data Handler through an intermediary Redis server.

As such the CCTV Collector polls the Redis server for new requests to record using

a Python script. Once a request to record is received from the Data Handler (e.g.,

from a button press detected by the Data Handler), the CCTV Collector initiates

226

Table 7.3: Observed Cresnet Communication

Packet Start Description
ID:00:02:03:00:... Button press/release on keypad ID

ID:00:00:FF Keypad ID removed and being queried
ID:00:02:00 Idle traffic from ID

recording and saves a twenty-second video capture locally as a ’.h264’ video file at

an average of 25 frames per second. These video captures are then passed to the

Data Handler for analysis.

7.9.4 Data Handler Implementation

In this sub-section we detail the implementation of the Data Handler and its sub-

components: the Detection Engine and the Logger.

Detection Engine Implementation

To implement the Detection Engine component, several external Python libraries

were used for computer vision and image processing such as MediaPipe and OpenCV

[LTN+19, Bra00]. The Detection Engine first identifies predetermined activities

occurring in the communication bus as highlighted in Table 7.3. For instance, a

packet starting with 23:00:02:03:00 will be observed when a button is pressed or

released on Cresnet keypad ID 23. Using these known packet features, the Detection

Engine can execute three types of detectors: DoS Detector, Tamper Detector, and

Interaction Detector.

DoS Detector. As LightningStrike DoS attacks depend on large volume of

invalid messages, LGuard detects DoS attacks by examining the size of incoming

data packets. We performed extensive analysis of E-IoT Cresnet communication

and our observations showed that benign Cresnet traffic does not exceed 1024 bytes

227

per second, even under frequent usage of interfaces. The DoS detector was thus

implemented by detecting packet rates larger than 1024 bytes per second. When

transmission exceeds 1024 bytes, the DoS detector reports an attempted DoS attack.

Tamper Detector. Impersonation LightingStrike attacks occur by tampering

with the E-IoT devices. In this regard, Tamper Detector aims to detect such activi-

ties through passive analysis of Cresnet traffic. In Cresnet, the controller periodically

queries Cresnet devices. If a device does not reply to the query, the controller queries

again using a specific Cresnet packet header. For instance, for the E-IoT device with

ID 13 that does not respond to the query of the controller, the controller starts to

send queries starting with 13:00:00:FF. Hence, Tamper Detector detects that the

E-IoT device with ID 13 has been removed from the communication bus.

Interaction Detector. Interaction Detector aims to detect replay attacks. To

implement Interaction Detector, Detection Engine monitors Cresnet packets in the

communication bus, identifying traffic events such as button-presses. When an event

is detected LGuard intends to determine whether it is a legitimate event or a replay

attack. To answer this question, LGuard takes the timestamp of the observed event

packet and forwards a message to the CCTV Collector, requesting a video capture

at the given time of the interface interaction. When CCTV Collector sends the

video capture, Interaction Detector uses computer vision techniques to determine

if a person is touching the interface in the video captures. This process requires

Interaction Detection to have a prior knowledge of the X and Y coordinates of the

interface in each CCTV frame. We assume that the administrator can enter the X

and Y coordinates of the E-IoT interfaces in the CCTV video frames to LGuard

during setup. Since the location and position of E-IoT interfaces and CCTV rarely

change in E-IoT deployments, this one-time process can be performed by adminis-

trators. Having the prior knowledge of X and Y coordinates of the E-IoT interfaces

228

Figure 7.8: LGuard pose detection on a keypad from CCTV footage. Red highlight-
ing right hand, green point highlighting left hand. The green square highlights the
interface location.

in video frames, Interaction Detector performs the following steps to determine if

the event is a replay or legitimate:

1. For each frame in the CCTV capture, the Interaction Detector first identifies

the pose vertices of any person in the current frame, specifically the left and

right hand vertices using the Google MediaPipe pose recognition library. This

process is depicted in Figure 7.8 where the green square highlights the E-IoT

interface location and red highlighting signifies the right hand.

2. The proximity of left and right hand vertices to the known keypad X and Y

coordinate locations are calculated. If the distance is less than the predefined

tolerance value, the Interaction Detector notes this frame as a user-to-interface

interaction.

3. The number of interactions are counted for every frame. If the number of

interactions are greater than a threshold value, the received event packets are

deemed benign. Otherwise, a replay attack is detected.

As explained in steps of the detection process, Interaction Detector requires a a

tolerance value for proximity of left and right hand vertices to the known coordinates

229

of the E-IoT interface. The tolerance should be adjusted to the relative pixel-size

of the interface. For instance, if a tolerance is set to 10 pixels, an interface will

be considered ’touched’ if the left or right hand vertices come within 10 pixels of

the known X and Y coordinates of the interface. For our implementation, the pixel

tolerance was configured to 25 pixels.

Logger

The logger sub-component was implemented as a local software buffer collecting all

the logs and warnings from the LGuard system and detection process. These logs

are then exported using Python JSON serialization to the Log DB. The Log DB

sub-component was implemented using the Python-based JSON serialization and

IO libraries to export plaintext logs on the running machine. The stored plaintext

logs can then be viewed for future reference and contain all the relevant information

for LGuard and detection results (e.g., timestamps, packets, warnings). We would

like to note that, Log DB can be implemented using known database schemes such

as MySQL, Redis, MongoDB.

7.9.5 Notifier Implementation.

The Notifier component was implemented using the Python-based ctypes library

to create a notification window on the LGuard computer. These notifications can

be modified depending on the detected attack.

7.10 Performance Evaluation

We evaluate the performance of LGuard in detecting LightingStrike attacks and

answer the following research questions:

230

RQ1: DoS Detection. How effective is LGuard’s performance in Light-

ingStrike DoS attack detection (Sub-section 7.10.2)?

RQ2: Impersonation Detection. How well does LGuard identify tampering

in the communication bus through passive monitoring (Sub-section 7.10.3)?

RQ3: Replay Attack Detection. How effective is LGuard at identifying

replay attacks using pose estimation and traffic monitoring (Sub-section 7.10.4)?

RQ4: Traffic Obfuscation. How well does traffic obfuscation mitigate LightingStrike-

type eavesdropping (Subsection 7.10.5)?

In this section, we firstly explain the attack data collection process. Afterwards,

we answer each research questions and finally evaluate the detection time and over-

head of LGuard.

7.10.1 Attack Data Collection

For LGuard evaluation we applied the LightingStrike attacks as specified in Section

7.5. We collected Cresnet traffic over the E-IoT communication bus. The activities

collected for our evaluation included Cresnet traffic caused by the LightingStrike

attacks and benign traffic generated by expected usage of the E-IoT system. Addi-

tionally, traffic data collected includes the CCTV recordings of the keypads for the

duration of the logging. We would like to note that we considered different CCTV

views and light conditions in our evaluations that are depicted in Figure 7.9. Details

with the executed attacks are as follows:

• 20 replay attacks and 20 benign cases in bright light conditions (front-view).

• 20 replay attacks and 20 benign cases in low-light conditions (front-view).

• 20 replay attacks and 20 benign cases in bright light conditions (side-view).

• 20 DoS and 20 impersonation attacks.

231

(a) Side-view of Cresnet E-IoT
interface.

(b) Front-view of Cresnet E-
IoT interface.

Figure 7.9: Side and front views of CCTV used for LGuard evaluation, keypads
highlighted in green. Different angles were tested to evaluate pose estimation effi-
cacy.

• 20 LGuard logs with obfuscated traffic (2000 packets each).

• 20 logs without obfuscated traffic in which each log consists of 2000 packets.

Performance Metrics

Performance metrics are measured with the following parameters: accuracy, preci-

sion, F-score, recall, True Positive Rate (TPR), True Negative Rate (TNR), False

Positive Rate (FPR), and False Negative Rate (FNR).

True Positive Rate (TPR). denotes the total number of correctly identified

benign test cases within the test environment.

True Negative Rate (TNR). denotes the total number of correctly identified

malicious test cases within the test environment.

False Positive Rate (FPR). denotes the total number of cases where malicious

test cases was mistaken as being benign.

False Negative Rate (FNR). denotes the total number of cases where benign

test cases is mistaken as malicious.

232

RecallRate =
TNR

TNR + FPR
, (7.1)

PrecisionRate =
TPR

TPR + FPR
, (7.2)

Accuracy =
TPR + TNR

TPR + TNR + FPR + FNR
, (7.3)

F1 =
2 ∗RecallRate ∗ PrecisionRate
RecallRate+ PrecisionRate

. (7.4)

7.10.2 DoS Detection Performance (RQ1)

As part of RQ1, we evaluate LGuard’s performance in detecting LightingStrike-

style DoS attacks. In all 20 test cases, LGuard detected active DoS attacks with

100% precision and accuracy. As DoS is a high-throughput attack over an E-IoT

communication bus, the attacks were easily identified and reported as active DoS

attacks.

7.10.3 Impersonation Detection Performance (RQ2)

To answer RQ2, we determine if LGuard can effectively detect physical tampering

of E-IoT Cresnet keypads, thus impersonation attacks. Traffic analysis of Cresnet

packets performed by LGuard to identify tampering of E-IoT devices yielded no

false positives and LGuard correctly identified keypad removal with 100% precision

and accuracy. As keypads are repeatedly queried by the E-IoT controller at about

500ms intervals, tampering detection by LGuard occurred as soon as the keypad

233

Table 7.4: LGuard performance evaluation on replay attacks.

Legend : BEN = Benign, MAL = Malicious (Replay Attack)

Class TPR TNR FPR FNR ACC PREC REC F1
BEN 0.98 1.0 0.00 0.02 0.99 1.0 0.98 0.99
MAL 1.0 0.98 0.02 0.00 0.99 0.98 1.0 0.99

was removed from the E-IoT communication bus. As such, with LGuard, an ad-

ministrator or technician may quickly receive alerts of tampering or faulty devices

almost immediately and react accordingly.

7.10.4 Replay Detection Performance (RQ3)

To answer RQ3, we evaluated the performance of LGuard against LightningStrike

replay attacks. The results are outlined in Table 7.4. As noted, LGuard performance

showed an overall accuracy and precision of 99% in identifying replay attacks over

the Cresnet communication. Further, while two false positives were observed in two

benign cases (CCTV capture in bright-light), there were no false negatives for any

of the malicious cases. In one of these false positive cases, pose vertices were not

calculated properly by the Google MediaPipe library. In the other false positive

case, vertices were misplaced in the video capture and touch detection could not be

processed accurately. Other notable cases such as, one benign (CCTV capture in

bright-light) and malicious (CCTV capture in low-light) test case, we found that

the MediaPipe classifier misclassified some frames of the recording and placed all

the vertices incorrectly in the person’s head due to their proximity to the camera.

These vertices were then corrected in later frames and yielded to some false positive

interface interactions during the mislabeled frames. However, these mis-classified

frames did not affect the overall detection by LGuard.

234

7.10.5 Traffic Obfuscation Performance (RQ4)

To address RQ4, we found that manual analysis of Cresnet traffic became more

difficult for an attacker when redundant traffic is inserted to the bus via LGuard as

traffic obfuscation. First, as four non-existing devices were mimicked by LGuard,

the attacker’s probability in identifying the real devices was reduced by a factor of

two. Further, as random activity is generated, it becomes harder for an external at-

tacker to determine which traffic originates from real user activity and which active

traffic was generated by LGuard. To demonstrate the effect of traffic obfuscation,

we considered to evaluate the success ratio of a LightningStrike eavesdropper in

identifying real E-IoT activity by listening the bus traffic with and without traffic

obfuscation. Without the traffic obfuscation, we found that an attacker can iden-

tify activities in the E-IoT communication bus (e.g., button presses) with a 100%

success ratio since all the activity traffic on the bus is real. However, with traffic

obfuscation, we found that the same activities could only be identified with 19%

success ratio on average by the attacker. As a result, traffic obfuscation makes the

identification of real E-IoT activity harder for the attacker, hence mitigates the ef-

fect of LightningStrike eavesdropping attacks. We would like to note that traffic

obfuscation applied by LGuard does not cause any issues with the E-IoT system as

the E-IoT controller ignores such messages sent by non-existing devices.

7.10.6 Detection Time and Overhead

Our evaluations show that the detection time is dependent on each attack. For

DoS attacks, as the rate calculated as incoming data is received, DoS attacks were

detected in under 1000ms. Impersonation attacks that tamper with the communi-

cation bus and keypads were also detected within 500ms, as the polling messages

235

observed from the E-IoT controller to continuously query the removed interfaces are

transmitted within 500ms. Finally, replay attacks were detected within 10 seconds,

which is the length of each CCTV video capture. This duration can be further

reduced by using better processing hardware, multi-threading, and shorter video

captures.

While LGuard operates as a standalone system without modification of the E-IoT

deployment, we measured overhead on the host machine (16 GB RAM and 17-700

3.6 GHz Processor). We measured idle (average) monitoring usage of LGuard at a

15% CPU usage and 113 MB RAM peak usage. While processing replay attacks

and video recordings, we measured a peak of 25% CPU and 300 MB RAM usage of

LGuard.

7.11 Benefits and Discussion

LGuard is designed as a defense solution for E-IoT LightingStrike-style attacks. In

this section, we highlight LGuard’s benefits and further discuss their usage implica-

tions.

Independent Framework. LGuard and all the associated components func-

tion as an independent defense system to the E-IoT deployment. Thus, in the case of

failure of any LGuard component, LGuard can be adjusted or repaired without any

effect on the E-IoT system. Further, in any case that the E-IoT system is damaged

or disabled (e.g., due to DoS), LGuard will continue to function, log, and alert the

user on any attempted attacks during downtime.

Black-box integration. LGuard addresses some of the biggest limitations of

securing E-IoT systems. Namely, no information on the protocols is available to

any outside third parties. With LGuard, we achieve a high level of accuracy and

236

precision, while leaving the E-IoT system intact of modifications. Further, LGuard

does not provide any overhead to E-IoT operation, and allows for a reliable operation

of older systems.

Backwards Compatibility. Legacy and pre-wired systems are an issue for

many smart systems, including E-IoT. In the case of E-IoT, replacing older systems

for newer versions may be extremely costly (e.g., physical rewiring, hardware, soft-

ware, labor). As such, LGuard can be configured to support the E-IoT system and

older protocols that are common but no longer updated.

CCTV Lighting Conditions. CCTV lighting can vary from deployment to

deployment and during the time of the day. During nighttime and in dark locations,

CCTV cameras will often have infrared (IR) illuminators, specially for professional

security systems. IR illuminators activate on dark conditions for better visibility

during CCTV recordings. It is logical that any location where security is a concern,

will use cameras with illuminators in the dark. Further, standalone CCTV illumi-

nators can be installed for additional lighting. For these reasons, it is reasonable to

assume that LGuard will always have adequate lighting in secure locations as the

CCTV systems also depend on this lighting for proper functionality.

Cost and Expandability. The cost of LGuard is minimal as it uses existing

smart system components such as CCTV feed and it requires an external computer

and low-cost adapters. In contrast to replacing devices, hiring external program-

mers, purchasing a new system, or re-wiring, LGuard provides an affordable solution

for any administrator that wants to secure an E-IoT system. Further, LGuard is

flexible and can operate with large and small systems once configured. An admin-

istrator may even select which interfaces need to be protected (e.g., access control

keypads) and which do not need LGuard’s protection. Additionally, if CCTV cam-

eras are not available, wireless cameras may be added for LGuard only as needed

237

at a reasonable price (e.g., IP cameras available under 30 dollars at the time of

this writing). Similarly, illuminators are affordable, and can be installed to improve

lighting conditions if needed.

7.12 Conclusion

The widespread adoption of smart systems has changed the lives of millions of users

worldwide. In these smart ecosystems, E-IoT allows users to control lighting fix-

tures, relays, shades, door access, and scheduled events. E-IoT systems from various

vendors in huge quantities can be found in smart buildings, conference rooms, gov-

ernment or smart private offices, hotels, and similar professional settings. One of

the core E-IoT components are proprietary communication protocols that are used

for the communication between E-IoT devices. In contrast to well-known commu-

nication protocols, very little research exists that investigates the security of these

communication protocols. For this reason, users wrongly assume that E-IoT systems

and their proprietary components are secure. To investigate the security of E-IoT,

we proposed LightingStrike, a series of attacks that leverage insecure E-IoT commu-

nication practices and vulnerabilities to an attacker’s advantage. Specifically, with

LightingStrike we showed that it would be very easy for an attacker with a low level

of effort and knowledge to compromise an E-IoT system through communication

buses. Specifically, we demonstrated that E-IoT is susceptible to DoS, eavesdrop-

ping, impersonation, and replay attacks due insecure communication practices. As

traditional defense mechanism cannot mitigate LightingStrike threats due to the

distinct characteristics of E-IoT systems, we introduced LGuard as a novel defense

system against LightingStrike-style threats. LGuard uses CCTV footage and com-

puter vision techniques to detect replay attacks. LGuard identifies impersonation

238

and DoS attacks by detecting E-IoT tampering and excessive bus traffic. LGuard

also obfuscates the E-IoT traffic via adding redundant traffic to the bus in order to

mitigate eavesdropping attacks. Finally, we evaluated the performance of LGuard

on a realistic E-IoT system. Our analysis show that LGuard achieves an overall

accuracy of 99% in detecting DoS, impersonation, and replay attacks and effectively

increases the difficulty of extracting useful information through eavesdropping at-

tacks.

239

CHAPTER 8

CONCLUDING REMARKS AND FUTURE WORK

In this dissertation, we approached the under-researched field of E-IoT system

security. We introduced E-IoT as a unique field of research and investigated three

novel threat vectors heavily linked to E-IoT. First, we presented a detailed study

of E-IoT threat landscape and current defenses. We then introduced three unique

threat vectors, proving that E-IoT Drivers, CEC, and E-IoT communication buses

can be used to compromise E-IoT systems and their components. Further we pro-

posed a defense mechanism to defend each novel vector against unauthorized and

malicious attacks, accounting for the unique design of E-IoT systems.

To first evaluate the current state of E-IoT, we investigated known threats in

current E-IoT ecosystems. As such, we researched how attackers with different

capabilities may compromise E-IoT. To do so, we divided E-IoT into four layers

and for each layer we proposed a novel threat model and highlighted the threats,

attacks, and defenses at each E-IoT layer. Finally we detailed how the design and

proprietary technologies of E-IoT presents challenges to researchers and current

defense strategies.

We explored how E-IoT system drivers can be used as an attack mechanism

against E-IoT systems. To do so, we introduced PoisonIvy, a series of novel at-

tacks that leverage malicious drivers against E-IoT system vulnerabilities. With

PoisonIvy we demonstrated that an attacker can easily assume control of E-IoT

system functions using malicious drivers. Specifically, we show that an attacker can

perform DoS attacks, gain remote control, and maliciously abuse system resources

through malicious E-IoT drivers. With PoisonIvy, we raise awareness in vulnera-

ble system components that can largely impact the security, privacy, reliability and

performance of E-IoT systems worldwide. To defend E-IoT against these threats,

240

we introduced Ivycide, an IDS designed to detect unexpected network traffic from

malicious E-IoT drivers. We implemented PoisonIvy and Ivycide in a realistic E-

IoT testbed, with several real E-IoT devices. Our detailed evaluation showed that

Ivycide achieved an overall accuracy of 97% and precision of 94% without any form

of operational overhead or modification to the existing E-IoT system.

To demonstrate how devices can be compromised through HDMI connections,

we introduced HDMI-Walk, a novel attack vector, that can be used by an attacker

to gain arbitrary control of HDMI devices and perform malicious analysis of de-

vices, eavesdropping, DoS attacks, targeted device attacks, and even facilitate other

well-known existing attacks through HDMI. To defend against these newly discov-

ered threats on smart systems, we further proposed HDMI-Watch, a novel intrusion

detection system used to detect malicious CEC-based activity within HDMI distri-

butions. HDMI-Watch operates as a standalone IDS within an HDMI distribution,

passively monitoring and thus imposing no additional overhead to CEC commu-

nication. To test HDMI-Watch’s performance, we performed our evaluations in a

realistic HDMI testbed with a variety of consumer HDMI devices. Our extensive

evaluation results showed that the proposed defense system achieved an average of

98% in accuracy without any modifications required to connected devices.

Finally, we investigated E-IoT vulnerabilities by targeting core E-IoT compo-

nents. Namely, we investigated vulnerabilities of E-IoT proprietary protocols used

in E-IoT communication buses. To do so, we introduced LightningStrike, a series of

proof-of-concept attacks that demonstrate several weaknesses in proprietary com-

munication used by E-IoT systems. Specifically, with LightningStrike we demon-

strated that popular E-IoT proprietary communication protocols are susceptible

to DoS, eavesdropping, impersonation, and replay attacks. As these threats can-

not be mitigated by traditional defense mechanisms due to limitations posed by

241

E-IoT, we introduced LGuard, a novel defense system designed to defend E-IoT

systems against LightningStrike attacks. Namely, LGuard uses video captures and

network traffic monitoring to detect replay attacks. To detect impersonation and

DoS attacks, LGuard detects device tampering and excessive network traffic. Fi-

nally, LGuard addresses eavesdropping by obfuscating E-IoT communication bus

traffic. Our detailed evaluations showed that LGuard did not incur any operational

overhead and achieved an overall accuracy and precision of 99%.

We present several key directions for future research.

• In this dissertation, we presented several viable HDMI-based attacks that can

easily compromise integrated devices. However, all of the attacks were de-

signed to use the CEC protocol without any fuzzing or more advanced attack

techniques. While the discovered impacts are impactful, we believe that fur-

ther research is needed into CEC vulnerabilities and other protocols embedded

into multimedia devices.

• Drivers as a threat vector are a new discovery and some threats were depen-

dent on the software implementation of vendor drivers. We believe that there

is room for further research in this topic, ideally with collaboration from E-IoT

vendors. One future research direction could tackle the problem of standard-

ization of E-IoT drivers and offer a solution of a single, secure, driver model

that multiple E-IoT vendors can use to expand the functionality of their own

systems.

• Throughout this dissertation, we noted the challenges of working and in-

vestigating proprietary protocols. However, while this presents a challenge,

security-through-obscurity is insufficient. A new research direction needs to

be taken in collaboration with E-IoT vendors to secure proprietary E-IoT pro-

tocols before they are deployed in countless systems worldwide.

242

BIBLIOGRAPHY

[AAB+17] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. Understanding the mirai botnet.
In 26th {USENIX} Security Symposium, pages 1093–1110, 2017.

[AADB17] M. A. N. Abrishamchi, A. H. Abdullah, A. David Cheok, and K. S.
Bielawski. Side channel attacks on smart home systems: A short
overview. In IECON 2017 = 43rd Annual Conference of the IEEE
Industrial Electronics Society, pages 8144–8149, Oct 2017.

[AADV15] Claudio A Ardagna, Rasool Asal, Ernesto Damiani, and Quang Hieu
Vu. From security to assurance in the cloud: A survey. ACM Comput-
ing Surveys (CSUR), 48(1):1–50, 2015.

[AAUA18] A. Acar, H. Aksu, A. S. Uluagac, and K. Akkaya. Waca: Wearable-
assisted continuous authentication. In 2018 IEEE Security and Privacy
Workshops (SPW), pages 264–269, May 2018.

[AAUC18] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A
survey on homomorphic encryption schemes: Theory and implementa-
tion. ACM Computing Surveys (CSUR), 51(4):1–35, 2018.

[AB09] Miron Abramovici and Paul Bradley. Integrated circuit security: new
threats and solutions. In Proceedings of the 5th Annual Workshop
on Cyber Security and Information Intelligence Research: Cyber Secu-
rity and Information Intelligence Challenges and Strategies, pages 1–3,
2009.

[ABB+17] Manos Antonakakis Tim April, Michael Bailey, Matthew Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman,
Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, et al. Understand-
ing the mirai botnet. In 26th USENIX security symposium, pages
1093–1110, 2017.

[ABC+18] Hidayet Aksu, Leonardo Babun, Mauro Conti, Gabriele Tolomei, and
A Selcuk Uluagac. Advertising in the iot era: Vision and challenges.
IEEE Communications Magazine, 56(11):138–144, 2018.

[ABK+07] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi,
and Berk Sunar. Trojan detection using ic fingerprinting. In 2007

243

IEEE Symposium on Security and Privacy (SP’07), pages 296–310.
IEEE, 2007.

[ADI20] ADI. HoneyWell Serial Interface Module. https://www.adiglobaldis
tribution.us/Product/4100SM, 2020. Online: Accessed 25-September-
2020.

[Adm11] Admin. How to hack into the TV remote control and understand
the IR code. https://www.electrodragon.com/how-to-hack-into-the-
tv-remote-control-and-understand-the-ir-code/, 2011. Online: Ac-
cessed 25-September-2020.

[AFA+20] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder,
Markus Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi,
and Selcuk Uluagac. Peek-a-boo: I see your smart home activities, even
encrypted! In Proceedings of the 13th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec ’20, page 207–218.
ACM, 2020.

[AHIN13] Ahmed Al-Haiqi, Mahamod Ismail, and Rosdiadee Nordin. Keystrokes
inference attack on android: A comparative evaluation of sensors and
their fusion. Journal of ICT Research and Applications, 7(2):117–136,
2013.

[AK18] Asma Alsaidi and Firdous Kausar. Security attacks and countermea-
sures on cloud assisted iot applications. In 2018 IEEE International
Conference on Smart Cloud (SmartCloud), pages 213–217. IEEE, 2018.

[ALAM19] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose.
Sok: Security evaluation of home-based iot deployments. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1362–1380, 2019.

[AMA20a] Intisar Shadeed Al-Mejibli and Nawaf Rasheed Alharbe. Analyzing and
evaluating the security standards in wireless network: A review study.
Iraqi Journal for Computers and Informatics, 46(1):32–39, 2020.

[Ama20b] Amazon. Lindy hdmi cec-less adapter. https://www.amazon.com/
Lindy-HDMI-Adapter-Female-41232/dp/B00DL48KVI, 2020. Online:
Accessed 18-July-2020.

[Ana20] Oxford Analytica. Fallout of solarwinds hack could last for years.
Emerald Expert Briefings, (oxan-es), 2020.

244

[And15] Andrew Tierney. CSL Dualcom CS2300-R signalling unit vul-
nerabilities. https://cybergibbons.com/security-2/csl-dualcom-cs2300-
signalling-unit-vulnerabilities/, 2015. Online: Accessed 10-November-
2020.

[And20a] Android Developers. Sign your app. https://developer.android.com/
studio/publish/app-signing, 2020.

[And20b] Andy Greenberg. A Tesla Employee Thwarted an Alleged Ransomware
Plot. https://www.wired.com/story/tesla-ransomware-insider-hack-
attempt/, 2020. Online: Accessed 10-November-2020.

[AOHA17] Fadele Ayotunde Alaba, Mazliza Othman, Ibrahim Abaker Targio
Hashem, and Faiz Alotaibi. Internet of things security: A survey.
Journal of Network and Computer Applications, 88:10–28, 2017.

[AOV18] Ahmet Arıs, Sema F Oktug, and Thiemo Voigt. Security of internet
of things for a reliable internet of services. 2018.

[AP13] A. Arabo and B. Pranggono. Mobile malware and smart device se-
curity: Trends, challenges and solutions. In 2013 19th International
Conference on Control Systems and Computer Science, May 2013.

[App20] Apple. Signing your apps for gatekeeper. https://developer.apple.
com/developer-id/, 2020. Online: Accessed 20-May-2020.

[ARC18] Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. Internet
of things: A survey on the security of iot frameworks. Journal of
Information Security and Applications, 38:8–27, 2018.

[ASH16] ASHRAE. BACnet®, the ASHRAE building automation and control
networking protocol. http://www.bacnet.org/, 2016.

[ASH17] ASHRAE. BACnet Network Security Architecture. http://www.
bacnet.org/Addenda/Add-2004-135g-PR1.pdf, 2017.

[Aud] AudioAdvice. Which smart home system is best? control4 vs. crestron
vs. savant. https://www.audioadvice.com/videos-reviews/control4-vs-
crestron-vs-savant/. Online: Accessed 10-December-2019.

245

[Aud18] Audrey Noble. A look inside the amazing smart-home systems that
rich people use. https://www.businessinsider.com/smart-home-tech-
that-rich-people-use-2018-7, 2018. Online: Accessed 20-June-2020.

[Bab19] Babun, Leonardo, Aksu, Hidayet, Uluagac, Selcuk A. Method of
Resource-limited Device and Device Class Identification using System
and Function Call Tracing Techniques, Performance, and Statistical
Analysis. (10242193), March 2019.

[BADA15] N. Baharudin, F. H. M. Ali, M. Y. Darus, and N. Awang. Wireless
intruder detection system (wids) in detecting de-authentication and
disassociation attacks in ieee 802.11. In 2015 5th International Con-
ference on IT Convergence and Security (ICITCS), pages 1–5, Aug
2015.

[BAR+20] L. Babun, H. Aksu, L. Ryan, K. Akkaya, E. S. Bentley, and A. S. Ulu-
agac. Z-iot: Passive device-class fingerprinting of zigbee and z-wave iot
devices. In 2020 IEEE International Conference on Communications
(ICC), pages 1–7, 2020.

[Bas19] Bastian Bloessl. Low-cost zigbee selective jamming. https://www.
bastibl.net/reactive-zigbee-jamming/, 2019. Online: Accessed 18-July-
2020.

[BAU18] Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac. Detection of
counterfeit and compromised devices using system and function call
tracing techniques. (10027697), 7 2018.

[BAU19] Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac. A system-level
behavioral detection framework for compromised cps devices: Smart-
grid case. ACM Trans. Cyber-Phys. Syst., 4(2), nov 2019.

[BBP10a] T. Bonaci, L. Bushnell, and R. Poovendran. Node capture attacks in
wireless sensor networks: A system theoretic approach. In 49th IEEE
Conference on Decision and Control (CDC), pages 6765–6772, 2010.

[BBP10b] Tamara Bonaci, Linda Bushnell, and Radha Poovendran. Probabilistic
analysis of covering and compromise in a node capture attack. Network
Security Lab (NSL), Seattle, WA, Techical Report, 1, 2010.

[BCM15] Michael Bauer, Mark Coatsworth, and Justin Moeller. Nansa: A no-
attribution nosleep battery exhaustion attack for portable computing

246

devices. http://pages.cs.wisc.edu/ bauer/CS736Final.pdf, 2015. On-
line: Accessed 11-Feb-2021.

[BCMU19] Leonardo Babun, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk
Uluagac. Real-time analysis of privacy-(un)aware iot applications,
2019.

[BFM17] Robert Buttigieg, Mario Farrugia, and Clyde Meli. Security issues
in controller area networks in automobiles. In 2017 18th Interna-
tional Conference on Sciences and Techniques of Automatic Control
and Computer Engineering (STA), pages 93–98, 2017.

[BGMT07] Timothy K Buennemeyer, Michael Gora, Randy C Marchany, and
Joseph G Tront. Battery exhaustion attack detection with small hand-
held mobile computers. In 2007 IEEE International Conference on
Portable Information Devices, pages 1–5. IEEE, 2007.

[BGW01] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile
communications: the insecurity of 802.11. In Proceedings of the 7th
annual international conference on Mobile computing and networking,
pages 180–189, 2001.

[BKH+17] M. Babiker, O. O. Khalifa, K. K. Htike, A. Hassan, and M. Zaha-
radeen. Automated daily human activity recognition for video surveil-
lance using neural network. In 2017 IEEE 4th International Conference
on Smart Instrumentation, Measurement and Application (ICSIMA),
pages 1–5, 2017.

[BKP15] Ashvini Balte, Asmita Kashid, and Balaji Patil. Security issues in
internet of things (iot): A survey. International Journal of Advanced
Research in Computer Science and Software Engineering, 5(4), 2015.

[Bla08] Blackwire Designs. Control4 automation apps and drivers.
https://www.blackwiredesigns.com/cat/automation-apps-and-
drivers/control4 drivers/, 2008. Online: Accessed 18-May-2020.

[Bla20] Rich Black. Clear connect technology whitepaper. http://www.
lutron.com/TechnicalDocumentLibrary/Clear Connect Tech
nology whitepaper.pdf, 2020. Online: Accessed 10-January-2020.

247

[BLAN+16] Chafika Benzaid, Karim Lounis, Ameer Al-Nemrat, Nadjib Badache,
and Mamoun Alazab. Fast authentication in wireless sensor networks.
Future Generation Computer Systems, 55:362–375, 2016.

[Blu20a] Bluetooth. Bluetooth Core Specifications. https://www.bluetooth
.com/specifications/bluetooth-core-specification/, 2020. Online: Ac-
cessed 1-March-2020.

[Blu20b] Bluetooth. The Global Standard For Connection. https://www.
bluetooth.com/learn-about-bluetooth/bluetooth-technology/, 2020.
Online: Accessed 1-March-2020.

[BMV17] Samaresh Bera, Sudip Misra, and Athanasios V Vasilakos. Software-
defined networking for internet of things: A survey. IEEE Internet of
Things Journal, 4(6):1994–2008, 2017.

[BÖS19] Ismail Butun, Patrik Österberg, and Houbing Song. Security of the
internet of things: Vulnerabilities, attacks, and countermeasures. IEEE
Communications Surveys & Tutorials, 22(1):616–644, 2019.

[BPP13a] S. D. Babar, N. R. Prasad, and R. Prasad. Jamming attack: Behavioral
modelling and analysis. In Wireless VITAE 2013, pages 1–5, 2013.

[BPP13b] S. D. Babar, N. R. Prasad, and R. Prasad. Jamming attack: Behavioral
modelling and analysis. In Wireless VITAE 2013, pages 1–5, 2013.

[BR15] Shivam Bhasin and Francesco Regazzoni. A survey on hardware tro-
jan detection techniques. In 2015 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 2021–2024. IEEE, 2015.

[Bra00] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[BSAU18] Leonardo Babun, Amit Kumar Sikder, Abbas Acar, and A. Selcuk Ulu-
agac. Iotdots: A digital forensics framework for smart environments.
CoRR, 2018.

[BSDV21] Basudeb Bera, Sourav Saha, Ashok Kumar Das, and Athanasios V
Vasilakos. Designing blockchain-based access control protocol in
iot-enabled smart-grid system. IEEE Internet of Things Journal,
8(7):5744–5761, 2021.

248

[BSK04] Kwang-Hyun Baek, Sean W Smith, and David Kotz. A survey of wpa
and 802.11 i rsn authentication protocols. 2004.

[BT11] Leela Krishna Bysani and Ashok Kumar Turuk. A survey on selective
forwarding attack in wireless sensor networks. In 2011 International
Conference on Devices and Communications (ICDeCom), pages 1–5.
IEEE, 2011.

[BTJS12] M. V. Bharathi, R. C. Tanguturi, C. Jayakumar, and K. Selvamani.
Node capture attack in wireless sensor network: A survey. In 2012
IEEE International Conference on Computational Intelligence and
Computing Research, pages 1–3, 2012.

[BWM12] Johannes Barnickel, Jian Wang, and Ulrike Meyer. Implementing an
attack on bluetooth 2.1+ secure simple pairing in passkey entry mode.
In 2012 IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications, pages 17–24. IEEE, 2012.

[C4D14] C4Drivers. Control4 driver programming, Oct, 2014. Online: Accessed
10-December-2019.

[C4F] C4Forums. Control4 forums files download. Online: Accessed 23-
January-2020.

[Cam20] Camio. Ai for cost-effective remote video monitoring. https://camio.
com/, 2020. Online: Accessed 18-July-2020.

[Car13] Carrier Enterprise. Carrier SAM Module. https://www.carriere
nterprise.com/carrier-infinity-series-ethernet-cat-5-wired-broadband-
remote-access-module-systxccrct01#tab-info, 2013.

[Car20] Carolina Staff. Make the Invisible Visible . https://www.carolina.
com/knowledge/2020/02/20/make-the-invisible-visible, 2020. Online:
Accessed 25-September-2020.

[CB08] Rajat Subhra Chakraborty and Swarup Bhunia. Hardware protec-
tion and authentication through netlist level obfuscation. In 2008
IEEE/ACM International Conference on Computer-Aided Design,
pages 674–677. IEEE, 2008.

[CB09a] Rajat Subhra Chakraborty and Swarup Bhunia. Harpoon: an
obfuscation-based soc design methodology for hardware protection.

249

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 28(10):1493–1502, 2009.

[CB09b] Rajat Subhra Chakraborty and Swarup Bhunia. Security through ob-
scurity: An approach for protecting register transfer level hardware ip.
In 2009 IEEE International Workshop on Hardware-Oriented Security
and Trust, pages 96–99. IEEE, 2009.

[CBS+18a] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A. Selcuk Uluagac. Sensitive infor-
mation tracking in commodity iot. In 27th USENIX Security Sympo-
sium, pages 1687–1704, 2018.

[CBS+18b] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A. Selcuk Uluagac. Sensitive in-
formation tracking in commodity iot. In 27th Security Symposium
(USENIX Security 18), Baltimore, MD, 2018.

[CC12] Liang Cai and Hao Chen. On the practicality of motion based keystroke
inference attack. In International Conference on Trust and Trustwor-
thy Computing, pages 273–290. Springer, 2012.

[CDG+20] Sravani Challa, Ashok Kumar Das, Prosanta Gope, Neeraj Kumar, Fan
Wu, and Athanasios V Vasilakos. Design and analysis of authenticated
key agreement scheme in cloud-assisted cyber–physical systems. Future
Generation Computer Systems, 108:1267–1286, 2020.

[CDL16] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man
in the middle attacks. IEEE Communications Surveys Tutorials,
18(3):2027–2051, 2016.

[CHEK18] M. Chamekh, M. Hamdi, S. El Asmi, and T. Kim. Secured distributed
iot based supply chain architecture. In 2018 IEEE 27th International
Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pages 199–202, 2018.

[Chr17] Chris Brook. Dahua Patching Backdoor in DVRs, IP Cam-
eras. https://threatpost.com/dahua-patching-backdoor-in-dvrs-ip-
cameras/124119/, 2017.

250

[CMT+] Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and A. S. Uluagac. Veri-
fying Internet of Things Safety and Security in Physical Spaces. IEEE
Security Privacy.

[CMZ+19] Nadia Chaabouni, Mohamed Mosbah, Akka Zemmari, Cyrille Sauvi-
gnac, and Parvez Faruki. Network intrusion detection for iot security
based on learning techniques. IEEE Communications Surveys & Tu-
torials, 21(3):2671–2701, 2019.

[Con] Control4. Control4 driver search. https://drivers.control4.com/solr/
drivers/browse. Online: Accessed 20-June-2019.

[Con10a] Control4. Control4 operating system os release notes. https://www.
control4.com/files/dealers/TechDoc00046-ComposerProSoftware-
Release-2.0.6-ReleaseNotes.pdf, 2010. Online: Accessed 20-June-2020.

[Con10b] Control4. Getting started with composer pro. https://www.control4.
com/files/dealers/200-00168-ComposerProGettingStarted.pdf, Jun,
2010. Online: Accessed 10-December-2019.

[Con10c] Control4. Composer pro software release update instructions.
https://www.control4.com/files/dealers/TechDoc00005 ComposerUpdate
Instructions 1 8 2.pdf, Mar, 2010. Online: Accessed 10-April-2020.

[Con12] Control4. Exterior door station: Security best prac-
tices. https://www.control4.com/docs/product/security/best-
practices/english/latest/security-best-practices-rev-a.pdf, 2012.
Online: Accessed 22-September-2020.

[Con13a] Control4. Configurable Decora Wired Keypad Installation Guide.
https://www.control4.com/docs/product/wired-keypad/installation-
guide/english/revision/B/wired-keypad-installation-guide-rev-b.pdf,
2013. Online: Accessed 20-March-2020.

[Con13b] Control4. Control4 zigbee: The definitive magic button press
guide. https://technet.genesis-technologies.ch/control4-zigbee-the-
definitive-guide/, 2013. Online: Accessed 20-June-2019.

[Con14] Control4. Control4 panelized lighting: Reference guide for elec-
tricians. https://www.control4.com/docs/product/panelized-
lighting/professional-reference-guide/latest/panelized-lighting-

251

professional-reference-guide-rev-b.pdf, Feb, 2014. Online: Accessed
10-December-2019.

[Con15a] Control4. 7in and 10in t3 series in-wall touch screen installation
guide. https://www.manualslib.com/manual/1436607/Control-4-C4-
Wall7-Wh.htmlf, 2015. Online: Accessed 22-September-2020.

[Con15b] Control4. Keep Your House Dry, DAM-it! https://www.control4.com
/blog/363/keep-your-house-dry-damit/, 2015. Online: Accessed 20-
June-2020.

[Con18] Control4. Press release: Four years in a row, control4 named leading
whole-house automation brand in cepro brand analysis, 2018. Online:
Accessed 20-June-2020.

[Con19] Control4. Control4 driver search, Jan, 2019. Online: Accessed 10-
December-2019.

[Con20a] Control4. Control4 4sight Services. https://www.control4.com
/o/4sight-services, 2020. Online: Accessed 25-September-2020.

[Con20b] Control4. Control4: About our company. https://www.control4.
com/company/, 2020. Online: Accessed 18-May-2020.

[Con20c] Control4. Control4 Sensors. https://www.control4.com/solutions/
products/sensors/, 2020. Online: Accessed 20-June-2020.

[Con20d] Control4. Control4 Solution Multi-Room Audio.
https://www.control4. com/solutions/multi-room-audio/, 2020.
Online: Accessed 25-September-2020.

[Con21a] Control4. Control4 Camera Solutions. https://www.control4.com/so
lutions/products/cameras/, 2021. Online: Accessed 28-October-2021.

[Con21b] Control4. Control4 Driver Search - Camera. https://drivers.control4
.com/solr/drivers/browse?&fq=primaryProxy%3A%22camera%22,
2021. Online: Accessed 28-October-2021.

[Crea] Crestron. Crestron technical institute. https://www.crestron.com
/training. Online: Accessed 10-December-2019.

252

[Creb] Crestron. infinet ex® network and er wireless gateway. https://www.
crestron.com/Products/Control-Hardware-Software/Wireless-
Communications/Wireless-Gateways/CEN-GWEXER. Online:
Accessed 10-January-2020.

[Cre06] Crestron. Crestron isys touchpanel operation guide, 2006. Online:
Accessed 10-April-2020.

[Cre17a] Cresnet. Crestron Cresnet Monitor - Cresnet protocol analysis.
https://archive.codeplex.com/?p=cresnet, 2017.

[Cre17b] Crestron. Crestron Automation Products. https://www.crestron
.com/, 2017.

[Cre20a] Crestron. Cresnet wiring - cable types & lengths for connecting devices.

https://support.crestron.com/app/answers/detail/a id/1629//̃cresnet-
wiring—cable-types, 2020. Online: Accessed 10-April-2020.

[Cre20b] Crestron. Crestron Database Release Notes. http://www.crestron.
com/release notes/crestron database 31 05.html, 2020. Online: Ac-
cessed 25-September-2020.

[Cre20c] Crestron. Crestron Lightning and Environment Sensors.
https://www.crestron.com/Products/Lighting-Environment/Sensors,
2020. Online: Accessed 20-June-2020.

[Cre20d] Crestron. Crestron Multiroom Audio. https://www.crestron.com
/products/audio/multiroom-audio, 2020. Online: Accessed 25-
September-2020.

[Cre20e] Crestron. Crestron software - downloading latest versions.
https:// support.crestron.com/app/answers/detail/a id/32/crestron-
software—downloading-latest-versions, 2020. Online: Accessed 22-
September-2020.

[Cre20f] Crestron. Crestron’s Commitment to Security. https://www.crestron
.com/About/commitment-to-security, 2020. Online: Accessed 20-
October-2020.

[Cre20g] Crestron. Security at crestron. https://www.crestron.com/Security/Se
curity-at-Crestron, 2020. Online: Accessed 18-May-2020.

253

[Cre20h] Crestron. Tsw model touchscreen manual. https://bit.ly/3mcRNrI,
2020. Online: Accessed 20-June-2020.

[Cre21a] Crestron. Crestron Application Market - Integrated Pan/Tilt.
https://applicationmarket.crestron.com/integrated-pan-tilt-1/, 2021.
Online: Accessed 28-October-2021.

[Cre21b] Crestron. Works with Crestron - Cameras. https://docs.crestron.com
/en-us/8525/Content/CP4R/Appendix/Works-With-Crestron-
Home/Cameras.htm, 2021. Online: Accessed 28-October-2021.

[CSC+16] X. Cao, D. M. Shila, Y. Cheng, Z. Yang, Y. Zhou, and J. Chen. Ghost-
in-zigbee: Energy depletion attack on zigbee-based wireless networks.
IEEE Internet of Things Journal, 3(5):816–829, Oct 2016.

[CVE20a] CVE Details. CVE Details Security Vulnerabilities Search:
Crestron. https://www.cvedetails.com/vulnerability-list/vendor id-
15891/Crestron.html, 2020. Online: Accessed 25-September-2020.

[CVE20b] CVE Details. CVE Details Security Vulnerabilities Search:
Savant. https://www.cvedetails.com/vulnerability-list/vendor id-
1231/Savant.html, 2020. Online: Accessed 25-September-2020.

[Cyb20] Cybersecurity & Infrastructure Security Agency. Securing Wireless
Networks. https://us-cert.cisa.gov/ncas/tips/ST05-003, 2020. Online:
Accessed 10-November-2020.

[Dav11] David Kravets. Wi-fi–hacking neighbor from hell sentenced to 18
years. https://www.wired.com/2011/07/hacking-neighbor-from-hell/,
2011. Online: Accessed 15-May-2021.

[Dav12] Andy Davis. HDMI : Hacking Displays Made Interesting, Mar, 2012.

[Dav13] Andy Davis. What the HEC? Security implications of HDMI Ethernet
Channel and other related protocols, Aug, 2013.

[Dav20] David Mead. A Comprehensive Guide to Z-Wave. https://
linkdhome.com/articles/What-is-z-wave, 2020. Online: Accessed 25-
October-2020.

254

[DBU20] Kyle Denney, Leonardo Babun, and A Selcuk Uluagac. Usb-watch:
a generalized hardware-assisted insider threat detection framework.
Journal of Hardware and Systems Security, 4(2):136–149, 2020.

[DDGD+19] Michele De Donno, Alberto Giaretta, Nicola Dragoni, Antonio Buc-
chiarone, and Manuel Mazzara. Cyber-storms come from clouds: Se-
curity of cloud computing in the iot era. Future Internet, 11(6):127,
2019.

[DEB+19] Kyle Denney, Enes Erdin, Leonardo Babun, Michael Vai, and Selcuk
Uluagac. Usb-watch: A dynamic hardware-assisted usb threat detec-
tion framework. In International Conference on Security and Privacy
in Communication Systems, pages 126–146. Springer, 2019.

[DEBU19] Kyle Denney, Enes Erdin, Leonardo Babun, and A. Selcuk Uluagac.
Dynamically detecting usb attacks in hardware: Poster. In Proceedings
of the 12th Conference on Security and Privacy in Wireless and Mobile
Networks, page 328–329, 2019.

[Dev13] Jega Anish Dev. Usage of botnets for high speed md5 hash cracking. In
Third International Conference on Innovative Computing Technology
(INTECH 2013), pages 314–320. IEEE, 2013.

[Dev19] Android Developers. Hdmi-cec control service.
https://source.android.com/devices/tv/hdmi-cec, May, 2019.

[DG17] Seyed Mahdi Darroudi and Carles Gomez. Bluetooth low energy mesh
networks: A survey. Sensors, 17(7):1467, 2017.

[DGS+19] J. Dudak, G. Gaspar, S. Sedivy, P. Fabo, L. Pepucha, and P. Tanuska.
Serial communication protocol with enhanced properties–securing
communication layer for smart sensors applications. IEEE Sensors
Journal, 19(1):378–390, 2019.

[DLD09] Pradip De, Yonghe Liu, and Sajal K Das. Deployment-aware modeling
of node compromise spread in wireless sensor networks using epidemic
theory. ACM Transactions on Sensor Networks (TOSN), 5(3):1–33,
2009.

[Dor17] Brannon Dorsey. Crack WPA/WPA2 Wi-Fi Routers with Aircrack-ng
and Hashcat. https://medium.com/@brannondorsey/crack-wpa-

255

wpa2-wi-fi-routers-with-aircrack-ng-and-hashcat-a5a5d3ffea46, Jul,
2017.

[dri20] drivercentral. Control4 drivers. https://drivercentral.io/platforms/con
trol4-drivers/, 2020. Online: Accessed 20-May-2020.

[DRW+14] Abe Davis, Michael Rubinstein, Neal Wadhwa, Gautham J. Mysore,
Frédo Durand, and William T. Freeman. The visual microphone: Pas-
sive recovery of sound from video. ACM Trans. Graph., 33(4), July
2014.

[Dun10] John Dunning. Taming the blue beast: A survey of bluetooth based
threats. IEEE Security & Privacy, 8(2):20–27, 2010.

[DV17] Jyoti Deogirikar and Amarsinh Vidhate. Security attacks in iot: A
survey. In 2017 International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud)(I-SMAC), pages 32–37. IEEE, 2017.

[DWH13] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Zmap: Fast
internet-wide scanning and its security applications. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13, pages 605–620,
Berkeley, CA, USA, 2013. USENIX Association.

[Ed 17] Ed Bott. Make your cloud safer: How you can use two-factor authenti-
cation to protect cloud services. https://www.zdnet.com/article/make-
your-cloud-safer-how-you-can-use-two-factor-authentication-to-
protect-cloud-services/, 2017. Online: Accessed 20-November-2020.

[Edu20] Educba. Ftp vs sftp. https://www.educba.com/ftp-vs-sftp/, 2020.
Online: Accessed 22-September-2020.

[Edw20] Edward Kovacs. Iot devices at major manufacturers infected with
malware via supply chain attack. https://www.securityweek.com/iot-
devices-major-manufacturers-infected-malware-supply-chain-attack,
2020. Online: Accessed 25-September-2020.

[EEEE07] Jakob Ehrensvärd, Stina Ehrensvärd, Leif Eriksson, and Fredrik Ein-
berg. Tamper evident packaging, January 30 2007. US Patent
7,170,409.

[EGH+14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,
Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel,

256

and Anmol N Sheth. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2):1–29, 2014.

[EKT16] Oliver Eigner, Philipp Kreimel, and Paul Tavolato. Detection of man-
in-the-middle attacks on industrial control networks. In 2016 Interna-
tional Conference on Software Security and Assurance (ICSSA), 2016.

[Eru20] Eruc Andersen, Rob Landley, Denys Vlasenko. BusyBox: The Swiss
Army Knife of Embedded Linux. https://busybox.net/about.html,
2020. Online: Accessed 10-November-2020.

[Eur20] European Union for Cybersecurity. Guidelines for Securing the Internet
of Things. https://www.enisa.europa.eu/publications/guidelines-for-
securing-the-internet-of-things, 2020. Online: Accessed 20-November-
2020.

[fCo02] fCoder. History RS-232-C - Legacy Serial Connector. https://www.
lookrs232.com/rs232/history rs232.htm, 2002.

[Fed15] Federal Trade Commission. Securing your Wireless Network.
https://www.consumer.ftc.gov/articles/0013-securing-your-wireless-
network, 2015. Online: Accessed 10-November-2020.

[FG13] Behrang Fouladi and Sahand Ghanoun. Security evaluation of the
z-wave wireless protocol. Black Hat USA, 24:1–2, 2013.

[FH18] Mayra Rosario Fuentes and Numaan Huq. Securing connected
hospitals. https://www.key4biz.it/wp-content/uploads/2018/04/rpt-
securing-connected-hospitals.pdf, 2018.

[FKWL13] Ashfaq Hussain Farooqi, Farrukh Aslam Khan, Jin Wang, and Sungy-
oung Lee. A novel intrusion detection framework for wireless sensor
networks. Personal and ubiquitous computing, 17(5):907–919, 2013.

[FR15] J. D. Fuller and B. W. Ramsey. Rogue z-wave controllers: A per-
sistent attack channel. In 2015 IEEE 40th Local Computer Networks
Conference Workshops (LCN Workshops), pages 734–741, Oct 2015.

[FS18] FS. Ipv4 vs ipv6: What’s the difference? https://community.
fs.com/blog/ipv4-vs-ipv6-whats-the-difference.html, 2018. Online: Ac-
cessed 10-January-2020.

257

[FSG+14] Diogo AB Fernandes, Liliana FB Soares, João V Gomes, Mário M
Freire, and Pedro RM Inácio. Security issues in cloud environments: a
survey. International Journal of Information Security, 13(2):113–170,
2014.

[FZ19] Muhammad Junaid Farooq and Quanyan Zhu. Iot supply chain se-
curity: Overview, challenges, and the road ahead. arXiv preprint
arXiv:1908.07828, 2019.

[GB19] Mordechai Guri and Dima Bykhovsky. air-jumper: Covert air-gap
exfiltration/infiltration via security cameras & infrared (ir). Computers
& Security, 82:15–29, 2019.

[GE18] Mordechai Guri and Yuval Elovici. Bridgeware: The air-gap malware.
Communications of the ACM, 61(4):74–82, 2018.

[GHKE16] Mordechai Guri, Ofer Hasson, Gabi Kedma, and Yuval Elovici. An
optical covert-channel to leak data through an air-gap. In 2016 14th
Annual Conference on Privacy, Security and Trust (PST), pages 642–
649. IEEE, 2016.

[GLY14] Kanika Grover, Alvin Lim, and Qing Yang. Jamming and anti–
jamming techniques in wireless networks: a survey. International Jour-
nal of Ad Hoc and Ubiquitous Computing, 17(4):197–215, 2014.

[Goo18] Google. What is CEC? https://support.google.com/chromecast/answer/
7199917?hl=en, 2018. Online: Accessed 10-January-2020.

[Gor12] Celia Gorman. Counterfeit chips on the rise. IEEE Spectrum, 49(6):16–
17, 2012.

[GSD+17] O. Gasser, Q. Scheitle, C. Denis, N. Schricker, and G. Carle. Security
implications of publicly reachable building automation systems. In
2017 IEEE Security and Privacy Workshops (SPW), pages 199–204,
May 2017.

[GWS10] Bernd Grobauer, Tobias Walloschek, and Elmar Stocker. Understand-
ing cloud computing vulnerabilities. IEEE Security & privacy, 9(2):50–
57, 2010.

[H+19] Wan Haslina Hassan et al. Current research on internet of things (iot)
security: A survey. Computer networks, 148:283–294, 2019.

258

[HB18] Duncan Hodges and Oliver Buckley. Reconstructing what you said:
Text inference using smartphone motion. IEEE Transactions on Mobile
Computing, 18(4):947–959, 2018.

[HCS+19] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav
Goyal, and Biplab Sikdar. A survey on iot security: application areas,
security threats, and solution architectures. IEEE Access, 7:82721–
82743, 2019.

[HCT17] Jun Han, Albert Jin Chung, and Patrick Tague. Pitchln: Eavesdrop-
ping via intelligible speech reconstruction using non-acoustic sensor
fusion. In Proceedings of the 16th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks, IPSN ’17, page
181–192, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[HDM09] HDMI Licensing LLC. HDMI Specification guide V1.4. http://d1.
amobbs.com/bbs upload782111/files 51ourdev 716302E34B9Q.pdf,
Jun, 2009.

[HDM18] HDMI Licensing LLC. Inside an HDMI Cable. https://www.hdmi.org/
installers/insidehdmicable.aspx, 2018. Online: Accessed 20-June-2020.

[Hen18] Josh Hendrickson. ZigBee vs. Z-Wave: Choosing Between Two Big
Smarthome Standards. https://www.howtogeek.com/394567/zigbee-
vs.-z-wave-choosing-between-two-big-smarthome-standards/, 2018.
Online: Accessed 20-October-2020.

[Her04] J Hering. Bluetooth cracking gun: Bluesniper. https://www.def
con.org/html/links/dc press/archives/12/esato bluetooth
cracking.htm, 2004. Online: Accessed 11-Feb-2021.

[Hey13] Cliff Heyne. AV Tip: How to Avoid Blowing Out Your Speak-
ers. https://www.audioholics.com/home-theater-connection/avoid-
blowing-speakers, Jan, 2013.

[HGC+19] Yan Huang, Xin Guan, Hongyang Chen, Yi Liang, Shanshan Yuan, and
Tomoaki Ohtsuki. Risk assessment of private information inference for
motion sensor embedded iot devices. IEEE Transactions on Emerging
Topics in Computational Intelligence, 4(3):265–275, 2019.

259

[HH07] Konstantin Hypponen and Keijo MJ Haataja. “nino” man-in-the-
middle attack on bluetooth secure simple pairing. In 2007 3rd
IEEE/IFIP International Conference in Central Asia on Internet,
pages 1–5. IEEE, 2007.

[HH08] Keijo MJ Haataja and Konstantin Hypponen. Man-in-the-middle at-
tacks on bluetooth: a comparative analysis, a novel attack, and coun-
termeasures. In 2008 3rd International Symposium on Communica-
tions, Control and Signal Processing, pages 1096–1102. IEEE, 2008.

[HHS19] Stefan Hristozov, Manuel Huber, and Georg Sigl. Protecting rest-
ful iot devices from battery exhaustion dos attacks. arXiv preprint
arXiv:1911.08134, 2019.

[HKMA14] K. K. Htike, O. O. Khalifa, H. A. Mohd Ramli, and M. A. M.
Abushariah. Human activity recognition for video surveillance using
sequences of postures. In The Third International Conference on e-
Technologies and Networks for Development (ICeND2014), pages 79–
82, 2014.

[Hol03] David G. Holmberg. Bacnet wide area network security threat assess-
ment. NIST, Department of Commerce, July 2003.

[Hol05] Kasey Holman. HDMI Licensing LLC Announces Availability of
HDMI 1.2a Specification, Dec, 2005.

[Hon01] Honeywell. Ethernet Interface User Manual. https://www.honeywell
process.com/library/support/Public/Documents/51-52-25-96.pdf,
2001. Online: Accessed 25-September-2020.

[hon20] The honeynet project. https://www.honeynet.org, 2020. Online: Ac-
cessed 25-September-2020.

[HRFMF13] Keiko Hashizume, David G Rosado, Eduardo Fernández-Medina, and
Eduardo B Fernandez. An analysis of security issues for cloud com-
puting. Journal of internet services and applications, 4(1):5, 2013.

[HT08] Keijo Haataja and Pekka Toivanen. Practical man-in-the-middle at-
tacks against bluetooth secure simple pairing. In 2008 4th Interna-
tional Conference on Wireless Communications, Networking and Mo-
bile Computing, pages 1–5. IEEE, 2008.

260

[HT10] Keijo Haataja and Pekka Toivanen. Two practical man-in-the-middle
attacks on bluetooth secure simple pairing and countermeasures. IEEE
Transactions on Wireless Communications, 9(1):384–392, 2010.

[HW88] Shian-Uei Hwu and Donald R Wilton. Electromagnetic scattering and
radiation by arbitrary configurations of conducting bodies and wires.
Technical report, San Diego State Univ Foundation CA, 1988.

[IDF07] Krontiris Ioannis, Tassos Dimitriou, and Felix C Freiling. Towards
intrusion detection in wireless sensor networks. In Proc. of the 13th
European Wireless Conference, pages 1–10. Citeseer, 2007.

[IEE20] IEEE. Ieee standard for secure scada communications protocol (sscp).
IEEE Std 1711.2-2019, pages 1–37, 2020.

[Ind08] Indrek Mandre. Interfacing with a sensor, ir remotes. http://www.
mare.ee/indrek/irtroll/, 2008. Online: Accessed 18-May-2020.

[Ing19] Ingram Micro. 4 innovations in theft and loss preven-
tion. https://imaginenext.ingrammicro.com/iot/4-innovations-in-
theft-and-loss-prevention, 2019. Online: Accessed 22-September-2020.

[Int17] Intel. Different Wi-Fi Protocols and Data Rates. https://www.intel.
com/content/www/us/en/support/articles/000005725
/network-and-i-o/wireless-networking.html, 2017.

[IoT18] IoTBusinessNews. The number of smart homes in europe and north
america reached 45 million in 2017, Sept, 2018. Online: Accessed 10-
December-2019.

[Jac19] Jacob Baines. Eight Devices, One Exploit.
https://medium.com/tenable-techblog/eight-devices-one-exploit-
f5fc28c70a7c, 2019. Online: Accessed 25-September-2020.

[JDV19] Srinivas Jangirala, Ashok Kumar Das, and Athanasios V Vasilakos. De-
signing secure lightweight blockchain-enabled rfid-based authentication
protocol for supply chains in 5g mobile edge computing environment.
IEEE Transactions on Industrial Informatics, 16(11):7081–7093, 2019.

[JIS13] MD Joseph I. Sirven. Photosensitivity and Seizures. https://www.epi-
lepsy.com/learn/triggers-seizures/photosensitivity-and-seizures, Nov,
2013.

261

[Joh14] John Ehringer. Gaining Serial Console Access on the Control4
Mini Touch Screen. http://www.5khz.com/2014/07/22/gaining-serial-
console-access-on-the-control4-mini-touch-screen/, 2014. Online: Ac-
cessed 10-November-2020.

[Jon20] Jon Martindale. What is ftp? https://www.digitaltrends.com/
computing/what-is-ftp-and-how-do-i-use-it/, 2020. Online: Accessed
22-September-2020.

[JSSN18] Kang Eun Jeon, James She, Perm Soonsawad, and Pai Chet Ng. Ble
beacons for internet of things applications: Survey, challenges, and
opportunities. IEEE Internet of Things Journal, 5(2):811–828, 2018.

[Jul15] Julie Jacobson. Savant kills litetouch; lutron to the rescue;
debating hardwired lighting control. https://www.cepro.com
/news/savant kills litetouch works with lutron on fix hardwired light
ing control/, 2015. Online: Accessed 20-June-2020.

[JVW+14] Qi Jing, Athanasios V Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao
Qiu. Security of the internet of things: perspectives and challenges.
Wireless Networks, 20(8):2481–2501, 2014.

[JZA+20] Yizhen Jia, Fangtian Zhong, Arwa Alrawais, Bei Gong, and Xiuzhen
Cheng. Flowguard: An intelligent edge defense mechanism against iot
ddos attacks. IEEE Internet of Things Journal, 7(10):9552–9562, 2020.

[KBAU18] C. Kaygusuz, L. Babun, H. Aksu, and A. S. Uluagac. Detection of
compromised smart grid devices with machine learning and convolu-
tion techniques. In 2018 IEEE International Conference on Commu-
nications (ICC), pages 1–6, May 2018.

[Ker20] Kernel Development Community. Kernel module signing facil-
ity. https://www.kernel.org/doc/html/v4.15/admin-guide/module-
signing.html, 2020.

[KF18] Wenyuan Xu Kevin Fu. Risks of trusting the physics of
sensors. hhttps://cacm.acm.org/opinion/articles/224627-risks-of-
trusting-the-physics-of-sensors/fulltext, 2018. Online: Accessed 20-
June-2019.

262

[KG19] Rakesh Kumar and Rinkaj Goyal. On cloud security requirements,
threats, vulnerabilities and countermeasures: A survey. Computer Sci-
ence Review, 33:1–48, 2019.

[KH18] Christopher P Kohlios and Thaier Hayajneh. A comprehensive at-
tack flow model and security analysis for wi-fi and wpa3. Electronics,
7(11):284, 2018.

[KHS17] R. Krejci, O. Hujnak, and M. Svepes. Security survey of the iot wireless
protocols. In 2017 25th Telecommunication Forum (TELFOR), pages
1–4, Nov 2017.

[KKAA14] Mahmoud Khasawneh, Izadeen Kajman, Rashed Alkhudaidy, and An-
war Althubyani. A survey on wi-fi protocols: Wpa and wpa2. In
International Conference on Security in Computer Networks and Dis-
tributed Systems, pages 496–511. Springer, 2014.

[Kni06] M. Knight. Wireless security - how safe is z-wave? Computing Control
Engineering Journal, 17(6):18–23, Dec 2006.

[Kod18] Kody. Hack WPA & WPA2 Wi-Fi Passwords with a Pixie-Dust Attack
Using Airgeddon. https://null-byte.wonderhowto.com/how-to/hack-
wpa-wpa2-wi-fi-passwords-with-pixie-dust-attack-using-airgeddon-
0183556/, 2018. Online: Accessed 10-November-2020.

[KSP07] D. S. Kim, Y. K. Suh, and J. S. Park. Toward assessing vulnerability
and risk of sensor networks under node compromise. In 2007 Inter-
national Conference on Computational Intelligence and Security (CIS
2007), pages 740–744, 2007.

[KT15] Surapon Kraijak and Panwit Tuwanut. A survey on iot architectures,
protocols, applications, security, privacy, real-world implementation
and future trends. 2015.

[KTC+08] Samuel T King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang
Jiang, and Yuanyuan Zhou. Designing and implementing malicious
hardware. Leet, 8:1–8, 2008.

[Kuh04] Markus G Kuhn. Electromagnetic eavesdropping risks of flat-panel dis-
plays. In International Workshop on Privacy Enhancing Technologies,
pages 88–107. Springer, 2004.

263

[Lan18] Kimberly Lancaster. Control4 delivers high-resolution audio and home-
owner personalization enhancements to elevate the smart home expe-
rience, Sept 2018. Online: Accessed 10-December-2019.

[LBAU17] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac.
A survey on function and system call hooking approaches. Journal of
Hardware and Systems Security, 1(2):114–136, 2017. Accessed: 11-17-
2018.

[LCY+18] Yi Liang, Zhipeng Cai, Jiguo Yu, Qilong Han, and Yingshu Li. Deep
learning based inference of private information using embedded sensors
in smart devices. IEEE Network, 32(4):8–14, 2018.

[LDS09a] Arash Habibi Lashkari, Mir Mohammad Seyed Danesh, and B. Samadi.
A survey on wireless security protocols (wep, wpa and wpa2/802.11i).
In 2009 2nd IEEE International Conference on Computer Science and
Information Technology, pages 48–52, Aug 2009.

[LDS09b] Arash Habibi Lashkari, Mir Mohammad Seyed Danesh, and Behrang
Samadi. A survey on wireless security protocols (wep, wpa and
wpa2/802.11 i). In 2009 2nd IEEE International Conference on Com-
puter Science and Information Technology, pages 48–52. IEEE, 2009.

[Leg19] Legrand. Legrand® announces ultra-secure wireless light-
ing controls platform. https://www.legrand.us/aboutus/press-
room/news/legrand-announces-wireless-lighting-controls-
platform.aspx, 2019. Online: Accessed 10-January-2020.

[Lev] Levitron. Levnet rf™: Self-powered wireless built on reliability.
https://www.leviton.com/en/products/brands/levnet-rf. Online: Ac-
cessed 10-January-2020.

[LFR+16] Samuel Litchfield, David Formby, Jonathan Rogers, Sakis Meliopou-
los, and Raheem Beyah. Rethinking the honeypot for cyber-physical
systems. IEEE Internet Computing, 20(5):9–17, 2016.

[LHH+18] Chao Lin, Debiao He, Xinyi Huang, Kim-Kwang Raymond Choo, and
Athanasios V Vasilakos. Bsein: A blockchain-based secure mutual
authentication with fine-grained access control system for industry 4.0.
Journal of Network and Computer Applications, 116:42–52, 2018.

264

[Li 18] Li Yinghua. What are the Differences Between Enterprise Wi-Fi
and Home Wi-Fi? . https://e.huawei.com/en/eblog/enterprise-
networking/wifi6/What-the-difference-between-corporate-Wi-Fi-and-
home-Wi-Fi, 2018. Online: Accessed 10-November-2020.

[Lin19] Lindsey O’Donnell. Wireless presentation systems have an array
of critical flaws. https://threatpost.com/bugs-wireless-presentation-
systems/144318/, 2019. Online: Accessed 25-September-2020.

[Liq21] LiquidSpace. Liquidspace: Rent flexible office space. https://liquid
space.com/, 2021. Online: Accessed 15-May-2021.

[Lit06] LiteTouch. LiteTouch Lighting Control Systems Installation and Trou-
bleshooting Manual. http://sav-documentation.s3.amazonaws.com
/Internal Documentation/LiteTouch and Savant Light-
ing/Troubleshooting Manual.pdf, 2006. Online: Accessed 20-
March-2020.

[LKP07] Mingyan Li, Iordanis Koutsopoulos, and Radha Poovendran. Optimal
jamming attacks and network defense policies in wireless sensor net-
works. In IEEE INFOCOM 2007-26th IEEE International Conference
on Computer Communications, pages 1307–1315. IEEE, 2007.

[LS19] Jessy Lin and Jason Seibel. Motion-based side-channel attack on
mobile keystrokes. http://css.csail.mit.edu/6.858/2019/projects/lnj-
jseibel.pdf, 2019.

[LSR+15] Yuhong Liu, Yan Lindsay Sun, Jungwoo Ryoo, Syed Rizvi, and
Athanasios V Vasilakos. A survey of security and privacy challenges
in cloud computing: solutions and future directions. Journal of Com-
puting Science and Engineering, 9(3):119–133, 2015.

[LTN+19] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClana-
han, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang,
Ming Guang Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred
Georg, and Matthias Grundmann. Mediapipe: A framework for build-
ing perception pipelines, 2019.

[LU02] Joe Loughry and David A Umphress. Information leakage from optical
emanations. ACM Transactions on Information and System Security
(TISSEC), 5(3):262–289, 2002.

265

[Luk20] Lukas Rist, Johnny Vesterngaard, Daniel Haslinger, An-
drea Pasquale, and John Smith. Conpot ics/scada honeypot.
https://www.compot.org, 2020. Online: Accessed 11-September-2020.

[Lut20] Lutron. Lutron Integration Protocol. http://www.lutron.com/Tec
hnicalDocumentLibrary/040249.pdf, 2020. Online: Accessed 10-May-
2020.

[LWYY15] Chi Lin, Guowei Wu, Chang Wu Yu, and Lin Yao. Maximizing de-
structiveness of node capture attack in wireless sensor networks. The
Journal of Supercomputing, 71(8):3181–3212, 2015.

[Lyn07] Lynn Tan. Protect against Bluetooth threats. https://www.zdnet
.com/article/protect-against-bluetooth-threats/, 2007. Online: Ac-
cessed 10-November-2020.

[LYZ+17] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei
Zhao. A survey on internet of things: Architecture, enabling technolo-
gies, security and privacy, and applications. IEEE Internet of Things
Journal, 4(5):1125–1142, 2017.

[LZ18] Karim Lounis and Mohammad Zulkernine. Connection dumping vul-
nerability affecting bluetooth availability. In International Confer-
ence on Risks and Security of Internet and Systems, pages 188–204.
Springer, 2018.

[LZ19a] Karim Lounis and Mohammad Zulkernine. Bad-token: denial of service
attacks on wpa3. In Proceedings of the 12th International Conference
on Security of Information and Networks, pages 1–8, 2019.

[LZ19b] Karim Lounis and Mohammad Zulkernine. Wpa3 connection depri-
vation attacks. In International Conference on Risks and Security of
Internet and Systems, pages 164–176. Springer, 2019.

[LZ20] Karim Lounis and Mohammad Zulkernine. Attacks and defenses in
short-range wireless technologies for iot. IEEE Access, 8:88892–88932,
2020.

[LZSL20] Haiyan Lan, Xiaodong Zhu, Jianguo Sun, and Sizhao Li. Traffic data
classification to detect man-in-the-middle attacks in industrial control
system. In 2019 6th International Conference on Dependable Systems
and Their Applications (DSA), pages 430–434, 2020.

266

[Mar14] Marantz. AV Surround Receiver Web Manual. http://manuals.
marantz.com/SR7009/EU/EN/HJWMSYmehwmguq.php, 2014. On-
line: Accessed 25-September-2020.

[Mar18] Mark N. Vena. How crestron paved the way for the smart home, and
more. https://www.forbes.com/sites/moorinsights/2018/08/23/how-
crestron-paved-the-way-for-the-smart-home-and-
more/#397001f141f8, 2018. Online: Accessed 18-May-2020.

[Mar19] Maria Korolov. What is a supply chain attack? why you
should be wary of third-party providers. https://www.csoonline
.com/article/3191947/what-is-a-supply-chain-attack-why-you-should-
be-wary-of-third-party-providers.html, 2019. Online: Accessed
22-September-2020.

[Mar20] Mark M. Types of Remote Access for DVRs. http://polarisusa
.com/articles/8/types-of-remote-access-for-dvrs, 2020. Online: Ac-
cessed 27-September-2020.

[MBY+19] J. Myers, L. Babun, E. Yao, S. Helble, and P. Allen. Mad-iot: Memory
anomaly detection for the internet of things. In 2019 IEEE Globecom
Workshops (GC Wkshps), pages 1–6, 2019.

[MDMT10] B. R. Moyers, J. P. Dunning, R. C. Marchany, and J. G. Tront. Effects
of wi-fi and bluetooth battery exhaustion attacks on mobile devices. In
2010 43rd Hawaii International Conference on System Sciences, pages
1–9, 2010.

[MG10] David Martins and Hervé Guyennet. Wireless sensor network attacks
and security mechanisms: A short survey. In 2010 13th International
Conference on Network-Based Information Systems, pages 313–320.
IEEE, 2010.

[MGKP09] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou.
A survey on jamming attacks and countermeasures in wsns. IEEE
Communications Surveys Tutorials, 11(4):42–56, 2009.

[MHDK04] T. Martin, M. Hsiao, Dong Ha, and J. Krishnaswami. Denial-of-service
attacks on battery-powered mobile computers. In Second IEEE An-
nual Conference on Pervasive Computing and Communications, 2004.
Proceedings of the, pages 309–318, 2004.

267

[Mic20] Microsoft. Driver signing, 2020. Online: Accessed 20-May-2020.

[Mil13] John F Miller. Supply chain attack framework and attack patterns.
Technical report, MITRE CORP MCLEAN VA, 2013.

[MJ19] Anindya Maiti and Murtuza Jadliwala. Light ears: Information leak-
age via smart lights. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 3(3):1–27, 2019.

[MLM+99] Martin W Murhammer, Kok-Keong Lee, Payam Motallebi, Paolo
Borghi, and Karl Wozabal. IP Network Design Guide. IBM Cor-
poration, 1999.

[MMA+16] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit, T. Yardley,
R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman, and M. Bailey.
An internet-wide view of ics devices. In 2016 14th Annual Conference
on Privacy, Security and Trust (PST), pages 96–103, Dec 2016.

[MO14] David Malone and K.J. O’Dwyer. Bitcoin mining and its energy foot-
print. pages 280–285, 01 2014. Online: Accessed 10-December-2019.

[MOG11] Majid Meghdadi, Suat Ozdemir, and Inan Güler. A survey of
wormhole-based attacks and their countermeasures in wireless sensor
networks. IETE technical review, 28(2):89–102, 2011.

[MP85] J. Mogul and J. Postel. Internet standard subnetting proce-
dure. STD 5, RFC Editor, August 1985. http://www.rfc-
editor.org/rfc/rfc950.txt.

[MPB+13] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Avi Patel, and Mut-
tukrishnan Rajarajan. A survey on security issues and solutions at
different layers of cloud computing. The journal of supercomputing,
63(2):561–592, 2013.

[MPSB18] Philipp Morgner, Stefan Pfennig, Dennis Salzner, and Zinaida Benen-
son. Malicious iot implants: Tampering with serial communication over
the internet. In Michael Bailey, Thorsten Holz, Manolis Stamatogian-
nakis, and Sotiris Ioannidis, editors, Research in Attacks, Intrusions,
and Defenses, pages 535–555, Cham, 2018. Springer International Pub-
lishing.

268

[MRR+17] Caleb Mays, Mason Rice, Benjamin Ramsey, John Pecarina, and Barry
Mullins. Defending building automation systems using decoy net-
works. In International Conference on Critical Infrastructure Protec-
tion, pages 297–317. Springer, 2017.

[MRR18] S. M. MirhoseiniNejad, A. Rahmanpour, and S. M. Razavizadeh. Phase
jamming attack: A practical attack on physical layer-based key deriva-
tion. In 2018 15th International ISC (Iranian Society of Cryptology)
Conference on Information Security and Cryptology (ISCISC), pages
1–4, 2018.

[MS12] V. C. Manju and K. M. Sasi. Detection of jamming style dos attack in
wireless sensor network. In 2012 2nd IEEE International Conference
on Parallel, Distributed and Grid Computing, pages 563–567, 2012.

[MT11] A. K. Mishra and A. K. Turuk. Adversary information gathering model
for node capture attack in wireless sensor networks. In 2011 Interna-
tional Conference on Devices and Communications (ICDeCom), pages
1–5, 2011.

[MT12] Nateq Be-Nazir Ibn Minar and Mohammed Tarique. Bluetooth security
threats and solutions: a survey. International Journal of Distributed
and Parallel Systems, 3(1):127, 2012.

[MVBC12] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and
Romit Roy Choudhury. Tapprints: your finger taps have fingerprints.
In Proceedings of the 10th international conference on Mobile systems,
applications, and services, pages 323–336, 2012.

[MVCT11] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick
Traynor. (sp) iphone: Decoding vibrations from nearby keyboards
using mobile phone accelerometers. In Proceedings of the 18th ACM
conference on Computer and communications security, pages 551–562,
2011.

[Nas05] Daniel Charles Nash. An Intrusion Detection System for Battery Ex-
haustion Attacks on Mobile Computers. PhD thesis, Virginia Tech,
2005.

[Nat20a] Nate Lord. Supply chain cybersecurity: Experts on how to miti-
gate third party risk. https://digitalguardian.com/blog/supply-chain-
cybersecurity, 2020. Online: Accessed 25-September-2020.

269

[Nat20b] National Cyber Security Centre. Supply chain security guidance.
https://www.ncsc.gov.uk/collection/supply-chain-security/supply-
chain-attack-examples, 2020. Online: Accessed 10-November-2020.

[NBGT19] Michael Nast, Björn Butzin, Frank Golatowski, and Dirk Timmer-
mann. Performance analysis of a secured bacnet/ip network. In 2019
15th IEEE International Workshop on Factory Communication Sys-
tems (WFCS), pages 1–8, 2019.

[New09] CBS News. Viruses frame pc owners for child porn, Nov 2009. Online:
Accessed 10-December-2019.

[Ngu15] Trang Nguyen. Using unrestricted mobile sensors to infer tapped and
traced user inputs. In 2015 12th International Conference on Infor-
mation Technology-New Generations, pages 151–156. IEEE, 2015.

[Nit13] Nitdroid. How to Access Control4 through Putty. https://nitdroid.
wordpress.com/2013/07/30/how-to-access-control4-through-putty/,
2013. Online: Accessed 25-September-2020.

[NSBU20] AKM Iqtidar Newaz, Amit Kumar Sikder, Leonardo Babun, and A Sel-
cuk Uluagac. Heka: A novel intrusion detection system for attacks to
personal medical devices. In IEEE Conference on Communications
and Network Security (CNS), 2020.

[NSMS15] M. Niemietz, J. Somorovsky, C. Mainka, and J. Schwenk. Not so smart:
On smart tv apps. In 2015 International Workshop on Secure Internet
of Things (SIoT), pages 72–81, Sep. 2015.

[NSN14] Sashank Narain, Amirali Sanatinia, and Guevara Noubir. Single-stroke
language-agnostic keylogging using stereo-microphones and domain
specific machine learning. In Proceedings of the 2014 ACM conference
on Security and privacy in wireless & mobile networks, pages 201–212,
2014.

[NSRU19] AKM Iqtidar Newaz, Amit Kumar Sikder, Mohammad Ashiqur Rah-
man, and A Selcuk Uluagac. Healthguard: A machine learning-based
security framework for smart healthcare systems. In 2019 Sixth In-
ternational Conference on Social Networks Analysis, Management and
Security (SNAMS), 2019.

270

[NSRU20] AKM Newaz, Amit Kumar Sikder, Mohammad Ashiqur Rahman,
and A Selcuk Uluagac. A survey on security and privacy issues in
modern healthcare systems: Attacks and defenses. arXiv preprint
arXiv:2005.07359, 2020.

[NZV20] Jianbing Ni, Kuan Zhang, and Athanasios V Vasilakos. Security and
privacy for mobile edge caching: challenges and solutions. IEEE Wire-
less Communications, 2020.

[OAH18] Opeyemi Osanaiye, Attahiru S Alfa, and Gerhard P Hancke. A statis-
tical approach to detect jamming attacks in wireless sensor networks.
Sensors, 18(6):1691, 2018.

[ODO17] Alma Oracevic, Selma Dilek, and Suat Ozdemir. Security in internet
of things: A survey. In 2017 International Symposium on Networks,
Computers and Communications (ISNCC), pages 1–6. IEEE, 2017.

[oE18] U.S Department of Energy. Cyber Security for Lighting Systems.
https://www.energy.gov/sites/prod/files/2018/06/f52/cyber security
lighting.pdf, 2018. Online: Accessed 15-August-2020.

[OHA+14] O. Olawumi, K. Haataja, M. Asikainen, N. Vidgren, and P. Toivanen.
Three practical attacks against zigbee security: Attack scenario defi-
nitions, practical experiments, countermeasures, and lessons learned.
In 2014 14th International Conference on Hybrid Intelligent Systems,
pages 199–206, Dec 2014.

[OHD+12] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy
Zhang. Accessory: password inference using accelerometers on smart-
phones. In Proceedings of the Twelfth Workshop on Mobile Computing
Systems & Applications, pages 1–6, 2012.

[OK14] Yossef Oren and Angelos D. Keromytis. From the aether to the ether-
net—attacking the internet using broadcast digital television. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 353–368,
2014.

[Pak20a] Pakedge. Bakpak remote management & monitoring. https://pakedge
.com/bakpak/, 2020. Online: Accessed 18-July-2020.

[Pak20b] Pakedge. Pakedge zones. https://pakedge.com/technology/pakedge-
zones.php, 2020. Online: Accessed 18-September-2020.

271

[PAL+08] Kanthakumar Pongaliur, Zubin Abraham, Alex X Liu, Li Xiao, and
Leo Kempel. Securing sensor nodes against side channel attacks.
In 2008 11th IEEE High Assurance Systems Engineering Symposium,
pages 353–361. IEEE, 2008.

[PAS14] Fahad Polash, Abdullah Abuhussein, and Sajjan Shiva. A survey of
cloud computing taxonomies: Rationale and overview. In The 9th
International Conference for Internet Technology and Secured Trans-
actions (ICITST-2014), pages 459–465. IEEE, 2014.

[Pau15a] Paul Lilly. Connected homes can be easy targets for hack-
ers, says cybersecurity firm. https://www.techhive.com
/article/2883246/connected-homes-can-be-easy-targets-for-hackers-
says-cybersecurity-firm.html, 2015. Online: Accessed 25-September-
2020.

[Pau15b] Paul Williams. Securing your Connected Life. https://www.control4.
com/blog/113/securing-your-connected-life/, 2015. Online: Accessed
25-September-2020.

[PBAU20] L. C. PucheRondon, L. Babun, K. Akkaya, and A. S. Uluagac. Hdmi-
watch: Smart intrusion detection system against hdmi attacks. IEEE
Transactions on Network Science and Engineering, pages 1–1, 2020.

[PG16] Ankush B Pawar and Shashikant Ghumbre. A survey on iot applica-
tions, security challenges and counter measures. In 2016 International
Conference on Computing, Analytics and Security Trends (CAST),
pages 294–299. IEEE, 2016.

[Pin19] Pinkoos. Apple tv tvos 13 killed my remote programming, 2019. On-
line: Accessed 20-May-2020.

[PS+09] Dr G Padmavathi, Mrs Shanmugapriya, et al. A survey of attacks,
security mechanisms and challenges in wireless sensor networks. arXiv
preprint arXiv:0909.0576, 2009.

[PSJA15] Giuseppe Petracca, Yuqiong Sun, Trent Jaeger, and Ahmad Atamli.
Audroid: Preventing attacks on audio channels in mobile devices. In
Proceedings of the 31st Annual Computer Security Applications Con-
ference, pages 181–190, 2015.

272

[Pul18] Pulse-Eight. USB-CEC Adapter communication Library.
https://github.com/Pulse-Eight/libcec/, 2018.

[Pus16a] Pushstack. Control4 driver decryption. https://pushstack.wordpress
.com/2016/03/06/control4-driver-decryption/, 2016. Online: Accessed
18-May-2020.

[Pus16b] Pushstack. Somfy smoove origin rts protocol. https://pushstack.
wordpress.com/somfy-rts-protocol/, 2016. Online: Accessed 18-May-
2020.

[Pyt19] Python.org. tkinter — Python interface to Tcl/Tk, 2019. Online:
Accessed 20-December-2019.

[RAL+17] A. Ramos, B. Aquino, M. Lazar, R. H. Filho, and J. J. P. C. Rodrigues.
A quantitative model for dynamic security analysis of wireless sensor
networks. In GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, pages 1–6, 2017.

[RBA+20] Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya,
and A. Selcuk Uluagac. Poisonivy: (in)secure practices of enterprise
iot systems in smart buildings, 2020.

[RBA+21] Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya,
and A. Selcuk Uluagac. Lightningstrike: (in)secure practices of e-iot
systems in the wild. In Proceedings of the 14th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WiSec ’21,
page 106–116, New York, NY, USA, 2021. Association for Computing
Machinery.

[RBAU19a] Luis Puche Rondon, Leonardo Babun, Kemal Akkaya, and A. Selcuk
Uluagac. Hdmi-walk: Attacking hdmi distribution networks via con-
sumer electronic control protocol. In 35th Annual Computer Security
Applications Conference, 2019.

[RBAU19b] Luis Puche Rondon, Leonardo Babun, Kemal Akkaya, and A. Selcuk
Uluagac. Hdmi-walk: Attacking hdmi distribution networks via con-
sumer electronic control protocol. In Proceedings of the 35th Annual
Computer Security Applications Conference, 2019.

273

[Rem20] Remote Central. Index of Remote Control File Areas.
http://files.remotecentral.com/index.html, 2020. Online: Accessed
25-September-2020.

[Ric17] Ricky Lawshae. Who Controls the Controllers - Hacking Crestron IoT
Automation Systems. https://av.tib.eu/media/39726, 2017. Online:
Accessed 25-September-2020.

[Riv17] RiverLoopSec. Framework and Tools for Attacking ZigBee and IEEE
802.15.4 networks. https://github.com/riverloopsec/killerbee, 2017.

[RM08] David R Raymond and Scott F Midkiff. Denial-of-service in wireless
sensor networks: Attacks and defenses. IEEE Pervasive Computing,
7(1):74–81, 2008.

[Rob19] Rob Helmke. Tamper-Evident Packaging and Functionality.
https://www.plasticingenuity.com/blog/tamper-evident-packaging-
functionality, 2019. Online: Accessed 25-September-2020.

[RR18] Jordan Robertson and Michael Riley. The big hack: How china used a
tiny chip to infiltrate us companies. Bloomberg Businessweek, 4, 2018.

[RRC16] Nirupam Roy and Romit Roy Choudhury. Listening through a vi-
bration motor. In Proceedings of the 14th Annual International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’16,
page 57–69, New York, NY, USA, 2016. Association for Computing
Machinery.

[RS16] Eyal Ronen and Adi Shamir. Extended functionality attacks on iot
devices: The case of smart lights. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 3–12. IEEE, 2016.

[RSP11] C Muthu Ramya, M Shanmugaraj, and R Prabakaran. Study on zig-
bee technology. In 2011 3rd International Conference on Electronics
Computer Technology, volume 6, pages 297–301. IEEE, 2011.

[RSWO18] E. Ronen, A. Shamir, A. O. Weingarten, and C. O’Flynn. Iot goes
nuclear: Creating a zigbee chain reaction. IEEE Security Privacy,
16(1):54–62, January 2018.

274

[RXT20] RXTX. RXTX - A Java Cross Platform Wrapper Library For The
Serial Port. https://github.com/rxtx/rxtx, 2020. Online: Accessed
1-March-2020.

[Rya13] Mark D Ryan. Cloud computing security: The scientific challenge, and
a survey of solutions. Journal of Systems and Software, 86(9):2263–
2268, 2013.

[Sam20] Samsung. RS-232 on Samsung TV’s. https://www.samsung.com
/us/support/troubleshooting/TSG01201603/, 2020. Online: Accessed
25-September-2020.

[SAU17] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 6thsense:
A context-aware sensor-based attack detector for smart devices. In
26th {USENIX} Security Symposium ({USENIX} Security 17), pages
397–414, 2017.

[SAU19] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. Context-
aware intrusion detection method for smart devices with sensors,
September 17 2019. US Patent 10,417,413.

[SAU20] A. K. Sikder, H. Aksu, and A. S. Uluagac. A context-aware framework
for detecting sensor-based threats on smart devices. IEEE Transactions
on Mobile Computing, 19(2):245–261, Feb 2020.

[Sav] Savant. Bulbs faq. https://www.savant.com/bulbs-faq. Online: Ac-
cessed 20-December-2019.

[Sav14] Savant. Savant Smart Lightning Deployment Guide. https://support
.savant.com/pro, 2014. Online: Accessed 15-August-2020.

[Sav15] Neil Savage. Visualizing sound. Communications of the ACM,
58(2):15–17, January 2015.

[Sav20a] Savant. Savant Climate Control. https://www.savant.com/climate,
2020. Online: Accessed 20-June-2020.

[Sav20b] Savant. Savant Whole Home Audio. https://www.savant.com/whole-
home-audio, 2020. Online: Accessed 25-September-2020.

275

[SB07] Dominic Spill and Andrea Bittau. Bluesniff: Eve meets alice and blue-
tooth. WOOT, 7:1–10, 2007.

[SBAU19] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A. Selcuk
Uluagac. Aegis: A context-aware security framework for smart home
systems. In Proceedings of the 35th Annual Computer Security Appli-
cations Conference, 2019.

[SBC+20] Amit Kumar Sikder, Leonardo Babun, Z. Berkay Celik, Abbas Acar,
Hidayet Aksu, Patrick McDaniel, Engin Kirda, and A. Selcuk Uluagac.
Kratos: Multi-user multi-device-aware access control system for the
smart home. In 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2020.

[SBM+17] Lorenz Schwittmann, Christopher Boelmann, Viktor Matkovic,
Matthäus Wander, and Torben Weis. Identifying tv channels & on-
demand videos using ambient light sensors. Pervasive and Mobile
Computing, 38:363–380, 2017.

[SC17] Ashish Singh and Kakali Chatterjee. Cloud security issues and chal-
lenges: A survey. Journal of Network and Computer Applications,
79:88–115, 2017.

[SDWV20] Jangirala Srinivas, Ashok Kumar Das, Mohammad Wazid, and
Athanasios V Vasilakos. Designing secure user authentication protocol
for big data collection in iot-based intelligent transportation system.
IEEE Internet of Things Journal, 8(9):7727–7744, 2020.

[Set19] Shobhit Seth. What is botnet mining? https://www.investopedia.com
/tech/what-botnet-mining/, 2019. Online: Accessed 23-January-2020.

[Sha14] Farrukh Shahzad. State-of-the-art survey on cloud computing secu-
rity challenges, approaches and solutions. Procedia Computer Science,
37:357–362, 2014.

[Sho20] Shodan.io. Shodan: Analyze the internet in seconds. https://www
.shodan.io/, 2020. Online: Accessed 22-September-2020.

[Sim20] Simon Tatham. PuTTY - a free SSH and telnet client for Windows.
https://www.putty.org/, 2020. Online: Accessed 27-September-2020.

276

[SJP16] Saurabh Singh, Young-Sik Jeong, and Jong Hyuk Park. A survey on
cloud computing security: Issues, threats, and solutions. Journal of
Network and Computer Applications, 75:200–222, 2016.

[SJRB17] P. Sinha, V. K. Jha, A. K. Rai, and B. Bhushan. Security vulner-
abilities, attacks and countermeasures in wireless sensor networks at
various layers of osi reference model: A survey. In 2017 International
Conference on Signal Processing and Communication (ICSPC), pages
288–293, 2017.

[SK11] Subashini Subashini and Veeraruna Kavitha. A survey on security is-
sues in service delivery models of cloud computing. Journal of network
and computer applications, 34(1):1–11, 2011.

[SKK16] H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle
network. In 2016 International Conference on Information Networking
(ICOIN), pages 63–68, 2016.

[SKR17] V. Shakhov, I. Koo, and A. Rodionov. Energy exhaustion attacks
in wireless networks. In 2017 International Multi-Conference on Engi-
neering, Computer and Information Sciences (SIBIRCON), pages 1–3,
2017.

[SMCB16] Alessandro Sforzin, Félix Gómez Mármol, Mauro Conti, and Jens-
Matthias Bohli. Rpids: Raspberry pi ids—a fruitful intrusion
detection system for iot. In 2016 Intl IEEE Conferences on
Ubiquitous Intelligence & Computing, Advanced and Trusted Com-
puting, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pages 440–448.
IEEE, 2016.

[Smi15] Joshua Smith. High-Def Fuzzing : Exploring Vulnerabilities in HDMI-
CEC. https://media.defcon.org/, Nov, 2015.

[SMS18] Da-Zhi Sun, Yi Mu, and Willy Susilo. Man-in-the-middle attacks on
secure simple pairing in bluetooth standard v5. 0 and its countermea-
sure. Personal and Ubiquitous Computing, 22(1):55–67, 2018.

277

[Smu90] Peter Smulders. The threat of information theft by reception of electro-
magnetic radiation from rs-232 cables. Computers & Security, 9(1):53
– 58, 1990.

[SMW+16] Lorenz Schwittmann, Viktor Matkovic, Torben Weis, et al. Video
recognition using ambient light sensors. In 2016 IEEE International
Conference on Pervasive Computing and Communications (PerCom),
pages 1–9. IEEE, 2016.

[Sna20] SnapAV. Episode® Electronics IR Flasher with LED Feed-
back. https://www.snapav.com/shop/en/snapav/episode-reg%3B-
electronics-ir-flasher-with-led-feedback, 2020. Online: Accessed 20-
June-2020.

[SNN13] Amirali Sanatinia, Sashank Narain, and Guevara Noubir. Wireless
spreading of wifi aps infections using wps flaws: An epidemiological
and experimental study. In 2013 IEEE Conference on Communications
and Network Security (CNS), pages 430–437. IEEE, 2013.

[Som] Somfy. Revolutionizing home comfort control: Radio tech-
nology somfy. https://www.somfysystems.com/en-us/discover-
somfy/technology/radio-technology-somfy. Online: Accessed 10-
February-2020.

[Som20] Somfy. Control RTS Solutions with Most Automation Systems.
https://www.somfysystems.com/en-us/products/1810872/universal-
rts-interface, 2020. Online: Accessed 1-March-2020.

[SP08] Karen Scarfone and John Padgette. Guide to bluetooth security. NIST
Special Publication, 800(2008):121, 2008.

[SPA17] Furrakh Shahzad, Maruf Pasha, and Arslan Ahmad. A survey of active
attacks on wireless sensor networks and their countermeasures. arXiv
preprint arXiv:1702.07136, 2017.

[SPA+18] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu, Trent Jaeger,
and A. Selcuk Uluagac. A survey on sensor-based threats to internet-
of-things (iot) devices and applications. CoRR, abs/1802.02041, 2018.

[Spr14] Raphael Spreitzer. Pin skimming: Exploiting the ambient-light sensor
in mobile devices. In Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, pages 51–62, 2014.

278

[SSS11] Shio Kumar Singh, MP Singh, and Dharmendra K Singh. A survey
on network security and attack defense mechanism for wireless sensor
networks. International Journal of Computer Trends and Technology,
1(2):9–17, 2011.

[Sta10] François-Xavier Standaert. Introduction to side-channel attacks. In
Secure integrated circuits and systems, pages 27–42. Springer, 2010.

[Sta19] Stacey McDaniel. What is a legacy system? https://www.talend.com/
resources/what-is-legacy-system/, 2019. Online: Accessed 20-June-
2020.

[Ste15] Stephen Genusa. Crestron cresnet monitor.
https://pushstack.wordpress.com/somfy-rts-protocol/, 2015. On-
line: Accessed 18-May-2020.

[Str07] Andreas A Strikos. A full approach for intrusion detection in wireless
sensor networks. School of Information and Communication Technol-
ogy, 2007.

[Sul] Mohamed Sultan. Smart to smarter: Smart home systems history,
future and challenges. Online: Accessed 10-December-2019.

[Sup20] NETGEAR Support. What is a vlan? https://kb.netgear.com/
24720/What-is-a-VLAN, 2020. Online: Accessed 18-September-2020.

[Sus19] Susan Morrow. The Dangers of “Rolling Your Own” En-
cryption. https://resources.infosecinstitute.com/topic/the-dangers-of-
rolling-your-own-encryption/, 2019. Online: Accessed 10-November-
2020.

[SW05] Yaniv Shaked and Avishai Wool. Cracking the bluetooth pin. In Pro-
ceedings of the 3rd international conference on Mobile systems, appli-
cations, and services, pages 39–50, 2005.

[Swa18] Swann Security. Nvr vs. dvr – what’s the difference?
https://www.swann.com/blog/dvr-vs-nvr-whats-the-difference/,
2018. Online: Accessed 18-July-2020.

[Syn15] Synack. Home Automation Benchmarking Results.
https://www.synack.com/blog/home-automation-benchmarking-
results/, 2015. Online: Accessed 25-September-2020.

279

[SZLJ14] Mingshen Sun, Min Zheng, John CS Lui, and Xuxian Jiang. Design
and implementation of an android host-based intrusion prevention sys-
tem. In Proceedings of the 30th annual computer security applications
conference, pages 226–235, 2014.

[Tec20] Technopedia. Shipments of Products with HDMI Interface Nears 900
Million Devices in 2017; Total Installed Base Approaches Seven Billion.
https://www.techopedia.com/definition/630/infrared-ir, 2020. Online:
Accessed 20-June-2020.

[Tex14] Texas Instruments. Data communication protocol for con-
trol networks enabling automated buildings. http://www.ti.com
/lit/wp/spry266/spry266.pdf, 2014.

[Thr20] Threat Intelligence Team. SolarWinds advanced cyberattack: What
happened and what to do now. https://blog.malwarebytes.com/threat-
analysis/2020/12/advanced-cyber-attack-hits-private-and-public-
sector-via-supply-chain-software-update/, 2020. Online: Accessed
10-January-2021.

[TK10] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hard-
ware trojan taxonomy and detection. IEEE design & test of computers,
27(1):10–25, 2010.

[Tsu08] Akihiro Tsutsui. Latest trends in home networking technologies. IEICE
transactions on communications, 91(8):2470–2476, 2008.

[UKTB15] R. Upadhyay, S. Khan, H. Tripathi, and U. R. Bhatt. Detection and
prevention of ddos attack in wsn for aodv and dsr using battery drain.
In 2015 International Conference on Computing and Network Com-
munications (CoCoNet), pages 446–451, 2015.

[USB] A.S. Uluagac, V. Subramanian, and R. Beyah. Sensory channel threats
to cyber physical systems: A wake-up call. In IEEE Conference on
Communications and Network Security (CNS), 2014, pages 301–309.

[USB14] A Selcuk Uluagac, Venkatachalam Subramanian, and Raheem Beyah.
Sensory channel threats to cyber physical systems: A wake-up call.
In 2014 IEEE Conference on Communications and Network Security,
pages 301–309. IEEE, 2014.

280

[VDM13] K Venkatraman, J Vijay Daniel, and G Murugaboopathi. Various
attacks in wireless sensor network: Survey. International Journal of
Soft Computing and Engineering (IJSCE), 3(1):208–212, 2013.

[VE85] Wim Van Eck. Electromagnetic radiation from video display units: An
eavesdropping risk? Computers & Security, 4(4):269–286, 1985.

[Ven15] Steve Venuti. HDMI Interface Extends Exceptional Digital Quality
with Single-Cable Simplicity to Over 4 Billion Consumer Devices.
https://www.hdmi.org/press/press release.aspx?prid=137, Jan, 2015.
Online: Accessed 20-June-2020.

[Ver16] Veracity. Ipv4 vs ipv6: What’s the difference? https://www.
veracityglobal.com/resources/articles-and-white-papers/poe-
explained-part-1.aspx, 2016. Online: Accessed 10-January-2020.

[Ver20] Verkada. Securing Your Video Surveillance Network.
https://info.verkada.com/security/surveillance-network/, 2020.
Online: Accessed 25-September-2020.

[VJ20] Ruchi Vishwakarma and Ankit Kumar Jain. A survey of ddos attacking
techniques and defence mechanisms in the iot network. Telecommuni-
cation systems, 73(1):3–25, 2020.

[VNBd19] A. Volkova, M. Niedermeier, R. Basmadjian, and H. de Meer. Security
challenges in control network protocols: A survey. IEEE Communica-
tions Surveys Tutorials, 21(1):619–639, 2019.

[VP09] Martin Vuagnoux and Sylvain Pasini. Compromising electromagnetic
emanations of wired and wireless keyboards. In USENIX security sym-
posium, pages 1–16, 2009.

[VP17] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forc-
ing nonce reuse in wpa2. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1313–
1328, 2017.

[VR20] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyzing the dragon-
fly handshake of wpa3 and eap-pwd. In Proceedings of the 2020 IEEE
Symposium on Security and Privacy-S&P 2020). IEEE, 2020.

281

[WAM14] Lindsey N Whitehurst, Todd R Andel, and J Todd McDonald. Explor-
ing security in zigbee networks. In Proceedings of the 9th Annual Cyber
and Information Security Research Conference, pages 25–28, 2014.

[Wan13] Jianfeng Wang. Zigbee light link and its applicationss. IEEE Wireless
Communications, 20(4):6–7, 2013.

[WDBV20] Mohammad Wazid, Ashok Kumar Das, Vivekananda Bhat, and
Athanasios V Vasilakos. Lam-ciot: Lightweight authentication mech-
anism in cloud-based iot environment. Journal of Network and Com-
puter Applications, 150:102496, 2020.

[WDK+17] Mohammad Wazid, Ashok Kumar Das, Neeraj Kumar, Mauro Conti,
and Athanasios V Vasilakos. A novel authentication and key agreement
scheme for implantable medical devices deployment. IEEE journal of
biomedical and health informatics, 22(4):1299–1309, 2017.

[Wel00] Nicholas Wells. Busybox: A swiss army knife for linux. Linux J.,
2000(78es):10–es, October 2000.

[WG06] Ryan Winfield and Mark Gerrior. Avoiding Interference in the 2.4-GHz
ISM Band. https://www.eetimes.com/avoiding-interference-in-the-2-
4-ghz-ism-band/, 2006. Online: Accessed 20-October-2020.

[WH14] Wen-Chieh Wu and Shih-Hao Hung. Droiddolphin: a dynamic android
malware detection framework using big data and machine learning.
In Proceedings of the 2014 Conference on Research in Adaptive and
Convergent Systems, pages 247–252, 2014.

[Wil18] Paul Lawrence Wilson. ModSec: A Secure Modbus Protocol. Master’s
thesis, Georgia Institute of Technology, 2018.

[WJZ10] Ying Wang, Zhigang Jin, and Ximan Zhao. Practical defense against
wep and wpa-psk attack for wlan. In 2010 6th international con-
ference on wireless communications networking and mobile computing
(WiCOM), pages 1–4. IEEE, 2010.

[WMSL11] Matthias Wilhelm, Ivan Martinovic, Jens B. Schmitt, and Vincent
Lenders. Short paper: Reactive jamming in wireless networks: How
realistic is the threat? In Proceedings of the Fourth ACM Conference
on Wireless Network Security, WiSec ’11, page 47–52, New York, NY,
USA, 2011. Association for Computing Machinery.

282

[WNK+20a] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Mathias Payer, and
Dongyan Xu. Blueshield: Detecting spoofing attacks in bluetooth low
energy networks. In 23rd International Symposium on Research in At-
tacks, Intrusions and Defenses ({RAID} 2020), pages 397–411, 2020.

[WNK+20b] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, An-
tonio Bianchi, Mathias Payer, and Dongyan Xu. {BLESA}: Spoof-
ing attacks against reconnections in bluetooth low energy. In 14th
{USENIX} Workshop on Offensive Technologies ({WOOT} 20), 2020.

[Wri18] Doug Wright. Shipments of Products with HDMI Interface Nears 900
Million Devices in 2017; Total Installed Base Approaches Seven Billion,
Jan, 2018. Online: Accessed 20-June-2020.

[WS04] Anthony D Wood and John A Stankovic. A taxonomy for denial-of-
service attacks in wireless sensor networks. Handbook of sensor net-
works: compact wireless and wired sensing systems, pages 739–763,
2004.

[WSS03] Anthony D Wood, John A Stankovic, and Sang Hyuk Son. Jam: A
jammed-area mapping service for sensor networks. In RTSS 2003. 24th
IEEE Real-Time Systems Symposium, 2003, pages 286–297. IEEE,
2003.

[WSZ07] Anthony D Wood, John A Stankovic, and Gang Zhou. Deejam: Defeat-
ing energy-efficient jamming in ieee 802.15. 4-based wireless networks.
In 2007 4th Annual IEEE Communications Society Conference on Sen-
sor, Mesh and Ad Hoc Communications and Networks, pages 60–69.
IEEE, 2007.

[WWT+20] C. Wang, D. Wang, Y. Tu, G. Xu, and H. Wang. Understanding
node capture attacks in user authentication schemes for wireless sensor
networks. IEEE Transactions on Dependable and Secure Computing,
pages 1–1, 2020.

[WYZ+15] Xiaolei Wang, Yuexiang Yang, Yingzhi Zeng, Chuan Tang, Jiangyong
Shi, and Kele Xu. A novel hybrid mobile malware detection system
integrating anomaly detection with misuse detection. In Proceedings
of the 6th International Workshop on Mobile Cloud Computing and
Services, pages 15–22, 2015.

283

[XBZ12] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors. In Proceed-
ings of the fifth ACM conference on Security and Privacy in Wireless
and Mobile Networks, pages 113–124, 2012.

[XFM14] Yi Xu, Jan-Michael Frahm, and Fabian Monrose. Watching the watch-
ers: Automatically inferring tv content from outdoor light effusions. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 418–428, 2014.

[XSJ+10] Kai Xing, Shyaam Sundhar Rajamadam Srinivasan, Major Jose, Jiang
Li, Xiuzhen Cheng, et al. Attacks and countermeasures in sensor net-
works: a survey. In Network security, pages 251–272. Springer, 2010.

[XX12] Zhifeng Xiao and Yang Xiao. Security and privacy in cloud computing.
IEEE communications surveys & tutorials, 15(2):843–859, 2012.

[XZ15] Zhi Xu and Sencun Zhu. Semadroid: A privacy-aware sensor man-
agement framework for smartphones. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, pages 61–
72, 2015.

[YFT15] K. Yang, D. Forte, and M. M. Tehranipoor. Protecting endpoint de-
vices in iot supply chain. In 2015 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 351–356, 2015.

[YFT17] Kun Yang, Domenic Forte, and Mark M. Tehranipoor. Cdta: A com-
prehensive solution for counterfeit detection, traceability, and authen-
tication in the iot supply chain. 22(3), April 2017.

[YFT18] Kun Yang, Domenic Forte, and Mark Tehranipoor. Resc: An rfid-
enabled solution for defending iot supply chain. 23(3), February 2018.

[YLDL17] Yang Yang, Ximeng Liu, Robert H Deng, and Yingjiu Li. Lightweight
sharable and traceable secure mobile health system. IEEE Transac-
tions on Dependable and Secure Computing, 17(1):78–91, 2017.

[YMF20] Narges Yousefnezhad, Avleen Malhi, and Kary Främling. Security in
product lifecycle of iot devices: A survey. Journal of Network and
Computer Applications, page 102779, 2020.

284

[YT08] Zhenwei Yu and Jeffrey JP Tsai. A framework of machine learning
based intrusion detection for wireless sensor networks. In 2008 IEEE
International Conference on Sensor Networks, Ubiquitous, and Trust-
worthy Computing (sutc 2008), pages 272–279. IEEE, 2008.

[YWY+17] Yuchen Yang, Longfei Wu, Guisheng Yin, Lijie Li, and Hongbin Zhao.
A survey on security and privacy issues in internet-of-things. IEEE
Internet of Things Journal, 4(5):1250–1258, 2017.

[YZG+19] Yang Yang, Xianghan Zheng, Wenzhong Guo, Ximeng Liu, and Vic-
tor Chang. Privacy-preserving smart iot-based healthcare big data
storage and self-adaptive access control system. Information Sciences,
479:567–592, 2019.

[YZOB19] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom. Survey of au-
tomotive controller area network intrusion detection systems. IEEE
Design Test, 2019.

[YZV14] Zheng Yan, Peng Zhang, and Athanasios V Vasilakos. A survey on
trust management for internet of things. Journal of network and com-
puter applications, 42:120–134, 2014.

[Z-W18] Z-Wave. Safer, Smarter, Zwave. http://www.z-wave.com/, 2018.

[Zap17] Zaphod. Why is lua used for control4 driver programming, May, 2017.

[ZCDV17] Jun Zhou, Zhenfu Cao, Xiaolei Dong, and Athanasios V Vasilakos.
Security and privacy for cloud-based iot: Challenges. IEEE Commu-
nications Magazine, 55(1):26–33, 2017.

[ZG13] Kai Zhao and Lina Ge. A survey on the internet of things security. In
2013 Ninth international conference on computational intelligence and
security, pages 663–667. IEEE, 2013.

[Zig18] Zigbee Alliance. Zigbee. www.zigbee.org/, 2018.

[ZS15] Tobias Zillner and Sebastian Strobl. Zigbee exploited:
The good, the bad and the ugly. Black Hat – 2015
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-
ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly. pdf (21.03.
2018), 2015.

285

[ZWD+20] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen
Fu. Breaking secure pairing of bluetooth low energy using downgrade
attacks. In 29th {USENIX} Security Symposium ({USENIX} Security
20), pages 37–54, 2020.

[ZWF+21] Dan Zhang, Qing-Guo Wang, Gang Feng, Yang Shi, and Athanasios V
Vasilakos. A survey on attack detection, estimation and control of
industrial cyber–physical systems. ISA transactions, 2021.

[ZYJ+17] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin
Zhang, and Wenyuan Xu. Dolphinattack: Inaudible voice commands.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 103–117, 2017.

[ZZY18] Zheng Zhou, Weiming Zhang, and Nenghai Yu. Irexf: Data exfiltration
from air-gapped networks by infrared remote control signals. arXiv
preprint arXiv:1801.03218, 2018.

286

VITA

LUIS C. PUCHE RONDON

2011-2016 B.S., Computer Science
Florida International University
Miami, Florida

2016-2017 M.S., Cybersecurity
Florida International University
Miami, Florida

2017-2021 Doctoral Degree
Electrical and Computer Engineering
Florida International University
Miami, Florida

SELECTED PUBLICATIONS, PATENTS, AND INVENTION DISCLOSURES

L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac. ”Survey on
Enterprise Internet-of-Things Systems (E-IoT): A Security Perspective.”, Elsevier
AdHoc Networks, 2021.

L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac. ”LGuard:
Securing Enterprise-IoT Systems against Serial-based Attacks via Proprietary Com-
munication Buses”, ACM DTRAP, Under Review.

L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac. ”Light-
ningStrike: (In)secure practices of E-IoT systems in the wild.”, ACM WiSec, 2021.

L. Puche Rondon, L. Babun, K. Akkaya, and A. S. Uluagac. “PATENT: A Method
for Detecting Unexpected HDMI Consumer Electronics Control Protocol Activities
using Machine Learning and Packet Attribute Analysis”, FIU, 2020.

L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac. ”Poi-
sonIvy: (In)secure Practices of Enterprise IoT Systems in Smart Buildings.”, ACM
BuildSys, 2020.

L. Puche Rondon, L. Babun, K. Akkaya, and A. S. Uluagac. ”HDMI-Watch: Smart
Intrusion Detection System Against HDMI Attacks”, in IEEE TNSE, 2020.

L. Puche Rondon, L. Babun, K. Akkaya, and A. S. Uluagac. ”HDMI-Walk: attack-
ing HDMI distribution networks via consumer electronics control protocol.” ACM

287

ACSAC, 2019.

L. Puche Rondon, L. Babun, K. Akkaya, and A. S. Uluagac. ”Attacking HDMI
distribution networks: poster.”, ACM WiSec, 2019.

L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac. ”Ivycide:
Smart Intrusion Detection System against E-IoT Driver Threats.”, ACM TOPS,
Under Review.

288

	Novel Attacks and Defenses for Enterprise Internet-of-Things (E-IoT) Systems
	Recommended Citation

	Novel Attacks and Defenses for Enterprise Internet-of-Things (E-IoT) Systems

