
Parallel Optimal Longest Path Search

Master Thesis of

Kai Fieger

At the Department of Informatics
Institute of Theoretical Informatics, Algorithmics II

Advisors: Dr. Tomáš Balyo
Prof. Dr. rer. nat. Peter Sanders

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/270087883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Statement of Authorship

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, 9th November 2018

iii





Abstract
This thesis presents a parallel algorithm that solves the longest path problem for
weighted undirected graphs. The algorithm uses dynamic programming and graph
partitioning in order to find the longest path between two vertices. The algorithm
finds the optimal longest path and not an approximation of it like many other
approaches for NP-complete problems. We first present the serial algorithm and
then how it can be parallelized. Through experiments we measured the speedup of
the parallel algorithm compared to its serial counterpart. We achieved reasonable
speedups. We also demonstrate that the algorithm has possible applications in solving
the Hamiltonian cycle problem.

Deutsche Zusammenfassung
Diese Arbeit präsentiert einen parallelen Algorithmus, der das Problem des läng-

sten Weges (longest path problem) für gewichtete ungerichtete Graphen löst. Der
Algorithmus macht sich das Partitionieren von Graphen und das Prinzip der dynamis-
chen Programmierung zu Nutzen, um den längsten Pfad zwischen zwei Knoten des
Graphen zu finden. Im Gegensatz zu vielen anderen Algorithmen für NP-vollständige
Probleme liefert der Algorithmus den optimalen längsten Pfad und nicht nur eine
Approximation davon. Zuerst stellen wir den sequenziellen Algorithmus vor und
zeigen dann wie er parallelisiert werden kann. Anhand von Experimenten messen wir
die Beschleunigung, die durch die parallele Aufführung erreichbar ist. Dabei wurden
akzeptable Werte gemessen. Außerdem zeigen wir, dass der Algorithmus zum Lösen
bestimmter Fälle des Hamiltonkreisproblems geeignet ist.
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1. Introduction

The longest path problem (LP) is the problem of finding a simple path of maximum length
between two given vertices of a graph. A path is simple if it does not contain any vertex
more than once. The length of a path can be defined as the number or the cumulative
weight of its edges. LP is NP-complete [GJ79]. LP has applications in the design of
circuit boards, where the length difference between wires has to be kept small [OW06a]
[OW06b]. LP manifests itself when the length of shorter wires is supposed to be increased.
Additionally, the longest path is relevant to project planning/scheduling as it can be used
to determine the least amount of time that a project could be completed in [Bru95]. There
are also applications in the information retrieval in peer-to-peer networks [WLK05] and
patrolling algorithms for multiple robots in a graph [PR10].

In our previous work ([Fie16]) we presented the “Longest Path by Dynamic Programming”
(LPDP) algorithm. LPDP makes use of graph partitioning and dynamic programming.
Unlike many other approaches for NP-complete problems LPDP is not an approximation
algorithm. It finds an optimal longest path. In [Fie16] we compared LPDP to other LP
algorithms. LPDP performed far better than the other algorithms. This thesis presents
an improved version of LPDP. We then show how we parallelized the algorithm. Through
experiments we evaluate the speedups achieved by the parallel algorithm. Additionally
we examine the worst case performance of LPDP and possible applications in solving the
Hamiltonian cycle problem.
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2. Preliminaries

2.1 Related Work

The paper “Max Is More than Min: Solving Maximization Problems with Heuristic Search”
from Stern, Kiesel, Puzis, Feller and Ruml [SKP+14] mainly focuses on the possibility
of applying algorithms that are usually used to solve the shortest path problem (SP) to
the longest path problem (LP). They first make clear why LP is so difficult compared to
SP. Then they present several algorithms that are frequently used to solve SP or other
minimization search problems, which are then modified in order to be able to solve LP. The
search algorithms are part of three categories. First “uninformed” searches, which do not
require any information other than what is already given in the definition of the problem.
An example for these algorithms were Dijkstra’s algorithm or Depth First Branch and
Bound (DFBnB) without a heuristic. Modifying these algorithms for LP led to bruteforce
algorithms, which means that they still had to look at every possible path in the search
space. The second category is that of the heuristic searches. A heuristic can provide extra
information about the graph or the type of graph. The heuristic searches of [SKP+14]
require a heuristic function that can estimate the remaining length of a solution from
a given vertex of the graph. This can give important information that helps to speed
up the search depending on the heuristic. The well known algorithms DFBnB and A*
were modified in order to solve the longest path problem with the help of a heuristic
function. These algorithms had an advantage over bruteforce searches. The third category
is that of suboptimal searches. Stern et al. [SKP+14] looked at a large number of these
algorithms that only find approximations of a longest path. We used solvers and bench-
marks from this paper in this thesis and the bachelor thesis [Fie16]. This is explained below.

In the bachelor thesis “Using Graph Partitioning to Accelerate Longest Path Search”
[Fie16] we first presented the Longest Path by Dynamic Programming (LPDP) algorithm.
This original version of the algorithm is different to its current iteration. In the experiments
section of this thesis we compare the two versions. In [Fie16] we compared LPDP to other
longest path algorithms. We did this with the two heuristic searches DFBnB and A* from
Stern et al. [SKP+14] that were mentioned above. Additionally, we used a bruteforce solver.
For the tested problems LPDP performed significantly better than the other algorithms.
Our problem benchmark consisted of two problem classes that were also used in [SKP+14].
Specifically the two problem types “grids” and “roads”. In this thesis we also make use of
these problem types. What they are and how they are generated is explained in section 6.5.
Additionally, [Fie16] looked at the influence that different partitions have on the runtime
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2. Preliminaries

of LPDP. The runtime of LPDP was found to be dependent on the quality of the partition.
Investing more time into the partitioning of the graph paid off, as it decreased the runtime
of LPDP.

Problems that are related to LP are the Hamiltonian path/cycle problem and the
snake-in-the-box problem:
A Hamiltonian path is a path that visits each vertex of the graph exactly once. A

Hamiltonian cycle is a cycle that does the same. The Hamiltonian path/cycle problem
is the problem of determining if an undirected graph contains a Hamiltonian path/cycle.
In a graph with n vertices finding a Hamiltonian path is equivalent to finding a longest
path with n− 1 edges between any two vertices. Later in this thesis we also show a way to
transform the Hamiltonian cycle problem (HCP) to the longest path problem. We then
solve transformed HCP instances with the LPDP algorithm.
The snake-in-the-box problem was first presented by Kautz in 1958 [Kau58]. It is the

problem of finding the longest simple path in an n-dimensional hypercube. Additionally,
it is required that any two vertices of the path that are adjacent in the hypercube also
have to be adjacent in the path. This additional constraint is what makes snake-in-the-box
different to LP and why LPDP is not suitable to solve snake-in-the-box instances.

2.2 Definitions

Graph
A vertex is a fundamental unit that the graph is made of. Another name for vertex
is node. We usually label vertices with natural numbers (including zero). An edge
is a connection between two vertices x and y. An edge that serves as a two way
connection between x and y is represented by the set {x, y} and is called undirected.
An edge that only serves as a one way connection from x to y is represented by the
tuple (x, y) and is called directed.
We define a graph G := (V, E). V is a set of vertices. Usually V := {0, 1, 2, . . . , |V |−
1}. E is a set of edges. G is a directed graph if E ⊆ {(x, y)|x, y ∈ V } is a set
of directed edges. G is an undirected graph if E ⊆ {{x, y}|x, y ∈ V } is a set of
undirected edges. In this thesis we only look at undirected graphs. Additionally, a
graph can be weighted if we associate a weight with each edge of the graph. This
is represented by a weight-function w: E 7→ X where X is a set of weights. In this
thesis the weights are considered to be real numbers, so X = R. Any unweighted
graph can be interpreted as a weighted graph where all edges have a weight of 1.
A subset of an undirected graph’s vertices is a clique if there is an edge between any
two distinct vertices of the subset.
A matching is a subset of edges where no two edges have a common vertex.

Path
A path in an undirected graph G := (V, E) is defined as a sequence of its edges
p = e0, e1, . . . , en where ei = {vi, vi+1} ∈ E. A path can be seen as a way to traverse
the graph from vertex v0 to vn+1. The length or weight of a path in a weighted
graph is the cumulative weight of its edges. In an unweighted graph it is the number
of its edges. An alternative representation for p is the vertex sequence v0, v1, . . . , vn+1.
In this thesis we also allow paths that only consist of a single vertex and no edges.
Such a path can only be represented as the vertex sequence v0. This path has a
weight of 0.
A path is simple if it does not contain a vertex more than once.
A cycle is the same as a simple path except that the start- and end-vertex are the
same (v0 = vn+1) and that n has to be 2 or higher.
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Figure 2.1: Example of a weighted and undirected graph. The longest path between the
vertex 1 and 7 is shown in red. Its weight is 31.

Longest Path Problem (LP)
The longest path problem for a given undirected graph G := (V, E) and the start
and target vertices s, t ∈ V is to find the longest simple path from s to t. Also, more
accurately, called longest simple path problem (LSP). An example can be seen
in Figure 2.1
Another definition of LP is to find the longest simple path in a graph G between any
two of its vertices. Any instance of this definition of LP can also be transformed into
an instance of the previous definition by introducing the vertices s and t and edges
with weight 0 from them to all other vertices in G.

Partitioning
A graph G := (V, E) is partitioned by dividing its vertices V into the subsets
V1,V2,. . . ,Vk. These subsets are disjointed (∀ i 6= j : Vi ∩ Vj = ∅) and contain all

vertices of the graph (
k⋃

i=1
Vi = V). The subsets are a partition of G. We call such a

subset a block.
Usually the intent is to distribute the vertices of a graph evenly into a number of
blocks while minimizing the number or the combined weight of the edges between
the vertices of different blocks.

Array
An array is a collection of elements that can be accessed with an index. The size of
an array is the number of its elements. arrayName[i] describes the (i+1)th element
of the array arrayName where i ∈ {0, 1, . . . , size− 1}. An empty bracket [] behind
a variable’s name indicates that it is an array (arrayName[]).

Hash table/map
A hash table consists out of a large array of "buckets" and a hash function H. A (key,
value)-pair is stored in the bucket with the index H(key). A value can then be looked
up in the table through its key. With certain assumptions about the hash table, like
that the function H almost uniformly and randomly distributes the pairs over the
array, the hash table can present an effective way to store and look up arbitrary (key,
value)-pairs.
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3. Longest Path by Dynamic
Programming

This section introduces our algorithm called “Longest Path by Dynamic Programming”
(LPDP). The algorithm solves the longest path problem (LP) for weighted undirected graphs.
LPDP is based on the principles of dynamic programming. Later in the thesis we will show
how to parallelize this algorithm.

3.1 Exhaustive Depth First Search

A simple way to solve the longest path problem is exhaustive depth-first search [SKP+14].
In regular depth-first search (DFS) a vertex has two states: marked and unmarked. Initially,
all vertices are unmarked. The search starts by calling the DFS procedure with a given
vertex as a parameter. This vertex is called the root. The current vertex (the parameter of
the current DFS call) is marked and then the DFS procedure is recursively executed on
each unmarked vertex reachable by an edge from the current vertex. The current vertex is
called the parent of these vertices. Once the recursive DFS calls are finished we backtrack
to the parent vertex. The search is finished once DFS backtracks from the root vertex.
Exhaustive DFS is a DFS that unmarks a vertex upon backtracking. Pseudocode can

be seen in Figure 3.1. In that way every simple path in the graph starting from the root
vertex is explored. The LP problem can be solved with exhaustive DFS by using the start
vertex as the root. During the search the length of the current path is stored and compared

Search exhDFS(v)
if v is unmarked then

mark v
foreach {v, w} ∈ E do

exhaustiveDFS(w)
end
unmark v

end

Figure 3.1: Exhaustive depth first search. In order to solve LP we start this search from
the start vertex and update the best found solution each time the (unmarked)
target vertex is found.
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Figure 3.2: On the left we see an example graph G = (V, E). We want to calculate the
longest path between s = 0 and t = 9. The initial block B = V is partitioned
into three subblocks Bgreen, Byellow and Bblue. The vertices 0, 1, . . . , 9 are the
boundary vertices of these subblocks. The edges between the subblocks are
boundary edges. The right graph is the auxiliary graph that is constructed by
the LPDP algorithm. A search path of LPDP can be seen on the right. Its
induced boundary vertex pairs for the subblocks are: Pgreen = {{0, 1}, {2, 3}},
Pyellow = {{4, 6}}, Pblue = {{7, 7}, {8, 9}}. The corresponding candidate for
the longest path is shown on the left in red.

to the previous best solution each time the target vertex is reached. If the current length
is greater than that of the best solution, it is updated accordingly. When the search is
done a path with maximum length from s to t has been found. If we store the length of
the longest path for each vertex (not just the target vertex), then all the longest simple
paths from s to every other vertex can be computed simultaneously.
It is easy to see, that the space complexity of exhaustive DFS is the same as regular

DFS – linear in the size of the graph. However, the time complexity is much worse. In the
worst case – for a clique with n vertices – the time complexity is O(n!) since every possible
simple path is explored, which corresponds to all permutations of the vertex set. If the
maximum degree of the graph is d, then the running time can be bound by O(dn), where
n is the number of vertices.

3.2 Algorithm Overview

Dynamic programming requires us to be able to divide LP into subproblems. In order to
do this we first generalize the problem:

Given: A graph G = (V, E), s, t ∈ V , B ⊆ V and P ⊆ {{a, b} | a, b ∈ b(B)}
where b(B) := {v ∈ B | v = s∨v = t∨∃{v, w} ∈ E : w /∈ B} are the boundary vertices of B.

Problem: Find a simple path from a to b in the subgraph induced by B for every
{a, b} ∈ P .
Find these paths in such a way that they do not intersect and have the maximum possible
cumulative weight.

8



3.2. Algorithm Overview

We explain an example of the problem with Figure 3.2. Later this figure will be used to
explain the LPDP algorithm further, but for now we only look at the green area on the
left. This green area represents a subgraph of a graph G. This subgraph is induced by the
set B = {0, 1, 2, 3, 11, 13, 14, 15, 21, 23}. The vertices 0 and 9 in the figure are the vertices s
and t of the problem’s definition. This results in the boundary vertices b(B) = {0, 1, 2, 3}.
If we restrict the figure to the green subgraph, there are two paths shown in red. These
paths represent a solution to the problem if P = {{0, 1}, {2, 3}}. This solution has a weight
of 7 as the graph is unweighted and the two paths consist of 7 edges.

We make the following observations about the problem:

Observation 1 (The structure of P ). The set P of a solvable problem can contain pairs
of the form {v, v}. The problem is impossible to solve if P contains two pairs {a, b} and
{b, c}.

Proof. A pair {v, v} ∈ P results in a path of weight 0 that consists of a single vertex (v)
and no edges. Two pairs {a, b}, {b, c} ∈ P would result in two intersecting paths as they
would have the same start- or end-vertex b.

Observation 2 (Number of solvable P s). There are at most #P (n) :=
bn/2c∑
k=0

n!2n−3k

(n−2k)!k!

possible, solvable P . #P (n) ∈ O(2nnn/2e
√

n). If the subgraph induced by B is a clique,
all #P (n) sets are solvable. So in this case #P (n) is not an upper bound but the exact
number of solvable P s.

Proof. We calculate an upper bound on the number of all solvable P the following way:
We transform P into two sets (M, X): {x, y} ∈ P ∧ x 6= y ⇐⇒ {x, y} ∈ M and
{x, x} ∈ P ⇐⇒ x ∈ X. We imagine a clique consisting of the boundary vertices b(B).
This way we can interpret M as a set of edges in this clique. It follows from observation 1
that M represents a matching (set of edges without common vertices) in that clique. The
numbers of all possible matchings in a clique of size n are also known as the telephone

numbers or involution numbers [Knu73]: T (n) :=
bn/2c∑
k=0

n!
2k(n−2k)!k! . Each element of the

sum equals the number of matchings with k edges. Any of the other n − 2k boundary
vertices are either in X or not. This leads to 2n−2k possibilities for X per k-edge matching

M . This means that there are at most #P (n) :=
bn/2c∑
k=0

n!2n−3k

(n−2k)!k! possible, solvable P .

We also know that T (n) ∼ (n
e )n/2 e

√
n

(4e)1/4 [CHM51]. Additionally, we calculate #P (n) =
bn/2c∑
k=0

n!2n−2k

2k(n−2k)!k! ≤ 2nT (n). From this we can say that #P (n) ∈ O(2nnn/2e
√

n)

Observation 3. If the problem is unsolvable for a P , it is also unsolvable for any P ′ ⊇ P .

The proof is trivial.

Observation 4 (Subproblems). A solution of the problem for B and P also induces a
solution to the problem for any B′ ⊆ B and a P ′: Restricting the solution to vertices of B′

results in non-intersecting, simple paths in the subgraph of B′. These paths start and end
in boundary vertices of B′ inducing the set P ′. These paths are the solution to the problem
for B′ and P ′.

Proof. Otherwise we could take the solution for B and P , remove all paths in the subgraph
of B′ and replace them with the solution for B′ and P ′. We would obtain a solution for B
and P with a higher cumulative weight than before. This is impossible.

9



3. Longest Path by Dynamic Programming

LP is a special case of this problem where B = V and P = {{s, t}}. Observation 4 is
the basis of the LPDP algorithm as it allows us to recursively divide LP into subproblems.
LPDP requires a hierarchical partitioning of the graph. Level 0 represents the finest level of
partitioning. On each higher level we combine a group of blocks from the lower level into a
single larger block. On the highest level we are left with a single block B = V . We solve our
problem for each of these blocks and any possible P : We start by calculating the solutions
for each block of level 0. We then calculate the solutions for a block on level 1 by combining
the solutions of its level 0 subblocks. This is repeated level by level until we calculated all
solutions for the block B = V , namely the solutions for P = {{s, t}}, {}, {{s, s}}, {{t, t}}
and {{s, s}, {t, t}}. The latter four are trivial (see observation 1) and do not have to be
calculated. With solution for P = {{s, t}} we also solved LP as it is the longest path from
s to t.

The next section shows how we calculate the solutions for one block B with the help of
its subblocks from the level below. The initial solutions for the blocks on level 0 can be
calculated with the same algorithm. In order to do this we interpret each vertex v as a
separate subblock. We know the solutions for each of these subblocks (P = {} or {{v, v}}).
So we can use the same algorithm to calculate solutions for the blocks on level 0.

3.3 Combining Solutions

Let PS be the set of boundary vertex pairs for a set of vertices S. Given is a subset of
vertices B ⊆ V and a partition B1,. . . ,Bk of B (B1 ∪ · · · ∪ Bk = B and Bi ∩ Bj = ∅ for
i 6= j). We assume that we already solved the problem for each Bi and every possible PBi .
We calculate the solution for B and every possible PB with the following algorithm:

We construct an auxiliary graph G′ = (V ′, E′) with V ′ =
k⋃

i=1
b(Bi). E′ contains all edges

{v, w} ∈ E where v ∈ b(Bi) and w ∈ b(Bj) (with i 6= j). We call these edges boundary
edges. They keep the weight they had in G. We also create a clique out of the boundary
vertices of every Bi. These new edges have a weight of 0. An example of this can be seen
in Figure 3.2. The graph on the left is partitioned into three blocks Bgreen, Byellow and
Bblue. On the right we can see the constructed auxiliary graph. For now we can ignore the
path that is shown in red.

In order to calculate the solutions for B we start a modified version of the exhaustive DFS
on every boundary vertex of B. Pseudocode of this search algorithm is called LPDP-Search
and is shown in Figure 3.3. Compared to exhDFS LPDP-Search works with multiple
paths. This way the search algorithm resembles a nested exhDFS. The first path starts
from a starting boundary vertex b1. Once another boundary vertex b2 of B is reached,
LPDP-Search has two options. It can traverse the graph’s edges as usual, but it also is able
to jump to other unused boundary vertices. If LPDP-Search jumps to another boundary
vertex b3, we completed a path from b1 to b2 and a new path from b3 is started. This
induces the pair {b1, b2} ∈ PB . At any point of the search PB is equivalent to the boundary
vertex pairs induced by the completed paths. The sets PBi are maintained the following
way: The paths contain an edge {v, w} of the Bi-clique ⇐⇒ {v, w} ∈ PBi . If the paths
contain a vertex v ∈ Bi but no edge {v, w} of the Bi-clique: {v, v} ∈ PBi . During the
search we do not traverse an edge that would induce a PBi without a solution. Further
traversal of a path with an unsolvable PBi only leads to P ′Bi

⊇ PBi which is still unsolvable
(as already mentioned in observation 3).

Each time we complete a path we calculated a candidate for the solution to B and PB.
The weight of this candidate is the weight of the solution of each block Bi and the induced
PBi plus the weight of all boundary edges in the paths. Until now no PB found by the
search contains a pair {v, v} as we do not allow a path to end in its starting boundary
vertex. This way PB is equivalent to a M and X = ∅ according to the representation in

10



3.4. Examples

1 Search LPDP-Search(v)
2 if v is unmarked & ∀i : there exists a solution for Bi and PBi then
3 mark v
4 if v ∈ b(B) then
5 if already started some {a, .}-path then
6 if v > a then
7 PB ← PB ∪ {{a, v}} // completes the {a, v}-path
8 update_solutions(0)
9 foreach w ∈ b(B) where w > a do

10 LPDP-Search(w) // starts a {w, .}-path
11 end
12 PB ← PB \ {{a, v}} // resume search with {a, .}-path
13 end
14 end
15 end
16 foreach {v, w} ∈ E do
17 LPDP-Search(w)
18 end
19 unmark v

20 end

Figure 3.3: Basic search algorithm that LPDP uses to search the auxiliary graphs. Figure
3.4 shows the update_solutions(.) operation.

the observation 2. So when we complete a path we additionally go through all possible sets
X (while modifying the sets PBi accordingly) and update the best found solution for these
candidates as well. Figure 3.4 shows how this can be done. LPDP-Search in Figure 3.3
calls this function in line 8.

An example can be seen in Figure 3.2. In the auxiliary graph on the right we traversed a
path from 0 to 9. We found a solution for P = {{0, 9}}. The induced boundary vertex pairs
for the subblocks are Pgreen = {{0, 1}, {2, 3}}, Pyellow = {{4, 6}}, Pblue = {{7, 7}, {8, 9}}.
When we look up these solutions for the subblocks we obtain the path that is shown on
the left.
An important optimization which can be seen in Figure 3.3 in line 6 is that we only

allow a path to end in a boundary vertex with a higher ID than its starting boundary
vertex. Additionally, a path can only start from a boundary vertex with a higher ID than
the starting vertex of the previous path (line 9). The first optimization essentially sorts the
two vertices of each pair {x, y} ∈ P . The second then sorts these pairs. Resulting in an
order and a direction in which we have to search each path in P . This avoids unnecessary
symmetrical traversal of the graph.

3.4 Examples

Figure 3.5 and 3.6 show examples of how the LPDP algorithm works. Figure 3.5 shows
how a level 0 block is solved. Figure 3.6 shows how we solve a block from a higher level. In
both figures the red path is the current search path. If we start a new path from another
boundary vertex, the previous path becomes gray. Each graph in the figures represents
the state of the search while LPDP-Search(v) is called. If LPDP-Search(v) calls itself n
times LPDP-Search(w1), LPDP-Search(w2), . . . , LPDP-Search(wn), there are n arrows
going out from the LPDP-Search(v). Each one points to the state LPDP-Search(wi) for

11



3. Longest Path by Dynamic Programming

// uj := j-th unmarked boundary vertex of B
1 Operation update_solutions(index)
2 update solution for B and PB

3 foreach j ≥ index do
4 Choose k so that uj ∈ Bk

5 PBk
← PBk

∪ {{uj , uj}}
6 if solution for Bk and PBk

exists then
7 PB ← PB ∪ {{uj , uj}}
8 update_solutions(index+1)
9 PB ← PB \ {{uj , uj}}

10 end
11 PBk

← PBk
\ {{uj , uj}}

12 end

Figure 3.4: LPDP-Search (Figure 3.3) uses this operation to update the bock’s solutions.

one 1 ≤ i ≤ n. If a LPDP-Search()-call updates any solutions the corresponding sets of
boundary vertex pairs are written below the state. In order to reduce the size of the figures
the examples show a fully optimized LPDP-Search that prevents a lot of unnecessary
LPDP-Search()-calls. This means that the figures do not correspond completely with the
pseudocode in Figure 3.3. Some of the optimizations may not have been presented until
now. They are explained in section 5.2.

3.4.1 Solving a Block on Level Zero

Figure 3.5 shows how a level 0 block is solved. As mentioned we can use LPDP-Search()
to solve level 0 blocks. For this we simply interpret each vertex v as a clique of a single
vertex. This way each clique/vertex represents a subblock with one boundary vertex. Only
two solutions exist for such a subblock. These solutions are for Pv = {} and {{v, v}}. Both
solutions always exists, are trivial and have a weight of 0. They do not effect the search.
This way LPDP-Search() essentially degenerates into a nested exhaustive depth first search.
The example will explain this further.

In Figure 3.5 we solve a level 0 block with 5 vertices. The block has 4 boundary vertices
labeled 0, 1, 2 and 3. The unlabeled vertex is a non-boundary vertex. In order to solve
the block completely we would have to run LPDP-Search from the boundary vertices 0,
1 and 2. We would not start a search from boundary vertex 3 as a {3, .}-path can only
be completed in a higher boundary vertex. As 3 is the boundary vertex with the highest
ID we could never complete the path. Meaning that LPDP-Search started from 3 could
never find a solution. The example in Figure 3.5 shows the LPDP-Search that is started
from boundary vertex 0. The initial state represents this LPDP-Search(0) call. We see
the {0,.}-path that was started in red. LPDP-Search(0) traverses the graph and calls itself
twice. One time for each of the two edges that are adjacent to 0. We look at the branch
on the right that took the edge {0, 2} in more detail.

As we reached another boundary vertex we check if the vertex ID is higher than that of
the starting vertex of the path. With 0 < 2 this is the case. This means that the current
path 0, 2 represents a possible solution for P = {{0, 2}} with the weight of 1. Since this is
an unweighted graph we count the number of edges in the path. We update any previous
solution that was found for P = {{0, 2}} accordingly. Additionally, there are two unused
boundary vertices: 1 and 3. Any unused boundary vertex v can also serve as a {v, v}-path.
Such a path has a weight of 0. This means that the solution for P = {{0, 2}} that we found
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Figure 3.5: See section 3.4
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3. Longest Path by Dynamic Programming

also serves as a solution for P = {{0, 2}, {1, 1}}, {{0, 2}, {3, 3}} and {{0, 2}, {1, 1}, {3, 3}}.
We also update these values accordingly. As we just finished a path LPDP-Search does
two different things. First we start new paths from other unused boundary vertices that
have a higher ID than the starting vertex of the current path. The candidates for this are
1 and 3. Both are larger than 0, but because of the reason already mentioned above we
never start a path from the highest boundary vertex. This leaves the boundary vertex 1.
In the picture we can see this branch of the search in the box that is labeled “1”. In its
first state we can see the completed {0, 2}-path in gray and the newly started {1,.}-path in
red. After this LPDP-Search also continues the search with the open {0, .}-path. This is
seen in the box labeled “2” as LPDP-Search traverses the edge {2, 3}.
We first look at the branch in box 1. Here we continue to search the graph as before.

This means that we first look at the edge {1, 3}. As 1 < 3 this also allows us to complete
the second path. This results a solution for P = {{0, 2}, {1, 3}} with the weight of 2.
There are no other boundary vertices. This means that this is the only solution we have
found and that we cannot start any new paths. We also cannot traverse the {1,.}-path any
further. The recursion ends here. We backtrack to the first state in box 1. Here we can
also traverse the edge from 1 to the unlabeled vertex. This vertex is not a boundary vertex
and we cannot traverse the graph any further. This state is a dead end, which also ends
the recursion.

We now look into the search branch in box 2 that continued with the {0,.}-path. We first
traverse the edge {2, 3}. As 0 < 3 we can complete a {0,3}-path. This path is 0,2,3 and
has a weight of 2. We update the solution for P = {{0, 3}} accordingly. As the boundary
vertex 1 still remains unused we can also update the solution to P = {{0, 3}, {1, 1}}.
Again LPDP-Search can start new paths and continue with the current one. Here another
optimization comes into play. According to the pseudocode in Figure 3.3 we would start a
new {1,.}-path, but this path could never be completed as no other boundary vertices are
left. The optimized LPDP-Search keeps track of this and does not start this path. So the
only other state is the result of traversing the edge {1, 3}. As 0 < 1 we found a complete
{0,1}-path and a solution 0,2,3,1 with the weight of 3 for P = {{0, 1}}. There are no other
boundary vertices. This means that we cannot start a new path or complete the {0,.}-path
if we continue the search. The optimized LPDP-Search ends the recursion here.

3.4.2 Merging Two Blocks

Figure 3.6 shows how LPDP-Search solves a block of a level > 0. In green and yellow we
can see the two boundary vertex cliques of the block’s two subblocks. The green subblock
has four boundary vertices: 0, 1, 4 and 5. The yellow subblock has three boundary vertices:
2, 3 and 6. The boundary vertices of each subblock form a clique. The block that we want
to solve has the four boundary vertices: 0, 1, 2 and 3. In the figure a vertex that is the
boundary vertex of both the block and a subblock is shown as a dot. A vertex that only
is the boundary vertex of a subblock, but not of the block is shown as a circle. In the
following text “boundary vertex” only describes the boundary vertices of the current block.
The other vertices of the subblocks (4, 5 and 6) are considered normal vertices.

As with the level 0 block above we also would have to execute LPDP-Search from each
boundary vertex (except the highest) in order to solve the block completely. Here we only
show the search that is started from 0. Initially this search can traverse the edges {0, 1},
{0, 4} and {0, 5}. In order to reduce the complexity of the figure we also omit the two
branches of the search that follow the edges {0, 1} and {0, 5}. Instead we only look at
the search branch that initially traverses the {0, 4} edge. In Figure 3.6 this is the second
state from the top. It is to note that traversing this graph also continuously modifies the
set Pgreen and Pyellow. At the beginning these sets are empty. Now that we traversed
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Figure 3.6: See section 3.4
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3. Longest Path by Dynamic Programming

the edge {0, 4} we add {0, 4} to Pgreen. This means that Pgreen = {{0, 4}}. Before even
traversing the edge we lookup if this solution for the green subblock exists. If it doesn’t,
the search would already end here. In this example we are going to assume that every
possible solution for the subblocks exists. The edges that we can traverse next are {1, 4}
and {3, 4}. The edge {1, 4} is part of the green clique. Traversing this edge would result in
Pgreen = {{0, 4}, {1, 4}}. This Pgreen is unsolvable as it implies two non-intersecting paths:
One path from 0 to 4 and one from 1 to 4. As they share the common vertex 4 these paths
always intersect. We already discussed this in the observation 1. The optimized version of
LPDP-Search that is presented later in section 5.2 simply prevents these cases by never
traversing two clique-edges consecutively. Whether we use the optimized version or simply
check if the solution exists the result is the same: We cannot traverse the edge {1, 4}.
We can traverse the boundary edge {3, 4}. As 0 < 3 and 3 is a boundary vertex of

our block we can complete a {0,3}-path. But ending the path here would induce the
set Pyellow = {{3, 3}}. We first have to check if this solution for the yellow subblock
exists. As mentioned above we assume that it exists. We then look up the weight for
each subblock’s solution (for the current Pgreen and Pyellow). Let wgreen and wyellow be
these weights. This means that we have found a solution for P = {{0, 3}} with the
weight of wgreen + wyellow + 1. The 1 is the weight of the boundary edge {3, 4} that was
used. Additionally, the boundary vertices 1 and 2 are unused. This means that we also
found possible solutions for P = {{0, 3}, {1, 1}}, {{0, 3}, {2, 2}} and {{0, 3}, {1, 1}, {2, 2}}.
It is to note that each of these P also modifies Pgreen and Pyellow. For example P =
{{0, 3}, {1, 1}, {2, 2}} induces Pgreen = {{0, 4}, {1, 1}} and Pyellow = {{3, 3}, {2, 2}}. We
have to check again if these subsolutions even exist and what their weights wgreen and
wyellow are.

After this LPDP-Search starts new paths and also continues the search with the current
{0,.}-path. There are two unused boundary vertices 1 and 2. As a {2,.}-path cannot be
completed we only start a new {1,.}-path. This branch of the search can be seen in box 1
in Figure 3.6. When continuing with the {0,.}-path we can traverse the edges {3, 2}, {3, 5}
and {3, 6}. We look further into the branch of the search that traverses the {3, 6} edge.
This is shown in box 2.

But first we look into box 1. The finished {0,3}-path is shown in gray. We start a
new {1,.}-path in red. We can only traverse the edge from 1 to 5. This induces the set
Pgreen = {{0, 4}, {1, 5}}. From there we continue with the boundary edge {5, 6} and then
the clique-edge {6, 2}. Traversing the latter one induces the set Pyellow = {{2, 6}, {3, 3}}.
As 1 < 2 we also are able to complete the path. This means we have found a solution for
P = {{0, 3}, {1, 2}}. The are no unused boundary vertices. The search ends here as we
cannot start new paths or continue with the current one.

Now we also look closer into the search branch in box 2. Here the LPDP-Search took the
{3, 6} edge instead of starting a new {1,.}-path. This induces the set Pyellow = {{3, 6}}.
From there LPDP-Search can only traverse the edge to the vertex 5 as we cannot traverse
two clique-edges consecutively. After this we traverse the edge {1, 5}. This induces set
Pgreen = {{0, 4}, {1, 5}}. As 0 < 1 and the boundary vertex 2 is still unused we have
found solutions for P = {{0, 1}} and {{0, 1}, {2, 2}}. The recursion ends here. We do
not start a new path as 2 is the only boundary vertex left. A {2,.}-path can not be completed.

3.5 Space & Time Complexity

The worst case scenario for LPDP is a complete graph. If we partition such a graph, every
block on every level is a clique. As long as there is more than one block in a level every
vertex is also a boundary vertex. According to observation 2 this means we have to store
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#P (n) =
bn/2c∑
k=1

n!2n−3k

(n−2k)!k! solutions for each block with n (boundary) vertices. Note that we

start the sum with k = 1. The element of the sum with k = 0 represents the number of
all P that do not contain any {x, y} where x 6= y. These solutions always exist and have
weight 0. We do not have to store them. This can be used to estimate the space complexity
of the algorithm.
We did not find a good estimation of the time complexity of LPDP, but #P (n) also

gives us a lower bound of it as we have to look at least once at each solution. We can also
see that LPDP degenerates into exhDFS without the use of partitioning (a single level
with one block B = V ). This means that LPDP can always achieve the time complexity
of exhDFS. We further look into the time complexity of LPDP for partitioned complete
graphs in section 6.8. We show empirically that LPDP has a smaller time complexity than
exhDFS.

3.6 Differences to Previous Work
The original LPDP from [Fie16] worked differently to its current form. Here we will explain
the differences between the presented algorithm and the original. It is to note that our
presentation of the original LPDP is different from [Fie16]. It still remains the same
algorithm, but allows easier comparison to the current form of LPDP.

First “boundary vertices” are different: They are auxiliary vertices that are introduced
in the graph to separate the partition blocks from each other. This is done by removing
any boundary edge {x, y} with the weight w and inserting a boundary vertex z and the
edges {x, z} and {z, y} with the weights w and 0. We also attach such a vertex to the start-
and target-vertex with an edge weight of 0. These boundary vertices can be seen in Figure
3.7. The figure shows the same example as Figure 3.2, but for the original LPDP. As seen
in the right picture of Figure 3.7 we build an auxiliary graph the same way as before: We
turn the boundary vertices of each block into a clique. The resulting auxiliary graph is
a multigraph as there can be multiple edges between two vertices. An edge belongs to
the block for which it was created. The induced boundary vertex pairs for the blocks are:
Pgreen = {{40, 41}, {42, 45}}, Pyellow = {{45, 46}}, Pblue = {{41, 42}, {46, 47}}.
This is not a complete description of the original algorithm, but we can already see

the important differences. For the same blocks the original algorithm creates an equal
or greater amount of boundary vertices. So generally the original algorithm has to store
more solutions per block and creates more complex auxiliary graphs. The experiments in
section 6.6 compare the runtimes of the algorithms. The current version of LPDP performs
significantly better.
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Figure 3.7: This figure shows the same example as Figure 3.2, but for the original LPDP
version of [Fie16]. The boundary vertices that are inserted by the algorithm
are shown as black squares. They are labeled with the numbers 40 to 47. A
possible longest path between 40 and 47 is shown in red. The auxiliary graph
created by the original LPDP is shown on the right. The boundary vertex pairs
induced by the path are: Pgreen = {{40, 41}, {42, 45}}, Pyellow = {{45, 46}},
Pblue = {{41, 42}, {46, 47}}
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4. Parallelization

The parallelization of the LPDP algorithm was done in two ways. First multiple blocks
can be solved at the same time. Additionally, LPDP-Search from Figure 3.3, which is used
to solve a block, can also be parallelized.

4.1 Solving Multiple Blocks

A block is only dependent on its subblocks. We can solve it once all of its subblocks have
been solved. No information from any other block is needed. This allows us to solve
multiple blocks independently of each other. How this form of parallelism was implemented
is explained in section 5.3.
The question is how effective this form of parallelism can be. For example: If p% of a

problem’s serial runtime is spent solving a single block, solving multiple blocks in parallel
cannot achieve a speedup higher than 100

p . In order to test this we ran the serial LPDP
solver on the set of problems that is used in the experiment section (6.5.4). LPDP had a
time limit of 64 minutes to solve a problem. We only looked at problems that took more
than 5 seconds to solve.
For each of the solved problems the plot in Figure 4.1 shows the percentage of the

problem’s runtime that is spent solving its most difficult block. The problems are sorted
from lowest to highest percentage. From this plot we can see that achieving speedups
over 2 would be impossible for most of the problems. In fact for almost half of the shown
problems a single block makes up over 80% of their runtime. This means that parallelizing
the execution of a single block is far more important than solving multiple blocks at the
same time. The next section explains how this was done.

4.2 Parallelizing LPDP-Search

In order to solve a block LPDP starts the search shown in Figure 3.3 from each boundary
vertex of the block (except the last). We could parallelize the solving of a block simply by
running multiple of these searches at the same time. There are multiple problems with this
approach: We could only use up to n− 1 threads when solving a block with n boundary
vertices. This limits the speedup that could be achieved to 1

n−1 . Additionally, because of
the optimization explained in section 3.3, the searches that start from boundary vertices
with lower ID’s usually take much longer than those started from higher boundary vertices.
This would lead to bad load balancing and limit the possible speedup even further.
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Figure 4.1: The plot is restricted to the problems that took the serial LPDP solver more
than 5 seconds. For each of these problems the plot shows the percentage of
the problem’s runtime that is spent on solving its most difficult block. The
problems are sorted from lowest to highest percentage.

Figure 4.2: This tree is an example that is generated through the recursion of a LPDP-
Search. The horizontal lines are the different levels of recursion. The root of the
tree is the initial call of LPDP-Search(). Every edge represents a fuction call
to LPDP-Search(). For example the initial LPDP-search() calls itself 3 times.
This results in the 3 edges to the first horizontal line (first level of recursion).
The call represented by the left edge calls LPDP-Search() 4 times. This results
in 4 branches to the second horizontal line. The whole tree represents a full
LPDP-Search. In red we can see a LPDP-Search that is limited to 3 levels of
recursion.
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4.2. Parallelizing LPDP-Search

An approach that does not have these problems is inspired by the “Cube and Conquer”
approach for SAT-Solving that was presented by Heule et al. [HKWB11]. In this paper a
SAT formula is partitioned into many subformulas. These subformulas can be solved in
parallel. We can do the same for LPDP by partitioning the search space of LPDP-Search
into many disjunct branches. We do this by running LPDP-Search from each boundary
vertex with a limited recursion depth. Every time the search reaches a certain level of
recursion the search stores its current context in a list and returns to the previous recursion
level. Figure 4.2 shows an example of this. We can see a LPDP-Search limited to 3
recursions in red. A stored context represents all the data that allows us to continue the
search at this point later on. On higher recursion levels the search works the same as
before. The created list of contexts is then used as a queue. Each element of the queue
represents a branch of the search that still has to be executed. One such branch can be
seen in blue in Figure 4.2.

We execute these branches in parallel. Each time a thread finishes one branch it receives
the next branch from the top of the queue. This automatically results in a form of load
balancing as threads that execute faster branches simply end up executing more branches.
In order for this to work well we need a large number of branches. But generating the
branches should also not take too long. We have to choose the recursion depth limit
accordingly. This could be done by initially choosing a small recursion depth limit. If the
resulting list of branches is too small, we repeat the process with a higher and higher limit
until the list has the necessary size. These repeats should not take too long as a small list
of search branches would also indicate a short runtime of the restricted search. If we want
to prevent the repeats, we could also continue the restricted LPDP-Search from each of
the branches in the list until a higher recursion depth is reached. In the experiments of
chapter 6 none of this was done. Instead the recursion depth limit was set to the fixed
value 5. This has proven to be sufficient. Generating the branches only took a negligible
amount of time but still resulted in good load balancing.
This form of parallelization requires a certain amount of synchronization between the

threads. The serial implementation of LPDP uses hash tables to store the solutions for
a block. Several threads can try to modify the same hash table entry at the same time.
Introducing a concurrent hash table solves this problem.
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5. Implementation

This chapter details our implementation of the LPDP algorithm. We implemented LPDP in
C++. The code can be compiled as C++11 or C++14 code. Other vesions of C++ might
also work, but were not tested. The parallelization of LPDP is based on a shared memory
model. We mainly utilized OpenMP 4.5 [Ope15] in order to parallelize the algorithm. As
an implementation of a concurrent hash table was needed we also made use of the Intel R©
Threading Building Blocks (TBB) library [Rei07] (libtbb-dev 2017∼U7∼8).

5.1 Data Structures

5.1.1 Block Hierarchy

If we want to solve multiple blocks of the partition at the same time, a single graph data
structure is undesirable. Instead we represent each block as its own object. It only contains
the data that is needed in order to solve the block. This includes pointers to all subblocks
(the blocks of the lower partitioning level that make up the current block) and a hash table
that contains the results after solving the block. This creates a tree-like data structure of
blocks. The root of this tree is the singular block that contains the whole graph. When
solved its hash table will contain the solution to the longest path problem. A block can
only be solved once all of its subblocks have been solved. Because of this we solve the tree
in a bottom up approach.

This data structure has the advantage that each thread only has knowledge of/access to
the data of the block that it is currently solving. This allows the threads to not interfere
with each other and increases cache locality. In order to implement this hierarchy efficiently
we often have to transform the vertex IDs. For example a block of the hierarchy that
contains n boundary vertices always labels them with 0, 1, . . . , n− 1. We omit this in this
thesis and just address every vertex with the ID that it has in the underlying graph.

5.1.2 Storing the Results

In order for our algorithm to work we need an efficient data structure to store the results
of our search. When searching a block B we need to store one solution for each possible
set of boundary node pairs PB. There are multiple ways to do this. One way would be
with a large array. This would require a fast way of calculating an array index for any
given PB. A big drawback of this method is that a block with n boundary nodes would

always require an array of size #P (n) =
bn/2c∑
k=1

n!2n−3k

(n−2k)!k! (as mentioned in the observation 2
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in section 3.2). However, if LPDP works on sparse graphs, there often exists no solution
to a lot of the possible PBs. In this case large parts of the array would be empty, which
would waste a lot of memory.

We also looked at a tree data structure as a way to store the solutions. As it is quite
complex we only explain the basic idea and why we ultimately did not use it. The LPDP-
Search algorithm always modifies PB in a specific pattern. This would have allowed us to
build a tree structure in such a way that LPDP-Search only keeps track of a single node
of the tree. This node stores the solutions for the current PB. Any time LPDP-Search
modified PB it only has to switch to one of the children nodes or to the parent node.
The advantage of the tree would have been that we would not have to reserve space for
unsolvable PB. These nodes of the tree simply would not have existed. The problem is that
LPDP-Search does not look up the solutions for the subblocks in the same pattern. Instead
it requires random access to them. This is not possible with a tree. So the tree would have
been good when solving a block B, but solving the parent block of B requires us to look
up solutions in the tree of B. These lookups would have been extremely inefficient.

Instead LPDP stores the results in a hash table. A hash table stores (key, value)-pairs.
In our case the key is a PB and the value is the corresponding solution. Similar to the tree
the hash table also has the advantage that we do not reserve space for PBs that do not
have a solution. In addition we can randomly access the stored PB. Something that is not
possible with a tree. The next section talks about this hash table in more detail.

5.1.3 Concurrent Hash Table

For the reasons mentioned above we use a hash table to store (PB, solution)-pairs for
a set of boundary node pairs PB from a block B. This section explains the hash table
implementation and how the algorithm interacts with it.

For a block B with n boundary nodes we represent a set PB as an array A[.] of n integers.
Initially this array is filled with some number representing an empty entry (for example
n). When adding a pair {x, y} to the set PB we assign A[x] = y and A[y] = x. Example:
n = 7 and PB = {{0, 3}, {1, 1}, {2, 6}} is represented as the array [3, 1, 6, 0,−,−, 2] where
“−” is an empty entry.

The solutions have to be represented in two different ways. With a level 0 block the
solution corresponding to a PB is the paths in the underlying graph that connect the
boundary node pairs given by PB. For higher levels the solution is a PBi for each subblock
Bi of B and a set of boundary edges (edges between these subblocks). We store both types
of solutions as arrays of integers. Additionally, we also have to store the weight of each
solution regardless of the level of the block. An example of such hash tables can be seen in
Table 5.1. It shows possible hash tables for the graph from Figure 3.2. Figure 3.2 shows
a longest path from the vertex 0 to 9. This path induces the following boundary vertex
pairs in the subblocks Pgreen = {{0, 1}, {2, 3}}, Pyellow = {{4, 6}}, Pblue = {{7, 7}, {8, 9}}.
Additionally, the path uses the following boundary edges: {1,7},{2,7},{3,4},{6,8}. The
first table of 5.1 shows how we store this information in our hash table. For the sake of
readability we do not use the array representations from above. The key of the hash table
entry is the boundary vertex pair PB = {{0, 9}}. As the block only has two boundary
vertices the hash table only has this one entry. The solutions for PB = {}, {{0, 0}}, {{9, 9}}
and {{0, 0}, {9, 9}} are trivial and do not have to be stored. The weight of 19 is the
cumulative weight of every subblock’s solution plus the weights of the boundary edges. The
hash tables for the subblocks can also be seen in Table 5.1. In this case the subblocks are
level 0 blocks which is why their hash tables only store weights and paths. The cumulative
weight of the three solutions is 7 + 3 + 5 = 15. With our 4 boundary edges this results in a
longest path of the length/weight 15 + 4 = 19.
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Key Solution
Weight Subblock-keys Boundary edges

{{0,9}} 19
{{0,1},{2,3}}

{1,7},{2,7},{3,4},{6,8}{{4,6}}
{{7,7},{8,9}}

Key Solution Key Solution
Weight Paths Weight Paths

... ...

{{0,1},{2,3}} 7 0,13,15,11,1
2,14,21,3 {{4,6}} 3 4,22,24,6

... ...

Key Solution
Weight Paths

...
{{7,7},{8,9}} 5 8,27,31,32,33,9

...

Table 5.1: Possible hash tables for the example given in Figure 3.2. Figure 3.2 shows a
longest path from vertex 0 to 9. The first table shows how this path is stored
under the key P = {{0, 9}}. The boundary vertex pairs that the path induces
in each subblock can be seen in the column “Subblock-Keys”. Additionally, we
store all boundary edges that the path uses. The paths weight of 19 is the
cumulative weight of every subblock’s solution plus the weights of the boundary
edges. The hash tables for the three subblocks are seen below. The subblocks
are level 0 blocks which is why their hash tables only store weights and paths.
These paths do not follow from Figure 3.2. The cumulative weight of the three
solutions is 7 + 3 + 5 = 15. With our 4 boundary edges this results in a longest
path with the weight of 19.
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If we only wanted to calculate the length of the longest path, we would only store the
weights. Any other data about a solution is only necessary to reconstruct the longest path
at the end of the algorithm. This would save a lot of memory.

The parallelization of LPDP as described in section 4.2 requires our hash table to allow con-
current access. We used the concurrent hash table implementation concurrent_hash_map
from Intel R© Threading Building Blocks (TBB) [Rei07]. The concurrent_hash_map can
be accessed with a read- or a write-lock. A read-lock allows a thread reading access to a
(key, value)-pair at the same time as other readers. A write-lock gives a thread exclusive
read- and write-access. LPDP only interacts with concurrent_hash_map in two ways.
First when solving a block we need to look up the weight of solutions in the hash table
of the subblocks. This is done with a read-lock. When solving a block the hash tables
of its subblocks are already completed and do not get modified anymore. This means
synchronization is not even necessary at this point. Additionally, we need a way to insert a
new solution into the hash table of the current block or update an already existing one.
This happens in line 2 of Figure 3.4. Pseudocode of this operation can be seen in Figure
5.1. Hereby P is the set of boundary node pairs and S′ a possible solution for it. The
operation insert_or_update(P, S′) starts by attempting to acquire a read-lock for P . If
a pair (P, S) already is in the hash table, we acquire the read-lock and possibly have to
update S accordingly. If no such pair exists, the attempt fails and we have to insert the
pair (P, S′). In the first case we need to override the old solution S with the new one S′ if
the weight of S′ is higher than that of S. In order to do this we first compare the weights.
If we have to update S, we release the read-lock and acquire a write-lock. As S can be
modified during the switch from read- to write-lock we have to compare the weights of S
and S′ a second time. If S still has a lower weight, we override it with the better solution
S′.

In a previous implementation we just acquired a write-lock from the beginning. This
would have circumvented having to check the weights twice, but led to problems if threads
often called insert_or_update(P, .) for the same P . The best example of this is the highest
level block as only one possible P exists. Write-locks require exclusive access so the threads
constantly blocked each other even if their solutions had the same or lesser weight than the
one already in the hash table. This led to longer runtimes for certain problem-instances
the more threads were used. Usually such an instance’s runtime was largely spent solving
the highest level block. Acquiring a read-lock first solved this problem.

If we call insert_or_update(P, S′) and no (P, S)-pair exists in the hash table, acquiring
the read-lock fails. In this case we have to insert the pair (P, S′) into the table. We acquire
a write-lock for P as it allows us to do this. We check if a pair (P, S) exists as another
thread could have inserted it in the meantime. If it does, we update S the same way as
above. If not, we finally insert the new pair (P, S′) into the table.

Instead of using a concurrent hash table we could also use multiple non-concurrent hash
tables. In this case every thread has its own separate hash table. After all threads have
finished their search we would merge the hash tables into a one. In early testing this
was not as effective as one concurrent hash table. It sometimes even led to increased
runtimes compared to the sequential algorithm. Nevertheless this option could be useful
when implementing a LPDP solver for a computer system in which each processor has its
own private memory. In this case we might use a hybrid model: Each processor has one
concurrent hash table. All threads of the processor store their results in this table. After
the search is done all tables are merged into one.
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Operation insert_or_update(P, S′)
get read-lock for P
if (P, S)-pair exists in the hash table then

if S.weight < S′.weight then
release read-lock for P
// here S could change, so S.weight has to be checked again
get write-lock for P
if S.weight < S′.weight then

S ← S′

end
release write-lock for P

end
else // no read-lock acquired as (P, S)-pair did not exist

get write-lock for P
if (P, S)-pair exists now then

if S.weight < S′.weight then
S ← S′

end
else

insert (P, S′)-pair into hash table
end
release write-lock for P

end

Figure 5.1: P is the set of boundary node pairs and S′ a possible solution for it. The
operation insert_or_update(P, S′) describes how we insert or update an entry
in a concurrent hash table. For more detail see section 5.1.3.
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5.2 LPDP-Search

The pseudocode of LPDP-Search shown in Figure 3.3 was kept simple. This section will
explain additional detail of how LPDP-Search was implemented and optimized. Line 7 in
the pseudocode completes the current path from a to v. The loop in line 9 iterates through
all boundary vertices w > a and starts a new path from w. This new path can only be
completed in another (unmarked) boundary vertex z > w. If such a boundary vertex does
not exist, LPDP starts a path that cannot be finished. This results in a lot of unnecessary
searching of the graph. We prevent this by first finding the largest unmarked boundary
vertex b > a. If no such vertex exists: b = a. We then start new paths as in line 9, but
only iterate through boundary vertices w where b > w > a. This way any path that is
started has a possible endpoint in b.

Another problem arises if we think about the following case. The boundary vertex v is
the only viable endpoint that is left for the current {a, .}-path. If we visit v, the current
path is finished in line 7. But in line 12 we resume the search with the {a, .}-path. Now
the path contains all of its possible endpoints, but we still continue the search for others in
line 16. We prevent this by aborting the search in line 12 if b = a. This way determining
b not only prevents us from starting unnecessary paths, but also allows us to abort the
current path if no viable boundary vertex is left.

We also optimized the loop in line 16. The auxiliary graph exists of two different types
of edges. First the boundary edges that connect boundary vertices of different blocks.
Additionally, all boundary vertices of a block are connected to each other via clique-edges.
Traversing a clique-edge {x, y} of a block Bi induces the boundary vertex pair {x, y} ∈ PBi .
If we traverse two such edges consecutively, this results in a set {x, y}, {y, z} ∈ PBi . Ac-
cording to observation 1 in section 3.2 there exists no solution for this set PBi . Therefore
we prevent traversing two clique-edges consecutively by keeping track of the last edge in
the current path. If it is a clique-edge, we only iterate over boundary edges in line 16. If
not, we iterate over all edges.

Finally we discuss the If-statement in the first line of the pseudocode as it does not exists
in our implementation. First the statement checks if the current vertex v is unmarked.
In our implementation we check this before calling LPDP-Search(). This means we check
if w is unmarked in line 10 and 17 before calling LPDP-Search(w). This prevents an
“empty” function call and the overhead that is associated with it. The second part of
the If-statement checks if solutions for all the PBis exist. Instead our implementation
only checks a PBi before we traverse the graph in a way that would modify it. If the
hash table for block Bi does not contain a solution for the resulting PBi , we prevent the
traversal. This way we make sure that LPDP-Search() is never called with an unsolvable PBi .

An optimization can be made to the update_solutions(.)-pseudocode in Figure 3.4. Here
we do not have to calculate certain solutions. A pair {v, v} ∈ PB represents a path that
enters and leaves the block B through the boundary vertex v. But usually this is only
possible if at least two edges {a, v} and {v, b} with a, b /∈ B exist. There is an exception to
this if v is the start s or target t vertex. In this case a path can start or end in v. This
means that {v, v} ∈ PB is possible as long as a single edge {a, v} with a /∈ B exists. In all
other cases a solution with {v, v} ∈ PB cannot be part of the longest path. We can prevent
calculating and storing these useless solutions by modifying the definition of uj in Figure
3.4 accordingly. We simply ignore the uj for which the conditions above do not hold true.

28



5.3. Parallelization

5.3 Parallelization

The first form of parallelism that was discussed in section 4 is solving multiple blocks
independently of each other. This form of parallelism was implemented level-wise. We start
by solving all the block on the lowest level. All of them can be solved in parallel as they
do not have any subblocks. Once they are solved we switch to the next level. All blocks on
this level can also be solved in parallel as any subblocks have already been solved on the
previous level. We repeat the process until all blocks are solved. We have implemented
this with two for-loops. The outer loop iterates over the levels. The inner loop iterates
over all blocks of the current level and solves them. We parallelize the inner for-loop with
the OpenMP directive “#pragma omp parallel for schedule(dynamic, 1)”. This directive
parallelizes the loop with the dynamic scheduling strategy. First the scheduler assigns one
loop iteration to each thread. When a thread is finished it retrieves the next unassigned
iteration. We chose this strategy as iterations can have vastly different runtimes. It could
lead to a high workload imbalance if we assigned fixed chunks of the iterations to the
threads beforehand. Dynamic scheduling automatically acts as a form of load balancing.
This level-wise approach is not an optimal way to implement this form of parallelism

as we have to wait for all blocks of a level to be solved before switching to the next level.
Instead we could already start to solve blocks from the higher levels once their subblocks
have been processed. We decided not to implement this for reasons of simplicity and
because the speedup that can be achieved through this form of parallelism is very limited
anyways (see section 4).

The second form of parallelism is the solving a single block with multiple threads. The
idea behind it was already explained in detail in section 4.2. The parallel execution of
the generated search branches is also done with the “#pragma omp parallel for sched-
ule(dynamic, 1)”-directive. Here we talk about how we combined both forms of parallelism
in our solver: We still work with the level-wise approach that was explained above. When
solving a level we first try to predict how difficult each block will be to solve. We do this
by counting the boundary vertices of the block’s subblocks. If the number of boundary
vertices is above a certain threshold (20 in the experiments), we consider a block to be
“difficult”. Otherwise the block is considered “easy”. If a block is difficult, all threads are
used to solve it. Once no difficult blocks are left on the current level we use the first form
of parallelism to solve the easy blocks in parallel (1 thread per block).

5.4 Reconstructing the Longest Path

After we solved all blocks the hash table of the block on the highest level contains a single
entry with the key {{s,t}} (if a path from s to t exists). This entry represents our longest
path from s to t. Its weight also is the length of the longest path. An example of this can
be seen in Table 5.1. The longest path is stored under the key {{0,9}} and has a weight
of 19. But we still have to reconstruct the actual path / sequence of vertices. We do this
through recursive hash table lookups. We start with the above mentioned hash table entry.
We then look up its stored subblock-keys in their corresponding hash tables. We repeat
this process until we reach hash tables of level 0 blocks. During these lookups we store the
boundary edges and paths of each visited hash table entry. Hereby any boundary edge
{x,y} turns into a path x,y. For Table 5.1 this results in the paths:

1, 7
2, 7
3, 4
6, 8
0, 13, 15, 11, 1
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2, 14, 21, 3
4, 22, 24, 6
8, 27, 31, 32, 33, 9

These paths are all segments of the longest path. They all start and end in a boundary
vertex. As the graph is undirected a path segment can be read forwards or backwards as
needed. We reconstruct the longest path from these path segments. The longest path start
with the segment that begins with the start-vertex s. Let s, v1, ..., vn be this segment. We
search for the one other segment that ends with vn. We add this segment vn, w1, ..., wm to
the existing path, which results in the path s, v1, ..., vn, w1, ..., wm. In this way we continue
adding segments to the path until all path segments are used up. This results in the longest
path s, ..., t. The following is an example for the path segments listed above:

0, 13, 15, 11, 1
0, 13, 15, 11, 1, 7
0, 13, 15, 11, 1, 7, 2
0, 13, 15, 11, 1, 7, 2, 14, 21, 3
0, 13, 15, 11, 1, 7, 2, 14, 21, 3, 4
0, 13, 15, 11, 1, 7, 2, 14, 21, 3, 4, 22, 24, 6
0, 13, 15, 11, 1, 7, 2, 14, 21, 3, 4, 22, 24, 6, 8
0, 13, 15, 11, 1, 7, 2, 14, 21, 3, 4, 22, 24, 6, 8, 27, 31, 32, 33, 9

The main difficulty of this process is finding the path segment that ends with a cer-
tain boundary vertex. We do this by constructing an array A[] beforehand. A[v] contains
pointers to the segments that end in v. If no such segment exists, A[v] is empty. If v = s
or t, A[v] only contains one pointer. Otherwise A[v] contains two pointers. This means
that A[] allows us to find a segment in constant time.

5.5 Other Optimizations
Currently LPDP does unnecessary calculations for parts of the graph that are unreachable
from s or t. For example: If two boundary vertices of a block are unreachable, we still
calculate a path between them. We prevent these unnecessary calculations by changing
the definition for boundary vertices. A vertex now also has to be reachable from s (and
t) in order to be a boundary vertex. We can check this by running a depth first search
from s before starting LPDP. Any vertex that is visited by the search is reachable. Before
we implemented this optimization we already did this to check if t is reachable. If t is
unreachable, we are finished as no longest path exists. Otherwise we start LPDP with the
reachable boundary vertices. Now a block might still contain unreachable vertices, but
LPDP executes no calculations for them.

We also could have done the same by deleting any unreachable vertices. This optimization
had a great impact on the runtime of grids in our experiments, especially on the grids with
40% obstacles. As we randomly delete 40% of the vertices large parts of the graph can
be unreachable. Otherwise the optimization had no effect as the other problems have no
unreachable vertices by construction.

The necessity for another optimization reveals itself when looking at a block that only
has one subblock. When we solve such a block we just end up with a copy of the subblock’s
hash table. Instead we just pass on a pointer to the hash table of the subblock.
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We used GCC (GNU Compiler Collection) 7.3.0 to compile our code. The LPDP code was
compiled as C++14 code. For optimization we used the compiler options “-O3” and “-
march=native”. The Intel R© Threading Building Blocks (TBB) library [Rei07] was provided
with the libtbb-dev package (2017∼U7∼8). We used OpenMP 4.5 [Ope15].

6.1 Hardware
The experiments were run on two different machines. The specifications of the comput-
ers are listed below. Unless otherwise mentioned any experiment was run on the computer A.

Computer A:

• 4 Intel R© Xeon R© E5-4640 processors (2.4 GHz with 8 cores each)

• 32 cores / 64 threads

• 512 GB RAM

• Ubuntu 18.04.1 LTS (64 bit)

Computer B:

• AMD RyzenTM 7 1800x processor (3.6 GHz with 8 cores)

• 8 cores / 16 threads

• 64 GB RAM

• Ubuntu 18.04.1 LTS (64 bit)

6.2 Plots and Tables
This section explains some of the plot and table types that are used to illustrate the results
of the experiments.

Cactus plot:
Example: Figure 6.3. A cactus plot shows the execution times of a set of problems in
ascending order. The plot has two axes. The first shows the index of a problem. The
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second axis shows the execution time of a problem. A point (x, t) means that the x-th
fastest solved problem was solved in the time t.

Speedup plot:
Example: Figure 6.5. Same as a cactus plot, but shows the speedups of parallel algorithms
over their serial counterpart instead of execution times. A point (x, s) means that s was
the x-th largest speedup that was measured.

Speedup table:
Example: Table 6.1. A speedup table presents the speedups achieved by LPDP over its
serial version when using multiple threads. The first column shows the number of threads
used for the parallel execution. The “Parallel Solved” column gives the number of all
instances that were solved by the parallel algorithm within a given time limit. The “Both
Solved” column does the same for the instances that were solved by both the parallel and
the serial algorithm. The next three columns show the average, total and median speedups
of the parallel algorithm for all problems that were solved by both algorithms. The last
three columns do the same, but only for “big” problems. When using n threads a problem
is considered big if the serial solver took more than n · t seconds (where t is some arbitrary
time). This is done because of the additional overhead involved in using multiple threads.
Parallelization might only pay off for more difficult problems. With a larger number of
threads this overhead is also expected to be larger. The threshold of n · t seconds allows us
to filter out the problems that do not warrant a certain level of parallelization.

6.3 Partitioning
The hierarchical partitioning required for LPDP was generated with KaHIP - Karlsruhe
High Quality Partitioning - [SS13]. We used KaHIP version 1.00. Given a weighted graph
and a number n KaHIP partitions the vertices of the graph into n blocks. KaHIP tries
to find these blocks in such a way that they contain an equal number of vertices, while
minimizing the cumulative weight of all edges between vertices of different blocks.

For LPDP we want a hierarchical partitioning with a small number of edges between the
blocks. We create this hierarchical partitioning using a bottom up approach: In order to
minimize the number of edges between the blocks we set all edge-weights of the original
graph to 1. We then partition the graph with KaHIP into a large number of blocks. This
represents our lowest level of partitioning. The next level of partitioning is calculated with
an auxiliary graph. This auxiliary graph contains one vertex for each block of the current
level. If there are n edges between two blocks in the original graph, we insert an edge with
weight n in the auxiliary graph between the two corresponding vertices. We then partition
the auxiliary graph with KaHIP, combining blocks of the current level into larger blocks.
This creates the next level of the partitioning. We repeat this process until only a single
block is left.

In the experiments the number of blocks in the initial partition was chosen based on the
graph. For higher levels we then partitioned every auxiliary graph into #vertices

2 blocks.
This results in a partition hierarchy that halves the number of blocks with each level. This
means that a block usually is created by combining two lower level blocks.
For partitioning we use KaHIP 1.0 with the parameters –preconfiguration=strong –

imbalance=0.1. The first parameter results in higher quality partitions in exchange for
longer execution time. The second allows higher imbalance between the number of vertices
in each block. These parameters have given good results in earlier experiments [Fie16].
Additionally, there is an option to give KaHIP a specific duration that it will spend
partitioning the graph. In order to make use of this we first partitioned the graph with the
parameters mentioned above. Then we multiplied the KaHIPs runtime by a factor of 5
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Figure 6.1: Example of a grid of size 10. 30% of the vertices have been deleted. The picture
on the right shows a longest path between s and t in red.

and ran KaHIP again with the forced additional execution time. This has also been shown
in [Fie16] to improve the quality of the partition.
In this thesis the runtime of KaHIP is not counted towards the total runtime of LPDP.

In [Fie16] we have shown that especially for more difficult problems the runtime of KaHIP
is negligible compared to the runtime of LPDP. We precalculate a partitioning for each
problem. This way the serial and parallel LPDP solvers do not use different partitions for
the same problem. This allows us to accurately measure parallel speedups.

6.4 The LPDP-Solver

The LPDP solver has several possible parameters. Whether a block is solved serially or in
parallel is decided with a threshold parameter. If the subblocks of a block have fewer total
boundary vertices than the threshold, the block is solved serially. Otherwise the block is
solved in parallel. This threshold was set to 20 boundary vertices.
If a block is solved in parallel, the search space is partitioned as it is explained in section
4.2. The number of steps that the solver takes for this was set to 5.
The third parameter is the number of threads that the solver utilizes.

6.5 Benchmark Problems

This section introduces the classes of problems that were used to evaluate the LPDP
algorithm.

6.5.1 Grids

Grids represent two dimensional mazes. In order to generate a grid instance we need two
parameters: the size of the grid n ≥ 0 and the obstacle-probability 0 ≤ p ≤ 1. We start
with an undirected graph that represents a n× n grid of vertices. Each vertex is connected
with an edge to each of its up to four neighboring vertices. All edges have a weight of
1. We call the top left vertex s and the bottom right vertex t. We then randomly delete
bp · n2c vertices. These missing vertices represent obstacles/blocked passages in the maze.
Afterwards we check if a path from s to t exists. If it exists, the graph and the start and
target vertices s and t represent our generated LP instance. If not, we repeat the process.
Figure 6.1 shows a grid of size 10 with p = 0.3. On the right a possible solution can be
seen in red.
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Figure 6.2: Example of a Delaunay triangulation of size 11. We can see a circle for every
triangle that passes through its three vertices. The condition for a Delaunay
triangulation is met as none of the circles contains a vertex of another triangle.

In [SKP+14] Stern et al. used grids in order to evaluate their LP solvers. We also use
grids as we assume that they are easy to partition in a way that is suitable for the LPDP
algorithm. In fact in [Fie16] we compared LPDP to the LP solvers from [SKP+14]. During
this evaluation we measured the biggest runtime advantage for LPDP when we solved grids.

6.5.2 Delaunay Triangulations

A triangulation of a set of points in a two dimensional plane is a Delaunay triangulation
if all triangles fulfill the Delaunay condition. A triangle fulfills the Delaunay condition
if the unique circle that passes through all three of its vertices contains no other points.
An example can be seen in Figure 6.2. We use an implementation of the Bowyer–Watson
algorithm [Bow81] [Wat81] to generate random Delaunay triangulations:

In order to generate a random Delaunay triangulation of size n we first generate n points.
Each point has a random float coordinate (x, y) ∈ [0, 1000]× [0, 1000]. We initialize the
plane with a super triangle that completely contains the area [0, 1000]× [0, 1000]. As the
plane contains no other points at this moment this super triangle fulfills the Delaunay
condition. The algorithm then incrementally inserts points into the plane. Each time we
insert a point we remove all triangles that violate the Delaunay condition. This creates a
convex polygonal cavity inside the triangulation. We connect each point of this polygon with
the newly inserted point. This creates new triangles that satisfy the Delaunay condition.
After n points have been inserted we remove the vertices of the initial super triangle.

We obtain a LP problem instance by assigning every edge a weight of 1 and choosing
two random vertices as start- and target-vertex.

It is to note that Delaunay triangulations do not represent a worst case for planar graphs.
The exterior face of a Delaunay triangulation is not necessarily a triangle. In that case
more edges could be added without the graph losing its planarity.

6.5.3 Roads & Word Association Graphs

Roads and Word Association Graphs are subgraphs the road network of New York [SKP+14]
and the word association graph from [LoWA]. The road network is a weighted graph, while
the word association graph is unweighted. We extract a subgraph of size n from these
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graphs by starting a breadth-first search from a random vertex. The search runs until n
vertices have been visited. The subgraph is induced by these vertices. The start-vertex of
the LP instance is the origin of the search. The target-vertex is chosen at random.

6.5.4 Benchmark

The main set of problems used in this thesis consists of the four different problem classes
that were explained above. For grid instances we used two different obstacle-probabilities.
One set of grids with 30% obstacles and one with 40%. The first set contains grids of
the sizes 10, 15, 20, 25, ..., 50. There are 10 grids per size. The second set has the sizes
10, 15, ...130 with the same number of instances per size. So overall 340 grids. The set of
Delaunay triangulations contains 98 triangulations with 3, 4, 5, ..., 100 vertices. We also
tested 150 road graphs with 2, 4, 6, ..., 300 vertices and 60 word association graphs. The
word association graphs are subgraphs of 10, 20, ..., 60 vertices with 10 instances per size
class. This results in 648 LP instances overall.

6.6 Performance Compared to Previous Implementations
This section illustrates the increased performance of our current LPDP implementation
compared to previous implementations. There are three different implementations of LPDP
that also represent three different solvers. We name the solvers: old1, old2 and cur.
“old1” represents the original implementation from the bachelor thesis [Fie16]. This

implementation introduces boundary vertices for every boundary edge like it is described
in section 3.6 and should be the slowest. Later this implementation was updated to work
like the current algorithm from section 3.2. The solver “old2” represents this version of the
implementation. For this thesis LPDP was implemented from scratch. The “cur” solver
represents this current implementation of LPDP. Compared to “old2” it also contains
all optimizations that are mentioned in this thesis. The “cur” solver does not use any
parallelization for this evaluation as we want to compare the serial implementations.
We tried to solve the set of problems presented in section 6.5.4 with all three solvers.

Each solver was given a time limit of 32 minutes per problem. The results can be seen
in Figure 6.3. The plot shows the sorted runtimes for the three solvers. Our current
implementation of LPDP clearly is superior to the previous ones even without the use of
parallelization. Overall “cur” solved 614 of the 648 problems. “old2” solved 573 and “old1”
only solved 533 problems.

6.7 Parallel Speedups
We ran the benchmark described in section 6.5.4. In order to measure the speedups achieved
through parallelization we ran the solver multiple times on each problem. We first ran the
serial solver (1 thread) and then doubled the number of threads with each additional run.
This was done until 64 threads, the maximum number of threads that the hardware can
support, were reached. It is to mention that the computer (see section 6.1) only has 32
cores. Simultaneous multithreading is used to support 2 simultaneous threads per core.
This should reduce the maximum achievable speedup as two threads have to share the
resources of one core. The serial solver had 64 minutes to solve each problem. The parallel
solvers only had a time limit of 32 minutes.
Table 6.1 gives a first overview of the results. In the second column of the table we

see the number of problems that were solved by each of the parallel solvers. As expected
this number increases as we increase the number of threads. With the 64 thread solver 15
problems remain unsolved. The third column shows the number of problems that were
also solved by the serial algorithm. With 2 threads we initially solve fewer problems than
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Figure 6.3: A cactus plot as it is explained in section 6.2. This plots shows the sorted
runtimes for each of the serial LPDP solvers old1, old2 and cur. old1 is the
original implementation of LPDP. old2 is an updated variant of it. Finally cur
is the current implementation of LPDP used in this thesis.

Threads Parallel
Solved

Both
Solved

Speedup All Speedup Big
Avg. Tot. Med. Avg. Tot. Med.

2 618 618 1.038 1.360 1.031 1.335 1.363 1.331
4 624 621 1.392 2.623 1.224 2.542 2.638 2.564
8 627 621 1.788 4.833 1.189 4.707 4.913 4.720
16 628 621 2.257 8.287 1.127 8.097 8.569 8.208
32 629 621 2.344 10.714 0.987 11.272 11.553 11.519
64 633 621 2.474 11.691 0.889 15.180 13.512 14.665

Table 6.1: Speedup table as it is defined in section 6.2. The serial version of LPDP had a
time limit of 64 minutes for each problem. All parallel versions had a time limit
of 32 minutes. A solver with n threads considers a problem “big” if the serial
solver took more than n · 5 seconds to solve it.
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with one. This is because of the decreased time limit given to the parallel solvers. From
now on we will only look at this subset of problems as only they can be used to calculate
the speedups achieved through parallelization. The average, total and median speedups
can be seen in column 4, 5 and 6. The total speedup of a solver is how much faster it
solved all the problems compared to the serial solver. For 2 threads we see a total speedup
of 1.360. Doubling the thread count results in an increase of the total speedup by 92.9%,
84.3%, 71.5%, 29.3% and 9.1%. We see that the initial jump from 2 to 4 threads almost
doubles the speedup. The speedup gain per jump then slightly decreases until 16 threads
are reached. At this point the total speedup is roughly half the number of threads (8.287).
Further increasing the number of threads has a smaller effect on the total speedup. 32
threads still result in a gain of 29.3%. Especially the final jump from 32 to 64 threads with
9.1% only does little. We end with a total speedup of 11.691.

When looking at the average speedup per problem we see that it stays below 2.5 for all
solvers. This is vastly different from the total speedup. This indicates that many problems
in our benchmark set are relatively easy to solve. The overhead of the parallelization
makes up a large part of the runtime for these problems. This keeps the average speedup
small. The total speedup on the other hand is dominated by a smaller number of difficult
problems which make up a large part of the total runtime of the benchmark.
The same thing can be seen when looking at the median speedups. Initially there is

almost no speedup. With 4 threads the median speedup increases, but then starts to drop
again. The 32 and 64 thread solver even have a median speedup below 1. This means that
they are slower than the single threaded solver for at least half of the problems. From the
data we know that none of these are difficult problems. LPDP solves them so fast that
they do not warrant the necessary runtime overhead of parallelization.

In order to filter out these problems that are too easy to benefit from parallelization we
restrict ourselves to “big” problems. For a solver with n > 1 threads we call a problem big
if the serial solver took more than 5 · n seconds to solve it. So 10, 20, 40, 80, 160 and 320
seconds for 1, 2, 4, 8, 16 and 64 threads. The threshold for a big problem increases with
the number of threads as a higher thread count only pays off for more difficult problems.
This can be seen in the steady decrease in the median speedup from 2 threads onwards.

The average, total and median speedups for big problems can be seen in column 7, 8
and 9 of the table. The total speedups for big problems are higher overall. The percentage
gains when doubling the number of threads also are higher: 93.5%, 86.2%, 74.4%, 34.8%
and 17.0%. Especially the last jump from 32 to 64 threads now increases the total speedup
by 17.0% compared to the 9.1% before. The biggest difference can be seen for the average
and median speedups. Now they are relatively similar to the total speedups. An interesting
point is that for all numbers of threads except for 64 the average and median speedup
is slightly lower than the total speedup. For 64 threads both are higher than the total
speedup. This means that some of the easier big problems give us higher speedups than
the more difficult ones.

The plots in Figure 6.4 show the runtimes for all solvers. The first plot further illustrates
the low average and median speedups that were measured. We can clearly see the increased
overhead induced by a higher number of threads. For the fastest solved problems each
increase of the thread count leads to higher runtimes. For the most difficult problems this
is reversed. This can be seen in more detail in the second plot. We can also see that the
curves for 32 and 64 threads are very similar for large problems. This is expected as the
total speedup between 32 and 64 threads only increased by 9.1%.

The first plot in Figure 6.5 shows the sorted speedups per solver. The second plot only
shows the speedups restricted to the “big” problems. In the first plot we see that the
solvers with fewer threads result in relatively flat curves. They grow very slowly and seem
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to approach a certain value. For solvers with higher thread counts the curves stay far below
their measured total speedup for most of the problems, but have a steep increase for the
last 100 or so problems.
The second plot shows the speedup for the “big” problems. We see a similar pattern

as before. For lower thread counts we see a relatively flat curve near the measured total
speedup. For higher thread counts this curve starts far below their total speedup and
ends far above it. This might mean that the effectiveness of our parallel solver highly
dependents on the given problem. For 64 threads the lowest speedup in the plot is just
2.679. The highest is 31.236. One speculation is that the lower speedups are the result
of problems where the threads constantly block each other as they try to update the
same result in the concurrent hash table. The necessary synchronization would slow down
the solver significantly. A better implementation of the hash table might mitigate this
problem. But even then the speedup of 2.679 is an outlier. The runtimes for this outlier
are 377.41, 280.47, 146.45, 87.151, 57.74, 76.88 and 140.90 seconds in order of increasing
thread count. We can see that the speedup is the greatest for 16 threads. After this the
runtimes increase again. This is the result of a single block. As we increase the number
of threads the runtimes of the other blocks decrease as expected. This is not the case for
this block. The runtime for this block is 122.48 seconds out of the 140.90 seconds for 64
threads. We assume that this is because we do not partition the search space of this block ef-
ficiently. Modifying the number of steps that we take to partition the search space may help.

6.8 Cliques
Something that was not previously done is to look at the worst case performance of LPDP.
Cliques represent such a worst case for LPDP. If we partition a clique into multiple blocks,
every node is a boundary node. If we do not use partitioning and view the clique as a single
block, LPDP degenerates into the bruteforce approach of exhaustive DFS. We ran LPDP
and exhDFS on cliques of various sizes with a time limit of one hour. A clique’s edges
had random integers between 0 and 100 as their weights. The start- and target-vertices
were also chosen at random (except that they could not be the same vertex). When using
LPDP we partition the clique into two blocks. The first block consists of bsize · pc vertices.
The other vertices make up the second block. We tested LPDP with both p = 0.5 and 0.75.
One block contains the start-vertex. The other contains the target-vertex. We measured
the runtimes and the number of steps that the algorithms take. Hereby an algorithm makes
one step each time it traverses an edge. As LPDP can update multiple solutions when
traversing a single edge we also count each update as an additional step. This experiment
was conducted on the computer B from section 6.1. The results can be seen in the tables
6.2. We first look at the results for p=0.5: While exhDFS is faster for all tested clique
sizes the execution time of exhDFS increases faster than that of LPDP. For 8 vertices the
runtime of exhDFS is only 14.8% that of LPDP. This percentage continuously increases
until 84.2% is reached for the 15 vertex clique. With larger cliques we can assume that
LPDP will eventually be faster than exhDFS. The rising step based speedup in the second
table also indicates this. We actually measure fewer steps for LPDP than exhDFS in all
cases. The higher runtimes of LPDP are explained by the fact that a step of LPDP requires
time consuming hash table lookups. A step of exhDFS does not and is therefore much
faster.

When looking at LPDP (p=0.75) we see a better results: This time LPDP is faster than
exhDFS for cliques of size 11 and higher. For the 15 vertex clique LPDP is 13.167 times
as fast as exhDFS. Additionally, LPDP solves the cliques 16 and 17. It is to note that
the runtime speedup actually slightly decreases from clique 11 to 12. For 11 vertices the
speedup is 1.098. This decreases to 1.095 for 12 vertices. This might be an outlier. For
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Figure 6.4: Cactus plots as they are explained in section 6.2. The sorted runtimes for the
LPDP solver with 1, 2, 4, 8, 16, 32 and 64 threads are shown. The set of 648
problems is given in section 6.5.4. The solver with 1 thread had a time limit of
3840 seconds / 64 minutes per problem. All other solvers were given a time
limit of 1920 seconds / 32 minutes. The first plot has a logarithmic scale and
shows the runtimes for all solved problems. The part of the plot to the right of
the vertical dotted line can be seen in the second plot with a linear scale.

39



6. Experiments

 0

 5

 10

 15

 20

 25

 30

 35

 0  100  200  300  400  500  600  700

S
p
e
e
d
u
p

Problems

2 threads
4 threads
8 threads

16 threads
32 threads
64 threads

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80

S
p
e
e
d
u
p

Problems

2 threads
4 threads
8 threads

16 threads
32 threads
64 threads

Figure 6.5: The plots show the sorted speedups per solver for the problems given in section
6.5.4. The first plot does this for all problems. The second plot is restricted to
“big” problems. A solver with n threads considers a problem “big” if the serial
solver took more than n · 5 seconds to solve it. The dotted line represents a
speedup of 1. We ran the LPDP solver with 1, 2, 4, 8, 16, 32 and 64 threads.
The serial solver had a time limit of 64 minutes per problem. Otherwise LPDP
had 32 minutes.
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Figure 6.6: Example of our transformation from the Hamiltonian Cycle Problem to LP.
We chose a vertex s in the graph G = (V, E). We then build the graph
G′ by introducing the vertex t as shown above. G′ := (V ∪ {t}, E′) where
E′ := E ∪ {{t, v} | {s, v} ∈ E}

p=0.5 these two values (0.426 and 0.428) are also very close to each other. Otherwise
the speedups are steadily increasing. When looking at the step counts we also see better
speedups for p=0.75 than 0.5. For 8 vertices LPDP(p=0.75) actually uses more steps than
exhDFS. For all cliques after that LPDP(p=0.75) gives far better step based speedups
than LPDP(p=0.5). For 15 vertices we measure a step based speedup of 45.840 compared
to the 4.6 for p=0.5. This means that LPDP(p=0.75) only requires about a tenth of the
number of steps that LPDP(p=0.5) does.
While LPDP(p=0.75) seems to be far better it is also to mention that it has a higher

memory usage than LPDP(p=0.5). As explained in section 3.5 we need to store #P (n) =
bn/2c∑
k=1

n!2n−3k

(n−2k)!k! solutions in the hash table of a block with n boundary vertices. For example

the 15 vertex clique and p=0.5 requires us to store #P (7) + #P (8) = 1850 + 7193 = 9043
solutions for the two blocks. With p=0.75 we already need to store #P (11) + #P (4) =
538078 + 43 = 538121 solutions. This means that searching for an optimal partitioning for
cliques probably requires us to find a balance between the time and space complexity of
the algorithm.

6.9 Hamiltonian Cycle Problem

The Hamiltonian Cycle Problem (HCP) is the problem of finding a Hamiltonian cycle in a
given graph G := (V, E). A Hamiltonian cycle is a cycle that contains each vertex of the
graph exactly once. Here the graphs are undirected and do not contain loops. We can
solve HCP instances with the LPDP algorithm by transforming them into LP instances.
We do this the following way:
Choose a arbitrary vertex s ∈ V . Construct the graph G′ := (V ∪ {t}, E′) where E′ :=
E ∪ {{t, v} | {s, v} ∈ E}. This can be seen in Figure 6.6.
(Except for one special case) Searching for a Hamiltonian cycle in G is equivalent to searching
a longest path s, v1, v2, ..., v|V |−1, t (vi ∈ V ) in G′. The corresponding Hamiltonian cycle to
this path is s, v1, v2, ..., v|V |−1, s. There is one exception to this: One edge alone does not
constitute a cycle. Therefore a graph with |V | = 2 cannot contain a (Hamiltonian) cycle.
Yet one could still find a longest path s, v1, t in the transformed graph.

In order to test LPDP capabilities to solve HCP instances we tried to solve the FHCP
Challenge Set [Hay18]. The FHCP Challenge Set is a collection of 1001 HCP instances.
These instances have been specifically designed to be difficult to solve with common HCP
approaches. Each one of the three approaches transforms the instance into an instance
of the Traveling Salesman Problem. Then Concorde [ABCC95], the Snakes and Ladders
Heuristic [BEF+14] and the Lin-Kernighan Traveling Salesman Heuristic [LK73] are used
to solve the instance. If at least two of the algorithms struggled to solve an instance, it was
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clique
size

exhDFS LPDP (p=0.5) LPDP (p=0.75)
runtime [s] runtime [s] speedup runtime [s] speedup

8 <0.001 0.001 0.148 0.001 0.102
9 <0.001 0.002 0.209 0.002 0.262
10 0.005 0.015 0.369 0.007 0.758
11 0.034 0.080 0.426 0.031 1.098
12 0.278 0.650 0.428 0.254 1.095
13 3.107 5.641 0.551 0.527 5.895
14 37.761 61.869 0.610 3.682 10.255
15 535.457 635.768 0.842 40.667 13.167
16 N/A N/A N/A 568.151 N/A
17 N/A N/A N/A 1081.140 N/A

clique
size

exhDFS LPDP (p=0.5) LPDP (p=0.75)
steps steps speedup steps speedup

8 3 914 3 608 1.085 5 828 0.672
9 27 400 19 241 1.424 11 532 2.376
10 219 202 133 934 1.637 62 552 3.504
11 1 972 820 926 395 2.130 478 234 4.125
12 19 728 202 8 207 542 2.404 4 760 073 4.145
13 217 010 224 69 521 926 3.121 8 659 923 25.059
14 2 604 122 690 735 066 046 3.543 66 442 136 39.194
15 33 853 594 972 7 359 580 750 4.600 738 510 944 45.840
16 N/A N/A N/A 9 995 560 186 N/A
17 N/A N/A N/A 16 468 631 539 N/A

Table 6.2: The results of running exhDFS and LPDP on cliques of size 8 to 17. We
measured the runtime and number of steps that the algorithms take. We used a
simple partition for LPDP: We divide the clique into two blocks. The start and
target vertex are not in the same blocks. The first block consists of bsize · pc
vertices. The other vertices make up the second block. We tested LPDP with
p = 0.5 and 0.75. The first table shows the runtimes of the algorithms and the
speedups achieved by LPDP over exhDFS. The second table does the same with
the number of steps and the step based speedup between LPDP and exhDFS.
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included in the FHCP Challenge Set. There was a one year long competition to solve the
set that ended on the 30th September 2016. The top five submissions were able to solve
385, 464, 488, 614 and 985 of the 1001 graphs.

We transformed the problems in the FHCP set into LP instances and tried to solve
them with the LPDP solver. LPDP used 64 threads and had a time limit of 5 minutes per
instance. This resulted in 403 of 1001 instances being solved. This would have granted
LPDP the 5th place in the competition. It is to note that all solved instances were solved
within a few seconds. 358 of the instances were solved in under one second. Only four
instances were solved in over two seconds. Still these four runtimes were far below the
time limit with 2.032, 2.079, 3.001 and 6.700 seconds. This could indicate the LPDP has
applications in solving certain classes of HCP instances, but is ineffective for others.
For comparison we also tried to solve FHCP with Concorde. We did not compile

Concorde, but used the executable version of Concorde. We ran Concorde with default
parameters, except for a fixed seed (“-s 99”). Concorde also had a time limit of 5 minutes
per problem. We transformed the HCP instances into TSP instances by turning the HCP’s
graph into a clique. Every edge that existed in the original graph is assigned a weight of 0.
Any edge that had to be inserted has a weight of 1. Concorde solved 56 problems. Only 26
problems were solved by Concorde and LPDP. The runtimes for these problems can be
seen in table 6.3. We can see that LPDP often had a large advantage over Concorde for
these problems. There are 30 problems that were solved by Concorde, but not by LPDP.
Overall we can say that LPDP and Concorde have very different applications. LPDP

itself might be effective in solving some HCP classes, but certainly does not represent an
universal HCP solver.
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Graph ID LPDP [s] Concorde [s]
1 0.017 1.300
2 0.029 0.060
3 0.020 21.650
4 0.071 1.740
5 0.016 185.270
6 0.017 0.330
8 0.052 6.400
9 0.020 205.550
10 0.023 3.170
14 0.035 0.140
18 0.036 0.170
23 0.025 0.200
27 0.035 0.240
31 0.027 0.260
35 0.067 15.480
39 0.051 7.340
47 0.058 0.510
52 0.063 11.680
56 0.046 0.460
61 0.051 0.500
78 0.065 0.610
93 0.055 7.780

114 0.066 93.420
125 0.070 47.500
138 0.101 27.090
184 0.103 55.170

Table 6.3: Runtimes for the 26 FHCP problems that were solved both by LPDP and
Concorde within 5 minutes.
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This thesis presented an improved LPDP algorithm and how it can be parallelized. In
the experiments our the sequential LPDP solver performed far better than previous im-
plementations. Our parallel version of LPDP achieved reasonable speedups compared to
the sequential solver. We executed the parallel solver with 2, 4, 8, 16, 32 and 64 threads.
The initial doubling of the thread count nearly doubled the achieved speedup. As expected
each doubling after that had a smaller effect on the speedup. This is the result of the
synchronization that is needed between the threads. We also looked into the worst case
performance of LPDP. Clique graphs represent this worst case of LPDP. Partitioning a
clique still gives LPDP an advantage over the bruteforce approach. We also presented a
formula that allows us to calculate LPDP’s worst case space complexity. Additionally, we
discovered possible applications of LPDP in solving the Hamiltonian cycle problem (HCP).
LPDP could perform well for HCP instances that are considered difficult for common HCP
approaches.

7.1 Future Work

In our current implementation the majority of the synchronization happens through the
concurrent hash tables that our solver uses. We could experiment with different concurrent
hash table implementations in order to improve the speedups that can be achieved. In
order to decide if a block is solved in parallel we currently simply count the number of
boundary vertices. Finding a better way to estimate the difficulty of a block could also
improve the solver’s performance. We could assign a different number of threads based on
the block’s difficulty.
In section 4.2 we already presented a way of ensuring that the search space of LPDP-

Search is partitioned into a large enough number of search branches. Additionally, we may
want to predict the possible solutions that a branch can find. For example: If two branches
will find solutions for the same sets of P , they will also access the same hash table entries.
We probably should not solve these two branches at the same time as this would require
a lot of synchronization. In this manner we could schedule the execution of the search
branches in a way that minimizes the necessary synchronization between the threads.
Something that was not mentioned in this thesis is that LPDP could be well suited for

solving multiple LP queries on the same graph. For example: We first run the algorithm
without any start- or target-vertex. Then we want to calculate the longest path between
two vertices s and t. We already calculated the solutions for any block that does not
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contain s or t. If a block contains s or t, we only have to recalculate it if the vertices
were not boundary vertices of the block already. Additionally, we probably can recalculate
these blocks faster with the solutions that we already calculated. For multiple queries
(s1, t1), (s2, t2), . . . , (sn, tn) this could lead to a large speedup compared to rerunning LPDP
for every query.
One could also implement a version of LPDP for distributed memory systems. We

already explained an approach to doing this in the end of section 5.1.3.
Finally we could look into other problems that are related to the longest path problems.

LPDP has already shown some potential for the Hamiltonian cycle problem. LPDP might
find applications for related problems. Other than that determining the time complexity of
LPDP is also important.
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