72 research outputs found

    Coresets for Clustering in Geometric Intersection Graphs

    Get PDF

    Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

    Full text link
    In a right-angle crossing (RAC) drawing of a graph, each edge is represented as a polyline and edge crossings must occur at an angle of exactly 90∘90^\circ, where the number of bends on such polylines is typically restricted in some way. While structural and topological properties of RAC drawings have been the focus of extensive research, little was known about the boundaries of tractability for computing such drawings. In this paper, we initiate the study of RAC drawings from the viewpoint of parameterized complexity. In particular, we establish that computing a RAC drawing of an input graph GG with at most bb bends (or determining that none exists) is fixed-parameter tractable parameterized by either the feedback edge number of GG, or bb plus the vertex cover number of GG.Comment: Accepted at GD 202

    Algorithms for Graph Connectivity and Cut Problems - Connectivity Augmentation, All-Pairs Minimum Cut, and Cut-Based Clustering

    Get PDF
    We address a collection of related connectivity and cut problems in simple graphs that reach from the augmentation of planar graphs to be k-regular and c-connected to new data structures representing minimum separating cuts and algorithms that smoothly maintain Gomory-Hu trees in evolving graphs, and finally to an analysis of the cut-based clustering approach of Flake et al. and its adaption to dynamic scenarios

    Parallel Optimal Longest Path Search

    Get PDF

    Defensive Alliances in Signed Networks

    Full text link
    The analysis of (social) networks and multi-agent systems is a central theme in Artificial Intelligence. Some line of research deals with finding groups of agents that could work together to achieve a certain goal. To this end, different notions of so-called clusters or communities have been introduced in the literature of graphs and networks. Among these, defensive alliance is a kind of quantitative group structure. However, all studies on the alliance so for have ignored one aspect that is central to the formation of alliances on a very intuitive level, assuming that the agents are preconditioned concerning their attitude towards other agents: they prefer to be in some group (alliance) together with the agents they like, so that they are happy to help each other towards their common aim, possibly then working against the agents outside of their group that they dislike. Signed networks were introduced in the psychology literature to model liking and disliking between agents, generalizing graphs in a natural way. Hence, we propose the novel notion of a defensive alliance in the context of signed networks. We then investigate several natural algorithmic questions related to this notion. These, and also combinatorial findings, connect our notion to that of correlation clustering, which is a well-established idea of finding groups of agents within a signed network. Also, we introduce a new structural parameter for signed graphs, signed neighborhood diversity snd, and exhibit a parameterized algorithm that finds a smallest defensive alliance in a signed graph

    Probabilistic Image Models and their Massively Parallel Architectures : A Seamless Simulation- and VLSI Design-Framework Approach

    Get PDF
    Algorithmic robustness in real-world scenarios and real-time processing capabilities are the two essential and at the same time contradictory requirements modern image-processing systems have to fulfill to go significantly beyond state-of-the-art systems. Without suitable image processing and analysis systems at hand, which comply with the before mentioned contradictory requirements, solutions and devices for the application scenarios of the next generation will not become reality. This issue would eventually lead to a serious restraint of innovation for various branches of industry. This thesis presents a coherent approach to the above mentioned problem. The thesis at first describes a massively parallel architecture template and secondly a seamless simulation- and semiconductor-technology-independent design framework for a class of probabilistic image models, which are formulated on a regular Markovian processing grid. The architecture template is composed of different building blocks, which are rigorously derived from Markov Random Field theory with respect to the constraints of \it massively parallel processing \rm and \it technology independence\rm. This systematic derivation procedure leads to many benefits: it decouples the architecture characteristics from constraints of one specific semiconductor technology; it guarantees that the derived massively parallel architecture is in conformity with theory; and it finally guarantees that the derived architecture will be suitable for VLSI implementations. The simulation-framework addresses the unique hardware-relevant simulation needs of MRF based processing architectures. Furthermore the framework ensures a qualified representation for simulation of the image models and their massively parallel architectures by means of their specific simulation modules. This allows for systematic studies with respect to the combination of numerical, architectural, timing and massively parallel processing constraints to disclose novel insights into MRF models and their hardware architectures. The design-framework rests upon a graph theoretical approach, which offers unique capabilities to fulfill the VLSI demands of massively parallel MRF architectures: the semiconductor technology independence guarantees a technology uncommitted architecture for several design steps without restricting the design space too early; the design entry by means of behavioral descriptions allows for a functional representation without determining the architecture at the outset; and the topology-synthesis simplifies and separates the data- and control-path synthesis. Detailed results discussed in the particular chapters together with several additional results collected in the appendix will further substantiate the claims made in this thesis

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen fĂŒr Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthĂ€lt und sonst nichts. FĂŒr einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthĂ€lt. Sei T eine Transversale einer FĂ€rbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollstĂ€ndigen, in T gewurzelten Minors zu gewĂ€hrleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort wĂŒrde Hadwigers Vermutung fĂŒr eindeutig fĂ€rbbare Graphen bestĂ€tigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhĂ€ngende Teilmengen der Knotenmenge einen hoch zusammenhĂ€ngenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von HamiltonizitĂ€t in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed
    • 

    corecore