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Erster Gutachter: Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Prof. Dr. Michael Kaufmann





Acknowledgements

When I signed the contract for a position as a research assistant, I did not have a doctoral

degree in mind in the first place. It was more an opportunity to work with great colleagues

in a comfortable atmosphere doing things I love that was o↵ered to me by Dorothea Wagner.

Before I started the position, I could already experience Dorothea’s fair and benevolent leading

principles in a very sincere conversation. Around four and a half years later, when I told her

that Paula will be with me at the defense, she kept her word and supported me in many ways.

Not least she was willing, despite her filled calendar, to review my thesis in time such that I

could meet my desired deadline for the defense and finish my PhD right before my sweet little

daughter was born. Thank you, Dorothea, for your endorsement, the trust you have placed in

me and the great time I was allowed to spend in your group. The same holds for my second

reviewer, Michael Kaufmann, who also made my desired deadline possible. Thank you, Michael,

for your interest in my thesis and your willingness to be my reviewer. Beside the reviewers, I

want to thank Audrey Bohlinger for her great work regarding the final organizational matters

that come with handing in a thesis and preparing for a defense, as well as Henning Meyerhenke,

Ralf Reussner, Peter Schmitt, and Jörg Henkel for contributing to my successful defense. Special
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Deutsche Zusammenfassung

Diese Arbeit beschäftigt sich mit der Entwicklung von Algorithmen zur Lösung graphtheoreti-

scher Fragestellungen, die sich auf den Zusammenhang eines gegebenen Graphen beziehen. Der

Zusammenhang, und damit unmittelbar verbunden, die Betrachtung von Schnitten in Graphen

sind grundlegende Konzepte der Graphentheorie. Dabei unterscheidet man zwischen Kanten-

und Knotenzusammenhang sowie zwischen Kanten- und Knotenschnitten. Ein Graph hat einen

umso höheren Zusammenhang desto gewichtiger der minimale Schnitt ist, der nötig wird um

den Graphen in zwei Teile zu trennen. Ein Schnitt ist dabei eine Kanten- oder Knotenmenge,

deren Löschung zur Teilung des Graphen führt. Die Definition des Gewichts oder der Kosten

eines Schnittes hängt von der betrachteten Fragestellung sowie den Eigenschaften des zugrun-

deliegenden Graphen ab. Während man in ungewichteten Graphen meist an der bloßen Anzahl

der Kanten oder Knoten eines Schnittes interessiert ist, wird in gewichteten Graphen oftmals

die Summe der Kanten- oder Knotengewichte im Schnitt betrachtet. Manche Problemstellungen

betrachten darüber hinaus Schnitte, deren Gewicht erst im Verhältnis zu weiteren Kenngrößen,

wie zum Beispiel der Größe der entstehenden Schnittseiten, minimal wird. Die Berechnung solch

relativ minimaler Schnitte gilt im allgemeinen als NP-schwer. Dagegen berechnen e�ziente

Flussalgorithmen wie der Push-Relabel-Ansatz von Goldberg und Tarjan [57] absolut minimale

Kantenschnitte zwischen gegebenen Knoten s und t in polynomieller Zeit. Die Verbindung von

Schnitt- und Flussproblemen liefert dabei das Max-Flow/Min-Cut-Theorem, das 1956 erstmals

von Ford und Fulkerson [45] formuliert wurde. Dieses Theorem beweist die Äquivalenz des

Wertes eines maximalen s-t-Flusses und des Gewichts eines minimalen s-t-Kantenschnittes in

einem gewichteten Graphen. Die analoge Fragestellung des Knotenzusammenhangs lässt sich

ebenfalls als Flussproblem formulieren.

Bestimmte Grapheigenschaften können darüber hinaus die Nutzung speziell zugeschnittener

Techniken erlauben, die zu noch schnelleren Algorithmen führen oder eine e�ziente Lösung von

allgemein schweren Problemstellungen ermöglichen. So sind für planare Graphen oftmals Algo-

rithmen mit sehr schnellen, fast linearen Laufzeiten möglich. Auch für ungewichtete Graphen

ist manche schnittbasierte Fragestellung einfacher zu handhaben als für gewichtete Graphen,

da jede Kante denselben vorhersehbaren Beitrag zum Gewicht eines Schnittes leistet. In dieser

Arbeit betrachten wir sowohl planare Graphen, deren besondere Eigenschaften wir uns zu Nutze

machen um schnelle Algorithmen zu entwickeln, als auch allgemeine, gewichtete Graphen in

statischen und dynamischen Szenarien, für die wir Fragestellungen beantworten, die bisher nur

für ungewichtete Graphen und andere eingeschränkte Graphklassen geklärt waren.

Die Arbeit besteht aus drei Teilen, von denen jeder einen speziellen Zusammenhangsbegri↵

in einem bestimmten Teilgebiet der Graphentheorie betrachtet. Der erste Teil beschäftigt sich
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mit der Erhöhung des (absoluten) Knotenzusammenhangs durch Augmentierung eines gegebe-

nen Graphen. Im zweiten Teil spielen (absolut) minimale Kantenschnitte zwischen allen Knoten-

paaren die Hauptrolle. Der dritte Teil widmet sich schließlich besonders stark zusammenhängen-

den Teilgraphen, sogenannten Clustern, und betrachtet die Expansion solcher Teilgraphen, die

durch relativ minimale Kantenschnitte definiert ist. Den in dieser Arbeit entwickelten Algorith-

men geht außerdem eine intensive Untersuchung der jeweiligen problemspezifischen Eigenheiten

voraus, die in einem tiefen Problemverständnis mündet, und so den Entwurf schneller und kor-

rekter Algorithmen erst ermöglicht.

Teil I – Graphaugmentierung mit Zusammenhangserhöhung

Die Augmentierung eines Graphen durch zusätzliche Kanten um demselben bestimmte Eigen-

schaften zu verleihen, ist ein lange etabliertes Teilgebiet der Graphentheorie. Neben der Er-

langung bestimmter Eigenschaften wird dabei oftmals auch die Erhaltung vorherigen Eigen-

schaften als Nebenbedingung gestellt. Je nach Ausgestaltung der Eigenschaften und Bedin-

gungen sind die resultierenden Problemvarianten unterschiedlich schwer zu lösen. In dieser

Arbeit betrachten wir Augmentierungsprobleme, die eine Erhöhung des Zusammenhangs zum

Ziel haben. In infrastrukturellen Netzwerken geht ein starker Zusammenhang unmittelbar ein-

her mit einer hohen Robustheit, weshalb Zusammenhangsaugmentierungen zum Beispiel in der

Netzwerkplanung von großer Bedeutung sind. Auch im Gebiet des Graphenzeichnens setzen

viele Konstruktionstechniken bestimmte Mindestzusammenhänge voraus. Für nicht notwendi-

ger Weise planare Graphen wurden bereits vielfältige Problemvarianten der Zusammenhangsaug-

mentierung betrachtet [48, 113]. Für planare Graphen wurde die Zusammenhangsaugmentierung

durch Kant und Bodlaender [88] initiiert, die Zeichenalgorithmen betrachteten, die zweifach

zusammenhängende Eingabegraphen verlangen.

Teil I dieser Arbeit betrachtet ebenfalls planare Graphen, allerdings mit einer zusätzlichen

Regularitätsbedingung. Genauer gesagt, es wird untersucht inwiefern planare Graphen mit Max-

imalgrad d  k durch das Einfügen von Kanten zu k-regulären, planaren Graphen mit be-

stimmtem (absoluten) Knotenzusammenhang erweitert werden können. Diese Problemstellung

wird sowohl für variable Einbettungen als auch für den Fall, dass der planare Graph zusammen

Figure 1: Planarer

Graph G mit fester

Einbettung (durchge-

zogene Kanten) und

Kantenmenge einer

zweifach zusam-

menhängenden, planaren,

3-regulären Augmen-

tierung (gestrichelt).

mit einer festen Einbettung gegeben ist, betrachtet (siehe

Fig. 1). In beiden Fällen untersuchen wir alle möglichen Werte

von k (also 0  k  5), sowie für jedes feste k, alle möglichen

Bedingungen an den Knotenzusammenhang (von keiner Be-

dingung bis zur Bedingung des fün↵achen Zusammenhangs).

Während polynomielle Algorithmen für 1- und 2-reguläre Aug-

mentierungsvarianten aufgrund der speziellen Struktur der ini-

tialen Graphen recht einfach zu entwerfen sind, zeigt sich, dass

die Existenz einer 4- und 5-regulären Augmentierung bezüglich

jeder Zusammenhangsbedingung sowohl bei variabler als auch

bei fester Einbettung NP-schwer zu entscheiden ist. Interessant

gestalten sich die Ergebnisse für 3-reguläre Augmentierungen.

Hier sind alle Probelmvarianten NP-schwer solange eine variable

Einbettung zugelassen ist. Die Einschränkung auf eine feste

Einbettung führt jedoch zu polynomieller Lösbarkeit mit einer
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Laufzeit in O(n1.5), solange kein dreifacher Zusammenhang als Nebenbedingung an den resul-

tierenden Graphen gestellt wird. Die Existenz einer dreifach zusammenhängenden, planaren, 3-

regulären Augmentierung bleibt auch bei fester Einbettung NP-schwer zu entscheiden. Pilz [119]

hat zeitgleich und unabhängig von den Ergebnissen in dieser Arbeit planare, 3-reguläre Aug-

mentierungen bei variabler Einbettung untersucht. Der hier präsentierte NP-Schwerebeweis

verstärkt Pilz’ Ergebnis zur NP-Schwere dieses Problems, indem er zeigt, dass das Problem

auch für zweifach zusammenhängende Eingabegraphen NP-schwer bleibt. Darüber hinaus bietet

diese Arbeit für jede weitere planare, k-reguläre Augmentierungsvariante entweder einen e�zien-

ten Algorithmus oder einen NP-Schwerebeweis und beantwortet so vollständig die Frage der

Komplexität planarer, regulärer Graphaugmentierungen mit zusätzlicher Erhöhung des Knoten-

zusammenhangs. Dies beantwortet schließlich auch die noch o↵enen Fragen von Pilz.

Teil II – Paarweise minimale Schnitte

Gomory und Hu [59] konnten bereits 1961 zeigen, dass n � 1 Flussberechnungen genügen um

für jedes der
�
n
2

�
Knotenpaare in einem ungerichteten, gewichteten Graphen einen (absolut)

minimal trennenden Kantenschnitt zu finden. Während für ungewichtete Graphen und spezielle

Graphklassen, wie zum Beispiel planare Graphen, inzwischen schnellere Algorithmen existieren

um für jedes Knotenpaar einen minimal trennenden Kantenschnitt zu bestimmen [17, 13], ist für

allgemeine ungerichtete, gewichtete Graphen die Berechnung von n� 1 maximalen Flüssen noch

immer die schnellste Lösungsmethode.

Kernstück des Beweises von Gomory und Hu ist die Konstruktion einer Baumstruktur auf

den Knoten des Graphen, deren Kanten Schnitte im zugrundeliegenden Graphen repräsentieren.

Genauer gesagt, jede Baumkante {s, t} induziert einen minimalen s-t-Kantenschnitt, dessen

Gewicht an der Baumkante vermerkt ist. Aus dieser Eigenschaft ergibt sich auch, dass für

Knoten s und t, die keine Kante im Baum darstellen, ein minimaler s-t-Kantenschnitt leicht

am Baum ablesbar ist, nämlich in Form einer leichtesten Kante auf dem eindeutigen Pfad zwi-

schen s und t (siehe Fig. 2). Ein Gomory-Hu-Baum ist somit eine Datenstruktur, die für jedes

paar von Knoten einen minimal trennenden Kantenschnitt bereitstellt. Die Repräsentation von

Schnitten in solch kompakter Form ist Grundlage vieler weiterer Algorithmen zur Lösung graph-

theoretischer und kombinatorischer Optimierungsprobleme. Neben paarweisen minimalen s-t-

Kantenschnitten lassen sich zum Beispiel auch global minimale Kantenschnitte in sogenannten

Kakteen zusammenfassen [32]. Dagegen sind paarweise minimale Knotenschnitte nicht ohne

Weiteres in einer analogen Baumstruktur darstellbar [12].

t
s

(a) Günstigste Kante (fett schwarz) auf dem Pfad zwi-
schen s und t repräsentiert minimalen s-t-Schnitt (rot
gestrichelt) im zugrundeliegenden Graphen.

t
s

(b) Menge aller Kanten im Baum repräsentiert n � 1
kreuzungsfreie minimale s-t-Schnitte (rot gestrichelt).

Figure 2: Gomory-Hu-Baum auf zehn Knoten, Kanten des zugrundeliegenden Graphen sind
nicht dargestellt. Baumkanten entsprechen nicht zwangsläufig Graphkanten.
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Teil II dieser Arbeit stellt eine neue, e�zient konstruierbare Datenstruktur vor, die die Klasse

aller paarweisen minimalen Kantenschnitte repräsentiert, die eine der beiden Schnittseiten min-

imieren. Aufgrund ihrer Eindeutigkeit finden diese Schnitte in vielen Algorithmen Anwendung

und stellen ein beliebtes Beweisinstrument dar. Auch diese Arbeit präsentiert in Teil III einen

Clusteralgorithmus, der wesentlich auf der neu entwickelten Datenstruktur aufbaut.

Teil II betrachtet außerdem die bewährte Datenstruktur des Gomory-Hu-Baumes in einem dy-

namischen Szenario, in dem sich der zugrundeliegende Graph von Zeitschritt zu Zeitschritt durch

UPDATE
abhängig von

G G0
Änderung
atomare

GH-Baum-
Algorithmus

Änderung

GH-Baum-
Algorithmus

Figure 3: Dynamisches

Szenario. Graph G un-

terliegt Kanten- und

Knotenänderungen, die

Zeitschritte induzieren.

einzelne Kanten- oder Knotenveränderungen fortentwick-

elt (siehe Fig. 3). Im Rahmen einer Sensitivitätsanalyse

wurde die Gewichtsentwicklung paarweiser minimaler Kan-

tenschnitte in sich verändernden Graphen erstmals bereits

kurz nach der Vorstellung von Gomorys and Hus Baumstruk-

tur untersucht [36, 11]. Ziel dieser Arbeit ist jedoch nicht

nur die Beschreibung sich verändernder Gewichte, sondern

darüber hinaus eine möglichst e�ziente Bereitstellung der

vollständigen Struktur eines Gomory-Hu-Baumes in jedem

Zeitschritt. Für ungewichtete Graphen beschreiben Lin und

Ma [100] einen ersten Ansatz eines entsprechenden Update-

Algorithmus. Für gewichtete Graphen galt diese Problem-

stellung jedoch bislang als o↵en und schwer zu lösend [11].

Neben der möglichst e�zienten Konstruktion des jeweils neuen Baumes auf der Basis des vor-

angegangenen Baumes, sind glatte Übergänge zwischen den Zeitschritten ein weiteres typisches

Ziel in dynamischen Szenarien. In Bezug auf Gomory-Hu-Bäume heißt das, Bäume aufeinan-

derfolgender Zeitschritte sollen möglichst geringen Abweichungen unterliegen. Der in dieser Ar-

beit entwickelte Update-Algorithmus für Gomory-Hu-Bäume in gewichteten Graphen garantiert

optimale Glattheit und beweist gleichzeitig ein großes Sparpotenzial bei der Aktualisierung vor-

angegangener Bäume. Selbst die Worst-Case-Laufzeit von n� 2 Flussberechnungen kann unter

der Annahme bestimmter, durchaus plausibler, Bedingungen als optimal betrachtet werden.

Somit löst dieser Update-Algorithmus das o↵ene Problem voll-dynamischer Gomory-Hu-Bäume

in gewichteten Graphen.

Teil III – Schnittbasiertes Clustern

In Gegensatz zu den in Teil I betrachteten Augmentierungsproblemen, deren Ziel es ist, den

Zusammenhang eines gegebenen Graphen zu erhöhen, ist das Ziel des Graphenclusterns, einen

gegebenen Graphen in möglichst dichte Teilgraphen zu zerlegen, die untereinander nur schwach

durch Kanten verbunden sind (siehe Fig. 4). Basierend auf der Annahme, dass reale Netz-

werke eine solch inhärente Gruppenstruktur aufweisen, ist Graphenclustern ein weit verbreitetes

Instrument im Bereich der Netzwerkanalyse.

Teil III dieser Arbeit beschäftigt sich mit einem Ansatz zum Clustern ungerichteter, gewichte-

ter Graphen, der auf der Struktur eines Gomory-Hu-Baumes basiert und von Flake et al. [42] 2004

als Cut-Clustering-Algorithmus vorgestellt wurde. Bemerkenswert an diesem Ansatz ist, dass die

resultierenden Cluster, abhängig von einem Parameter ↵, eine garantierte Mindestexpansion und

damit eine Mindestqualität aufweisen, obwohl bereits die bloße Berechnung der Expansion eines

(Teil-)Graphen, die durch relativ minimale Kantenschnitte bestimmt ist, NP-schwer ist [87].
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steigende Parameterwerte ↵.

Darüber hinaus ist die Expansion der Kantenschnitte, die die einzelnen Cluster vom Rest des

Graphen trennen, ebenfalls durch ↵ nach oben beschränkt, was eine zusätzliche Qualitätsgarantie

darstellt. Für nichtaufsteigende Werte von ↵ erhält man außerdem hierarchisch geschachtelte

Clusterungen, deren Grobheit zunimmt (siehe Fig. 5). Im Gegensatz zu einer einzelnen Clus-

terung erlaubt eine solche Hierarchie die Auswahl einer besonders geeigneten Clusterung für die

jeweilige Anwendung.

Neben einer schnittbasierten Charakterisierung der Cluster und einer experimentellen Unter-

suchung der Aussagekraft der Qualitätsgarantien im Vergleich zu trivialen Schranken, entwickelt

diese Arbeit das Verfahren von Flake et al. in zwei Richtungen weiter. Die erste Richtung betri↵t

die Berechnung von statischen Clusterungshierarchien. Während das von Flake et al. vorgeschla-

gene Berechnungsverfahren auf einer binären Suche auf demWertebereich für ↵ basiert und somit

nicht garantieren kann, dass alle möglichen Hierarchieebenen gefunden werden, stellt diese Arbeit

ein parametrisches Suchverfahren vor, das eine garantiert vollständige Hierarchie aller möglichen

Clusterungen berechnet. Außerdem wird gezeigt, dass zur Konstruktion von Clusterungshierar-

chien nicht nur bestimmte minimale s-t-Kantenschnitte (nämlich diejenigen, die eine Schnittseite

minimieren) geeignet sind, sondern dass auch die Verwendung beliebiger minimaler s-t-Schnitte

zu hierarchisch angeordneten Clusterungen führt, ohne die Qualitätsgarantien in den einzelnen

Clusterungen zu verlieren. Diesen zusätzlichen Freiheitsgrad macht sich die zweite Richtung der

Weiterentwicklung zu Nutze.

Die zweite Richtung der Weiterentwicklung beschreibt die Anpassung des hierarchischen Cut-

Clustering-Algorithmus an dynamische Graphen. Dazu entwickelt diese Arbeit einen Update-

Algorithmus, der in Teilen auf Erkenntnissen und Techniken basiert, die bereits bei der Betrach-

tung dynamischen Gomory-Hu-Bäume eine Rolle spielten, und der ebenfalls optimale Glattheit

garantiert und ein hohes Sparpotenzial, und damit gute Laufzeiten, bei der Aktualisierung der

Clusterungshierarchien in den einzelnen Zeitschritten erzielt. Die Optimalität der Glattheit

wird nicht zuletzt durch den zuvor bewiesenen, zusätzlichen Freiheitsgrad bezüglich der Wahl

der Kantenschnitte möglich. Dieser Update-Algorithmus stellt die erste korrekte Anpassung des

Cut-Clustering-Algorithmus an dynamische Graphen dar, nachdem sich ein früherer Versuch

anderer Autoren [124] als fehlerhaft erwies.

Neben der Weiterentwicklung des Cut-Clustering-Algorithmus, bildet die Einordnung der

Cluster in eine Sammlung verwandter Clusterkonzepte aus dem Bereich dominant zusammen-

hängender Teilgraphen, wie sie bei der Analyse sozialer Netzwerke betrachtet werden [15], sowie
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die Definition eines weiteren solchen Konzeptes (sogenannte Source-Communities, oder kurz:

SCs) den letzten Schwerpunkt des dritten Teils. In diesem Zusammenhang wird ein Algorithmus

vorgestellt, der nach der Vorberechnung der neuen Datenstruktur aus Teil II für eine gegebene

Source-Community in Linearzeit die eindeutige maximale SC-Clusterung berechnet, das heißt,

die Clusterung, deren Cluster Source-Communities sind, wobei eines der Cluster der gegebenen

Source-Community entspricht, und die die Eigenschaft besitzt, dass die Cluster jeder weiteren

SC-Clusterung, die ebenfalls die gegebene Source-Community enthält, in den Clustern der max-

imalen SC-Clusterung enthalten sind. Diese Art maximaler SC-Clusterung kann zum Beispiel

der Bewertung von Clusteralgorithmen wie dem Cut-Clustering-Algorithmus dienen. Findet ein

solcher Algorithmus, dessen Ziel es ist, eine Clusterung aus dominant zusammenhängenden Teil-

graphen zu berechnen, auf bestimmten Graphen nur wenige Cluster sinnvoller Größe und viele

Singletons, so kann die Bestimmung der maximalen SC-Clusterung darüber Aufschluss geben,

ob der Algorithmus überhaupt die Chance gehabt hätte, eine bessere Clusterung zu finden, oder

ob es eventuell aufgrund der Graphstruktur gar keine Clusterung aus balancierteren, dominant

zusammenhängenden Teilgraphen gibt.
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CHAPTER 1

Introduction

In this thesis we develop algorithms for solving graph-theoretic problems related to connectivity

and minimum cuts. It consists of three parts considering connectivity augmentation problems,

all-pairs minimum cut representations and cut-based clustering approaches. “Informally, an algo-

rithm is any well-defined computational procedure [consisting of a finite number of instructions]

that takes some value, or set of values, as input and produces some value, or set of values, as

output. An algorithm is thus a [finite] sequence of computational steps that transform the input

into the output.”[27]

Figure 1.1: Flowchart of the Friendship Algorithm by Dr. Sheldon Cooper, flatmate (and
friend?) of Leonard Hofstadter in the American sitcom The Big Bang Theory created by Chuck
Lorre and Bill Prady. Screenshot provided by http://www.emp-online.co.uk/art 240796/, dis-

tributed by Nathan Lorah via Mathlab File Exchange (2013/03/11).

The comprehensible desire for well-defined, finite instructions to solve di�cult situations also in

everyday life may tempt people, and in particular nerdy guys like Sheldon (character in The Big

1
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Bang Theory), to ignore the computational aspect in the notion of an algorithm, thus squeezing

almost any aspect of personal relation into a flowchart. Nevertheless, Sheldon’s friendship algo-

rithm (Fig. 1.1) provides all characteristics usually associated with a computational algorithm.

It takes a phone call as input, processes a finite number of well-defined instructions and in the

end returns friendship as output. The algorithms considered in this thesis take a graph as input

and return answers concerning graph-theoretic problems. A graph is a representation of a set of

objects, called vertices, where some pairs of objects are connected by links or edges. The flow

chart in Fig. 1.1, for example, can be considered as a directed graph, where each edge has an

orientation. Graphs are well suited to model relations between objects in order to simplify a

given situation for analysis. Furthermore, many fields are faced with the task of analyzing data

that already entail an inherent graph structure or are directly derived from physical or virtual

networks, which clearly conform to the structure of a graph. This is why the terms graph and

network are often used interchangeably.

A Bit of History. Leonard Euler is said to be the first one who used a graph for abstrac-

tion in his study of the problem of the Königsberger bridges, which counts as the birth of

graph theory. In his article, published in 1736, Euler considered seven bridges in the city of

Königsberg (nowadays Kaliningrad, Russia) that link an island (called Kneiphof) in the River

Figure 1.2: Euler’s simplification of

the landmasses (capitals) and bridges

(small letters) in Königsberg. The

bridges can be modeled as pairs of

landmasses: a = b = {A,B}, c =

d = {A,C}, e = {A,D}, f =

{B,D}, g = {C,D}.

Pregel to the opposite riversides. Euler asks if it

is possible to find a walkway through the city that

passes each bridge exactly once (nowadays called

an Euler path). For the sake of simplicity, he de-

noted the di↵erent landmasses separated by the

river by capital letters and associated each bridge

with the pair of landmasses it links (Fig. 1.2).

This abstract description of the situation laid the

foundation of graphs as mathematical objects, al-

though the term graph was not introduced until

1878, when it was first used in the sense described

above by Sylvester [134, 63]. Since each bridge in

Königsberg can be passed in both directions, Eu-

ler’s abstraction is an undirected graph, which fi-

nally enabled Euler to get to the bottom of the

general existence of Euler paths. According to his famous, graph-theoretic theorem, an undi-

rected graph admits an Euler path, that is, a walk through the graph that passes each edge

exactly once, if and only if zero or exactly two vertices are part of an odd number of edges. The

number of edges a vertex is part of is called the degree of the vertex. Due to this characterization,

a simple algorithm that decides the Euler path problem consists of the following instructions.

Set a vertex counter to 0. For each vertex, determine the degree. If the degree is odd, increase

the vertex counter. If the vertex counter is 0 or 2 in the end, return yes. Otherwise, return no.

Besides the undirected graph edges and the parity of the vertex degrees, we can observe even

more fundamental graph properties at Euler’s example. One property is the existence of parallel

edges corresponding to bridges like a and b in Fig. 1.2 that are associated with the same pair of

landmasses. A graph with parallel edges is called a multigraph, while a graph without parallel

edges is a simple graph. Another property are missing edge costs. That is, in the context of

the Euler path problem each bridge/edge is equally important, and thus, Euler considered an
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unweighted graph. Other graph-theoretic problems also consider weighted graphs, and seek for

cheap or expensive solutions with respect to the edge costs. The third property is connectiv-

ity. Euler’s theorem only holds if each landmass that is part of a bridge can be reached from

any other landmass that is part of a bridge. Otherwise the answer to the Euler path problem

is always no. In other words, Euler assumed that the given graph is connected, which equals

the property that each vertex in the graph can be reached from any other vertex by passing a

sequence of edges and vertices.

Connectivity plays a central role in the three parts of this thesis, which focus on graph

connectivity problems from three di↵erent points of view. Part I addresses connectivity aug-

mentation problems where the aim is to increase the connectivity of a given graph. Part II is

concerned with the representation of minimum cuts in undirected, weighted graphs, and thus,

besides the interesting theoretical aspects of this problem, provides data structures for solving

other connectivity-related problems, as those considered in Part III. Part III deals with cut-

based graph clusterings, which are, in contrast to augmentations, decompositions of graphs into

well-connected subgraphs. Part III relies in large parts on Part II. In the following we provide

a brief motivation for each part, where we consider the two contrary directions of connectivity

augmentation and clustering decomposition first.

Figure 1.3: EHV network of Ger-

many, 2013. Data provided by BDEW,

TenneT, Amprion, 50Hertz, EnBW,

BNetzA. Image provided by Agentur für

erneuerbare Energien, www.unendlich-

viel-energie.de.

Connectivity and Graph Augmentation.

Today the importance of connectivity becomes

obvious in particular in infrastructural networks

like urban accessibility networks, telecommuni-

cation networks, and electricity networks. The

German extra-high voltage (EHV) network, for

example, su↵ers from low throughput between

di↵erent regions, in particular from North to

South. That is, in the corresponding graph the

connectivity between these regions is too low. In

order to increase the connectivity and thus the

performance and the robustness it is planned to

augment the network by further power lines in-

dicated by the orange lines in Fig. 1.3. The de-

cision where to place the additional power lines

is basically a graph augmentation problem with

respect to special objectives and side constraints

related to individual properties of the network,

as for example the physical embedding. Graph

augmentation problems are a classical field in

graph theory with a counterpart often consid-

ered as subgraph problems. Instead of inserting

edges into a graph, in a subgraph problem the

question is which edges to delete in order to ob-

tain a subgraph of special properties. In Part I

of this work we concentrate on algorithms for augmentation problems on planar graphs. In

this context we regard two objectives, regularity and connectivity, and the side constraint of
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preserving planarity, possibly with respect to a given embedding. A detailed outline and our

contribution to connectivity augmentation problems are found in Section 2.1.

Connectivity and Graph Clustering. In contrast to connectivity augmentation problems,

where the aim is to increase the connectivity of a given network, the decomposition of a network

into well connected regions that are only sparsely connected to each other, is an opposite direction

where connectivity plays a fundamental role. Such decompositions are classically addressed by

graph clustering algorithms. Graph clustering, which is a branch of network analysis, has become

a central tool to examine the structure of networks, with applications ranging from the field of

social sciences to biology and to the growing field of complex systems. The general aim of graph

clustering is often described by the clustering paradigm of intra-cluster density and inter-cluster

sparsity, referring to the identification of well connected subgraphs, so-called clusters, whose

connections to other subgraphs constitute bottlenecks in the network while within the subgraphs

no significant bottlenecks can be found. Formally, a bottleneck in a network is a set of edges

that disconnects di↵erent parts of the network when deleted. A bottleneck thus forms a cut. The

denser the clusters and the smaller the cuts in-between the clearer is the bottleneck-property,

and thus, the better is the clustering. Figure 1.4 exemplarily shows a clustering of a snapshot of

the evolving email-communication network of the Department of Informatics at KIT. For details

Figure 1.4: Maximum SC-clustering

(Chapter 12) with respect to the gray

cluster (red vertices represent sources) in

the giant component of a snapshot of the

email-communication network of the De-

partment of Informatics at KIT. Clusters

are indicated by filled boxes.

on this instance see Section 1.4.

Countless formalizations of the clustering

paradigm exist, however, the overwhelming ma-

jority of algorithms for graph clustering relies

on heuristics, for example, for some NP-hard

optimization problem, and do not allow for any

structural guarantee on their output. An excep-

tion, besides spectral clustering algorithms [87],

is a cut-based clustering algorithm introduced

by Flake et al. [42]. This approach exploits

properties of minimum cuts in order to give a

quality guarantee on the connectivity within the

clusters and the cuts between the clusters. In

Part III of this work we investigate further prop-

erties of the clusters found by this algorithm

and extend the approach in di↵erent directions,

based on data structures that provide useful in-

formation about the cut structure of a graph.

See Section 10.1 for a detailed outline and our

contribution to cut-based clustering problems.

Connectivity and Minimum Cuts. Determining the size of a minimum cut, and thus,

the connectivity in a given graph, or even finding a concrete minimum cut, are well-studied

combinatorial optimization problems that can be solved e�ciently. However, when we talk

about algorithms for solving these kinds of problems, we need to carefully distinguish between

di↵erent types of minimum cuts and connectivity as well as the many possible properties of

an input graph. Some techniques that work well, for example, for directed graphs cannot be

applied to undirected graphs and vice versa. In contrast, each algorithm for weighted graphs
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can be also used for unweighted graphs, however, for unweighted or integer weighted graphs

there often exist faster approaches that exploit the special edge costs and are thus not applicable

to weighted graphs. More sophisticated graph properties that support the design of algorithms

faster than those for general graphs are, for example, planarity and treewidth. It further makes a

di↵erence whether we consider the edge or vertex connectivity of a graph. Intuitively, a graph is

the more edge- and vertex-connected the more edges and vertices, respectively, need to be deleted

in order to split the graph into two independent parts. Besides this global connectivity regarding

the whole graph, we can further study the local connectivity of two designated subgraphs, like,

for example, two vertices. The local connectivity describes how many edges or vertices need to

be deleted in order to separate the subgraphs. A minimum set of edges that witnesses the global

connectivity is a global minimum cut, a minimum edge set with respect to two designated vertices

is called a minimum separating cut. There exist several elegant data structures that represent

the structure of minimum cuts in a given graph. Cacti [32], for example, store all existing

global minimum cuts, Gomory-Hu trees [59] provide a minimum separating cut for each vertex

pair, and Picard-Queyranne DAGs [118] o↵er all minimum separating cuts of one designated

vertex pair. In Part II of this thesis we consider Gomory-Hu trees in more detail. Besides their

various applications in designing further algorithms for advanced connectivity problems [36, 11],

Gomory-Hu trees are also employed in completely di↵erent contexts like, for example, robust

Internet-routing [130]. In our work, Gomory-Hu trees serve as an underlying data structure for

our developments on the cut-based clustering algorithm of Flake et al. [42]. Moreover, we believe

they are also interesting as a fundamental object in graph theory. We give a detailed outline

and point out our contribution to Gomory-Hu trees in Section 6.1.

1.1 A Brief Outline

This thesis consists of three parts, each addressing a collection of related connectivity or cut

problems in simple graphs. In the following, we give a brief overview, referring to the introduction

of each part for a more detailed outline and our contributions.

Part I: Connectivity Augmentation

In Part I, we study augmentation problems on undirected, unweighted, planar graphs with

and without fixed embedding, where the aim is to augment the given graph to be k-regular

and c-connected while preserving planarity. We consider all possible problem variants resulting

from all possible choices of k and c, which are 1  k  5 and 0  c  5 with c  k for

variable and fixed embeddings. For each problem variant, we give either an e�cient algorithm

or an NP-hardness proof, therefore settling the complexity for the entire class of planar regular

augmentation problems with connectivity constraints.

We show that designing algorithms for solving the variants of 1- and 2-regular connectivity

augmentation is quite easy due to the simple structure of the input graphs in these cases. Note

that we require the input graphs have a maximum degree of at most k. In contrast, for 4- and

5-regular connectivity augmentation, we prove the NP-hardness with respect to all connectivity

constraints for variable and fixed embeddings. Interestingly, cubic connectivity augmentation

turns out to be NP-hard for variable embeddings, but polynomial solvable for fixed embeddings,

unless we additionally aim at 3-connectivity. Cubic augmentations are in particular interesting

as the dual graph of a cubic planar graph forms a triangulation. See Section 2.1 for a more

detailed outline.



6 Chapter 1 : Introduction

Part II: All-Pairs Minimum Cut

Part II is dedicated to Gomory-Hu trees [59] on undirected, weighted graphs. A Gomory-Hu

tree is an undirected, weighted tree on the vertices of a given graph such that each edge in the

tree represents a minimum separating cut in the underlying graph with respect to its incident

vertices. The cost of the cut is given by the cost of the tree edge. From this property, it follows

directly that a minimum separating cut for two vertices that are not adjacent in the tree is given

by a cheapest tree edge on the unique path between both vertices. Hence, a Gomory-Hu tree

represents a minimum separating cut for each vertex pair of the graph. We first give a detailed

description of the state-of-the-art algorithms for constructing Gomory-Hu trees on general graphs

and explain the ideas and mechanisms these algorithms rely on. In this way we lay the basis

for our new algorithmic approaches, which modify the original Gomory-Hu tree construction in

order to accomplish their goals. The goal of our first algorithmic approach is the construction

of a data structure, which we call unique-cut tree, that represents a class of special minimum

separating cuts, which we call U-cuts. Although rarely denoted by a special name, U-cuts have

many applications and appear in many proofs in the literature due to their uniqueness. In this

work, the new data structure forms the basis of an algorithm presented in Part III, which returns

maximum source-community clusterings with respect to given communities.

Our second algorithmic approach aims at maintaining Gomory-Hu trees also in evolving

graphs. We consider a dynamic scenario where two consecutive snapshots of the underlying

graph di↵er due to either an atomic edge change or an atomic vertex change. As usual in

incremental dynamic scenarios, we are interested in updating the Gomory-Hu tree in each time

step as e�ciently as possible, in particular in comparison with a computation from scratch.

Furthermore, we seek for smooth transitions, that is, we wish to obtain similar trees in successive

snapshots. The update algorithm developed in this thesis is fast in practice, guarantees optimal

temporal smoothness and is very easy to implement. See Section 6.1 for a more detailed outline.

Part III: Cut-Based Clustering

In Part III, we extend the work of Flake et al. [42] on their elegant cut-based clustering algorithm.

According to the authors, we call this algorithm, which is designed for undirected, weighted

graphs, cut-clustering algorithm. The striking feature of this approach is that, in contrast to the

majority of graph clustering approaches, it provides a quality guarantee for the found clusterings

in terms of expansion, which is a cut-based measure for the density of (sub)graphs. This fact is

even more interesting as the computation of the expansion of a graph is already NP-hard.

In this part, we show that, beyond this quality guarantee, the clusters also provide nice cohe-

sion properties, as already considered for a long time in social network analysis. In this context

we describe source communities as a concept of cohesive subsets and discuss the properties of

these communities in comparison with other established cohesive subsets. We then characterize

the clusters that are returned by the cut-clustering algorithm in terms of source communities

and show that they form a proper subclass of the class of source communities.

Flake et al. further extended their clustering algorithm to a hierarchical approach, which

however is not complete, that is, in the found clustering hierarchies there might be some levels

missing. Hence, we improve the approach such that the completeness of the returned hierarchies

is guaranteed. Based on this complete approach, we finally conduct some experiments in order

to evaluate the given quality guarantee compared to another, popular quality measure called

modularity.
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Briefly turning away from the cut-clustering algorithm of Flake et al., we also consider clus-

terings that consist of general source communities. At this point we draw on unique-cut trees

presented in Part II, and show that this data structure allows to e�ciently answer queries on

inclusion-maximal source-community clusterings with respect to some given communities.

Again returning to the hierarchical algorithm of Flake et al., which gains the cohesion prop-

erties of its clusters due to the use of the special U-cuts during the construction, we finally

show that the same construction technique can also be hierarchically applied with more general

cuts still preserving the quality guarantee in terms of expansion. This yields a higher degree

of freedom that admits choosing the most appropriate cuts regarding, for example, a special

application, which compensates the loss of the cohesion properties. We adapt the in this sense

unrestricted hierarchical approach to the same dynamic scenario as the Gomory-Hu trees in

Part II, thereby exploiting the degree of freedom in order to achieve good temporal smoothness.

See Section 10.1 for a more detailed outline.

How to Read this Work. We omit a central related work section in this introduction. In-

stead, related concepts and results are either presented in the introduction of each part or in the

particular chapter where the relation to our work becomes clear. The introduction of each part

further provides the specific notation, a detailed outline of the chapters with references to the

corresponding publications, and our contributions presented in this part. If there is further back-

ground information needed in order to understand the ideas and arguments in a particular part,

this information is also preliminarily provided in the introduction of the part. Each part further

has its own conclusion. General notation and definitions with respect to graphs, connectivity in

graphs, and minimum cuts, as well as existing approaches related to connectivity and minimum

cuts are discussed in the remainder of this chapter. Furthermore, we provide a brief introduction

to complexity theory and an overview on the instances we use in di↵erent experiments at the

end of this chapter. The sources of the used instances is only references once, namely in this

preliminary section on graph instances. In the description of the experiments we simply refer to

this section. The same holds for the template library we used in our experiments.

Part I and Part II of this work can be read independently from Part III and from each

other. Part III, however, in large parts relies on Part II. To be exact, the dependencies are

as follows. Apart from the case study in Section 11.3, the explanations on static hierarchies

of cut clusterings in Chapter 11 extensively use U-cuts and M-sets, which are presented in

Section 6.2.2. The maximum source-community clusterings in Chapter 12 are based on unique-

cut trees developed in Section 7.2. To understand the unrestricted cut-clustering approach in

Chapter 13 it is necessary to know, besides the static clustering algorithm in Section 11.1.1, the

basics of the Gomory-Hu tree construction provided in Section 7.1. Finally, Chapter 14 cannot

be read without Chapter 13, the knowledge about U-cuts and M-sets, and the results on dynamic

Gomory-Hu trees in Chapter 8.

We further point out the main tools that are used to obtain the results in Part II and Part III,

and thus, are referred in many proofs. These tools are given by four lemmas, which have a

very similar structure. The first lemma, we call it the Non-Crossing Lemma (7.2), was already

proven by Gomory and Hu [59], and Gusfield [66], and is presented in Section 7.1.1. It ensures

the correctness of the original Gomory-Hu tree construction as it admits to bend minimum

separating cuts along other minimum separating cuts without changing costs, thus preventing

crossings. Since non-crossing cuts are either nested or disjoint, this lemma tells us something

about the nesting behavior of minimum separating cuts in a given graph. The second lemma,
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Lemma 8.9, adapts the statement of the Non-Crossing Lemma to a dynamic scenario, more

precisely, to the case where an edge in the underlying graph is deleted or the cost of an edge

decreases. In this situation we are busy with cuts in two di↵erent graphs, namely the current

graph G and the graph G resulting from G due to the edge change. Lemma 8.9, which is proven

in Section 8.2, then describes how to bend arbitrary cuts in G along minimum separating cuts

in G without changing costs. The third lemma, Lemma 9.4 in Section 9.2.1, is the analog lemma

for the situation where an edge is inserted into G or the cost of an edge increases, resulting in G�.

The adaption of the original Gomory-Hu tree construction to evolving graphs in Chapter 8 as

well as the update algorithm for single clusterings developed in Section 14.2 strongly rely on

these lemmas. The fourth lemma, Lemma 13.2 in Chapter 13, finally characterizes the nesting

behavior of minimum separating cuts on di↵erent levels of a clustering hierarchy, which admits

our results regarding static and dynamic clustering hierarchies. The proofs of these lemmas are

very technical and follow all the same structure. Finally, we point out Lemma 7.6 in Section 7.2.1,

which can be seen as an equivalent of the Non-Crossing Lemma (7.2), since it characterizes the

nesting behavior of M-sets. Hence, it is referred in almost every proof related to U-cuts or M-sets.

Writing Style. We generally emphasize terms that are going to be defined properly in this

work, that are borrowed from other authors or that are somehow crucial. Such terms are empha-

sized at their first occurrence, also if the definition does not directly follow. We use small caps

for algorithms and procedures that are given in pseudo code, expressions that describe graph-

theoretic problems like, for example, the all-pairs minimum cut problem are not written in a

special font. For problems that are mentioned very often or occur in di↵erent variants, we intro-

duce abbreviations, which are then written in small caps. For the names of graph instances that

appear outside of tables in the text, we use a font without serifs. We mostly avoid using citations

as syntactical elements, however, citations may be denoted at the end of statements without any

mention of author names or publication type. Usually we only cite the latest reference of a

result, however, in few cases, we refer to claimed results that have been proven to be incorrect

by a later result. For these results we tried to cite all occurrences in order to caution against all

sources of erroneous information. Finally, we remark that whenever we talk about connectivity

without further concretization, we mean vertex connectivity in Part I and edge connectivity in

Part II and III. Moreover, we sometimes do not follow the usual notation of minimum s-t-cuts

and maximum s-t-flows, but use vertices u and v or x and y, instead, in order to stress the fact

that the actual direction of the cut or flow is not important.

1.2 Notations and Definitions on Graphs

In this section we present the notation used throughout this thesis and give the definitions of

most terms that occur. Some concepts that are, however, only incidentally mentioned, are not

described in detail. Special terms that are explicitly used in only one part of this work are

defined in the introduction of the particular part or directly where they occur.

Undirected Graphs. Apart from maximum flows, which are usually considered in directed

graphs, and special directed trees, we consider only undirected graphs in this work. The graphs

in Part II and III are further weighted, while in Part I we assume unweighted graphs. An

undirected, weighted graph is a graph G = (V,E, c) with vertices V , edges E and a positive edge

cost function c : E ! R+
0 , writing c(u, v) as a shorthand for c({u, v}) with {u, v} 2 E. The
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notations V , E, c, as well as n := |V | and m := |E| may be used without explicitly denoting a

graph, as long as the underlying graph becomes clear from the context. If not of current interest,

we omit the cost function c in the notation. The degree deg(v) of a vertex v describes the sum

of the costs of the edges incident to v. Since unweighted graphs can be considered as graphs

with uniform edge costs, usually 1, this definition also applies in the unweighted case. A vertex

adjacent to a vertex v is called a neighbor of v. The set of all neighbors of v is denoted by N(v).

If necessary, we denote the underlying graph as an index at the degree or the set of neighbors.

In the literature, the terms graph and network are sometimes used interchangeably, and the

edge cost is also called edge weight or edge capacity. Analogously, (edge) weighted graphs are

also named (edge) capacitated graphs or networks. We call our graphs weighted, although we

talk about edge costs, instead of weights, and denote the cost function by c, instead of w. We

do not consider costs assigned to vertices in this work.

The graphs considered in this work are further simple, that is, they do neither contain parallel

edges between the same pair of vertices nor self-loops, that is, edges {v, v} that start and end

at the same vertex v. In the literature, integer edge costs are sometimes replaced by parallel

unweighted edges, which results in di↵erent values for m. Hence, comparing running times of

algorithms that depend on m must be done carefully.

A subdivision of a graph is obtained by iteratively subdividing edges in the graph. Subdividing

an edge {u, v} means adding a new vertex w and replacing {u, v} by two edges {u,w} and {w, v}.
A (vertex-induced) subgraph of a graph G = (V,E, c) is a graph on a subset V 0 ✓ V that contains

an edge {u, v} with cost c(u, v) if and only if {u, v} ✓ V 0 and {u, v} 2 E. We call a set V 0 $ V

a proper subset of V , and say that two sets are nested if one set is a (not necessarily proper)

subset of the other set. Two sets that are not disjoint are overlapping. We call a collection of sets

hierarchically nested if they are pairwise nested or disjoint. Furthermore, we define the degree

of a (sub)set analogously to the degree of a vertex. The terms proper, nested and hierarchically

nested, as well as the notion of the degree are adapted analogously to subgraphs and subclasses.

We further reserve the term node for compound vertices of abstracted graphs, which may

contain several basic vertices of a concrete graph; however, we identify singleton nodes with the

contained vertex without further notice. Contracting a set N ✓ V in G means replacing N by

a single node, and leaving this node adjacent to all former adjacencies u of vertices of N , with

an edge cost equal to the sum of all former edges between N and u. Analogously, we contract a

set M ✓ E or a subgraph of G by contracting the corresponding vertices.

Special Graphs. We define a simple path of n vertices as a sequence v1, . . . , vn of vertices

such that vi 6= vj for i 6= j, {i, j} ✓ {1, . . . , n}, and {vi, vi+1} forms an edge for i = 1, . . . , n� 1.

A simple path where also {v1, vn} forms an edge is called a simple cycle. If we further allow the

vertices to appear more than once in the sequence v1, . . . , vn, we get a (general) path or (general)

cycle, respectively, that is not necessarily simple anymore. It might happen that we omit the

commas when denoting a path, simply writing xyz for, for example, a path of two edges or a

cycle of three edges, or uv for an edge. The length of a path or a cycle is either measured by the

number of edges or the number of vertices, as convenient.

A wheel graph of n vertices is a graph formed by connecting a designated vertex (the so-called

center) to each vertex of a simple cycle formed by the n � 1 remaining vertices. Deleting in

a wheel graph of n vertices the edges of the simple cycle formed by the n � 1 vertices apart

from the center yields a star of n vertices. A tree is a graph that has no (general) cycle as

subgraph. Note that a star is a special tree. In Part II and III we deal a lot with trees, also
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with directed trees. The path between two vertices in a tree is unique, and we write ⇡(u, v) for

the path between u and v. In directed trees, we use the same notation and stress the direction

of the path by words. The special graphs K5 and K3,3 play a fundamental role in planarity

testing (see Part I). The graph K5 consists of five vertices that are pairwise connected by an

edge. The graph K3,3 consists of three red and three green vertices, such that each green vertex

is connected to each red vertex, while vertices of the same color are not connected. Both graphs

are not planar. The complement graph Gc = (V,Ec) of an (unweighted) graph G = (V,E) is

obtained from G by replacing the edge set E by the set of complement edges Ec :=
�
n
2

�
\E, that

is, the set of all edges that are not contained in G.

Directed Graphs. Regarding the few situations where we also consider directed graphs (or

digraphs), we briefly introduce some basic notations for digraphs. We distinguish directed arcs

or edges from undirected edges by surrounding them by round brackets, while undirected edges

are written with curly brackets. The first vertex u of a directed edge (u, v) is called the tail,

the second vertex v is called the head of (u, v). The edge (u, v) is thus oriented from u to v,

pointing at v. The degree of a vertex v in a digraph usually distinguishes between in-going and

out-going edges, that is, edges for which v is the head or the tail. So there is an in-degree and

an out-degree. The neighbors of v are split analogously into neighbors with respect to in-going

and out-going edges. Vertex-induced subgraphs of digraphs, directed paths and directed cycles

are defined analogously to vertex-induced subgraphs of undirected graphs, (general) paths and

(general) cycles. The edges in a path are oriented from vi to vi+1, and the additional edge in

a cycle is oriented from vn to v1. A digraph is called acyclic if it has no cycle as subgraph. A

vertex that can be reached from a vertex v by a directed path is a successor of v, while a vertex

from which v can be reached by a directed path is a predecessor of v. We will use these terms

intensively in the context of directed trees in Part II and III.

Dynamically Changing Graphs. Dynamic or evolving graphs appear in Part II and III of

this work. We call a graph dynamic if its edges or vertices vary over time. The current status of

the graph at a certain time step is also called graph or snapshot of the dynamic graph. In this

work, we consider only atomic changes in dynamic graphs, that is, the deletion of an edge or a

degree-0 vertex, the insertion of an edge or a degree-0 vertex, and the decrease or increase of the

cost of an edge. Note that in Part II we will distinguish between edge insertion and increasing

cost as well as between edge deletion and decreasing cost, while in Part III edge insertion and

deletion are considered as special cases of increasing and decreasing costs.

A change in a graph G either involves an edge {b, d} or a vertex b. If the cost of {b, d} in G

decreases by � > 0 or {b, d} with c(b, d) = � > 0 is deleted, the change yields G . Analogously,

inserting {b, d} or increasing the cost yields G�. We denote the cost function after a change

by c and c�, respectively. Since we assume that only degree-0 vertices are deleted from or

inserted into G, vertex changes do not a↵ect the edge set or the cost function. Hence, we simply

denote the graph after such an change by G� b or G+ b, respectively. If we consider the graph

after an arbitrary change, without any further information about the type of the change, we

denote it by GU .

Depth-First-Search and Breadth-First Search. Depth-first search (DFS) and breadth-

first search (BFS) are standard methods for traversing a given graph in time O(n+m), visiting

each vertex. The idea is to start at an arbitrary vertex and explore the graph along a path (DFS)
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or along the neighbors (BFS) as far as possible. If the DFS reaches a vertex that has been already

visited, it tracks the path back until the first possibility to branch. The BFS continues visiting

the neighbors of the neighbors until each vertex has been visited at least once. We omit a more

detailed description here and refer to the textbook of Cormen et al. [27], instead.

1.3 Cuts and Connectivity

Although, at two points in this thesis, there appear directed graphs, we consider cuts and connec-

tivity aspects only in undirected graphs. Thus, we concentrate on definitions and algorithms for

undirected graphs. Furthermore, we consider unweighted graphs as graphs with cost 1 assigned

to each edge. Hence, all definitions and algorithmic approaches considered in the following for

weighted graphs also apply to unweighted graphs.

Cuts in Weighted Graphs. A cut in an undirected, weighted graph G = (V,E, c) is a

partition of V into two non-empty cut sides S and V \S. The cost c(S, V \S) of a cut in G is the

sum of the costs of all edges crossing the cut, that is, edges {u, v} with u 2 S, v 2 V \S. Since a
cut is clearly defined by already one of its cut sides, say S, the cost can be also denoted by c(S).

Note that the cost c({v}) with v 2 V equals the degree of v. For two disjoint sets A,B ✓ V ,

which not necessarily form a cut, we define the cost c(A,B) analogously. Whenever we are not

interested in the exact cut sides of a cut, we use ✓, possibly with some indices, to denote a cut.

Another possibility to define a cut is to consider the cut set, that is, the set of edges crossing the

cut. In connected graphs, that is, in graphs that contain at least one path between any vertex

pair (see below), both definitions are equivalent. In disconnected graphs, however, the cuts sides

of two cuts with the same cut set may di↵er in those connected components that are not split

by the cuts. In the context of cut-based clustering in Part III of this thesis, the cut sides play

an important role. Hence, we stick with the definition of cuts based on cut sides, and consider

cuts with the same cut sets as equivalent (see also the definitions in Section 6.2).

We say two cuts are nested if their cut sides are nested. Two cuts are non-crossing if their cut

sides are nested or at least two cut sides are disjoint. Otherwise we say that two cuts cross. We

call a set of cuts non-crossing or hierarchically nested if all cuts are pairwise non-crossing. Two

vertices u, v 2 V are separated by a cut if they lie on di↵erent cut sides. A minimum u-v-cut is

a cut that separates u and v and is the cheapest cut among all cuts separating these vertices.

The cost of a minimum u-v-cut defines the (local) edge connectivity of u and v, which is denoted

by �(u, v), possibly with an index indicating the underlying graph. We call a cut a minimum

separating cut if there exists an arbitrary vertex pair {u, v} for which it is a minimum u-v-cut;

{u, v} is called a cut pair of the minimum separating cut. Analogously, we can also consider

minimum separating cuts with respect to vertex sets, instead of vertices, that is, minimum

S-T -cuts with S, T $ V , S \ T = ;.
Due to the equivalence of �(u, v) and the value of a maximum u-v-flow in an undirected,

weighted graph, as stated by Ford and Fulkerson [45] in their popular max-flow min-cut theo-

rem1, and due to the duality of finding a minimum u-v-cut and a maximum u-v-flow in linear

programming [28], computing a minimum u-v-cut in an undirected, weighted graph basically

means computing a maximum u-v-flow in this graph. We introduce the maximum-flow problem

below and give a brief idea how fast it can be solved.

1This first version of the theorem, which is closely related to Menger’s theorem, was on undirected graphs.
Later, the authors generalized it to the directed case. Today there exist various variants of this statement.
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Global Minimum Cuts and Global Edge Connectivity. A cheapest cut among all mini-

mum separating cuts (that is, with respect to all vertex pairs) in an undirected, weighted graph

is a global minimum cut. Interestingly, a global minimum cut can be computed at least as fast as

a maximum flow, that is, a minimum separating cut for a single vertex pair. Hao and Orlin [74]

use 2n � 2 specially reduced maximum-flow computations for constructing a global minimum

cut in the same asymptotic time, namely O(nm log(n2/m)), as a maximum flow. Nagamochi

and Ibaraki [112] showed that computing a maximum flow is not necessary at all. Instead they

introduced maximum adjacency orderings (MA orderings), which turned out to be a power-

ful tool to reduce the running time for many edge-connectivity problems in undirected graphs.

Their algorithm presented for determining the edge connectivity of weighted graphs runs in

time O(nm + n2 log n), and is still one of the fastest approaches to solve this problem. The

algorithm of Stoer and Wagner [133] even refines the approach of Nagamochi and Ibaraki result-

ing in the same asymptotic running time but a simpler method. This algorithm can be further

extended such that it also returns n� 1 flows that together separate each vertex pair, and thus,

witness the found global minimum cut [6]. Constructing this certificate takes O(nm) additional

time. A randomized approach in O(m log3 n) is given by Karger [90]. Due to the correspondence

of cuts in the original and cycles in the dual graph, planar graphs admit even faster running

times for computing a global minimum (weighted) cut. Italiano et al. [85] achieved a running

time in O(n log n log log n), which recently could be even improved by a log n factor by Laçki

and Sankowski [98].

Ignoring the edge costs, global minimum cuts establish the concept of global (unweighted)

edge connectivity of undirected graphs. Note that, in this work, local edge connectivity refers

to weighted graphs, while global edge connectivity implies an unweighted graph. In weighted

graphs, we consider the cost of a global minimum cut whenever we refer to the global weighted

edge connectivity. The global (unweighted) edge connectivity of a graph G describes how many

edges cross a minimum separating cut, or in other words, how many edges need to be at least

deleted in order to split the graph into two parts. According to Menger’s Theorem [107], this is

further equivalent to the question how many edge-disjoint paths exist at least between each vertex

pair inG. According to the latter, a graph is c-edge-connected if it contains at least c edge-disjoint

paths between each vertex pair. A 1-edge-connected graph is simply called connected. A graph

that is not connected is called disconnected, unconnected or non-connected. A disconnected graph

consists of at least two connected subgraphs that are pairwise separated by a global minimum cut

of cost 0. These connected components can be computed in O(n+m) time by a DFS or a BFS.

Another definition says, a graph G is c-edge-connected if at least c edges need to be removed in

order to make G disconnected, or the other way round, if G is connected and removing any set

of at most c� 1 edges leaves G connected. Note that the latter excludes c = 0.

The global edge connectivity ignoring edge costs can be computed even faster than a global

minimum (weighted) cut. Nagamochi and Ibaraki [112], presented an algorithm that runs in

O(nm) time, while Gabow’s algorithm [51] provides a running time in O(m + �2n log(n/�)),

with � the found edge connectivity. We remark that for planar graphs, as considered in Part I of

this work, the edge connectivity is bounded by 5, since each planar graph has at least one vertex

with at most five neighbors. Hence, for planar graphs, Gabow’s algorithm already has a near

linear running time. Furthermore, there exists an O(n) time algorithm of Yuster and Zwick [4]

for finding shortest cycles of length  5, which implies a linear time algorithm also for minimum

cuts, due to the duality of cuts and cycles.
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Vertex Connectivity. The vertex connectivity of a graph G is the analog to the edge con-

nectivity of G. A graph G is c-vertex-connected if it is connected and removing any set of at

most c�1 vertices leaves G connected. This equals again the existence of at least c vertex-disjoint

path between any pair of vertices in G. A set of vertices that decomposes G into connected com-

ponents when it is deleted, is called a vertex cut or a vertex separator. We note, that in this work,

we do not consider minimum separating vertex cuts with respect to two vertices in a graph.

Henzinger et al. [82] showed that the vertex connectivity of an undirected graph can be

determined in O(2n2) time, with  the found connectivity value, Gabow [53] presented an

algorithm with a running time in O(n+min{5/2,3/4}n), which is one of the fastest known. As

edge connectivity, also vertex connectivity is bounded by 5 in planar graphs, since the neighbors

of a vertex with minimum (unweighted) degree always form a vertex separator of size at most 5.

Furthermore, a graph is 1-vertex-connected if and only if it is 1-edge-connected, which can be

tested by a DFS/BFS. Testing 2-vertex connectivity can be also done in linear time [19, 52],

and we note that these algorithms do not require planarity. Whether a planar graph is 3-

vertex-connected is indicated by SPQR-trees, a data structure that, similar to Gomory-Hu trees,

represents all vertex separators of size 2 in a 2-vertex-connected planar graph. An SPQR-tree

can be again constructed in linear time, as claimed by Hopcroft and Tarjan [83]. However,

Gutwenger and Mutzel [70] show the incorrectness of the linear time algorithm proposed by

Hopcroft and Tarjan, and give a correct linear time implementation. Other techniques related to

vertex connectivity are, for example, ear decompositions [102], and s-t-numberings and bipolar

orientations [19].

1.3.1 Maximum Flows

We give just a brief impression on the classical maximum-flow problem, since, although we use a

maximum-flow algorithm in order to compute minimum separating cuts, the results in this work

do not depend on a concrete maximum-flow algorithm. Instead, we evaluate our algorithmic

approaches (in Part II and Part III, Part I does not employ minimum separating cuts) by

counting necessary cut computations. That is, we use the maximum-flow problem as a black

box and do not care about the actual running time of the implemented algorithm for solving

this problem. The only point where we consider maximum flows in slightly more detail is in

Section 6.2.3. There we need the notion of maximum flows in undirected, weighted graphs in

order to illustrate the nature of Picard-Queyranne DAGs and to substantiate our recomputation

conjecture in the context of dynamic Gomory-Hu trees. Based on this conjecture, we discuss the

worst-case running time of our update procedures for Gomory-Hu trees in Section 9.3.

The classical maximum-flow problem considers a directed, weighted network G = (V,E, c)

with edge costs in R+
0 . The edge costs are usually called capacities in the context of flows. In

Section 6.2.3 we describe how to interpret an undirected, weighted graph as such a directed flow

network, such that applying any maximum-flow algorithm becomes possible.

For a fixed vertex pair {s, t} ✓ V , a flow from s to t (or an s-t-flow for short) in G is a

function f : E ! R+
0 that satisfies the flow conservation property and the capacity constraint.

The flow conservation property is satisfied if the total incoming flow equals the total outgoing

flow at each vertex in V \{s, t}, while at the source s the total outgoing flow dominates the total

incoming flow, and vice versa at the target t. More formally, this is �(v) :=
P

x2N
i

(v) f(x, v)�P
y2N

o

(v) f(v, y) = 0 for all v 2 V \ {s, t}, while �(s)  0 and �(t) � 0, with Ni(v) the

vertices connected to v by an incoming edge (with respect to v) and No(v) the neighbors of v
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reachable by an outgoing edge of v. The capacity constraint is satisfied if f(e)  c(e) for

all e 2 E. The value v(f) of f is the total amount of flow that passes from s to t in G, that is,

v(f) := |�(s)| = �(t). The flow f is maximum if there is no other flow f 0 in G with v(f 0) > v(f).

Flow Algorithms. There exists a vast number of algorithms to compute a maximum s-t-

flow in a given flow network, and several techniques these algorithms rely on. The two most

popular techniques are probably the push-relabel technique and the idea of finding augmenting

paths. While the first method, roughly speaking, pushes as much flow as possible into the

network, starting from the source, and then routes back the flow that cannot get through the

first bottleneck that is reached, the second technique iteratively searches for a path from s to t

where the capacities of the edges are not yet reached, such that some flow can still pass through.

These techniques are used in di↵erent modifications and combined with further ideas resulting in

various algorithms of di↵erent worst-case running times, which in parts are di�cult to compare.

This is because some are given with respect to n and m, which makes a di↵erence for dense and

sparse graphs, others only focus on n, and some depend on further parameters as, for example,

the maximum edge capacity or the final maximum-flow value in G. Furthermore, some authors

provide an amortized running time analysis for their approaches or claim expected running times.

Hence, we exemplarily mention only one algorithm, namely the push-relabel algorithm of

Goldberg and Tarjan [57], which is one of the fastest and most popular maximum-flow algorithms

with a running time in O(nm log(n2/m)). It is part of many implementation libraries like, for

example, the C++ template library LEMON (see Section 1.4). Furthermore, a highly e�cient

implementation of this algorithm is distributed freely (at least for non-commercial use) by IG

Systems (Inc.) under the name HI PR. Further advantages of this method are the possibility to

deduce a minimum separating cut already from a preflow, which is a preliminary state of a flow

during the computation, and in some versions, the indication of the vertices on the source side of

a minimum separating cut by the labeling. Depending on the input graph, computing a cut thus

might be significantly faster than a full flow computation, and deciding the cut side of a given

vertex becomes possible in constant time. A more detailed description on the most important

maximum-flow methods, their relations to each other, some interesting historical notes and an

overview on the di↵erent running times achieved so far the maximum-flow problem is given in

Volume A of Schrijver’s book on combinatorial optimization [129]. We further note that special

graph properties admit di↵erent, often faster, algorithms. For unweighted graphs, for example,

the maximum-flow problem corresponds to the problem of finding a maximum number k of edge-

disjoint paths from s to t, and can thus be solved in O(k2n) time in directed graphs [111], and in

O(m+nk3/2) time in undirected graphs [91]. Weighted, planar graphs even admit running times

in O(n log n) for the directed case [37, 16], and O(n log log n) for the undirected case [85]. For

(undirected and directed) weighted graphs with bounded treewidth, Hagerup et al. [71] could

even give a (sequential) linear time algorithm, resulting from a parallel algorithm with a running

time in O(log n). Note that for general networks the maximum-flow problem is P-complete and

therefore unlikely to be solvable by an e�cient parallel algorithm.

Further Flow Problems. Besides the classical maximum-flow problem there exists a vari-

ety of further flow problem as, for example, the minimum-cost flow problem [56] where each

edge is associated with an additional cost for sending flow through it. The task is then to find

a cheapest flow of value at least d. Another example is the multi-commodity flow problem,

where several pairs of sources and sinks are given and between each pair the flow is demanded
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to transport a designated amount of commodities. Finding an integer multi-commodity flow is

NP-complete [39], however, for fractional flows the problem is solvable by fast approximation

schemes [89]. This problem can be also considered as a minimum-cost problem or as a maxi-

mization problem. A further variant is the maximum concurrent flow problem, where the task

is to maximize the minimal fraction of the flow of each commodity to its demand. Besides edge

capacities and edge costs also vertex capacities and vertex costs are considered in the context of

flow problems. Some of these problem variants can be again reduced to flow problems of only

edge constraints. Flow problems with also a lower bound on the flow of each edge arise for ex-

ample from transportation systems [81]. See also [2] for a survey on Network Flows. Finally we

also point out the multiterminal network flow problem, which sounds like another variant of the

classical maximum-flow problem, however, this problem, originally proposed by Mayeda [106],

is not about finding a function f : E ! R+
0 on edges. Instead, it asks for the local connectiv-

ity �(u, v) of each vertex pair {u, v} in an undirected, weighted graph G, and is thus closely

related to Gomory-Hu trees as we will see in Section 6.

1.4 Graph Instances

This work presents several small and two more detailed experimental studies on dynamic Gomory-

Hu trees and hierarchical cut clusterings. Each of these studies uses a collection of the graph

instances introduced in following. The exact references to the sources of the data is only given

in this section, and we refer to this section in the description of the experiments. We distin-

guish three categories of instances depending on their origin. All instances are considered as

undirected graphs even if the underlying data provides information about edge directions. The

first category describes a bunch of various static instances collected from di↵erent sources in

the context of the 10th DIMACS Implementation Challenge on Graph Partitioning and Graph

Clustering [9]. We have chosen these instances, since they can be considered as benchmark in-

stances for graph clustering, and thus, fit our purposes very well. The second category subsumes

instances obtained from email data provided by the Department of Informatics at KIT2, where

each entry represents an email between two members of the department, provided with an exact

time stamp. From these data we construct static and dynamic graph instances as described be-

low. The third category finally considers two further instances, one we obtained from a further

source and one we gathered ourselves.

For our implementations, we used the template library LEMON (version 1.2.1), which is

an open source graph library written in the C++ providing implementations of common data

structures and algorithms with focus on combinatorial optimization tasks connected mainly with

graphs and networks. The library is part of the COIN-OR project (http://www.coin-or.org). More

details can be found on the webpage http://lemon.cs.elte.hu/trac/lemon/.

1.4.1 Instances of the 10th DIMACS Implementation Challenge

We use only a small extract of the graph instances provided for the implementation challenge.

The complete collection can be obtained from the download section of the challenge webpage

(http://www.cc.gatech.edu/dimacs10/index.shtml). The DIMACS instances are again organized

2Dynamic network of email communication at the Department of Informatics at Karlsruhe Institute of
Technology (KIT). Data collected, compiled and provided by Robert Görke and Martin Holzer of ITI
Wagner and by Olaf Hopp, Johannes Theuerkorn and Klaus Scheibenberger of ATIS, all at KIT. 2011.
i11www.iti.kit.edu/projects/spp1307/emaildata
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in several categories. We list the used instances in tables that show the graph sizes and the

numbers of connected components. Instances marked by (*) provide edge costs di↵erent from 1,

instances marked by (�) are generated instances. The graphs used from the category Clustering

Instances, which provides real-world instances and some generated graphs that are often used

as benchmarks in the graph-clustering communities, are listed in Table 1.1. The following list

further gives brief explanations about the data background, as provided at the challenge web-

page. The challenge webpage further specifies the original sources of the data. We point out

the instances netscience and delaunay n10, delaunay n11, and delaunay n12, which show a very

contrary behavior in our experiments due to their di↵erent structures. While netscience shows

clearly indicated clusters, the Delaunay triangulations have a very regular structure. Figure 1.5

shows netscience and delaunay n10 as an example of the Delaunay graphs. The instance lesmis is

further depicted by Fig. 12.6 and the network karate is given by Fig. 11.4.

Table 1.1: Real-world instances and randomly generated graphs from the DIMACS category
Clustering Instances.

graph n m comp graph n m comp

karate 34 78 1 dolphins 62 159 1
lesmis* 77 254 1 polbooks 105 441 1
adjnoun 112 425 1 football 115 613 1
jazz 198 2742 1 celegansneural* 297 2148 1
celegans metabolic 453 2025 1 email 1133 5451 1
polblogs 1490 16715 268 netscience 1589 2742 396
data 2851 15093 1 power 4941 6594 1
hep-th 8361 15751 1332 PGPgiantcompo 10680 24316 1
astro-ph 16706 121251 1029 cond-mat 16726 47594 1188
as-22july06 22963 48436 1 cond-mat-2003 31163 120029 1599
cond-mat-2005 40421 175691 1798 G n pin pout� 100000 501198 6

• jazz – jazz musicians network

• celegans metabolic – metabolic network of Caenorhabditis elegans (roundworm)

• email – network of email interchanges between members of the Univeristy Rovira i Virgili

(Tarragona)

• PGPgiantcompo – giant component of the network of users of the Pretty-Good-Privacy

algorithm for secure information interchange

• adjnoun – adjacency network of common adjectives and nouns in the novel David Copper-

field by Charles Dickens

• as-22july06 – a symmetrized snapshot of the structure of the Internet at the level of au-

tonomous systems, reconstructed from BGP tables posted by the University of Oregon

Route Views Project

• astro-ph – network of coauthorships between scientists posting preprints on the Astro-

physics E-Print Archive between January 1, 1995 and December 31, 1999

• celegansneural – weighted network representing the neural network of Caenorhabditis ele-

gans (roundworm)

• cond-mat – network of coauthorships between scientists posting preprints on the Condensed

Matter E-Print Archive between January 1, 1995 and December 31, 1999

• cond-mat-2003 – updated network of coauthorships between scientists posting preprints on

the Condensed Matter E-Print Archive. This version includes all preprints posted between
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(a) Large components of netscience. (b) Instance delaunay n10.

Figure 1.5: Cut clustering with best modularity value among all cut clusterings in the com-
plete hierarchy (see Section 11.2) of the network netscience (red vertices correspond to rep-
resentatives), and the network delaunay n10. The complete cut-clustering hierarchy for the

latter consists of only the two trivial clusterings.

January 1, 1995 and June 30, 2003. The largest component of this network, which contains

27519 scientists, has been used by several authors as a test-bed for community-finding

algorithms for large networks

• cond-mat-2005 – updated network of coauthorships between scientists posting preprints on

the Condensed Matter E-Print Archive. This version includes all preprints posted between

January 1, 1995 and March 31, 2005

• dolphins – social network of frequent associations between 62 dolphins in a community

living o↵ Doubtful Sound, New Zealand

• football – network of American football games between Division IA colleges during regular

season Fall 2000

• hep-th – network of coauthorships between scientists posting preprints on the High-Energy

Theory E-Print Archive between January 1, 1995 and December 31, 1999

• karate – social network of friendships between 34 members of a karate club at a US univer-

sity in the 1970s

• lesmis – coappearance network of characters in the novel Les Miserables

• netscience – coauthorship network of scientists working on network theory and experiment

• polblogs – network of hyperlinks between weblogs on US politics, recorded in 2005

• polbooks – network of books about US politics published around the time of the 2004

presidential election and sold by the online bookseller Amazon.com, edges between books

represent frequent copurchasing of books by the same buyers.

• power – network representing the topology of the Western States Power Grid of the US

• G n pin pout – graph generated using a two-level Gnp random-graph generator

A few graphs are taken from further categories. The Delaunay graphs delaunay n10, delaunay n11

and delaunay n12 have been generated as Delaunay triangulations of random points in the unit

square. The graph rgg n 2 15 s0 is a random geometric graph with 215 vertices. Each vertex is

a random point in the unit square and edges connect vertices whose Euclidean distance is below

0.55 lnn/n. This threshold was chosen in order to ensure that the graph is almost connected.
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Chris Walshaw’s graph partitioning archive contains 34 graphs that have been very popular as

benchmarks for graph partitioning algorithms. We have taken the instance data from there.

More details are provided in Table 1.2.

Table 1.2: Real-world and randomly generated instances from other DIMACS categories.

graph n m comp graph n m comp

delaunay n10� 1024 3056 1 delaunay n11� 2048 6127 1
data 2851 15093 1 delaunay n12� 4096 12264 1
rgg n 2 15 s0� 32768 160240 6

1.4.2 Instances Obtained from Email Data

For our experiments on dynamic graph algorithms, we constructed evolving instances from these

data as follows. The members of the department correspond to vertices and the edges result

from email contacts between the individuals. Starting with the first recorded email, each new

email and each email that becomes older than 72 hours then indicates a new time step. The

edges in a snapshot at a particular time step are weighted by the number of emails sent between

two corresponding individuals during the last 72 hours. Singletons are deleted as soon as the

last incident email contact to a neighbor times out. This also results in another time step.

Analogously, if an email is sent between from or to an individual that is not yet represented by

a vertex, a new vertex is inserted, again resulting in a new time step. In this way we receive a

series of snapshots, one for each time step, where consecutive snapshots can be obtained from

each other by exactly one atomic change, namely the deletion or insertion of a vertex or the

decrease or increase (including the deletion and insertion) of the cost of an edge. An exemplary

snapshot of a dynamic graph obtained in this way is shown in Fig. 1.4. In Section 11.2.2 we

consider two further snapshots, emailgraph550K 19 and emailgraph550K 26, also as static graphs.

Figure 1.6(a) exemplarily shows the instance emailgraph550K 19 clustered with the complete

hierarchical cut-clustering approach introduced in Section 11.2.

1.4.3 Further Instances

Additionally to the instances listed above, we also use the protein interaction network bo cluster

published by Jeong et al. [86] and a snapshot of the linked wiki pages at dokuwiki org gathered

ourselves. The sizes and numbers of components are given in Table 1.3. Figure 1.6(b) exemplarily

shows the instance bo cluster clustered with the complete hierarchical cut-clustering approach

introduced in Section 11.2.

Table 1.3: Testbed of further real-world networks.

graph n m comp graph n m comp

bo cluster 2114 2203 417 dokuwiki org 4416 12914 110
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(a) Giant component of emailgraph550K 19. (b) Giant component of bo cluster.

Figure 1.6: Cut clusterings with best modularity values among all cut clusterings in the
complete hierarchies (see Section 11.2) of the networks emailgraph550K 19 and bo cluster.

1.5 A Brief Glance at Complexity Theory

This section is meant to give a short review on the terms and concepts related to computational

complexity theory that are used in this thesis. It is neither comprehensive nor suitable to learn

about complexity theory from scratch. For further explanations we recommend the textbook of

Sanjeev Arora and Boaz Barak [7]. Since we exclusively consider graph-theoretic problems in

this work, we restrict the following descriptions and explanations to graph instances.

Graph-Theoretic Problems. A graph-theoretic decision problem considers a graph instance

and usually asks for the existence of an object somehow related to the given graph. Such an

object can be for example a cut of certain cost, a special subgraph, or a clustering with special

properties. Some problems also asks for a graph property, instead of the existence of an object.

However, in most cases the property is characterized by the existence or nonexistence of an object,

such that the problem can be reformulated accordingly. Whether a graph is, for example, planar,

is a matter of the existence of a planar embedding or the nonexistence of a subgraph that is

a subdivision of K5 or K3,3. Whether an undirected, unweighted graph is c-edge-connected is

determined by the existence or nonexistence of a cut with cost at least c. The input size of a

graph instance is usually measured by the number of nodes or the number of edges or both,

where the number of edges is at most the squared number of nodes. If not denoted otherwise,

the running time of an algorithm is described by the number of instructions that are performed

to solve a problem. However, in most cases, one is not interested in the exact running time,

that is, the number of instructions needed to solve a problem for a concrete instance, but in the

behavior of the running time with respect to increasing input sizes of the instances. The latter

yields a function in the input size which can be simplified by the help of the big O notation. The

big O is the only Landau symbol we will use in this thesis. A function f is in the class O(g) if,

asymptotically, it does not grow faster than g multiplied by a constant factor. That is, we can

use a simple function for g that ignores constant factors and addends in f that are dominated
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by faster growing components, and thus, describe the asymptotical behavior of f by the simple

notation of O(g).

Polynomial-Time Solvability of Graph-Theoretic Problems. A problem is solvable in

polynomial time if there exists a polynomial-time algorithm that solves it. An polynomial-time

algorithm is an algorithm with an asymptotic running time bounded by a polynomial g in

the input size, that is, the running time is in O(g). The class of all polynomial-time solvable

decision problems (including also the problems that are not graph-theoretic) is denoted by P.

Most problems considered in this work are in the class P. For some problems considered in Part

I, however, we cannot give a polynomial-time algorithm, but prove that they are in the class NP,

which contains the class P.

The Class NP. Roughly speaking, the class NP contains all decision problems for which

the yes-instances (that is, the instance with positive answer) have a polynomial-time checkable

certificate for the correctness of a given answer. In the context of graph-theoretic problems, such

a certificate is usually already given by the object the problem relies on, that is, an object that

witnesses by its existence that a given instance is a yes-instance is a certificate. The certificate is

polynomial-time checkable if there exists a polynomial-time algorithm that decides whether or not

a given object of the structure of the certificate witnesses that the given instance is a yes-instance,

where the polynomial running time of the algorithm is supposed to be polynomial in the input size

of the instance (not the certificate). This implies that also the size of the certificate is polynomial

in the size of the instance. The abbreviation NP stands for non-deterministically polynomial-

time. The idea is that an object of the structure of a certificate can be chosen randomly, and thus,

guessing well yields a polynomial-time decision for yes-instances, and implicitly, since guessing

well is a priori not possible for no-instances, also to a polynomial-time decision for no-instances,

which in total leads to a polynomial-time algorithm solving the problem.

To show that a graph-theoretic decision problem, where the yes-instances are characterized

by the existence of an object, is in NP, it thus su�ces to argue that deciding whether or not a

randomly chosen potential certificate witnesses a yes-instance is possible in polynomial time.

Polynomial-Time Reduction. The idea of a polynomial-time reduction of one decision prob-

lem to another is the following. If one problem is polynomial-time solvable then the other problem

can be also solved in polynomial time by first reducing it (in polynomial time) to the former

problem and then solving this problem. In practice this means, problem A is reducible to prob-

lem B if each instance of problem A can be transformed, in polynomial time, into an instance

of B such that the instance of A is a yes-instance if and only if the instance of B is a yes-instance.

Interestingly, the satisfiability problem (which is no graph-theoretic problem) is a problem in

NP for which Cook [26] had proven that each further problem in NP can be reduced to it in

polynomial time. That is, if we could find a polynomial-time algorithm to solve the satisfiability

problem, we would have proven that the classes P and NP are identical. The question whether

P=NP is one of the most popular open problems in the field of theoretical informatics. A problem

to which all problems in NP can be reduced in polynomial time is called NP-hard. If the problem

is also in NP, it is called NP-complete. Meanwhile, there are many NP-hard and NP-complete

problems known, besides the satisfiability problem. Due to the nice concept of reduction, proving

the NP-hardness of a problem can be done by simply proving that the satisfiability problem or

any other NP-hard problem can be reduced to the given problem. In Part I of this thesis, we
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conduct some NP-hardness proofs. In Part III we further mention some NP-hard optimization

problems in the context of graph clustering. This actually means that the corresponding decision

problem is NP-hard. An optimization problem can be transformed into a decision problem by

the use of a lower bound for the objective function. So the problem does no longer ask for an

optimal solution, but for the existence of a solution at least as good as the given bound.

We finally remark that, although the minimization of an edge cut with respect to its cost given

by the sum of all crossing edges is in P, there also exist many NP-hard cut-based minimization

problems as, for example, the sparsest cut problem (which will come across in Part III as the

problem of determining the expansion of a graph) or the balanced separator problem. Also the

maximum-cut problem is NP-hard [93]. Since up to now there is no polynomial-time algorithm

known for any NP-hard problem, people apply di↵erent concepts like fixed-parameter tractability

or approximation algorithms. Madry [105] recently developed a general framework that admits

poly-logarithmic approximation algorithms for NP-hard cut-based minimization problems.
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CHAPTER 2

Introduction –

A Bunch of Problem Variants

An augmentation of an (undirected) graph G = (V,E) is a set W ✓ Ec of edges of the comple-

ment graph. The augmented graph G0 = (V,E [W ) is denoted by G + W . We study several

problems where the task is to augment a given planar graph to be k-regular (for k = 1, . . . , 5),

while preserving planarity. The problem of augmenting a graph with the goal that the resulting

graph has some additional properties is a well-studied problem and has several applications, for

example, in network planning [38], where one seeks to increase the robustness at small cost.

Hence, a typical goal is to increase the connectivity of the graph while adding few edges. Fred-

erickson and Ja’Ja’ [49] study the problem of making a graph biconnected by adding few edges.

They show that the problem of biconnecting a graph at minimum cost is NP-hard, even if all

edge costs are in {1, 2}. Watanabe and Nakamura [138] give an O(cmin{c, n}n4(cn+m)) algo-

rithm for minimizing the number of edges to make a given graph with n vertices and m edges

c-edge-connected. Frank [48] and Nagamochi and Ibaraki [113] provide surveys on connectivity

augmentation of undirected and directed, unweighted and weighted graphs with respect to edge

and vertex connectivity. Motivated by graph drawing algorithms that require biconnected input

graphs, Kant and Bodlaender [88] initiated the study of augmenting planar graphs to increase

connectivity while preserving planarity. They show that minimizing the number of edges for the

biconnected case is NP-hard and give e�cient 2-approximation algorithms for both, 2-edge and

2-vertex connectivity augmentation. Rutter and Wol↵ [122] give a corresponding NP-hardness

result for planar 2-edge connectivity. Moreover they study the complexity of geometric augmen-

tation problems, where the input graph is a plane geometric graph and additional edges have to

be drawn as straight-line segments. Abellanas et al. [1], Tóth [135] and Al-Jubeh et al. [3] give

upper bounds on the number of edges required to make a plane straight-line graph c-connected

for c = 2, 3. For a survey on plane geometric graph augmentation see [84].

We study the problem of augmenting a graph to be k-regular for all possible k while preserving

planarity. In doing so, we additionally seek to raise the connectivity as much as possible. Since

the minimum degree of a planar graph does not exceed 5 and the connectivity does not exceed the

minimum degree in a graph, it is 0  c  k  5. Specifically, we study the following problems.

Problem: Planar k-Regular Augmentation (k-Pra)

Instance: Planar graph G = (V,E)

Task: Find an augmentation W such that G+W is k-regular and planar.

25
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Table 2.1: Overview of problem variants and results.

k = 1 k = 2 k = 3 k = 4 k = 5

Pra/Fepra Pra/Fepra Pra Fepra Pra/Fepra Pra/Fepra c

O(n)
Thm. 2.1 O(n)

Thm. 2.2

N
P
C

T
h
m
.
3
.1 O(n1.5)

Thms. 4.16,

T 4.17,4.18

N
P
C

T
h
m
.
5
.1

N
P
C

T
h
m
.
5
.3

0

1

2

NPC Thm. 4.19 3

4

5

Problem: Fixed-Embedding Planar k-Regular Augmentation (k-Fepra)

Instance: Planar graph G = (V,E) with a fixed (topological) planar embedding

Task: Find an augmentation W such that G +W is k-regular, planar, and W can be added in

a planar way to the fixed embedding of G.

Moreover, we study c-connected k-Pra and c-connected k-Fepra, for c = 1, . . . , 5, where the

goal is to find a solution to k-Pra and k-Fepra such that the augmented graph is c-connected.

For simplicity, the basic problems k-Pra and k-Fepra (without further connectivity constraints)

are considered as c-connected problem variants with c = 0. Table 2.1 gives an overview of the

problem family considered in this work and our results. In particular, we give for each variant

either an e�cient algorithm or an NP-hardness proof.

While it is not di�cult to see that c-connected k-Pra/k-Fepra can be solved in polynomial

time for k = 1, 2, we show that for k = 4, 5 all problem variants are NP-complete. For k = 3,

however, considering a variable embedding or a fixed embedding as well as requiring di↵erent

connectivity properties makes a di↵erence. Using a modified version of an NP-hardness reduction

by Rutter and Wol↵ [122], we show that c-connected 3-Pra is NP-complete for c = 0, . . . , 3, even

if the input graph is biconnected. Note that a triconnected graph of maximum degree 3 must be

3-regular. We further prove that 3-connected 3-Fepra is again NP-hard. Our main results are

e�cient algorithms for c-connected 3-Fepra for c = 0, 1, 2.

We note that Pilz [119] has simultaneously and independently studied the planar 3-regular

augmentation problem. He showed that it is NP-hard and posed the question on the complexity if

the embedding is fixed. Our hardness proof strengthens his result (to biconnected input graphs)

and our algorithmic results answer his open question.

2.1 Contribution and Outline

Our results on planar 3-regular augmentation are jointly published with Jonathan Rollin and

Ignaz Rutter in [77]. The comprehensive results presented in this thesis have been recently

accepted under minor revision at Algorithmica [78].

Chapter 2: Introduction – A Bunch of Problem Variants
We introduce basic notions used throughout this part and briefly cover the results on c-connected

1- and 2-Pra/Fepra at the end of this chapter.
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Chapter 3: The Nature of Planar 3-Regular Augmentation
We prove the NP-completeness of c-connected 3-Pra in Section 3.1 and give a simple O(n2.5)-

time decision algorithm for 3-Fepra in Section 3.2. Unfortunately, this simple algorithm is not

suitable for incorporating additional constraints, such as increasing the connectivity. Therefore,

we study 3-Fepra more systematically in Section 3.3. The problem 3-Fepra is equivalent to

finding a node assignment that assigns the vertices of degree less than 3 to the faces of the graph

such that, for each face f , an augmentation exists that can be embedded inside f in a planar

way and raises the degrees of all its assigned vertices to 3. We completely characterize these

assignments and show that their existence can be tested e�ciently.

As an intermediate result in Section 3.3, we further show that the non-planar 3-regular aug-

mentation problem can be decided in O(n) time. This problem is equivalent to finding a degree-

constrained subgraph in the complement of a graph where each vertex v has degree 3 � deg(v)

in the subgraph, with deg(v) the degree of v in the input graph.

Chapter 4: Algorithms for
C-connected Planar 3-Regular Augmentation with Fixed Embedding
In Section 4.1 we strengthen our characterizations of the node assignments to the case where the

graph should become c-connected for c = 1, 2 and show that our algorithm can be extended to

incorporate these constraints. Up to this point all algorithms have a running time of O(n2.5).

Based on the characterizations given in Section 3.3 and Section 4.1, we improve the running time

for c-connected 3-Fepra (c = 0, 1, 2) to O(n1.5) in Section 4.2. In Section 4.3 we provide the

hardness proof for 3-connected 3-Pra.

Chapter 5: Complexity of Planar 4- and 5-Regular Augmentation
The NP-hardness of c-connected k-Pra/k-Fepra for k = 4, 5 is finally proven in Chapter 5. We

conclude and pose open questions at the end.

2.2 Preliminaries

In Part I of this work, we consider planar k-regular graphs. A graph is planar if it admits a

planar embedding into the Euclidean plane, where each vertex (edge) is mapped to a distinct

point (Jordan curve between its endpoints) such that curves representing distinct edges do not

cross. It is further k-regular if each vertex is adjacent to exactly k neighbors. Since planarity

and k-regularity do not care about multiple edges, loops, directed or weighted edges, we may

assume simple, unweighted, undirected graphs in this part. We call an augmentationW k-regular

if G + W is k-regular, and W is called planar if G + W is planar. A planar embedding of a

graph subdivides the Euclidean plane into faces. We denote the set of all faces of a planar graph

by F . When we seek a planar augmentation preserving a fixed embedding, we require that the

additional edges can be embedded into these faces in a planar way. Whether a given graph is

planar can be tested in linear time using, for example, an algorithm by Boyer and Myrvold [18],

which either returns a Kuratowski subdivision of either K5 or K3,3 disproving the planarity of

the input graph, or a planar embedding confirming planarity.

We further introduce generalized perfect matchings, which will be our main algorithmic tool

in this part. Given a graph H = (V,E) and a mapping d : V ! N specifying a demand for each

vertex, a generalized perfect matching is a graph H 0 = (V,E0) with E0 ✓ E such that degH0(v) =

d(v) for all v 2 V , with degH0(v) the degree of vertex v in H 0. By a result of Gabow [50],
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where this is referred to as a degree-constrained subgraph, the existence of a generalized perfect

matching can be decided in time O(
pP

v2V d(v)|E|).
For a vertex set V , we denote by V i ✓ V the set of vertices of degree i. In particular, for

the 3-regular augmentation problems, we will frequently refer to the set of vertices with degree

less than 3. For ease of use, we denote this set by V ? = V 0 [ V 1 [ V 2 . Clearly, an k-regular

augmentationW must contain k�i edges incident to a vertex in V i . We say that a vertex v 2 V i

has k � i (free) valencies and that an edge of an augmentation incident to v satisfies a valency

of v. Two valencies are adjacent if their vertices are adjacent.

An augmentation W with respect to a fixed embedding of G is valid, if the endpoints of each

edge in W share a common face in G. We assume that a valid augmentation is associated with

a (not necessarily planar) embedding of its edges into the faces of G such that each edge is

embedded into a face shared by its endpoint. Without loss of generality, we further assume that

this embedding is such that any two edges cross at most once and edges that share a common

endpoint do not cross. A valid augmentation is planar if the edges can be further embedded

in a planar way into the faces of G. A valid k-regular augmentation can be e�ciently found

by computing a generalized matching in the subgraph of Gc that contains edges only between

vertices that share a common face of G. In order to construct a valid k-regular augmentation

for a planar graph G with a fixed planar embedding, we choose k � i for the demand of a

vertex in V i , for i = 0, ..., k. Using Gabow’s algorithm such a matching can then be computed

in O(
p
|V ||E|) = O(n2.5) time.

Recall that a graph G is connected if it contains a path between any pair of vertices, and it

is c-(edge)-connected if it is connected and removing any set of at most c � 1 vertices (edges)

leaves G connected. A 2-connected graph is also called biconnected and a 3-connected graph is

also called triconnected. We note that, generally, c-connectivity implies c-edge connectivity, and

the notions of c-connectivity and c-edge connectivity coincide on graphs of maximum degree 3.

In particular, a graph of maximum degree 3 is biconnected if and only if it is connected and does

not contain a bridge, that is, an edge whose removal disconnects the graph.

Solutions for C-connected Planar 1- and 2-Regular Augmentation. We briefly cover

the results on c-connected k-Pra/Fepra for k = 1, 2. Observe that a given input graph (of

maximum degree 1) can be augmented to be 1-regular, that is, the graph becomes a perfect

matching, if and only if it has an even number of vertices. A connected 1-regular augmentation

exists if and only if the graph has exactly two vertices. Note that, since the graph cannot contain

cycles, it cannot become non-planar. That is, it makes no di↵erence whether or not we assume

a fixed embedding, and we obtain the following theorem.

Theorem 2.1. For c = 0, 1 c-connected 1-Pra and 1-Fepra can be solved in O(n) time.

For the 2-regular case, we state an analogous theorem.

Theorem 2.2. For c = 0, 1, 2 c-connected 2-Pra and 2-Fepra can be solved in O(n) time.

To see the statement for the 2-regular case, first consider the variant without a fixed em-

bedding. We want to decide whether there is an augmentation that makes the input graph (of

maximum degree 2) consist of a set of simple cycles. We disregard the already existing cycles

and remove them from the graph as they are not relevant. The remaining degree-0 and degree-1

vertices, if any, can be augmented to form a (single) cycle if and only if there are at least three
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of them. The augmentation becomes connected (and as a cycle also 2-connected) if the input

graph is either already a single cycle or if it does not contain a cycle.

Now assume that the input graph additionally has a fixed embedding. Note that this makes a

di↵erence only if the input graph contains at least one cycle. But then a connected/biconnected

augmentation is impossible unless the graph consists of a single cycle. For the case where we do

not care about connectivity, it is necessary and su�cient that, for each face f of G, the graph

induced by the degree-0 and degree-1 vertices incident to f can be augmented to form a (single)

cycle (see the variant without a fixed embedding). All cases can easily be decided in O(n) time.





CHAPTER 3

The Nature of Planar 3-Regular Augmentation

In this chapter, we give a first assessment of the complexity of planar 3-regular augmentation

problems. More specifically, we show that 3-Pra is NP-complete, even if the input graph is

already biconnected. On the other hand, we give a first simple polynomial-time algorithm for 3-

Fepra. Afterwards, we study the nature of 3-Fepra in more detail. The insights we gain

from this study will help to design e�cient algorithms solving 3-Fepra even with additional

connectivity constraints in Chapter 4. We start with the variable embedding case.

3.1 NP-Completeness of 3-PRA

We prove the following theorem.

Theorem 3.1. The problem c-connected 3-Pra is NP-complete for c = 0, 1, 2, 3, even if the

input graph is biconnected.

Proof. Obviously, 3-Pra is in NP for any value of c since, given a planar graph G, we can guess a

set W ✓
�
V
2

�
of non-edges of G and then test e�ciently whether G+W is 3-regular, planar, and

has the required connectivity. We prove NP-hardness by reducing from the planar 3-satisfiability

c3

c5

c2

c6
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c1

c7

x2 x3 x4 x5 x6x1

Figure 3.1: Layout of a

planar 3Sat formula.

problem (Planar3Sat), which is known to be NP-hard [99].

The reduction is inspired by and indeed very similar to a re-

duction of Rutter and Wol↵ [122], showing that it is NP-hard

to find a smallest edge set that augments a given graph to be

2-edge connected and planar. An instance of Planar3Sat

is a 3Sat formula ' whose variable–clause graph is planar.

Such a graph can be laid out (in polynomial time) such that

the variables correspond to pairwise axis-aligned rectangles

on the x-axis and clauses correspond to non-crossing three-

legged “combs” above or below the x-axis [95]; see Fig. 3.1.

We now construct a biconnected planar graphG' that admits a planar 3-regular augmentation

if and only if ' has a satisfying truth assignment. We further show that any 3-regular planar

augmentation of G' indeed makes G' 3-connected. Therefore, the following construction proves

NP-hardness for all possible connectivity constraints.

The graph G' consists of gadgets, which are subgraphs that represent the variables, literals,

and clauses of '; see Fig. 3.2. For each gadget, we will argue that there are only a few ways to

embed and augment it to be 3-regular and planar. In the figure, the gadgets consist of the (black
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Figure 3.2: Part of the graph G' for a SAT formula ' that contains the clause (x_¬y _ z).
The augmentation (dotted edges) corresponds to the assignment x = y = false and z = true.

and green) solid line segments; the (red) dotted line segments represent non-edges of G' that

are candidates for an augmentation of G'. All bends and junctions of line segments represent

vertices of degree at least 3. Vertices of degree greater than 3 are actually modeled by small

cycles of vertices of degree 3, as indicated in the left of Fig. 3.2. Vertices with degree less than 3

are highlighted by empty disks. The set of black solid edges forms a subgraph of G' that we

call the frame. The green solid edges form free chains, which connect two degree-2 vertices to

the frame. The thick black edges of the frame bound the variable gadgets. Variable gadgets

that correspond to neighboring variables in the layout of the variable–clause graph of ' share a

common boundary. Hence G' is always connected. Additionally, we identify the left boundary

of the leftmost variable gadget with the right boundary of the rightmost variable gadget.

Consider the graph G0' that is obtained from the frame by contracting all vertices of degree 2

and all cycles that are used to model vertices of degree greater than 3. The graph G0' coincides

with a graph for which Rutter and Wol↵ show in their reduction that it is 3-connected [122], and

thus, that it has a unique planar embedding [140]. Conversely, the frame of G' can be obtained

fromG0' by subdividing edges and replacing vertices of degree at least 4 by cycles, which obviously

preserves the uniqueness of the planar embedding. In other words, the embedding of G' is fixed

up to the embedding of the free chains, which may be embedded in two distinct faces, each.

Furthermore, the frame is biconnected, since subdividing edges and replacing vertices of degree

at least 4 by cycles in the 3-connected graph G0' preserves at least biconnectivity. Since G' is

obtained from the frame by adding free chains, which are paths between existing endpoints, G'

is also biconnected.

A planar 3-regular augmentation W of G' finally fixes the embedding of the free chains, and

thus, the embedding of the whole graph G'. Furthermore, W induces an assignment of the

degree-2 vertices of G' to incident faces by considering a vertex v as assigned to a face f if,

in the planar embedding of G' +W , the edge of W incident to v is embedded in the (former)

face f . The assignment induced by W has the following properties.

(P1) Each face is assigned an even number of vertices.

(P2) Each face that is assigned two adjacent vertices is assigned at least four vertices.

We call an assignment with these properties valid. Conversely, it is readily seen that given a valid

assignment for G', a planar 3-regular augmentation can always be constructed. We thus need

to show that G' admits an embedding with a valid assignment, if and only if ' is satisfiable.

A variable gadget consists of two rows of square faces where the horizontal edge between the

two leftmost faces and the horizontal edge between the two rightmost faces is missing. E↵ectively,
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the inner faces of a variable box form a cycle. Starting from the leftmost (rectangular) face, we

call the faces odd and even. The number of even and odd faces per variable gadget depends

on the number of clauses that contain the corresponding literals. Each interior vertical edge

is subdivided by a degree-2 vertex. Due to property (P1), a valid assignment assigns these

subdivision vertices either all to the odd faces or all to the even faces of the variable. Regarding

the satisfiability of ', the interpretation will be such that a variable is true if all its subdivision

vertices are assigned to even faces and false otherwise.

A literal gadget consists of a square face that lies immediately above or below the variable

gadget. A positive literal (such as the one labeled with x in Fig. 3.2) is attached to an even face,

a negated literal (such as the one labeled with ¬y in Fig. 3.2) is attached to an odd face. Each

literal gadget contains two adjacent subdivision vertices at the edge it shares with the clause

gadget, and one free chain. The latter is attached to the boundary shared by the literal gadget

with the variable gadget. Due to property (P2), a valid assignment either fixes the embedding

of the free chain to the face of the literal gadget and assigns the subdivision vertices to the

same face, or it embeds the chain in the face of the attached variable gadget and assigns the

subdivision vertices to the face of the attached clause gadget.

Finally, each clause gadget consists of a single rectangular face that contains two adjacent sub-

division vertices and a valid assignment assigns at least two other degree-2 vertices (besides the

subdivision vertices of the clause gadget) to the face of the clause gadget, due to property (P2).

If the subdivision vertices of a variable are assigned to the even faces, that is, the variable

is true, none of the free chains of the negated literal gadgets, which are attached to the odd

faces, can be embedded into the faces of the variable gadget. Hence, they must be all embedded

into the faces of the literal gadgets, which implies that the negated literal gadgets all behave the

same. The case where the variable is false, that is, where the subdivision vertices of the variable

gadget are assigned to the odd faces, is symmetric. Consequently, the subdivision vertices of the

literal gadgets whose free chains are all embedded into the faces of the literal gadgets, are not

assigned to the face of the attached clause gadget, and thus, do not provide any of the additional

valencies that are required at the face of the clause gadget by a valid assignment.

However, if G' admits an embedding with a valid assignment, then, for each clause gadget, the

subdivision vertices of at least one literal gadget are assigned to the face of the clause gadget and

the free chain of this literal gadget is embedded into the face of the attached variable gadget.

Hence, the variable is true if the literal gadget is positive and false if the literal gadget is

negated. In other words, if G' admits an embedding with a valid assignment, each clause gadget

is attached to at least one positive literal gadget whose free chain is embedded into a face of a

variable gadget that is assigned true or to at least one negated literal gadget whose free chain

is embedded into a face of a variable gadget that is assigned false. This eventually induces a

satisfying truth assignment for '.

Conversely, it is easy to see that, if ' has a satisfying truth assignment, a corresponding

assignment can be found. Furthermore, our reduction—including the computation of the em-

bedding of the variable–clause graph—is polynomial, since we use only a constant number of

vertices and edges for each literal and clause gadget, and the number of vertices used for the

variable gadgets only depends on the number of clauses that contain the variable. For each such

clause a constant number of vertices and edges is used in the variable gadget.

It remains to show that any planar 3-regular augmentation makes G' 3-connected. To this

end, we construct the augmented graph from the 3-connected graph G0' with steps that preserve
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3-connectivity. First, replacing each vertex of degree at least 4 by a cycle of degree-3 vertices

obviously preserves 3-connectivity. The remaining edges and vertices can all be inserted by

subdividing two edges that share a face and connecting the new vertices by an edge. This is one

of the well-known Barnette-Grünbaum operations [10], which preserve 3-connectivity.

3.2 A Simple Polynomial-Time Algorithm for 3-FEPRA

Next, we give a simple, polynomial-time algorithm for 3-Fepra. In a first step, we seek a valid

3-regular augmentation W of G, that is, an augmentation such that, for each edge, there exists a

face of G that is incident to both endpoints of the edge. Since G has a fixed planar embedding, we

assume that each edge in W is embedded within a face of G, possibly crossing some other edges

in W that are embedded in the same face. Such an augmentation can be found in O(n2.5) time

using Gabow’s algorithm [50]. In a second step, we show that W can always be transformed into

a planar 3-regular augmentation. The main idea is to show that, as long as the augmentation is

not planar, we can rewire edges such that we get a new augmentation with fewer crossings.

Let G = (V,E) be a planar graph of maximum degree 3 with a fixed planar embedding and

let W be a valid 3-regular augmentation with at most one crossing between any pair of edges

(resulting from a generalized perfect matching as described above).

Proposition 3.2. Let G = (V,E) be a planar graph of maximum degree 3 with a fixed planar

embedding. Let W be a valid 3-regular augmentation of G. Then G admits a planar 3-regular

augmentation.

Proof. We assume without loss of generality that G+W is connected. Otherwise, the connected

components can be treated independently. Next we show that we can even assume that G is

connected.

Claim: There is a set P ✓W such that G+P is connected and the edges of W can be embedded

into the faces of G in such a way that the edges of P are crossing-free.

We choose P ✓ W as a set of edges that spans all connected components of G. More

precisely, P is the edge set of a spanning tree of the graph that is obtained from G + W by

contracting each connected component of G to a vertex. Such a set exists since G + W is

connected. Clearly, G + P is planar, and, since no edge of P subdivides a face of G, the

remaining edges of W can be embedded inside the faces of G+ P . This proves the claim.

We now choose P as in the claim, change the embedding of the edges of W \P such that the

edges in P are free of crossings and then consider W \ P as an augmentation of the connected

graph G+ P .

In the following we can thus assume G is connected. In particular, each face f of G has now

a single facial cycle Cf . We note that each vertex that forms a vertex separator occurs multiple

times along Cf . When considering an edge {u, v} embedded inside f this naturally defines a

chord of Cf by taking for each endpoint its occurrence on Cf that corresponds to its embedding

inside f . Assuming that any pair of edges in W crosses at most once and adjacent edges do

not cross, we thus find that two edges cross each other if and only if their endpoints along Cf

alternate. Our strategy for the proof is now to show that in this case we can modify W or its

embedding such that the number of crossings decreases. Since the number of crossings is at

most n2 (as G is connected, and thus, there are at most n/2 edges in W ), this yields a planar

augmentation after at most n2 modification steps.



Chapter 3 : The Nature of Planar 3-Regular Augmentation 35

a b

d

c
(a) Crossing edges.

a b

d

c
(b) Exchange.

a b

d

c
(c) Exchange.

Figure 3.3: Illustration of the replacement of two crossing edges {a, b} and {c, d} by ei-
ther {a, c} and {b, d} or by {a, d} and {b, c}.
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Figure 3.4: The di↵erent cases for reducing crossings or the potential. Edges of G are drawn
as solid line segments, edges of W as dashed line segments.

Let e1 = {a, b} and e2 = {c, d} be two edges that cross inside a face f , that is, their end-

points along Cf alternate. Without loss of generality, their circular order along Cf is acbd;

see Fig. 3.3(a). If there is at least one pair of edges {a, c} and {b, d} or {a, d} and {b, c} such

that G + W does not yet contain an edge of this pair, we can exchange {a, b} and {c, d} with

this pair, that is, with either {a, c} and {b, d} or {a, d} and {b, c}; see Fig. 3.3(b) and Fig. 3.3(c)

for an illustration. Note that any edge of W \ {e1, e2} that crosses one of the replacement edges

also crosses e1 or e2, and if an edge crosses both replacement edges, then it crosses also both e1

and e2. Since the two replacement edges do not cross each other, such a replacement decreases

the number of crossings.

Otherwise, if such a replacement is not possible, assume without loss of generality that G+W

contains {a, c} from the first and {a, d} from the second pair. We distinguish cases based on

whether these edges belong to G or to W .

First, assume that {a, c} and {a, d} both belong to W ; see Fig. 3.4(a). But W also contains

the edge {a, b}. This implies that a has degree 0 in G, contradicting the assumption that G is

connected.

Second, assume that {a, c} and {a, d} both belong to G; see Fig. 3.4(b). They hence do not

cross any edges. Since W contains {a, b}, the vertex a has degree 2 in G, which implies that {a, c}
and {a, d} form a path. Thus, we simply redraw the edge {c, d} along this path on the other

side than {a, b}. Afterwards {c, d} is free of crossings.

Third, assume that one of {a, c} and {a, d} belongs to G and one is in W . Without loss of

generality, assume {a, c} 2 E and {a, d} 2 W ; see Fig. 3.4(c). If {a, d} is not crossed by any

edge, we can redraw {c, d} as in the previous case, decreasing the number of crossings. Hence

assume that there is an edge {u, v} 2 W that crosses {a, d}. We will show that it is possible

to exchange {u, v} and {a, d} with either the pair of edges {a, u} and {d, v} or with {a, v}
and {d, u}, thus decreasing the number of crossings. First, observe that c is distinct from u

and v. Otherwise, this would imply that both a and c have degree 1 in G, contradicting the
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connectivity of G. We now distinguish two subcases, based on whether b is distinct from u and v

or coincides with one of them.

If b is distinct from both u and v (Fig. 3.4(c)), then a is fine with both possible exchanges. An

exchange is then possible, unless d is adjacent to both u and v. However, d is already adjacent

to a and c, and thus to at most one of u and v. Hence an exchange can be used to find a solution

with fewer crossings.

Now assume that b coincides with one of u or v, without loss of generality b = v; see Fig. 3.4(d).

Then both b and d are incident to two edges ofW , and are hence leaves ofG. SinceG is connected,

this in turn implies that they are not adjacent, and hence v (which is equal to b) and d are not

adjacent in G + W . We thus have that exchanging {a, d} and {u, v} with {a, u} and {v, d} is

possible, and hence decreases the number of crossings.

Together with the above discussion showing that an augmentation W as assumed in Propo-

sition 3.2 can be found in O(n2.5) time, we immediately obtain the following.

Theorem 3.3. The problem 3-Fepra (without further connectivity constraints) can be decided

in O(n2.5) time.

While this easily establishes the polynomial-time solvability of 3-Fepra, this approach has a

number of shortcomings. First, although the steps described in the proof of Proposition 3.2 can be

used to find a planar augmentation in O(n3) time (O(n2) rewiring steps, each costing O(n) time),

the conversion step from a valid augmentation to a planar one is a major bottleneck. Second, the

algorithm o↵ers little structural insight into the problem. In particular, it is very unclear how

the running time could be improved and how other requirements, such as additionally raising

the connectivity, can be included into such an approach. In the next section we will study 3-

Fepra more systematically and address all the mentioned issues. Among others, we will reduce

the running time for the transformation of a valid 3-regular augmentation to a planar 3-regular

augmentation to linear.

3.3 A Systematic Study of 3-FEPRA

We want to decide for a graph G = (V,E) with a fixed planar embedding, whether there exists

an augmentation W such that G + W is 3-regular and the edges in W can be embedded into

the faces of G in a planar way. We will see that this problem is equivalent to finding a node

assignment that assigns the vertices with degree less than 3 to the faces of the graph such that,

for each face f , an augmentation exists that can be embedded inside f in a planar way and raises

the degrees of all its assigned vertices to 3. In this section we characterize those node assignments

and exploit the found properties for the design of e�cient algorithms solving 3-Fepra even with

additional connectivity constraints.

Recall that F denotes the set of faces of G and that V ? is the set of vertices with free valencies.

A node assignment is a mapping A : V ? ! F such that each v 2 V ? is incident to A(v). Each

valid 3-regular augmentation W induces a node assignment by assigning each vertex v to the

face where its incident edges in W are embedded: this is well-defined, since vertices in V 0 [ V 1

are incident to a single face. A node assignment is realizable if there exists a valid 3-regular

augmentation that induces it. It is realizable in a planar way if it is induced by some planar

3-regular augmentation. We also call the corresponding augmentation a realization. Recall that

the existence of a valid 3-regular augmentation, and thus, of a realizable node assignment, can
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be e�ciently decided by computing a generalized matching in the subgraph of Gc that contains

edges only between vertices that share a common face. According to Proposition 3.2, G thus

admits a planar 3-regular augmentation if and only if it admits a realizable node assignment.

Both, valid augmentations and node assignments, are local by nature, and can be considered

independently for distinct faces. Let A be a node assignment and let f be a face. We denote

by Vf the vertices that are assigned to f . We say that A is realizable for f if there exists an

augmentation Wf ✓
�
V
f

2

�
such that in G +Wf all vertices of Vf have degree 3. It is realizable

for f in a planar way if additionally Wf can be embedded into f without crossings. We call

the corresponding augmentations (planar) realizations for f . The following lemma is obtained

by gluing (planar) realizations for all faces.

Lemma 3.4. A node assignment is realizable (in a planar way) for a graph G if and only if it

is realizable (in a planar way) for each face f of G.

Proof. Consider a node assignment A. If A is realizable (in a planar way), there exists a cor-

responding valid (planar) augmentation W . Then, for each face f , the set Wf ✓ W of edges

embedded inside f forms a (planar) realization for f . Conversely, assume that A is realizable (in

a planar way) for each face f . Then, for each face f , there is a corresponding (planar) realiza-

tion Wf of A for f . Hence W :=
S

f2F Wf is a valid (planar) augmentation that realizes A.

Note that a node assignment induces a unique corresponding assignment of free valencies,

and we also refer to the node assignment as assigning free valencies to faces. In the spirit of

the notation G + W , we use f + Wf to denote the graph G + Wf , where the edges in Wf are

embedded into the face f . If Wf consists of a single edge e, we write f + e, and sometimes we

use f to also denote the subgraph of G that is induced by the vertices incident to the face f . For

a fixed node assignment A we sometimes consider a partial augmentation Wf such that some

vertices assigned to f have still a degree less than 3 in f +Wf . Then, A is realizable for f +Wf

if there exists an extension W 0
f such that Wf [W 0

f forms a complete realization of A for f . We

interpret A as a node assignment for f +Wf that assigns to f all vertices that were originally

assigned to f by A and do not yet have degree 3 in f +Wf . Observe that in doing so, we still

assign to the face f (although the edges in Wf may split f into several new faces) but when

considering free valencies and adjacencies, we consider f +Wf .

3.3.1 (Planarly) Realizable Assignments for a Face

Throughout this section we consider an embedded graph G together with a fixed node assign-

ment A and a fixed face f of G. The goal of this section is to characterize when A is realizable

(in a planar way) for f . We first collect some necessary conditions for a realizable assignment.

Condition 3.5 (parity). The number of free valencies assigned to f is even.

Furthermore, we list eight indicator sets of vertices that are assigned to f and that demand

additional valencies outside the set to which they can be matched, as otherwise an augmentation

is impossible. At the same time, each vertex in an indicator set also provides some free valencies.

Figure 3.5 illustrates the indicator sets.

(1) Joker: A vertex in V 2 whose neighbors are not assigned to f demands one valency.

(2) Pair: Two adjacent vertices u and v in V 2 demand two valencies, one not adjacent to u

and one not adjacent to v.
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Figure 3.5: Indicator sets and the amount of valencies they demand and provide.

(3) Leaf: A vertex in V 1 whose neighbor has degree 3 demands two valencies from two distinct

vertices.

(4) Branch: A vertex in V 1 and an adjacent vertex in V 2 demand three valencies from at least

two distinct vertices with at most one valency adjacent to the vertex in V 2 .

(5) Island: A vertex in V 0 demands three valencies from distinct vertices.

(6) Stick: Two adjacent vertices of degree 1 demand four valencies; no three from the same

vertex.

(7) Two Islands: Two vertices in V 0 demand four valencies; no three from the same vertex.

(8) Triangle: A cycle of three vertices in V 2 demands three valencies.

We note that a branch may properly overlap with other indicator sets. In particular, a

branch {u, v} may share its degree-2 vertex v with another branch {v, w} with u 6= w. In

this case it is crucial that only one valency of w may be used to satisfy the demand of the

branch {u, v}.

Condition 3.6 (matching). The demands of all indicator sets formed by vertices assigned to f

are satisfied.

Each indicator set contains at most three vertices and provides at least the number of valencies

it demands; only two islands provide more. The demand of a joker is implicitly satisfied by the

parity condition. We call an indicator set with maximum demand maximum indicator set, and

we denote its demand by kmax. Note that kmax  4. We observe that inserting edges does not

increase kmax.

Observation 3.7. Inserting an edge uv into f does not increase kmax.

Proof. Let k and k0 denote kmax before and after the insertion of uv, respectively. We show

k0  k. If k0 = 4, then after the insertion there is a stick or two islands. Since a stick can only be

obtained from two islands, we have k = 4. If k0 = 3, then after the insertion there is a branch,

an island, or a triangle. Since a branch can only be obtained from an island or a stick and a

triangle can only be obtained from a branch, we have k � 3. If k0 = 2, then, after the insertion,

there is a pair or a leaf. Since a pair can only be obtained from two leaves, we have k � 2.

The following lemma reveals the special role of maximum indicator sets.

Lemma 3.8. Let S be a maximum indicator set in f and A a node assignment that satisfies the

parity condition for f . Then A satisfies the matching condition for f if and only if the demand

of S is satisfied.
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Proof. Clearly, if A satisfies the matching condition, then in particular the demand of S is

satisfied. Hence, assume that the demand of S is satisfied. We prove that for any indicator

set U of vertices assigned to f the demands are satisfied. Since the demand of a joker is always

satisfied by the parity condition, we omit considering jokers in the following. Observe further

that the demand of an indicator set that is contained in S is trivially satisfied, we may thus

assume that U contains vertices outside S. We distinguish cases based on the demand kmax of S.

Case I: k
max

= 4. Then S consists either of a stick or of two islands. Let U be any

indicator set distinct from S. Assume that U demands four vertices. If U is disjoint from S,

then S provides the demanded valencies. Otherwise, both S and U consist of a pair of isolated

vertices, and they share a common vertex. Since the demand of S is satisfied, there are at least

two more assigned valencies provided by vertices outside of S [ U . Together with S \ U , they

provide the demanded valencies for U . The same argument applies if U consists of an island

disjoint from S, and hence demands three valencies.

If U demands three or fewer valencies and it is not an island disjoint from S, then it is either

contained in S or disjoint from it and no island. In the former case its demand is satisfied, in the

latter case the demand is satisfied by the two vertices in S since the only indicator set demanding

valencies from three di↵erent vertices is an island that is not contained in U .

Case II: k
max

= 3. Then S consists either of a triangle, an island, or a branch. If S is a

triangle, then any other indicator set is either completely contained in S or disjoint from it, and

it hence provides the necessary valencies (even for an isolated vertex).

If S consists of an island s, observe that kmax = 3 implies that there is no other island assigned

to f . The island s provides the necessary valencies for all indicator sets, except for a branch or

a leaf. Assume that U is a branch. Since s demands three valencies from distinct vertices, there

is a vertex v /2 U [ {s} assigned to f . Together s and v provide the valencies for U . The case

that U is a leaf can be treated analogously.

Finally, consider the case that S consists of a branch. If U consists of an island u, then there

must be a vertex v /2 S [ {u} providing a valency for S. Then S [ {v} provide the demanded

valencies for u. If U is not an island, it demands at most three valencies from at most two

di↵erent vertices. Hence, if U is disjoint from S, then S provides the demanded valencies for U .

It remains to deal with the case that U is a pair or a branch sharing a degree-2 vertex with S.

If U is a branch the situation for U and S is completely symmetric, and the demands for U are

satisfied. If U is a pair, there exists again a vertex v /2 S [ U providing a valency for S, and

hence, S [ {v} provide the demanded valencies for U .

Case III: k
max

= 2. Since the demands of jokers are always satisfied due to the parity

condition, in this case all critical indicator sets consist either of pairs or of leaves. If S and U

are both leaves, their situation is again completely symmetric. If S and U are a leaf and a pair,

respectively, they mutually satisfy their demands. It remains to deal with the case that S and U

both consist of pairs. If S and U are disjoint, they mutually satisfy their demands. If they share

a vertex, then S and U are again completely symmetric.

The necessity of the parity and the matching condition is obvious; we give the following

characterization proving that the parity and the matching condition are also su�cient for a node

assignment to be realizable for f .

Proposition 3.9. A node assignment A is realizable for a face f if and only if A satisfies the

parity and matching condition for f .
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Proof. Clearly, the parity condition and the matching condition for f are necessary for A to be

realizable for f . Conversely, we show that, if A satisfies both conditions, then a corresponding

realization for f exists. We prove the existence of a realization by construction. We defer the

case that A assigns less than five vertices to f to the end. In the following we assume that A

assigns at least five vertices to f and satisfies the parity and matching condition for f .

Suppose there exists a partial augmentation W1 of f such that A still assigns k � 4 vertices

to f + W1, each assigned vertex has degree 2, and if A assigns exactly four degree-2 vertices

in f + W1, then no three of them form a cycle. We define the graph Hc that consists of the

vertices assigned in f + W1 and contains an edge between two vertices if and only if they are

not adjacent in f + W1. Our first goal is to show that Hc admits a perfect matching W2.

Then W1 [W2 is a 3-regular augmentation, and thus, a realization for f . Our second goal is to

construct the partial augmentation W1 for all possible assignments for f . To this end, we first

construct a partial augmentation W 0
1 such that there are at least four vertices assigned in f+W 0

1,

each of which has degree 2. In a second step we transform W 0
1 to a partial augmentation W1

that additionally avoids that f +W1 contains a 3-cycle if there are only four vertices assigned

in f +W1. After that, it remains to deal with the case that A assigns less than five vertices to f .

Claim: Hc admits a perfect matching. Since each assigned vertex in f +W1 has degree 2,

it has at most two adjacencies in W1, and thus, at least (k � 1) � 2 = k � 3 adjacencies

in Hc. For k � 6, this implies a minimum degree of k � 3 � k/2. In this case, by a theorem of

Dirac [33],Hc contains a Hamiltonian cycle, which in turn contains the claimed perfect matching.

For k  5, observe that k must be even, and thus k = 4. The graph Hc thus has minimum

degree 1. However, the only graph with minimum degree 1 on four vertices that does not admit

a perfect matching is the star on four vertices. But then the three leaves of the star form a cycle

of assigned degree-2 vertices in f +W1, contradicting the assumption; see Fig. 3.6(a). Thus W2

always exists.

In order to construct now the partial augmentation W1 for f , which will result from a prelim-

inary partial augmentation W 0
1, we begin with the following observation. Let S denote an island

or a stick assigned to f and let e denote an edge between two valencies in f . Splitting e and

connecting the resulting half-edges to the vertex, respectively the vertices, in S yields a partial

augmentation {e1, e2} such that the vertices in S have degree 2 in f + {e1, e2}. We refer to this

procedure as clipping in the set S.

Now we construct a partial augmentation W 0
1 for all possible assignments for f such that

there are at least four degree-2 vertices assigned in f +W 0
1. In order to identify pairs of islands

with sticks, in a first step we arbitrarily choose pairs of islands and connect them by an edge.

Note that this in particular means that there remains at most one island assigned to f . We

denote the set of all assigned sticks (and possibly the assigned island) by X. In a second step,

we connect the assigned degree-1 vertices that are not in X pairwise, thus obtaining assigned

degree-2 vertices. Connecting degree-1 vertices that are not in X, that is, that do not form a

stick, is feasible since they are mutually non-adjacent. After this step, there remains at most

one assigned degree-1 vertex besides the degree-1 vertices in X. This degree-1 vertex is either a

leaf or part of a branch. We distinguish the possible assignments on whether there is one or no

such degree-1 vertex assigned to f and whether X contains a stick, only an island, or is empty.

Assume there is exactly one degree-1 vertex v assigned to f that forms a leaf or is part of a

branch. If X contains a stick we connect the vertices of this stick to the two valencies provided

by v and clip in the possibly remaining elements in X. In doing so, v becomes a degree-3 vertices.
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Figure 3.6: Face f (solid black) and partial augmentations W 0
1

and W
1

(dotted). Assigned
vertices are depicted as empty disks. Complement graph Hc (solid gray) admits perfect match-

ing in (b) but not in (a).

If X consists of a single island, there exists a further valency at a degree-2 vertex u 6= v due to

the demand of this island. Hence, we connect the island to v and u yielding degree-2 vertices at

the former island and v and a degree-3 vertex at u. If X is empty, there exists again a further

valency at a degree-2 vertex u 6= v due to the demand of v. Hence, we connect v to u yielding

a degree-2 vertex at v and a degree-3 vertex at u. In all cases, there still remain four assigned

degree-2 vertices in f +W 0
1, since A initially assigned at least five vertices to f and we obtain

only one degree-3 vertex per case.

Now assume there is no degree-1 vertex assigned to f apart from those in X. If |X| � 2,

we connect all elements in X such that we obtain a cycle of degree-2 vertices. This is possible,

since X contains at most one island. If X consists of a single stick, there are at least four further

degree-2 vertices assigned due to the demand of this stick. Hence we connect each vertex of the

stick to one of the degree-2 vertices. This yields at least four assigned degree-2 vertices in total

for f +W 0
1. If X consists of a single island, there are again at least four further degree-2 vertices

assigned, since A assigns at least five vertices in total. Furthermore, there is an additional

degree-2 vertex assigned due to the parity condition. Hence, connecting the island to two of the

degree-2 vertices yields again at least four assigned degree-2 vertices in total for f +W 0
1.

Claim: W 0
1 can be transformed into the partial augmentation W1. By construction, there

are at least four vertices assigned to f +W 0
1, each of which has degree 2. Now assume there are

exactly four (degree-2) vertices u, v, x, y assigned in f +W 0
1 but uvx form a 3-cycle in f +W 0

1.

We claim that W 0
1 contains an edge {w, y} incident to y. Then W1 = (W 0

1 \ {{w, y}}) [ {{y, v}}
is the required partial augmentation for f ; see Fig. 3.6.

Assume W 0
1 does not contain an edge {w, y} incident to y. Then, there is no additional vertex

assigned to f , since, by construction of W 0
1, a vertex assigned to f , which has degree at most 2,

becomes a degree-3 vertex, and thus is longer assigned in f+W 0
1, if and only if it is connected by

an edge in W 0
1 (to a degree-2 vertex in f +W 0

1). That is, u, v, x, y are the only vertices providing

valencies in f and y provides only one valency in f since it already has degree 2. On the other

hand, depending on which edges of the 3-cycle are already in E, the vertices u, v, x induce a

3-cycle, a branch or two islands in f . We see that, in each case, the demand of the corresponding

indicator set is not satisfied. Thus, this situation cannot occur since A satisfies the matching

condition.

It remains to deal with the case that there are less than five vertices assigned to f .

Claim: If A assigns less than five vertices to f it is realizable. Let Vf (|Vf |  4) denote the

vertices assigned to f . We distinguish cases based on the number of assigned degree-0 vertices.

For simplicity we skip the index indicating f and denote the degree-0 vertices in f by V 0 .
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Case 1: |V 0 | = 4. In this case, all assigned vertices have degree 0, and
�
V
f

2

�
is the claimed

realization.

Case 2: |V 0 | = 3. The parity condition implies that a fourth vertex with an odd number of

valencies must be assigned to f . Since it may not have degree 0, it must have degree 2. But then

the demand of two islands formed by two of the degree-0 vertices is not satisfied, contradicting

the assumption that the matching condition holds for A. Thus this case cannot occur.

Case 3: |V 0 | = 2. Let V 0 = {u, v}. The matching condition implies that there are at least

four valencies provided by vertices in Vf \ V 0 . However, |Vf \ V 0 | contains at most two vertices

of degree at least 1. Hence, the four additional valencies are provided by two degree-1 vertices x

and y. The set {{u, v}, {x, u}, {x, v}, {y, u}, {y, v}} forms the claimed realization.

Case 4: |V 0 | = 1. Let V 0 = {u}. The matching condition implies that there are at

least three valencies provided by vertices in Vf \ V 0 . If Vf \ V 0 consists of three degree-2

vertices x, y, z, then the set {{u, x}, {u, y}, {u, z}} is the claimed realization. The only further

possibility for Vf \ V 0 , due to the parity and the matching condition, is a degree-2 vertex x

and two degree-1 vertices y and z. If the two degree-1 vertices form a stick, then the matching

condition for this stick is not satisfied. Thus, y and z are not adjacent, and adding {y, z} brings

us back to the previous subcase, where x, y and z all have degree-2. This finishes the cases where

at least one degree-0 vertex is assigned to f .

If there are no degree-0 vertices assigned to f , we distinguish cases based on the number

of assigned degree-1 vertices. Analogous to the notion of the degree-0 vertices above, we now

denote the degree-1 vertices in f by V 1 .

Case 5: |V 1 | = 4. Let V 1 = {u, v, x, y}. Since each degree-1 vertex has at most one

adjacency in V 1 , without loss of generality u and v are not adjacent to x and y, and the

set {{u, x}, {u, y}, {v, x}, {v, y}} forms the claimed realization.

Case 6: |V 1 | = 3. Assume there is a fourth vertex x assigned to f . Due to the parity

condition, x provides an even number of valencies, which implies that x has degree-1 contradict-

ing |V 1 | = 3. Hence, it is Vf = V 1 . Let V 1 = {x, y, z}. The matching condition for a stick is

not satisfied. Thus, the vertices in V 1 are not adjacent and the set {{x, y}, {y, z}, {x, z}} forms

the claimed realization.

Case 7: |V 1 | = 2. Let V 1 = {u, v}. Again, the matching condition for a stick is not satisfied.

Hence, u and v are not adjacent. The demand of u implies that there is a degree-2 vertex x

in Vf \ V 1 , and the parity condition implies the existence of yet another degree-2 vertex y

in Vf \ V 1 . If both u and v were adjacent to one of the degree-2 vertices, say x, then {u, x}
would form a branch whose demand is not satisfied. Hence, without loss of generality, v is not

adjacent to x and u is not adjacent to y, and the set {{u, v}, {x, v}, {u, y}} forms the claimed

realization.

Case 8: |V 1 | = 1. Let V 1 = {u}. It follows from the parity and the matching condition

that there are exactly two degree-2 vertices x and y in Vf \ V 1 . If one of these degree-2 vertices

were adjacent to u, the corresponding set would form a branch whose demand is not satisfied.

Thus, they are not adjacent to u, and {{u, x}, {u, y}} forms the claimed realization.

Case 9: |V 1 | = 0. Now all vertices assigned to f have degree 2. If there are only two such

vertices x and y, the matching condition implies that they are not adjacent, and the edge {x, y}
is the claimed realization. Otherwise, there are exactly four degree-2 vertices assigned to f . If it

is not possible to match them up to a realization, the graph Hc that consists of degree-2 vertices

assigned to f and contains an edge between two vertices if and only if they are not adjacent in f ,
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does not admit a perfect matching. Observe that Hc has minimum degree 1, and thus, Hc is

again the star on four vertices. But then the three leaves of the star form a 3-cycle in f , whose

demand is not satisfied. This contradicts the assumption that the matching condition holds.

We note that the notion of valencies also applies for general (possibly non-planar) graphs of

maximum degree 3, and the indicator sets are also well defined with respect to all valencies in

a non-planar graph. Hence, the parity and the matching condition are not restricted to planar

graphs (and in particular not to a fixed embedding). Furthermore, the construction of the

realization in the proof of Proposition 3.9 only exploits the non-adjacencies in the input graph

but neither the planarity nor the embedding. Hence, in actual fact, Proposition 3.9 characterizes

when the complement graph of a graph G = (V,E) with maximum degree 3 admits a generalized

perfect matching with demand 3� i for each vertex v 2 V i . This is equivalent to the non-planar

3-regular augmentation problem and directly implies that Proposition 3.9 also holds if the face f

already contains a partial (possibly non-planar) augmentation Wf .

Corollary 3.10. A node assignment A is realizable for a face f+Wf , with Wf a partial (possibly

non-planar) augmentation of f , if and only if A satisfies the parity and matching condition

for f +Wf .

From an algorithmic point of view, the proof of Proposition 3.9 is not very useful in order to

e�ciently construct a realization. In the following, we thus develop another approach. We give a

rule that allows to iteratively insert edges into f such that the inserted edges finally form a (not

necessarily planar) realization. Given a node assignment A that satisfies the parity condition

and the matching condition for a face f and possibly a partial augmentation Wf , the following

rule picks an edge e that is not yet in f + Wf such that, after the insertion of e into f , the

remaining assignment still satisfies the parity and the matching condition. Corollary 3.10 then

guarantees that iteratively applying this rule yields the claimed realization.

Rule 3.11. 1. If kmax � 3, let S denote a maximum indicator set. Choose a vertex u of

minimum degree in S and connect u to an arbitrary assigned vertex v /2 S.

2. If kmax = 2 and there is a leaf u, choose S = {u}, and connect u to an assigned vertex v.

3. If kmax = 2 and there is no leaf but a path xuy of assigned vertices in V 2 , choose S =

{x, u, y}. Connect u to an arbitrary assigned vertex v /2 S.

4. If kmax = 2 and there is neither a leaf nor a path of three assigned vertices in V 2 , let S

denote a pair {u,w}. Connect u to an arbitrary assigned vertex v /2 S.

5. If kmax = 1, choose S = {u}, where u is a joker, and connect u to another joker v.

Lemma 3.12. Assume A satisfies the parity and matching condition for f +Wf , where Wf is a

partial augmentation for f , and let e be an edge chosen according to Rule 3.11. Then A satisfies

the same conditions for f +Wf + e.

Proof. First observe that, according to Corollary 3.10, the partial augmentation Wf can be

extended to a 3-regular augmentation Wf + W 0
f for f . Furthermore, if e is contained in W 0

f ,

then A immediately satisfies the parity and the matching condition for f +Wf + e. Hence, we

assume e /2 W 0
f and prove the assertion of Lemma 3.12 by locally reworking the extension W 0

f

such that afterwards it contains e. For simplicity, we skip the index for the face f in the notation

and we write f̄ instead of f +Wf .

More precisely, we do the following. We delete a set W - ✓ W 0 that depends on the set S

and the vertex v chosen in Rule 3.11. After this deletion, A still satisfies the parity condition
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Figure 3.7: The di↵erent layers of partial augmentations in a face f . (a) Dashed (green)
edges represent the partial augmentation Wf . Vertices of degree 3 are filled, vertices providing
valencies are empty. Vertex pair {u, s} =: S induces two islands. (b) Dotted (red) edges
represent the extension W 0

f , u and s are matched in W 0
f . (c) Dotted (red) edges represent the

set W 0
f �W - with respect to S and v, vertices in X are depicted as empty boxes.

and the matching condition since reinserting W - would yield again a 3-regular augmentation

for f . It remains to show that A also satisfies the parity condition and the matching condition

if we just insert the edge e = {u, v}. We prove this by either reinserting the whole set W -

and then locally rewiring the edges in W - such that {u, v} becomes an edge in W - or by just

inserting e, which preserves the parity condition, and then arguing that the demand of any

remaining maximum indicator set is still satisfied. The latter guarantees the matching condition

according to Lemma 3.8.

The edges in W - are chosen as follows. We delete all edges in W 0 that are incident to

vertices in S and, if v has still degree 3, we delete an additional edge of W 0 that is incident to v.

Furthermore, if S = {u, s} represents two islands and u and s are adjacent in W 0, we reinsert

the edge {u, s}, therefore excluding this edge from W - . In this way, we identify two islands with

a stick. The free valencies resulting from the deletion of W - are provided by the vertices in S

and possibly by further vertices, which we denote by the set X. The sets S and X are disjoint

and we get u 2 S and v 2 X. Figure 3.7 shows an example.

In order to avoid parallel edges when rewiring edges in W - , we need to carefully study the

adjacencies in f̄ + (W 0 �W - ) and W - . For purposes of clarity, we will say that two vertices u

and v are matched if they are adjacent in W - , and, unless specified otherwise, we reserve the

word adjacent for adjacencies in the graphs f̄ and f̄ + (W 0 � W - ). We state the following

properties regarding the set W - .

1) If W - matches two vertices in S, then S is a path xuy according to subrule 3.

2) In this case, among the vertices of S, exactly u is matched to a vertex in X.

3) The vertex v is either matched to only vertices in S or to exactly one vertex in X.

4) In the former case all vertices of S are only matched to vertices in X.

For property 1) observe that, except in subrule 3, the set S (chosen in f̄) is an indicator set.

However, except for two islands, the vertices of each indicator set are already adjacent (in f̄),

and thus cannot be matched (in W - ). For the case that S consists of two islands our special

treatment (that is, excluding edges between islands from W - ) ensures property 1. Property 2)

is clear, since x, y and u already have degree 2 in f̄ and W - contains {x, y}, property 3) follows

immediately from the construction of W - . For property 4) observe that, if W - contains an edge

between two vertices in S, then, by property 2), it follows that S is a path xuy. Since v must

be matched to a vertex in S but not to u (since e /2W 0), this contradicts property 2).
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We use property 3) to distinguish two di↵erent scenarios. In the first scenario, v is matched

only to vertices in S. Then property 4) implies that vertices in S are only matched to vertices

in X, and we use this to show that we can rewire the edges of W - incident to u and v such

that W - contains the edge {u, v}. In the second scenario, we have that v is matched to exactly

one vertex in X, and hence v provides exactly one valency after the removal of W - . Then

inserting the edge e = uv, thus forming f̄ +(W 0�W - )+e, increases the degree of v to 3. In this

case we prove that the demand of a maximum indicator set given by the remaining valencies is

satisfied.

According to the discussion above, we now consider the graph f̄ + (W 0 �W - ) and show for

each possible type of S that A satisfies the parity condition and the matching condition after the

insertion of e, at that distinguishing whether v is matched to S or X. If v is matched to S, we

reinsert W - and locally rewire edges in W - in order to construct the edge {u, v}. This preserves
both, the parity and the matching condition. If v is matched to X, we insert e, which preserves

the parity condition, and prove, by checking the demands of maximum indicator sets, that also

the matching condition is satisfied. This will conclude the proof. Following its appearance in

the subrules, the set S can be a pair of two islands, a stick, a triangle, an island, a branch, a

leaf, a path of three vertices, a pair bounded by non-assigned vertices, or a joker.

Scenario I: The vertex v is only matched to vertices in S (in W - ). Recall from property 4)

that, in this scenario, the vertices in S are exclusively matched to vertices in X. Since, by

assumption, v is not matched to u, there are at least two vertices in S. Note that |S| is bounded
by 3. Hence, we distinguish two cases according to the size of S. For both cases we will locally

rework the 3-regular augmentation W 0 by rewiring edges in W - such that e = {u, v} becomes

an augmentation edge. The main issue in this context is to make sure that the rewiring does

not cause parallel edges. When we wish to add an edge {p, q}, we thus have to make sure that p

and q are neither matched nor adjacent. We note that, by construction of W - , an edge {p, q}
with p 2 S and q 2 X exists in f̄ +W 0 if and only if it is in f̄ or in W - . The edge e = {u, v},
however, can be always inserted without causing any problems, since by assumption e /2 f̄ +W 0.

Case I: |S| = 2. Assume S = {u, s}. Then S is a pair of two islands, a stick, a branch

or a pair bounded by vertices that are not assigned to f . The vertex v is only matched to s,

and u is chosen in Rule 3.11 such that, in f̄ , its demand is at least as large as the demand

of s. Since {v, s} 2W - but {v, u} /2W - , it follows that W - contains an edge between u and a

vertex w 2 X that is not matched to s. We show that we can choose w such that it is also not

adjacent to s. Once this is done, we can replace {u,w} and {v, s} by {u, v} and {w, s} in W - ,

yielding an augmentation containing e.

If S it not a branch, then, after removing from f̄ all non-assigned vertices, there are no edges

from S to nodes outside S; this implies that s and w (which are both assigned to f) are not

adjacent. If S is a branch, then the demand of u is strictly greater than the demand of s in f̄ ,

and hence there are at least two candidates for w, of which at most one can be adjacent to s.

Case II: |S| = 3. Then S = xuy is a triangle or a path of degree-2 vertices according to

subrule 3. We consider the adjacencies of S in W - . If S is a triangle, assume without loss of

generality that v is at least matched to x and let w denote the vertex in X that is matched to u.

Then x is neither matched nor adjacent to w (since x is adjacent to u and y and matched to v).

Hence, rewiring the edges {u,w} and {x, v} in order to get {u, v} and {x,w} is feasible.

If S is a path of degree-2 vertices, assume again that v is matched to x. In particular, v

is exclusively matched to x, since subrule 3 already excludes the existence of a leaf in f̄ . For
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(a) Disjoint non-neighbors.
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v w z

(b) Only a common non-
neighbor.

Figure 3.8: Strategies for replacing W - in case S = xuy is a path of degree-2 vertices. Solid

(black) edges belong to f̄ , dashed (green) edges represent W - , dotted (red) edges represent the
claimed augmentation. (a) w is a non-neighbor of x and y, while z is (always) a non-neighbor

of y. (b) z is the only non-neighbor of x and y.

the same reason, u and y are matched to distinct vertices w and z in X, and thus W - =

{{v, x}, {u,w}, {y, z}}. Our goal is to rewire {v, x}, {u,w} and {y, z} in W - in order to obtain

an augmentation containing e.

We observe that x can be adjacent to at most one vertex in {w, z} and y can be adjacent

only to w among {w, z} (since it is already matched to z). Hence, both x and y have at least

one non-neighbor in {w, z}. If x and y have distinct non-neighbors in {w, z} (see Fig. 3.8(a)),

we change the augmentation as follows. We connect each of x and y to its non-neighbor and u

to v. This results in an augmentation containing e. If x and y have no distinct non-neighbors

but a common non-neighbor in {w, z} (see Fig. 3.8(b)), it follows that they are both adjacent

to w. In this case, after removing W - , xuyw forms a cycle of length 4. Thus, replacing W -

by {{x, y}, {u, v}, {w, z}} yields the claimed augmentation.

Scenario II: The vertex v is matched to exactly one vertex in X (in W - ), which we denote

by w. Recall that, in this scenario, W - does not match any two vertices in S, unless S is a

path xuy given by subrule 3. Hence, all edges in W - \ {{v, w}} run between the two disjoint

vertex sets S and X. Consequently, the number of valencies after the deletion of W - is twice the

demand of S plus two valencies at v and w, for all types of S apart from the path xuy. We will

now distinguish cases according to the value of kmax in f̄ and show that, after the deletion of W -

and the insertion of e, there are still enough valencies to satisfy the demand of any maximum

indicator set in f̄ + (W 0 �W - ) + e. We remark that, according to Observation 3.7, kmax does

not increase in f̄ + (W 0 �W - ) + e.

Case I: kmax = 4. In this case, S = {u, s} is a pair of two islands or a stick, and thus,

consists of connected components in f̄ as well as in f̄ + (W 0 �W - ). After the insertion of e, S

is connected to X via v, however v then is a degree-3 vertex due to the scenario. Since none

of the remaining valencies in S is adjacent to a valency in X in f̄ + (W 0 �W - ) + e, after the

insertion of e, a connected indicator set is either a subset of S or a subset of X. We observe

further that the vertex w 2 X (which was matched to v) is the only vertex in X that possibly

induces an island in X, since S contains only two vertices to which the vertices in X could have

been matched. Hence, two islands do not occur in X. However, if w is an island and S is a pair

of two islands in f̄ , after the insertion of e, the vertices w and s form a pair of two islands.

Now suppose S consists of two islands (in f̄ and f̄ + (W 0 �W - )). It then follows from the

construction of W - that u and s were not matched (in W 0). After the deletion of W - and the

insertion of e, S then provides 6 � 1 = 5 valencies at two vertices, and the maximum indicator

set in S is the island induced by s. The set X provides 6 + 2� 1 = 7 valencies at at least three

vertices, due to the demand of S. This already satisfies the demand of the island s 2 S, and
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thus, the demand of any indicator set, unless there is an indicator set that demands more than

three valencies. However, the only possible indicator sets in f̄ + (W 0 �W - ) + e that demand

more than three valencies is a stick in X, whose demand is already satisfied by the valencies

in S, and, if w is an island, the pair of islands w and s. In the latter case, the demand is satisfied

by the four valencies at the at least two remaining vertices in X. Recall that w is the only island

in X, and hence, no three of these four valencies are provided by a the same vertex.

Suppose S is a stick. Then, all indicator sets in f̄ + (W 0 �W - ) + e are connected and either

contained in S or X. After the deletion of W - and the insertion of e, S provides 4 � 1 = 3

valencies at two vertices, and the maximum indicator set in S is a branch. The set X provides

4 + 2� 1 = 5 valencies at at least two vertices. This already satisfies the demand of the branch

in S, since we have seen before that the valencies in X and S are not adjacent. Thus, the demand

of any maximum indicator set is satisfied, unless there is an indicator set in X that demands

more than three valencies. However, the only such indicator set that is possible in X is a stick.

In this case, note that this stick only provides four of the five valencies provided by X. Hence,

there must be a third vertex in X, which, together with S satisfies the demand of the stick.

Case II: kmax = 3. In this case S is a triangle, an island or a branch. If S is a triangle or an

island, it forms again a connected component in f̄ and f̄ + (W 0 �W - ), and after the insertion

of e, S does neither contain an island nor is one of the remaining valencies in S adjacent to a

valency in X. Hence, each indicator set in f̄ + (W 0�W - ) + e is either a subset of S or a subset

of X, and the number of valencies in X is just the demand of S plus 2. So we consider the cases

where S is a triangle or an island first.

Suppose S is a triangle. After the deletion of W - and the insertion of e, S then provides

3 � 1 = 2 valencies at two vertices, and the maximum indicator set in S is a pair. The set X

provides 3 + 2 � 1 = 4 valencies at at least two vertices, since one vertex can provide at most

three valencies. This already satisfies the demand of the pair in S and we are done, unless there

is an indicator set in X that demands three valencies. Recall, that X cannot contain an indicator

set with demand 4, since this contradicts kmax = 3 in f̄ . If X contains an island, a triangle or a

branch, we see the following. In the case of an island the demand is satisfied by S together with

one of the remaining vertices in X. In the case of a triangle and a branch, the vertices in the

indicator set provide less than four valencies. Hence, there must be a further vertex in X, which

together with S satisfies the demand.

Now suppose S is an island. Then S provides again 3� 1 = 2 valencies but now at only one

vertex, which trivially represents the maximum indicator set in S. The set X provides again

3 + 2 � 1 = 4 valencies at at least three vertices, due to the demand of S. This satisfies the

demand of the island S and we are done if X does not contain a triangle, a branch or an island.

Otherwise, if X contains a triangle, a branch or an island, observe that in each case there are

enough vertices and valencies left in X which, together with the vertex in S, satisfy the demands.

Now we consider the special case where S = {u, s} is a branch. In this case it may happen

that, after the deletion of W - and the insertion of e, a vertex z 2 X is adjacent to the degree-2

vertex s of the branch S. In this case, u must have been matched to z in W - , and thus, z 6= v.

Then, s 2 S and z 2 X can together form an indicator set. If this indicator set has a demand of

at most 2, we can ignore it, since u and s already induce a pair. Otherwise, z must have been

a degree-1 vertex after the deletion of W - . Hence the only indicator set of demand 3 that can

contain z and s is a branch. Thus, in the following, we check the demand of the pair in S, which

is the maximum indicator set in S after the insertion of e, any possible indicator set in X that
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has a demand of 3 and the branch {z, s}, which still might be a maximum indicator set even if

the remaining vertices in X only induce indicator sets with a demand of at most 2.

After the deletion of W - and the insertion of e, S provides 3�1 = 2 valencies at two vertices,

one of them (namely the valency at u) not adjacent to any vertex in X. The set X provides

3 + 2 � 1 = 4 valencies at at least two vertices, and thus, clearly satisfies the demand of the

pair in S. We observe further that the demand of a triangle, an island or a branch in X can be

satisfied by the same arguments as used when S was supposed to be a triangle. Finally, if s 2 S

and z 2 X form a branch (with z the degree-1 vertex), there remain two valencies in X and the

valency at u 2 S, which together satisfy the demand, since u is not adjacent to z.

Case III: kmax = 2. In this case S is a leaf, a path xuy of three degree-2 vertices or a pair

bounded by non-assigned vertices. Recall that the path xuy plays a special role, since here it

may happen that W - contains the edge {x, y}. Thus, we consider the remaining types of S first.

If S is a leaf or a pair bounded by non-assigned vertices, it holds that, after the deletion

of W - and the insertion of e, S only consists of a joker, while X provides 2+2� 1 = 3 valencies

at at least two vertices, since an island in X contradicts kmax = 2. Hence, X obviously satisfies

the demand of the joker S. Vice versa, a maximum indicator set in X larger than a joker is

a leaf or a pair. The demand of a leaf is satisfied by the joker in S and one of the remaining

vertices in X. A pair provides only two of the three valencies in X, thus there is a third vertex

in X, which together with S satisfies the demand.

Now suppose S = xuy is a path of degree-2 vertices according to subrule 3. Then S provides

3 � 1 = 2 valencies at the two vertices x and y after the deletion of W - and the insertion of e.

The number of the valencies provided by X, however, depends on whether the edge {x, y} is

in W - . Note that, in any case, each vertex in X provides only one valency, as otherwise there

would have been a leaf in f̄ before, which is excluded by subrule 3. Hence we get the following.

If {x, y} 2 W - , then X provides 1 + 2 � 1 = 2 valencies at two vertices, otherwise it provides

3 + 2 � 1 = 4 valencies at four vertices. Altogether, we get in both cases two valencies from S

and at least two valencies from X, which yields at least four valencies at four distinct vertices.

On the other hand, a maximum indicator set in S [X is either a joker or a pair (a leaf is again

excluded by subrule 3), and thus, the demand is obviously satisfied by the remaining valencies.

Case IV: kmax = 1. In this case, S is a joker, which provides no valencies and induces no

indicator set after the deletion of W - and the insertion of e, while X only consists of jokers. At

the same time X provides 1 + 2 � 1 = 2 valencies. That is, X consists of exactly two jokers,

whose demands are obviously satisfied.

The construction of a realization with the help of Rule 3.11 inserts at most three edges per

vertex assigned to f and inserting an edge can be done in O(1) time. To this end we count the

islands and then determine, in constant time, for each vertex the maximum indicator set that

contains the vertex and group the vertices according to the demands of this sets. Whenever

an edge is added to the current augmentation we need to update this information for only a

constant number of vertices. For a single vertex this update can be again done in constant time.

Hence, a non-planar realization, and thus, a degree-constrained subgraph in the complement of

a graph of maximum degree-3 that solves the non-planar 3-regular augmentation problem, can

be constructed in O(n) time.

Our next goal is to extend this characterization and the construction of the realization to

the planar case. Consider a path of degree-2 vertices that are incident to two distinct faces f

and f 0 but are all assigned to f . Observe that, if only one connected component assigns valencies
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to f , then a planar realization for f cannot connect two vertices of such a path. Otherwise, we

obtain a face to which only a path of degree-2 vertices is assigned. Iteratively connecting further

degree-2 vertices in this face yields a face which is assigned exactly one path of degree-2 vertices

of length 1 or 2. However, such faces do not admit any realization.

Thus, a planar realization for f may connect two vertices of a path of assigned degree-2

vertices that are incident to two distinct faces only if some vertex of the path can be connected

to a valency from a di↵erent connected component, which then splits the path into two pieces.

For cycles, the situation is similar, except that adjacencies from two di↵erent components are

needed to split a cycle. Hence the following sets of vertices demand additional valencies, which

gives a new condition, which is necessary for the existence of a planar realization.

(1) A path ⇡ of k > 2 assigned degree-2 vertices that are incident to two distinct faces (and

whose end vertices are not adjacent) demands either k further valencies or at least one

valency from a di↵erent connected component.

(2) A cycle ⇡ of k > 3 assigned degree-2 vertices (which are incident to two distinct faces)

demands either k further valencies or at least two valencies from two distinct connected

components di↵erent from ⇡.

Condition 3.13 (planarity). The demand of each path of k > 2 and each cycle of k > 3 degree-2

vertices that are incident to two faces and that are assigned to f is satisfied.

Obviously, the planarity condition is satisfied if and only if the demand of a longest such path

or cycle assigned to f is satisfied. Furthermore, the parity, matching, and planarity condition

together are necessary for the existence of a planar realization for the face f . In the following,

we prove, by construction, for a node assignment A and a face f , that these conditions are also

su�cient. To construct a planar realization for f , we give a refined selection rule that iteratively

chooses edges that can be embedded in f , such that the resulting augmentation is a planar

realization of A for f if A satisfies the parity, matching, and planarity condition for f . The new

rule considers the demands of both maximum paths and cycles and maximum indicator sets,

and at each moment picks a set with highest demand. If an indicator set is chosen, essentially

Rule 3.11 is applied. However, we exploit the freedom to choose the endpoint v of e = uv

arbitrarily, and choose v either from a di↵erent connected component incident to f (if possible)

or by a right-first (or left-first) search along the boundary of f . This guarantees that, even if

inserting the edge e splits f into two faces f1 and f2, one of them is incident to all vertices that

are still assigned to f . Slightly overloading notation, we denote this face by f + e and consider

all remaining valencies assigned to it. We show in Lemma 3.15 that A then again satisfies all

three conditions for f + e. It then follows immediately that iteratively applying the modified

rule yields a planar realization for f .

Rule 3.14. Phase 1: Di↵erent connected components assign valencies to f . Consider all paths

and cycles of assigned degree-2 vertices, regardless whether the degree-2 vertices are assigned to

two distinct faces or only to f :

1. If there exists any path or cycle of more than kmax assigned degree-2 vertices, let u denote

the middle vertex vdk/2e of the longest such path or cycle ⇡ = v1, . . . vk. Connect u to an

arbitrary assigned vertex v in another component.

2. If all paths or cycles of assigned degree-2 vertices have length at most kmax, apply Rule 3.11,

choosing the vertex v in another component.

Phase 2: All assigned valencies are on the same connected component. Consider only paths of

assigned degree-2 vertices that are incident to two distinct faces:
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1. If there exists a path that is longer than kmax, let u denote the right endvertex vk of the

longest path ⇡ = v1, . . . vk. Choose v as the first assigned vertex found by a right-first

search along the boundary of f , starting from u.

2. If all paths have length at most kmax, apply Rule 3.11, choosing v as follows:

Let v1, v2 denote the first assigned vertices not adjacent to u found by a left- and right-first

search along the boundary of f starting from u, respectively. If S is a branch and one

of v1, v2 has degree 2, choose it as v. In all other cases choose v = v1.

Lemma 3.15. Assume A satisfies the parity, matching, and planarity condition for f and let e

be an edge chosen according to Rule 3.14. Then A satisfies the same conditions for f + e.

Proof. We first observe that inserting an edge e preserves the parity condition. Hence it su�ces

to show that A satisfies the matching condition and the planarity condition after the insertion

of e. We prove the planarity condition first. To this end, we consider a path or cycle according

to the planarity condition, that is, a path or cycle of at least three and four degree-2 vertices,

respectively, that is incident to f + e and a second face, and that is a longest such path or cycle

incident to f + e. We denote this path or cycle by ⇢. Then the planarity condition is satisfied

for f + e if and only if the demand of ⇢ is satisfied. In a second step we then prove that A also

satisfies the matching condition for f + e.

Consider ⇢ for f + e as described above. If ⇢ is a cycle, we are still in the first phase of

Rule 3.14, and hence ⇢ did not arise by inserting e, since the first phase only inserts edges

between di↵erent connected components. Thus, ⇢ was a cycle of the same length before the

insertion of e. If ⇢ is a path, we distinguish three cases regarding the shape of ⇢ before the

insertion of e. First, ⇢ was already a path of the same length incident to two faces (namely f

and a second face). Second, ⇢ was part of a longer path incident to two faces. Third, u and v

were both degree-1 vertices incident to f and ⇢ arose by connecting them. Since ⇢ is supposed to

be incident to two faces, u and v belonged to the same connected component. In the following,

we argue for each case that the demand of ⇢ is satisfied after the insertion of e = uv. The case

where ⇢ is supposed to be a cycle is analogous to the first case of ⇢ being a path. Hence, we

consider these two cases together.

Case I: If, for f , ⇢ was already a path or cycle (incident to two distinct faces) of the same

length as in f +e, there must have been another path or cycle ⇢0 (distinct from ⇢) for f that was

at least as long as ⇢, from which Rule 3.14 has chosen u. That is, after the insertion of e, the

valencies at ⇢0 \ {u} either completely satisfy the demand of ⇢ (if |⇢0| > |⇢| for f) or they satisfy

the demand of all but one vertex in ⇢ (if |⇢0| = |⇢| for f). Recall that after the insertion of e

all remaining valencies are incident to f + e. In the latter case, the total number of valencies

at ⇢0 \ {u} and ⇢ is odd for f + e. Hence, the parity condition guarantees the existence of the

missing valency to completely satisfy the demand of ⇢ after the insertion of e.

Case II: If, for f , the path ⇢ was part of a longer path or cycle (incident to two faces),

let ⇢0 denote this longer path or cycle for f . Since A satisfied the planarity condition for f , the

demand of ⇢0 was satisfied by valencies outside ⇢0. That is, there were either at least as many

valencies outside ⇢0 as provided by ⇢0, or su�ciently many other connected components had

assigned valencies. In the first case, since Rule 3.14 does never connect vertices of the same path

or cycle, after the insertion of e there are still su�ciently many valencies outside ⇢0 to satisfy

the demand of the remaining part of ⇢0, which is ⇢. In the second case the demand of ⇢0 was

satisfied by valencies from di↵erent connected components. Hence, we were in the first phase of

Rule 3.14 and ⇢0 was split in the middle by the insertion of e if it was a path and cut open if it
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was a cycle. In the latter case, the planarity condition for f guarantees two valencies assigned

from two di↵erent connected components, only one of which used up by e. The other valency

from a di↵erent connected component then satisfies the demand of the path ⇢. Finally, if ⇢0 was

a path, it is split into two disjoint paths, one of which is ⇢. These two paths mutually satisfy

their demands, except for at most one valency in case ⇢0 had even length. But then the parity

condition for f + e implies the existence of an additional valency outside ⇢.

Case III: If, for f , u and v were both degree-1 vertices at a common connected component

and ⇢ arose by connecting them, u must have been chosen in the second phase by the subrule

that calls Rule 3.11. In this phase it is kmax  3 and there is only one connected component

that assigns valencies to f . We observe further that, in fact, it must have been kmax = 3,

since the applied subrule requires that there exists no path for f that is longer than kmax.

If kmax was less than 3 for f , the length of ⇢ could also not exceed 2 (after the insertion

of e) and thus, ⇢ would be no path according to the planarity condition. Consequently, u

must have been chosen from a branch S := {u, s}, since a branch is the only maximum in-

dicator set for kmax = 3 that contains a degree-1 vertex. Figure 3.9 exemplarily shows this

situation. Since v was also a degree-1 vertex, it further follows from the applied subrule

that the search in both directions to the left and to the right starting from u only passed

degree-3 vertices before it terminated at the first degree-1 vertex v1 or v2 on either side, and

u

s v
2

v = v
1

Figure 3.9: Situation of Case III in the

proof of Lemma 3.15, where u and v were

degree-1 vertices and ⇢ arose by connect-

ing u and v. The dotted (red) edge was

chosen by Rule 3.14.

thus v = v1. Hence, the degree-2 vertex s of the

branch S = {u, s} must have been adjacent to a

degree-3 vertex, and the same holds for v. That

is, after connecting u and v, ⇢ consists of exactly

three vertices, namely s, u and v, which provide

an odd number of valencies. Due to the parity

condition for f +e it is thus v1 6= v2. However, v2

is also a degree-1 vertex. Hence, the number of

valencies provided by ⇢ together with v2 is still

odd and the parity condition further guarantees

another valency outside ⇢, which together with v2

satisfies the demand of ⇢ = suv. Thus, the planarity condition is preserved in all cases.

To finish the proof, it remains to show that the matching condition is satisfied for f + e. The

subrules calling Rule 3.11 obviously inherit this property from Rule 3.11. Thus, it su�ces to

prove the matching condition for the subrules where u is chosen from a path or cycle ⇡ that is

longer than kmax. To this end, we consider a maximum indicator set S after the insertion of e

and show that the demand of S is satisfied for each possible length of the previously considered

path or cycle ⇡. This proves the matching condition according to Lemma 3.8. In the following,

we distinguish whether S contains some of the remaining vertices of ⇡ after the insertion of e or

not, that is, whether S \ (⇡ \ {u}) = ; or S \ (⇡ \ {u}) 6= ;.
Case I: S \ (⇡ \ {u}) = ;. In this case, the valencies provided by the set ⇡ \ {u} after the

insertion of e are all outside S and no two valencies are provided by the same vertex. Furthermore,

the length of ⇡ was at least kmax+1 before the insertion of e and kmax did not increase due to the

insertion of e, according to Observation 3.7. Hence, the remaining valencies provided by ⇡ \ {u}
clearly satisfy the demand kmax of the maximum indicator set S after the insertion of e, even

if S is a branch that is adjacent to one of the vertices in ⇡ \ {u}.
Case II: S\ (⇡ \{u}) 6= ;. In this case, S is either a branch or a pair. Any other indicator set

does either not contain a degree-2 vertex at all or is a triangle, which obviously cannot intersect
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with the path ⇡ \ {u}. Note that ⇡ \ {u} is always a path even if ⇡ was a cycle before. If S

is a branch, it shares exactly one vertex with ⇡ \ {u}, if S is a pair, it is S ✓ ⇡ \ {u}, since ⇡
was supposed to be the longest path or cycle for f . Hence, if S is a pair, ⇡ \ ({u} [ S) still

provides k � 3 valencies, with k the length of ⇡ for f , and k � 2 valencies if S is a branch. On

the other hand, a branch demands one more valency than a pair. That is, after the insertion

of e, the number of valencies that are missing besides the valencies in ⇡ \ ({u} [ S) in order to

satisfy the demand of S is the same for S being a branch or a pair and depends on the size k� 1

of the set ⇡ \ {u} after the insertion of e. Hence we distinguish the possible values for k � 1.

If k � 1 = 4 there remain three valencies at three distinct vertices in ⇡ \ ({u} [ S) if S is a

branch, and two valencies if S is a pair. This clearly satisfies the demand of S in both cases.

If k � 1 = 3, then S together with the remaining vertices in ⇡ \ ({u} [ S) provides an odd

number of valencies, namely five valencies if S is a branch and three valencies if S is a pair.

Hence, for both cases, the parity condition for f + e guarantees a further valency outside S,

which together with the valencies in ⇡ \ ({u} [ S) satisfies the demand of S.

Finally, we consider the case where k � 1 = 2. That is, ⇡ consisted of only three vertices

before the insertion of e. Since ⇡ is supposed to be longer than kmax before the insertion of e and

in particular of S after the insertion of e, S can be only a pair and kmax = 2 before the insertion

of e. Note that, for the same reason, the case k � 1 < 2 does not occur. The latter implies

that ⇡ is not a 3-cycle but a path of three degree-2 vertices. However, if S is a pair for f + e, the

vertex u chosen by Rule 3.14 then must have been an endvertex of ⇡ since it is S ✓ ⇡ \{u}. This
implies that u was chosen by the first subrule of the second phase of Rule 3.14. Consequently, f

was incident to only one connected component and there were three valencies outside ⇡ due to

the planarity condition for f . After the insertion of e at least two of these valencies are still

assigned to f + e, and thus, the demand of S is satisfied.

Given a node assignment A and a face f satisfying the parity, matching, and planarity condi-

tion, iteratively picking edges according to Rule 3.14 hence yields a planar realization of A for f .

Applying this to every face yields the following characterization.

Proposition 3.16. There exists a planar realization W of A if and only if A satisfies for each

face the parity, matching, and planarity condition; W can be computed in O(n) time.

Proof. We construct the planar realization for each face individually. To construct a local re-

alization for a face with a positive number of assigned vertices, we repeatedly apply Rule 3.14

to select an edge. By Lemma 3.15 this yields a planar local realization. It is not hard to see

that repeatedly applying Rule 3.14 for a face f can be done in time proportional to the number

of vertices incident to f . To allow fast left-first and right-first searches, we maintain a circular

list containing the vertices incident to f with degree less than 3, and remove vertices reaching

degree 3 from this list. Thus, also in phase 2 of Rule 3.14 the second vertex can be found in O(1)

time.

3.3.2 Globally Realizable Node Assignments and Planarity

Up to this point we have seen a characterization of the node assignments that admit a planar

realization and we have seen a simple algorithm, namely iteratively applying Rule 3.14, to

construct a planar realization for a given node assignment. In this section we show how to

decide if a node assignment exists that admits a planar realization and how to compute such a

node assignment. By Proposition 3.16, this is equivalent to finding a node assignment satisfying
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for each face the parity, matching, and planarity condition. In a first step, we show that the

planarity condition can be neglected as an assignment satisfying the other two conditions can

always be modified to additionally satisfy the planarity condition. Note that this implicitly

follows from Proposition 3.2, but we give a much more precise description in the following.

Lemma 3.17. Given a node assignment A that satisfies the parity and matching condition for

all faces, a node assignment A0 that additionally satisfies the planarity condition for all faces

can be computed in O(n) time.

Proof. Assume that f is a face for which the planarity condition is not satisfied, and let ⇡ =

v1, . . . , vk denote a longest path (or cycle) of degree-2 vertices, all assigned to f , that violates

the planarity condition. Let f 0 denote the other face (distinct from f) incident to ⇡. Let u = v1.

Choose v = v3 if k = 3, and v = vd(k+1)/2e otherwise. We modify A by reassigning u and v

to f 0. We claim that the resulting assignment has two properties, namely 1) for f 0 least the

same conditions are satisfied as before the reassignment, and 2) for f the parity condition, the

matching condition and the planarity condition are satisfied. Hence, applying this reassignment

for all faces for which the planarity condition is not satisfied, yields the claimed assignment A0.

Note that, since ⇡ is either a path of length more than 2 or a cycle of length more than 3,

the two vertices u and v are distinct and non-adjacent. To see property 1) consider the face f 0.

Obviously, the reassignment preserves the parity condition for f 0. For the matching condition

assume that M is an augmentation of f 0 with respect to A. Then M [ {uv} is an augmentation

of f 0 with respect to A0, thus the matching condition is preserved. Moreover, if M is a planar

augmentation, then uv can be added in a planar way, showing that also the planarity condition

is preserved for f 0.

Concerning property 2), the reassignment obviously preserves the parity condition for f . For

the matching and the planarity condition assume that, after the reassignment, there exists a

set T of vertices assigned to f that demands k0 additional free valencies by either the matching

condition or the planarity condition. First, observe that k0  k�1, as ⇡ would not have violated

the planarity condition, otherwise. If k0 = k� 1, then T is disjoint from ⇡, which provides k� 2

free valencies (recall that ⇡ was a longest path before the reassignment and u and v have been

reassigned), and the parity condition implies the existence of an additional free valency assigned

to f , thus ensuring that the demand of T is satisfied. The same argument works for all cases

where T is disjoint from ⇡. Thus assume that T and ⇡ are not disjoint. Since ⇡ was chosen

as a maximal path or cycle incident to two faces, it follows that T is a subset of ⇡. Note

that the reassignment splits ⇡ into two disjoint subpaths ⇡1 and ⇡2 consisting of d(k � 2)/2e
and b(k�2)/2c vertices, respectively. Then, ⇡2, possibly together with an additional free valency

provided by the parity condition (if k is odd), provides the necessary valencies for ⇡1 and vice

versa. Thus, also the demand of T is satisfied. For f , the new assignment hence satisfies the

matching condition as well as the planarity condition, and property 2) holds.

Observe that once a longest path or cycle violating the planarity condition has been found, the

reassignment for a face f takes only O(1) time. Moreover, since we only need to consider maximal

sequences of assigned degree-2 vertices, such a path or cycle can be found in time proportional

to the size of f . The test whether the planarity condition for this path is satisfied can be

performed in the same running time. Thus A0 can be computed from A by simply traversing

all faces, spending time proportional to the face size in each face. Hence, computing A0 from A

takes O(n) time.
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Proposition 3.16, which guarantees a planar realization for each node assignment that satisfies

the parity, matching and planarity condition, and Lemma 3.17, saying that in fact the planarity

condition can be neglected, together imply the following characterization.

Proposition 3.18. A planar graph of maximum degree 3 with a fixed planar embedding admits

a planar 3-regular augmentation, if and only if it admits a node assignment that satisfies for all

faces the parity and matching condition.

To find a node assignment satisfying the parity and matching condition for a given planar

graph G = (V,E) of maximum degree 3 and a fixed planar embedding of G, we compute a

(generalized) perfect matching in the following (multi-)graph GA = (V ? , E0), called assignment

graph. It is defined on V ? = V 0[V 1[V 2 , and the demand of a vertex in V i is 3�i for i = 0, 1, 2.

For a face f let V ?

f ✓ V ? denote the vertices incident to f . For each face f of G, GA contains

the edge set E0f =
�V ?

f

2

�
\ E, connecting non-adjacent vertices in V ? that share the face f . We

seek a perfect (generalized) matching M of GA satisfying exactly the demands of all vertices.

The interpretation is that we assign a vertex v to a face f if and only if M contains an edge

incident to v that belongs to E0f . The following lemma states the correspondence between the

perfect matchings of GA, as described above, and the node assignments for G that admit a planar

realization.

Lemma 3.19. A perfect matching of GA corresponds to a node assignment that satisfies the

parity and matching condition for all faces, and vice versa.

Proof. First assume that M is a perfect matching of GA, and let A be the corresponding as-

signment. Observe that for each face f , the edge set E0f \M is exactly a realization of A for f ,

and hence, by Proposition 3.9, A satisfies the parity condition and the matching condition for f .

Conversely, again by Proposition 3.9, for a node assignment A that satisfies the parity condition

and the matching condition for each face f , we find a realization Wf for each face. Note that

by definition of E0f we have Wf ✓ E0f , and thus
S

f2F Wf yields a perfect matching of GA

inducing A.

This finally implies the following algorithm, which runs in O(n2.5) time, as proven by the

next theorem. For a given planar input graph G with n vertices, maximum degree 3, and a fixed

planar embedding, we perform the following steps.

(1) We construct the assignment graph GA.

(2) We check whether GA admits a perfect matching.

(3) If GA admits a perfect matching, from the node assignment A, which is induced by the

matching in GA, we construct a new node assignment A0 that additionally satisfies the

planarity condition (if GA admits no perfect matching, G does not admit a planar 3-regular

augmentation).

(4) We construct a corresponding planar realization of A0.

Theorem 3.20. The problem 3-Fepra can be solved in O(n2.5) time.

Proof. We can construct the assignment graph GA = (V ? , E0) in O(n2) time, with n the number

of vertices in the input graph G. Checking whether GA admits a perfect matching can be done

in O(
p
|V ? ||E0|) = O(n2.5) time, using the algorithm due to Gabow [50], as introduced at the

beginning. According to the characterization in Proposition 3.18 and the correspondence between

perfect matchings in GA and node assignments satisfying the characterization in Lemma 3.19,
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this decides whether G admits a planar 3-regular augmentation. By the same lemma, we obtain

a node assignment A (induced by the matching in GA) that satisfies the parity condition and

the matching condition for each face. Using Lemma 3.17, we obtain in O(n) time a node

assignment A0 that additionally satisfies the planarity condition for each face. A corresponding

planar realization of A0 can then be obtained in O(n) time by Proposition 3.16.





CHAPTER 4

Algorithms for C-connected

Planar 3-Regular Augmentation with Fixed Embedding

In this chapter, we generalize the results obtained for arbitrary 3-Fepra to e�ciently solve c-

connected 3-Fepra for c = 1, 2. The triconnected case is shown to be NP-hard in Section 4.3.

For both problem variants, we give again a characterization of the node assignments that admit

the required planar realizations. Moreover we describe how to construct an assignment graph GA

such that any perfect matching in GA induces a node assignment according to the given char-

acterization, and vice versa. We will see that the condition on (bi)connectivity, which is now

additionally necessary for the characterization (besides the parity and the matching condition),

is again defined locally for each face. Hence, we again construct the assignment graph GA by

constructing an edge set E0f for each face f , and say that a perfect matching M of GA induces a

node assignment for G that assigns to each face f the vertices in V ? that are incident to edges

in M \ E0f . This finally implies the same algorithmic steps as for solving arbitrary 3-Fepra,

however some details in the construction of GA and the final augmentation di↵er.

4.1 Construction of the Assignment Graph GA

The construction of GA distinguishes two types of faces. The first type are the faces for which

the subgraph Hf of G = (V,E) consisting of the vertices and edges of G incident to f is already

(bi)connected. For these faces the condition on (bi)connectivity is trivially satisfied by any node

assignment. Hence, we call these faces (bi)connected and, for the assignment graph, we construct

the edge set E0f =
�V ?

f

2

�
\E for each such face as in Section 3.3.2. For the remaining faces, which

we call non-(bi)connected, we need to explicitly enforce the condition on (bi)connectivity when

constructing E0f . To this end, we construct additional dummy vertices, which also demand

adjacencies in a perfect matching of GA. So the vertex set of GA is now V ? [ VD, where

VD denotes the set of dummy vertices. The edge set of GA is again E0 =
S

f2F E0f , with E0f
for (bi)connected faces as defined above and for non-(bi)connected faces as constructed in the

following. We start discussing some preliminary insights, which we will exploit when constructing

the edge set E0f for non-(bi)connected faces.

Preassigned Vertices. An empty 3-cycle is a cycle of three vertices in V 2 that is incident

to a face that does not contain any further vertices. Although, technically, empty 3-cycles are

incident to two faces, no augmentation edges can be embedded on the empty side of the 3-cycle,

57
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hence the assignment of the vertices of empty 3-cycles is already fixed. The same holds for the

vertices in V 0 [V 1 and the vertices in V 2 that are incident to bridges. They are all incident to

only a single face. We denote these preassigned vertices by V and write V f if we only consider

the vertices in V that are incident to the face f . The vertices in V induce a preliminary node

assignment A : V ! F that is defined piecewise on the faces of G by A(V f ) := {f} for all faces.

We denote the restriction of A to a face f by Af := A
��
V

f

.

Therefore, it su�ces for a perfect matching in GA to consider the remaining vertices in V 2

that are not yet preassigned. The set of remaining non-preassigned vertices in V ? is denoted

by V̈ . Analogously, we denote the vertices in V̈ that are incident to a face f by V̈f . Note that

the vertices in V̈ are incident to two distinct faces f and f 0. Each vertex in V̈ is thus in two

sets V̈f and V̈f 0 .

Ensuring the Matching Condition. The vertices of an indicator set assigned to f are either

in V f or in V̈f . Hence, for non-(bi)connected faces, we ensure the matching condition for each

vertex set V f and V̈f individually. For a maximum indicator set in V f , we will ensure the

matching condition with the help of a dummy vertex. Similarly, dummy vertices will be also

used to ensure the parity condition and the condition on (bi)connectivity. For a maximum

indicator set in V̈f , we will see that if the parity condition and the condition on (bi)connectivity

are satisfied, there are always enough vertices preassigned or required by dummy vertices to

already satisfy its demand. Hence, there is no need to explicitly ensure the matching condition

for non-preassigned vertices. This in particular allows to also assign adjacent vertices of V̈f to f .

4.1.1 Connected 3-Fepra

Before we describe the construction of the assignment graph for connected 3-Fepra, we charac-

terize the node assignments that admit a connected planar 3-regular augmentation. Let f be a

face of G, and let z denote the number of connected components incident to f . Obviously, an

augmentation connecting all these components must contain at least a spanning tree on these

components, which consists of z�1 edges and thus needs 2(z�1) valencies assigned to f . Hence,

the following connectivity condition is necessary for a node assignment A to admit a connected

realization for f .

Condition 4.1 (connectivity). (1) If z > 1, each connected component incident to f must have

at least one valency assigned to f .

(2) The number of valencies assigned to f must be at least 2z � 2.

By iteratively applying Rule 3.14, we show that this condition is also su�cient; besides the

parity, the matching and the planarity condition. This yields the following characterization.

Proposition 4.2. There exists a connected planar realization W of A if and only if A satisfies

for each face the parity, matching, connectivity, and planarity condition; W can be computed

in O(n) time.

Proof. Clearly the conditions are necessary. We prove that they are also su�cient by iteratively

applying Rule 3.14. Let A be a node assignment that satisfies for each face the parity, the

matching, the connectivity and the planarity condition. We construct the connected planar

realization W for each face individually. To this end we observe that, for a face f with z > 1,

we can always choose an edge e = uv in the first phase of Rule 3.14 such that A satisfies the
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connectivity condition also for f + e, and the first phase does not end until f is incident to only

one connected component. At this point the connectivity condition is trivially satisfied for f and

by Lemma 3.15 also the remaining conditions are still satisfied for f . Hence, choosing further

edges according to the second phase of Rule 3.14 finally yields a connected planar realization

for f . The running time can be argued as in the proof of Proposition 3.16.

The following lemma follows from Lemma 3.17 by showing that the reassignment which es-

tablishes the planarity condition preserves the connectivity condition.

Lemma 4.3. Given a node assignment A that satisfies the parity, matching, and connectivity

condition for all faces, a node assignment A0 that additionally satisfies the planarity condition

can be computed in O(n) time.

Proof. To see this, recall that Lemma 3.17 reassigns from each face at most two vertices to a

distinct face if the planarity condition is not satisfied. Clearly, assigning more vertices to a face

does not invalidate the connectivity condition. Thus, an invalidation of the connectivity condition

for a face f may only happen when two vertices assigned to f are reassigned to a di↵erent face.

Note that if z > 2 for f , the planarity condition is implied by connectivity condition (1). Thus

a reassignment only happens for faces with z = 1, 2. If z = 1, the connectivity condition holds

trivially. If z = 2, observe that connectivity condition (2) is implied by condition (1), and since

the reassignment does not reassign the last valency of a connected component, connectivity

condition (1) is preserved.

Proposition 4.2, which guarantees a connected planar realization for each node assignment

that satisfies the parity, matching, connectivity and planarity condition, and Lemma 4.3, saying

that in fact the planarity condition can be neglected, imply the following characterization.

Proposition 4.4. A planar graph of maximum degree 3 with a fixed planar embedding admits a

connected planar 3-regular augmentation if and only if it admits a node assignment that satisfies

for all faces the parity, matching, and connectivity condition.

Assignment Graph Construction for Connected 3-Fepra. We describe an assignment

graph GA = (V ?[VD, E0), whose construction is such that there is a correspondence between the

perfect matchings of GA and node assignments satisfying the parity, matching, and connectivity

condition. We construct an individual edge set E0f ✓ E0 for each face f , distinguishing connected

faces (for which the connectivity condition is trivially satisfied) and non-connected faces, also

called disconnected, as introduced at the beginning of Chapter 4. In the context of connected

3-Fepra, a face is connected if and only if it is z = 1 for this face. For connected faces, we use

the same set E0f =
�V ?

f

2

�
\ E as in Section 3.3.2.

In the following we consider disconnected faces, which are the faces with z > 1. Let f be

a face that is incident to at least two connected components. We first determine the sets V f

and V̈f of preassigned and non-preassigned vertices and the preliminary node assignment Af .

For each component C incident to f that does not provide a preassigned vertex, we then add a

dummy vertex dC with demand 1 and connect it to all vertices in V̈f\C; this ensures connectivity

condition (1). Let c̈ denote the number of these dummy vertices, and note that there are exactly c̈

valencies assigned to f due to these dummy vertices. Let a denote the number of valencies

assigned to f by Af , and let � denote the maximum remaining demand of an indicator set in V f ,

that is, the smallest number of valencies that must be additionally provided by vertices in V̈f such
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Figure 4.1: Graph (dashed lines) with one disconnected face f and five connected faces.
Degree-3 vertices are filled gray, preassigned vertices are filled black, remaining vertices with
degree less than 3 are empty. The solid lines depict the corresponding assignment graph

(dummy vertices as empty boxes).

that the demand of any maximum indicator set in V f is satisfied (by Af , the c̈ valencies due to the

dummy vertices and the additional valencies). To ensure the matching condition for f , at least �

further valencies need to be assigned to f . For connectivity condition (2) we need at least 2z�2

valencies assigned to f , while we already know that a+ c̈ valencies are definitely assigned to f .

We thus create a dummy vertex d whose demand is set to s = max{2z � 2 � (a + c̈), �, 0} and

connect d to all vertices in V̈f . The vertices in V̈f have demand 1. If s+a+ c̈ is odd, we increase s

by one to also guarantee the parity condition.

We will see in the proof of the following lemma that the construction so far already assigns

enough valencies to f to satisfy the demand of any maximum indicator set possibly arising from

assigning vertices of V̈f to f . Hence, we finally allow an additional arbitrary even number of

vertices in V̈f to be assigned to f . To achieve this we just add all pairs of vertices in V̈f as

edges to E0f . Note that this is di↵erent from the connected faces, where we only allow pairs of

non-adjacent vertices of V̈f .

Observe that, for disconnected faces, the edges in E0f are only incident to dummy vertices

and vertices in V̈f , since preassigned vertices do not need to be considered. Figure 4.1 shows

an example of an assignment graph; for clarity edges connecting vertices in V̈f are omitted for

disconnected faces.

Lemma 4.5. A perfect matching of GA (together with A) corresponds to a node assignment that

satisfies the parity, matching, and connectivity condition for all faces, and vice versa.

Proof. Let M be a perfect matching of GA and let A denote the corresponding node assignment

together with A. We show that A satisfies the parity, matching, and connectivity condition for

all faces. For connected faces, A satisfies the connectivity condition by definition. The matching

condition and the parity condition are satisfied since the set E0f \M is a perfect matching with

respect to all vertices in V ?

f , as we did not distinguish preassigned and non-preassigned vertices

for the construction of E0f .

Now assume f is a disconnected face, for which it is z > 1. Using the definitions from

above, there are a valencies assigned to f by Af , c̈ valencies from vertices adjacent to dummy

vertices dC , s valencies from vertices incident to the dummy vertex d and 2k valencies from k

edges in M \
�
V̈
f

2

�
. In total these are a + c̈ + s + 2k valencies, which is even due to the choice

of s, and hence the parity condition holds. For the connectivity condition, observe that the

dummy vertices dC imply connectivity condition (1) and the choice of s implies connectivity

condition (2).
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It remains to prove that the matching condition is satisfied for f . Let S denote a maximum

indicator set of f (with respect to A). If S ✓ V f then S was already a maximum indicator set

with respect to Af , and its demand is satisfied due to the choice of s. If S ✓ V̈f , then S is a

joker, a pair or a triangle. For a joker the necessary valency exists due to the parity condition

for f . If S is a pair, the vertices of S are in a common connected component. Since z > 1

and A satisfies the connectivity condition for f , there is another connected component incident

to f that provides a further valency. A second additional valency is guaranteed by the parity

condition for f . Hence the demand of S is satisfied, unless S is part of a 3-cycle C and the second

additional valency is provided by the remaining vertex in C. This situation, however, does not

occur. If C is empty, its vertices are preassigned, contradicting S ✓ V̈f . If C is not empty, at

least one of its vertices is incident to an edge in M that is embedded in the other face distinct

from f (otherwise there would be a dummy vertex in this face that is supposed to ensure the

connectivity condition and whose demand is not satisfied). Hence the second valency cannot be

provided by a common neighbor of the vertices in S. Finally, if S is a triangle, its vertices are

preassigned, contradicting again S ✓ V̈f .

Conversely, let A be a node assignment that satisfies, for each face f , the parity condition, the

matching condition, and the connectivity condition. We construct a perfect matching in GA that

together with A induces A. First of all, note that the preassignment A follows from necessary

conditions, and thus A assigns preassigned vertices in the same unique way as A. For a connected

face f , a matching Mf ✓ E0f that satisfies exactly the demands of the vertices assigned to f

exists according to Proposition 3.9.

For a disconnected face f , we seek a matching Mf ✓ E0f that further satisfies the demand of

the dummy vertices associated with f . Recall that, by construction, the vertices in V f have no

demands and are not contained in GA. Connectivity condition (1) implies that each connected

component either contains a vertex in V f or a vertex in V̈f assigned to f . We pick for each

connected component C that does not contain a vertex in V f an arbitrary assigned vertex

in C \ V̈f and match it to dC . Thus, the demands of the dummy vertices dC are satisfied, as

well as the demands of the corresponding vertices in V̈f . The matching condition implies that

the number of remaining valencies at vertices in V̈f is at least �, and connectivity condition (2)

implies that at least 2z � 2 � (a + c̈) valencies remain at vertices in V̈f . Thus, we can match

arbitrary s of these valencies at vertices in V̈f to d, satisfying its demand. The remaining yet-

unmatched valencies are an even number and an arbitrary pairing of the corresponding vertices

in V̈f completes the matching Mf .

Theorem 4.6. Connected 3-Fepra can be solved in O(n2.5) time.

Proof. We can construct GA = (V ? [ VD, E0), which has O(n2) edges and a linear number

of vertices, in O(n2) time, with n the number of vertices in the input graph G. Checking

whether GA admits a perfect matching can be done in O(
p
|V ? [ VD||E0|) = O(n2.5) time,

using the algorithm due to Gabow [50], as introduced at the beginning. According to the

characterization in Proposition 4.4 and the correspondence between perfect matchings in GA

and node assignments satisfying the characterization in Lemma 4.5, this decides whether G

admits a connected planar 3-regular augmentation. By the same lemma, we obtain a node

assignment A (induced by the matching in GA and A) that satisfies the parity condition, the

matching condition, and the connectivity condition for each face. Using Lemma 4.3, we obtain

in O(n) time a node assignment A0 that additionally satisfies the planarity condition for each
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Figure 4.2: A face f of G (left) and its corresponding bridge forests Bf (G) (middle)
and Bf (G+W ) (right); solid (black) edges belong to G, dotted (red) edges form the augmenta-
tion W . The bridge b
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is not incident to f and hence not contained in Bf (G) and Bf (G+W ).

face. A corresponding connected planar realization of A0 can then be obtained in O(n) time by

Proposition 4.2.

4.1.2 Biconnected 3-Fepra

In this section we show that also biconnected 3-Fepra can be solved e�ciently. Again, we first

give a local characterization of node assignments admitting biconnected planar realizations and

then construct an assignment graph whose perfect matchings correspond to such node assign-

ments.

Let f be a face of G. We consider the bridge forest Bf (G) of f with respect to G, which

is constructed as follows. Remove all bridges from G. This yields exactly the biconnected

components of G, as G has maximum degree 3. We call the biconnected components of G blocks.

Note that deleting bridges in G does not change the faces in G, since bridges are only incident

to one face. We create a node for each block that is incident to f and connect these nodes by

an edge if and only if the corresponding blocks are connected by a bridge in G. We identify

the nodes and the edges in Bf (G) with the corresponding blocks and bridges in G. Observe

that Bf (G) contains a (connected) tree for each connected component of G incident to f .

For an augmented graph G + W , where W is a partial planar augmentation, we define the

bridge forest Bf (G+W ) of f by only removing bridges of G+W . Note that Bf (G+W ) is still

defined with respect to the face f , although f is a face of G, which might be split into several

faces in G+W . An edge, a vertex, or a block in G+W is incident to f in G if it is incident to a

face f 0 of G+W that arose by splitting f . Figure 4.2 shows an example of Bf (G) and Bf (G+W ).

Clearly, an augmentation W is connected if and only if the bridge forest Bf (G + W ) of each

face f in G is a tree, and it is biconnected if and only if each bridge forest Bf (G+W ) consists of

a single node. Observe further that each block in G+W consists of blocks in G. In particular,

each block corresponding to a leaf in Bf (G + W ) contains a block that corresponds to a leaf

in Bf (G).

Next, we study necessary and su�cient conditions for when a node assignment A admits a

planar 3-regular realizationW such that the resulting bridge forest Bf (G+W ) is a single node for

each face f . Obviously, if there is more than one connected component incident to f , each of them

must assign at least two valencies to f ; if none is assigned, the realization will not be connected,

if only one is assigned the single edge incident to this valency will form a bridge in G+W , and

hence in Bf (G+W ). Additionally, each block that corresponds to a leaf in Bf (G) must assign

at least one valency, otherwise its incident bridge in Bf (G) will remain a bridge in Bf (G+W ).
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Hence, the following biconnectivity condition is necessary for a node assignment A to admit a

biconnected realization for a face f with z incident connected components.

Condition 4.7 (biconnectivity). (1) If z > 1, each connected component incident to f must

have at least two valencies assigned to f .

(2) Each block corresponding to a leaf in Bf (G) must assign at least one valency to f .

We show that this condition is also su�cient; besides the parity and the matching condition.

Proposition 4.8. There exists a biconnected planar realization W of A if and only if A satisfies

for each face the parity, matching, biconnectivity, and planarity condition; W can be computed

in O(n) time.

Proof. Clearly the conditions are necessary. Let A be a node assignment satisfying the parity

condition, the matching condition, the biconnectivity condition, and the planarity condition for

all faces of G. We prove the existence of a biconnected planar realization W for each face f

individually. First, we ensure connectivity for f . If f is a face with z > 1 incident connected

components, the bridge forest Bf (G) of f is not connected and consists of z trees. Hence, we

add a set W 0 of z � 1 edges to f such that Bf (G +W 0) becomes connected. As biconnectivity

condition (1) implies the connectivity condition, and the biconnectivity condition is preserved by

adding edges in this way, this can be done by applying Phase 1 of Rule 3.14. Observe that G+W 0

is still planar and contains the face f . For f it is now z = 1. The assignment A0 induced by A

on G+W 0 still satisfies the biconnectivity condition as well as the parity condition, the matching

condition, and the planarity condition, according to Lemma 3.15. Thus, in the following, we

assume G is connected and consider only faces with z = 1.

Let f be a face with z = 1 and A a node assignment satisfying the parity condition, the

matching condition, the biconnectivity condition, and the planarity condition for all faces. Then,

according to Proposition 3.16, there exists a planar (not necessarily biconnected) realization W 0

of A. We show that it is possible to rewire some edges of W 0 that are embedded in f such that

we obtain a biconnected planar realization of A for f , that is, no edge incident to f is a bridge.

We first observe that, if Bf (G +W 0) is a single node, we are already done. Otherwise, let b

be an edge in Bf (G+W 0), this is, b corresponds to a bridge in G+W 0 that is embedded in f .

Since G is assumed to be connected, b is even a bridge in G. Starting from one side of b, we now

traverse the facial cycle Cf of f in clockwise and counterclockwise direction until we find the

first vertices x1 and x2 that are assigned to f . Note that these vertices lie on di↵erent sides of b,

since we searched in di↵erent directions starting from b and biconnectivity condition (2) ensures

that we find an assigned vertex before we traverse b again. Let f 0 denote the face incident to b
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in G+W 0. By the choice of x1 as the first vertex along Cf with an incident edge in W 0, there

is an edge x1, y1 in W 0 that is incident to f 0. Similarly, there is an edge x2, y2 in W 0 incident

to f 0. Note that, since b is a bridge, also y1 and y2 lie on distinct sides of b. Hence, the only

two vertices that might be adjacent in G are x1 and x2. In this case, it is b = {x1, x2}. If this

is the case, we replace {x1, y1} and {x2, y2} by {x1, y2} and {x2, y1}. Otherwise, we replace

them by {x1, x2} and {y1, y2}; see Fig. 4.3 for an illustration. In either case, b is not a bridge

afterwards, and, moreover it can be seen that no new bridges are created by this rewiring step,

since the two new edges together with any path from x1 to y1 and from x2 to y2 form a cycle.

Thus, after such a step, Bf (G+W 0) has fewer edges and iteratively applying such rewiring steps

results in the desired augmentation W .

Concerning the running time, recall that, by applying Rule 3.14, z� 1 edges can be added to

each face inG inO(n) time such thatG becomes connected and the remaining node assignmentA0

still satisfies the parity, the matching, the biconnectivity and the planarity condition. A planar

(possibly not biconnected) realization W 0 of A0 for each face f in the connected graph G can

be computed in linear time by Proposition 3.16. For the rewiring, we traverse the facial cycle

of f once. At the beginning no bridge in G + W 0 is marked. During the traversal, we always

maintain the last vertex x1 assigned to f we encountered, together with the edge {x1, y1} in W 0

incident to it. Whenever we traverse a bridge that is not marked yet, we continue the traversal

until we find the first vertex x2 assigned to f after the bridge, together with the edge {x2, y2}
in W 0 incident to it. On the way from x1 to x2 we possibly traverse more than one (unmarked)

bridge. After rewiring the edges {x1, y1} and {x2, y2}, none of these bridges will be a bridge

in G +W 0 anymore. Hence, we mark these bridges as processed in order to ignore them when

we traverse them the second time. We then apply the rewiring as described above in O(1) time.

After traversing the facial cycle of f in this way, no bridges are left, and we have found the

claimed augmentation. Clearly, the running time is linear in the size of f .

The following Lemma follows from Lemma 3.17 by showing that the reassignment that es-

tablishes the planarity condition preserves the biconnectivity condition. Similar to the proof of

Lemma 4.3 (regarding the connectivity condition), it can be seen that the rewiring performed in

the proof of Lemma 3.17 does not invalidate the biconnectivity condition. It reassigns vertices

to other faces only if a face is assigned an insu�cient number of additional valencies, which only

shortens long paths of degree-2 vertices but never reduces the number of assigned valencies of a

block corresponding to a leaf in Bf (G) to zero or of a connected component below two.

Lemma 4.9. Given a node assignment A that satisfies the parity, matching, and biconnectivity

condition for all faces, a node assignment A0 that additionally satisfies the planarity condition

can be computed in O(n) time.

Proposition 4.8 together with Lemma 4.9 implies the following characterization.

Proposition 4.10. A planar graph of maximum degree 3 with a fixed planar embedding admits

a biconnected planar 3-regular augmentation if and only if it admits a node assignment that

satisfies for all faces the parity, matching, and biconnectivity condition.

Assignment Graph Construction for Biconnected 3-Fepra. As before, we construct an

assignment graph GA = (V ? [ VD, E0) such that the perfect matchings of GA correspond to

the characterized node assignments. To this end, we describe how to construct an individual

edge set E0f for each face f . In doing so, we again distinguish biconnected faces, for which
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faces. Degree-3 vertices are filled gray, preassigned vertices as filled black, remaining vertices
with degree less than 3 as empty. The solid lines depict the corresponding assignment graph
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the biconnectivity condition is trivially satisfied, and non-biconnected faces, for which we need

to ensure the biconnectivity condition when constructing E0f . In the context of biconnected

3-Fepra, a face is biconnected if and only if its bridge forest Bf (G) consists of a single node.

For biconnected faces, we again construct the set E0f =
�V ?

f

2

�
\ E as in Section 3.3.2.

The following description focuses on non-biconnected faces, which are the faces whose bridge

forest Bf (G) contains at least two nodes. Let f be such a face. We first determine the sets V f

and V̈f of preassigned and non-preassigned vertices and the preliminary node assignment Af .

For each block that corresponds to a leaf L in Bf (G) and does not contain a vertex in V f , we

add a dummy vertex dL with demand 1 and connect it to all vertices in V̈f \ L; this ensures

biconnectivity condition (2). Moreover, for each connected component incident to f that contains

a bridge this also ensures biconnectivity condition (1). For each connected component C that

neither contains a bridge nor a vertex in V f , we add a dummy vertex dC with demand 2 and

connect it to all vertices in V̈f \ C. This completely ensures biconnectivity condition (1) for f .

Note that the only connected component that does not contain a bridge but a vertex in V f is

an empty 3-cycle. An empty 3-cycle, however, provides even three vertices in V f , which clearly

satisfies biconnectivity condition (1). Now let c̈ denote the number of valencies demanded by

dummy vertices dC and ` the number of valencies demanded by dummy vertices dL. As in the

construction for connected 3-Fepra, we further denote the number of valencies assigned to f

by Af by a and the maximum remaining demand of an indicator set in Af by �. To satisfy

this remaining demand, at least � additional vertices from V̈f need to be assigned to f (besides

the c̈+`+a valencies that are already ensured). We thus create a dummy vertex d whose demand

is set to s = max{�, 0} and connect d to all vertices in V̈f . The vertices in V̈f have demand 1. If

s+ a+ c̈+ ` is odd, we increase s by 1 to also guarantee the parity condition.

As in the connected case, we will see in the proof of the following lemma that the construction

so far already assigns enough valencies to f such that assigning further vertices of V̈f to f never

yields an indicator set whose demand is not satisfied. Hence, we add again all pairs of (possibly

adjacent) vertices in V̈f as edges to E0f .

For non-biconnected faces, the edges in E0f are again only incident to dummy vertices and

vertices in V̈f . Figure 4.4 shows an example of an assignment graph; for clarity edges connecting

vertices in V̈f are omitted for non-biconnected faces.

Lemma 4.11. A perfect matching of GA (together with A) corresponds to a node assignment

that satisfies the parity, matching, and biconnectivity condition for all faces, and vice versa.
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Proof. Let M be a perfect matching of GA and let A denote the corresponding node assignment

together with A. We show that A satisfies the parity, matching and biconnectivity condition

for all faces. For biconnected faces, A satisfies the biconnectivity condition by definition. The

matching condition and the parity condition are satisfied since the set E0f \ M is a perfect

matching with respect to all vertices in V ?

f , as we did not distinguish preassigned and non-

preassigned vertices for the construction of E0f .

Now consider a non-biconnected face f , for which Bf (G) consists of at least two nodes. As

in the connected case, the demand of s ensures that an even number of valencies is assigned

to f , and hence A satisfies the parity condition. Moreover, the dummy vertices dC and dL

explicitly ensure the biconnectivity condition. For the matching condition, recall that s was

chosen such that the demands of all indicator sets consisting of vertices in V f are satisfied.

Thus, if there is an indicator set S whose demand is not satisfied, it must consist of vertices

in V̈f , and hence is a joker, a pair or a triangle. For a joker the necessary valency exists due

to the parity condition. If S is a pair, the vertices of S share a block in Bf (G). Since Bf (G)

contains at least two nodes and A satisfies the biconnectivity condition, at least one of the other

nodes provides a further valency. It then follows from the parity condition that there is also a

second additional valency. These two additional valencies satisfy the demand of S, unless S is

part of a 3-cycle C and the second additional valency is provided by the remaining vertex in C.

As in the connected case, this situation, however, does not occur. If C is empty, its vertices are

preassigned, contradicting S ✓ V̈f . If C is not empty, at least one of its vertices is incident to an

edge in M that is embedded in the other face distinct from f (otherwise there would be a dummy

vertex in this face that is supposed to ensure the biconnectivity condition and whose demand

is not satisfied). Hence, the second valency cannot be provided by a common neighbor of the

vertices in S. Finally, if S is a triangle, its vertices are preassigned, contradicting again S ✓ V̈f .

Conversely, let A be a node assignment that satisfies, for each face f , the parity condition,

the matching condition, and the biconnectivity condition. We construct a perfect matching

in GA that together with A induces A. We note again that, as in the connected case, the

preassignment A follows from necessary conditions, and thus, A assigns preassigned vertices in

the same unique way as A. For a biconnected face f , a matching Mf ✓ E0f that satisfies exactly

the demands of the vertices assigned to f exists according to Proposition 3.9.

For a non-biconnected face f , we seek a matching Mf ✓ E0f that further satisfies the demand

of the dummy vertices associated with f . However, the conditions satisfied by A imply, as in the

connected case, that enough vertices of V̈f are assigned to f such that we can match those to

the dummy vertices satisfying their demand. The choice of the demand of the dummy vertices

further implies that the number of unmatched vertices in V̈f assigned to f is even. Those can

be paired arbitrarily in GA to eventually form Mf .

Theorem 4.12. Biconnected 3-Fepra can be solved in O(n2.5) time.

Proof. We can construct GA = (V ? [ VD, E0), which has O(n2) edges and a linear number

of vertices, in O(n2) time, with n the number of vertices in the input graph G. Checking

whether GA admits a perfect matching can be done in O(
p
|V ? [ VD||E0|) = O(n2.5) time,

using the algorithm due to Gabow [50], as introduced at the beginning. According to the

characterization in Proposition 4.10 and the correspondence between perfect matchings in GA

and node assignments satisfying the characterization in Lemma 4.11, this decides whether G

admits a biconnected planar 3-regular augmentation. By the same lemma, we obtain a node

assignment A (induced by the matching in GA and A) that satisfies the parity condition, the
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matching condition and the biconnectivity condition for each face. Using Lemma 4.9, we obtain

in O(n) time a node assignment A0 that additionally satisfies the planarity condition for each

face. A corresponding biconnected planar realization of A0 can then be obtained in O(n) time

by Proposition 4.8.

4.2 Improving the Running Times

In this section, we show that the running time of the above algorithms for c-connected 3-Fepra,

with c = 0, 1, 2, can be reduced to O(n1.5). To achieve this, we modify the previous assignment

graphs such that their perfect matchings still induce the same node assignments as before but the

modified assignment graphs have size O(n) (and can also be constructed in time O(n)) instead

of O(n2). Since the matching algorithm of Gabow [50] runs in time O(
p
nm), this immediately

yields the claimed running time.

Recall from the previous sections that, for the construction of an assignment graph GA =

(V ? [ VD, E0), we used the following scheme. For each face f of G we defined an edge set E0f
of edges in GA, distinguishing two types of faces. The first type contained all faces for which

the subgraph Hf induced by the vertices in G incident to the face f already provided the

required (bi)connectivity. For c = 1, 2, we called these faces (bi)connected. For c = 0, all faces

were of this type, since there is no connectivity required. In the following, we call the faces of

this type connectivity-satisfied, referring to all faces if c = 0, to connected faces if c = 1, and

to biconnected faces if c = 2. The second type contained the so-called non-(bi)connected faces,

which only occurred for c = 1, 2 and for which we needed to enforce the required (bi)connectivity

by assigning and matching the vertices in a special way. Analogous to the connectivity-satisfied

faces, we now call the faces of the second type connectivity-non-satisfied. Whenever we consider

the faces of only one problem variant (c = 1 or c = 2), we also still use the corresponding more

descriptive terms of (non-)connected and (non-)biconnected faces.

For connectivity-satisfied faces the edge set E0f just consisted of the complement edges of Hf ,

which directly implied the parity and matching condition but yielded size O(n2) for the complete

assignment graph. Recall that we did not distinguish preassigned and non-preassigned vertices

for connectivity-satisfied faces. For connectivity-non-satisfied faces, we created a certain set of

dummy vertices connected to non-preassigned vertices incident to f (denoted by V̈f ) and the

vertices in V̈f among each other. Adding the edge set
�
V̈
f

2

�
to E0f again yielded size O(n2)

for GA. Note that the number of dummy vertices for each connectivity-non-satisfied face f and

their incident edges was only linear in the size of f

To overcome the quadratic size of the assignment graphs, for connectivity-non-satisfied faces,

we thus need to find a way to allow the assignment of an arbitrary even number of non-preassigned

vertices by only adding a linear number of edges to E0f (instead of adding the set
�
V̈
f

2

�
). For

connectivity-satisfied faces, we need to model the parity and the matching condition by a linear

number of edges. For both types of faces we will achieve this by the help of a new linear partial

construction replacing the set of complement edges of Hf (for connectivity-satisfied faces) and

the set
�
V̈
f

2

�
(for connectivity-non-satisfied faces) in the previous constructions, respectively.

Furthermore, we will consider preassigned and non-preassigned vertices also for connectivity-

satisfied faces, ensuring the remaining necessary conditions by the help of dummy vertices. We

start with the description of the new partial construction. The sets V , V f , V̈ , V̈f and the

preliminary node assignments A, Af are defined as in Section 4.1. Note that, as a consequence
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Figure 4.5: Even-Vertices-No-Critical-Pair construction using windmill graphs. Vertices in V̈f

are filled disks, shadow vertices are filled boxes, remaining dummy vertices are empty boxes.

of replacing the complement edges of Hf for connectivity-satisfied faces, the vertices in V will

no longer be involved in GA. Hence, the vertex set of GA is now V̈ [ VD, instead of V ? [ VD.

Partial Construction. We present a partial construction that will appear as a substructure

in the new sparse assignment graphs allowing the assignment of an arbitrary even number of

vertices from V̈f to a face f by using only a linear number of edges. In addition, this construction

also allows to prevent the assignment of a single critical pair from V̈f , which we will see becomes

necessary for connectivity-satisfied faces in order to satisfy the matching condition. A pair of

adjacent (degree-2) vertices in V̈f is critical unless there are already enough valencies assigned

to f (due to preassigning or the demand of dummy vertices) to satisfy its demand, or it is

adjacent to further degree-2 vertices in V̈f without being part of a 3-cycle. A pair in V̈f that

is not critical is a non-critical pair. Note that assigning, to a face f , a single non-critical pair

without further (preassigned) valencies (that is, a pair that is adjacent to further degree-2 vertices

in V̈f without being part of a cycle) still violates the matching condition. Nevertheless, we will see

in Lemma 4.14 that for such non-critical pairs the matching condition can be easily established

by reassigning valencies from the pair and its (degree-2) neighbors. Recall from Section 4.1 that,

for connectivity-non-satisfied faces, due to the parity and (bi)connectivity condition, there are

always enough vertices preassigned or required by dummy vertices to satisfy the demand of all

indicator sets in V̈f . Thus, for these faces all pairs in V̈f are non-critical.

Even-Vertices-No-Critical-Pair construction. Let C = {C1, . . . , Cr} be a partition of V̈f into

sets of size at most 2. We call the elements of C clusters. We seek a construction that allows to

assign to f an arbitrary even number of vertices in V̈f except for assigning exactly two vertices

that belong to the same cluster. To achieve this, we proceed as follows. We create for each

vertex v 2 V̈f a corresponding shadow vertex v0, and for each cluster Ci a corresponding cluster

vertex ci. We connect each vertex to its shadow vertex, and we connect each shadow vertex to its

cluster vertex. The vertices in V̈f and their shadow vertices have demand 1, each cluster vertex ci

has demand |Ci|. Additionally, we add three identical windmill graphs uf1, uf2, uf3 (consisting

of dummy vertices), each constructed as follows. A vertex uf with demand xf = 2 ·b|C|/2c forms

the center. Furthermore, we create xf/2 pairs u1, v1, . . . , ux
f

/2, vx
f

/2 of dummy vertices with

demand 1, each, and connect each such vertex to the center uf . Afterwards, we connect the two

vertices of each pair; see the sketch of a windmill graph in Figure 4.5. Finally, the centers of the

windmill graphs are connected to each cluster vertex, as shown in Figure 4.5. We identify the

centers with their corresponding windmill graphs thus also denoting the centers by uf1, uf2, uf3.

Proposition 4.13. A matching in the Even-Vertices-No-Critical-Pair construction for a face f

that satisfies the demand of all dummy vertices induces a node assignment for f that assigns
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to f an even number of vertices in V̈f , except for exactly two vertices that belong to the same

cluster, and vice versa.

Proof. Let Mf be an arbitrary matching in the Even-Vertices-No-Critical-Pair construction that

satisfies the demand of all dummy vertices. The total demand of the dummy vertices is even, since

the sum of the demand of the vertices in the windmill graphs is even, and for each cluster C in C,
we have |C| shadow vertices with demand 1 and a cluster vertex with demand |C|, which sums

to a demand of 2|C|. Thus, certainly an even number of vertices in V̈f is incident to edges in Mf .

Moreover, suppose that C 2 C is a cluster of size 2. If Mf contains the two edges incident to the

vertices in C, then the demand of the cluster vertex c of C is not satisfied by the edges incident to

the shadow vertices of C, and hence Mf contains one of the three edges cuf1, cuf2, cuf3, say cuf1.

Since the demand of uf1 is even and the vertices ui, vi of each pair in the windmill graph are

either both matched to uf1 or both not matched to uf1, Mf contains another edge c0uf1 to a

cluster vertex c0 distinct from c. Let C 0 denote the corresponding cluster. This implies that Mf

cannot contain all edges between c0 and the shadow vertices of C 0. Let v 2 C 0 be a vertex whose

shadow vertex v0 is not matched to c0. It follows that Mf contains the edge vv0, and hence also v

(which is not in C) is assigned to f by the construction. It follows that, with this construction,

it is not possible to assign exactly two vertices to f that belong to the same cluster.

Conversely, let X ✓ V̈f be an arbitrary even number of vertices such that X /2 C, and let A

be a node assignment that assigns exactly the vertices in X to f . We show that there exists a

matching Mf in the Even-Vertices-No-Critical-Pair construction for f that matches (besides the

dummy vertices) exactly the vertices in X and satisfies the demand of all dummy vertices. In

a first step, we pair the vertices in X up into X1, . . . , Xk, such that none of the pairs Xi is a

cluster in C. This is always possible. Next, we construct a conflict graph on the pairs Xi. We

say that two pairs Xi and Xj are in conflict if there exists a cluster C 2 C such that both Xi\C
and Xj \ C are non-empty, that is, if they contain vertices from the same cluster. Since the

clusters have size at most 2, it follows that the conflict graph on the pairs has maximum degree 2,

and hence is 3-colorable. We fix an arbitrary 3-coloring of the pairs with colors {1, 2, 3}. We

now construct the matching Mf as follows. For each vertex v 2 V̈f \ X, we add to Mf the

edge connecting the shadow vertex v0 to its cluster vertex. That is, the corresponding vertex v

is not matched. We treat the pairs X1, . . . , Xk as follows. Let Xi = {xi, yi}, let x0i and y0i be

the corresponding shadow vertices and let ci and c0i denote the cluster vertices of xi and yi,

respectively. Note that, by the choice of the pairs, we have that xi and yi belong to distinct

clusters, and hence ci 6= c0i. We add to Mf the edges xix0i, ciuf`, yiy0i and c0iuf`, where ` denotes

the color of pair Xi. Note that, due to the coloring of the pairs, no edge between a windmill

graph and a cluster vertex is added twice. Moreover, by construction, the windmill centers have

even degree in Mf . If the demand of a center is not yet satisfied, we further add the missing

number of edges, which is even, to Mf by matching the center uf` with vertices ui and vi of the

same pair in the windmill graph. The remaining vertices ui, vi of pairs in the windmill graph

are matched to each other. This satisfies the demand of all vertices in the windmill graphs. The

demand of the cluster vertices ci is satisfied, as for each vertex v in Ci the matching Mf contains

either the edge civ0 (if v /2 X) or an edge ciuf` to one of the windmill centers (if v 2 X). Finally,

the demand of the shadow vertices is clearly satisfied.
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Sparse Assignment Graph Construction. For connectivity-non-satisfied faces, all pairs

in V̈f are non-critical. Thus, for these faces, we define the clusters in the Even-Vertices-No-

Critical-Pair construction such that each vertex in V̈f forms its own cluster. Replacing in the

assignment graph of Section 4.1, for each connectivity-non-satisfied face, the set
�
V̈
f

2

�
by the Even-

Vertices-No-Critical-Pair construction then obviously yields a new edge set E0f of linear size for

each connectivity-non-satisfied face such that the perfect matchings in the resulting assignment

graph still correspond to the same node assignments as before. In this case the Even-Vertices-

No-Critical-Pair construction can be even simplified without changing its behavior, as follows.

Since each cluster consist of only one vertex, we can skip the shadow vertices as well as the cluster

vertices instead connecting each vertex in V̈f directly to the centers of the windmill graphs. At

a second glance, we see that also one windmill graph su�ces to model the required behavior of

the Even-Vertices-No-Critical-Pair construction in this case.

For connectivity-satisfied faces, no (bi)connectivity condition needs to be explicitly ensured

by the help of dummy vertices. Hence, for each connectivity-satisfied face f , we construct only

one dummy vertex d connected to all vertices in V̈f that ensures the parity condition and the

matching condition for the indicator sets in V f . The demand of d is s := max{�, 0}, with �

the maximum remaining demand of an indicator set in V f after counting the valencies already

provided by vertices in V f (as in Section 4.1). If s is odd, we set the demand of d to s + 1.

Note that biconnected faces (for c = 2) are never incident to preassigned vertices. Thus, for

these faces, it is s = 0, that is, we can even omit the dummy vertex d. Finally, we seek to

prevent the assignment of single critical pairs from V̈f . To this end, we define the clusters in the

Even-Vertices-No-Critical-Pair construction such that each critical pair forms a cluster while the

remaining vertices in V̈f form singleton clusters. In the following we show how critical pairs in V̈f

can be identified depending on the problem variant. Recall that a pair in V̈f is critical unless

its demand is already satisfied by preassigned valencies or valencies demanded by the dummy

vertex d, or it is incident to further degree-2 vertices in V̈f without being part of a 3-cycle.

2-connected (or biconnected) 3-Fepra : The critical pairs for a biconnected face f are exactly

the pairs in V̈f that form a maximal path of length 2 in V̈f . Each pair in V̈f that is incident

to further degree-2 vertices in V̈f but is no part of a 3-cycle is non-critical by definition.

Note that no vertices in V̈f are part of a 3-cycle, since f is incident to a single block and

if this block was a 3-cycle, the side containing f would be empty and the vertices of the

3-cycle would be preassigned to the face at the opposite side.

Vice versa, since f is incident to a single block, no vertices are preassigned and no dummy

vertices are added. Hence, there are no valencies already assigned to f that might satisfy

the demand of a single pair in V̈f . Consequently, all pairs in V̈f that are not non-critical

due to their neighbors, are critical.

1-connected (or connected) 3-Fepra : Each connected face f is incident to a single connected

component, and thus, by the same argument as above, no vertex in V̈f is part of a 3-cycle.

However, there may be preassigned vertices and a dummy vertex d. If there is at least

one valency preassigned to f , the demand of d or further preassigned vertices guarantee

a second valency. Hence, the demand of all possible pairs in V̈f is satisfied and there are

no critical pairs at all. Otherwise, if no valency is preassigned, the critical pairs are again

exactly the pairs in V̈f that form a maximal path of length 2.
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0-connected (or arbitrary) 3-Fepra : In this case, no (bi)connectivity condition needs to be sat-

isfied for the faces. This is, a face f may be incident to several connected components and,

in particular, the vertices in V̈f may also form 3-cycles. Hence, besides the assignment of

critical pairs as defined above, we further need to prevent the assignment of (non-empty)

3-cycles whose demand is not satisfied. We reduce this to preventing again critical pairs

by extending the set V of preassigned vertices as follows. Let C = xyz be a non-empty

3-cycle incident to f and let f 0 denote the face at the other side of C. Recall that, since C

is non-empty, both f and f 0 are incident to further vertices. Then, if G contains an even

number of vertices (otherwise a 3-regular augmentation does not exist), one side of C con-

tains an odd number of vertices. The vertices on this side thus cannot be independently

augmented to a 3-regular subgraph, they need at least one valency from C. Consequently,

if the odd side of C is the side containing f , at least one vertex of C must be assigned

to f . Since the vertices of C are completely symmetric, we may assume that x is assigned

to f , thus fixing its assignment yielding x 2 V f . This is, we additionally preassign one

vertex per non-empty 3-cycle in G. The remaining two vertices of the 3-cycle then form a

pair in V̈f and V̈f 0 . Now we distinguish four cases, depending on the number of valencies

preassigned to f , in which we identify di↵erent critical pairs in V̈f .

Case 1: If there are at least three valencies preassigned to f , the demand of d or further

preassigned vertices guarantees a fourth valency, such that the demand of each pair in V̈f

is satisfied, even if it is part of a 3-cycle whose remaining vertex is preassigned to f . Hence,

there are no critical pairs at all.

Case 2: If there are only two valencies preassigned to f and none of them is part of a

3-cycle, again the demand of each pair in V̈f is satisfied and there are no critical pairs. If

at least one valency of the two preassigned valencies is part of a (non-empty) 3-cycle (note

that d then requires no further valencies), the remaining vertices of each 3-cycle that has

its third vertex preassigned to f becomes a critical pair.

Case 3: If there is only one valency preassigned to f , this is provided by either a vertex x of

a (non-empty) 3-cycle C or a vertex x that is only incident to f and adjacent to two degree-

3 vertices. In the first case, we need to prevent the dummy vertex d from matching one of

the remaining vertices y, z of C, since this would still not satisfy the remaining demand �

of the preassigned vertex x. Hence, we connect d only to the vertices in V̈f \ {y, z}. In this

way, the demand of x and all pairs in V̈f is satisfied, apart from {y, z}. The pair {y, z}
then is the only critical pair. In the second case, observe that no preassigned vertex of a

non-empty 3-cycles is assigned to f . Hence, assigning to f the remaining vertices of these

3-cycles, as well as any other pair in V̈f , is feasible, since the demand of d ensures a further

valency that together with x satisfies the demand of any pair. Thus, there are no critical

pairs at all.

Case 4: If no valency is preassigned to f , the face f is incident to only blocks. By similar

arguments as in the case of biconnected 3-Fepra, the critical pairs are exactly the pairs

in V̈f that form a maximal path of length 2 (possibly being part of a non-empty 3-cycle

whose third vertex is preassigned to a di↵erent face).

Replacing in the assignment graph of Section 3.3.2 (for c = 0) and Section 4.1 (for c = 1, 2), re-

spectively, for each connectivity-satisfied face, the complement edges of Hf by the Even-Vertices-

No-Critical-Pair construction and (possibly) the dummy vertex d finally yields a new set E0f of
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linear size for each connectivity-satisfied face. Note that, for faces with no critical pairs, we

can again simplify the Even-Vertices-No-Critical-Pair construction as described before. In the

following, we will see that the perfect matchings in the resulting assignment graph GA corre-

spond to node assignments that satisfy for each connectivity-satisfied face the parity condition,

the (bi)connectivity condition (if c = 1, 2) and a relaxed matching condition, which we intro-

duce now. For connectivity-non-satisfied faces, we have already seen that replacing
�
V̈
f

2

�
by the

Even-Vertices-No-Critical-Pair construction yields an assignment graph whose perfect matchings

correspond to the same node assignments (for connectivity-non-satisfied faces) as in Section 4.1.

Hence, for these faces the corresponding node assignments already satisfy the parity condition,

the (bi)connectivity condition and the matching condition.

Relaxed Matching Condition. We consider the following relaxation of the matching con-

dition for a node assignment A of G. We say that A satisfies the relaxed matching condition

for a face f if it either (i) satisfies the matching condition for f , or (ii) it assigns to f a single

non-critical pair. The following lemma shows that it su�ces to find assignments that satisfy the

relaxed matching condition.

Lemma 4.14. Given a node assignment A that satisfies the parity, relaxed matching, and,

possibly, some connectivity condition for all faces, there also exists a node assignment A0 that

satisfies the matching condition instead of the relaxed matching condition, and vice versa. The

assignment A0 can be computed in O(n) time.

Proof. Clearly, an assignment that satisfies the matching condition trivially satisfies the relaxed

matching condition. Conversely, we show that, if A is an assignment that satisfies the relaxed

matching condition, then we can modify it to satisfy the matching condition while preserving

all other conditions. Let A be an assignment that satisfies for f the relaxed matching condition

but not the matching condition. Then A assigns to f exactly two adjacent vertices u and v

of V̈f that form a non-critical pair, that is, the pair {u, v} is not part of a 3-cycle but adjacent

to further degree-2 vertices in V̈f that are not assigned to f . Thus, without loss of generality, v

has a neighbor w in V̈f that is not assigned to f but to the other face f 0 to which u and v are

incident, and u is not adjacent to w (otherwise u, v, w would form a triangle, and {u, v} would

be critical).

We modify A by reassigning v to f 0 and w to f . Clearly, this preserves the parity condition

and establishes the matching condition for f . It further preserves (or establishes) the matching

condition for f 0, since v is a joker in f 0. Finally, since v and w belong to the same block (and

thus to the same connected component), also possible connectivity conditions for f and f 0 are

preserved. These modifications can be obviously applied in linear time and eventually yield the

desired assignment.

Lemma 4.15. A perfect matching of GA (together with A) corresponds to a node assignment

that satisfies parity, relaxed matching, and (bi)connectivity condition (for c > 0) for all faces,

and vice versa.

Proof. For connectivity-non-satisfied faces (which only occur for c = 1, 2), the perfect matchings

in GA (together with A) correspond to the node assignments that satisfy the parity condition,

the matching condition, and the (bi)connectivity condition, according to Section 4.1 and the

choice of the clusters for the Even-Vertices-No-Critical-Pair construction.
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Hence, in the remainder of this proof, we consider a connectivity-satisfied face f . Let A denote

the assignment that is induced by a perfect matching M and the preliminary assignment A.

Since f is a connectivity-satisfied face, all possible conditions on (bi)connectivity are satisfied

by definition. The parity condition as well as the demand of each indicator set in V f is satisfied

due to the choice of s. Hence, in order to prove the relaxed matching condition, we finally show

that the demand of each indicator set S that possibly arises by additionally assigning vertices

from V̈f to f is satisfied, unless S is a non-critical pair. Recall from Section 4.1 that for c = 1, 2

the vertices of an indicator set are either in V or in V̈ . Hence, for c = 1, 2, all vertices of S

are in V̈f , and thus, S is either a joker or a pair. For c = 0, however, S may also be a triangle

consisting of a vertex x 2 V f and two vertices y, z 2 V̈f , due to the extended definition of V .

If S is a joker, its demand is satisfied since we already know that A satisfies the parity

condition. If S is a critical pair, Proposition 4.13 ensures that there are at least two further

valencies from V̈f assigned to f . Due to the construction (including the identification of critical

pairs and the definition of V for c = 0) these additional valencies do not form a 3-cycle with S,

and thus satisfy the demand of S. For a non-critical pair there is nothing to show. If S is a

triangle (for c = 0), by construction, one valency of S is preassigned. If the remaining valencies

form a non-critical pair (that is, there are at least three valencies preassigned), then the demand

of S is satisfied. Otherwise, if the remaining valencies form a critical pair (that is, there are at

most two valencies preassigned), Proposition 4.13 again ensures two further valencies besides S

and the parity condition ensures another valency. Together these three additional valencies

satisfy the demand of S.

Conversely, let A be a node assignment (including A) that satisfies the parity condition, the

relaxed matching condition, and the (bi)connectivity condition (if c = 1, 2). We construct for f a

matchingMf ✓ E0f satisfying exactly the demands of all vertices in GA that are assigned to f and

all dummy vertices associated with f . First recall that there are no dummy vertices ensuring the

(bi)connectivity condition in connectivity-satisfied faces. Since critical and non-critical pairs are

defined only in V̈f , A provides enough valencies (also possibly from V̈f ) to satisfy the demand of

the preassigned indicator sets in V f (although A only satisfies the relaxed matching condition).

Since A also satisfies the parity condition, there are finally enough valencies from V̈f assigned

to f that can be matched to vf satisfying its demand. To satisfy the demand of the dummy

vertices in the Even-Vertices-No-Critical-Pair construction, we add edges to Mf as described in

the proof of Proposition 4.13. This is obviously possible due to the choice of the clusters, since A

satisfies the parity and the relaxed matching condition.

Theorem 4.16. Arbitrary 3-Fepra can be solved in O(n1.5) time.

Theorem 4.17. Connected 3-Fepra can be solved in O(n1.5) time.

Theorem 4.18. Biconnected 3-Fepra can be solved in O(n1.5) time.

Proof. We can construct the new sparse assignment graph GA = (V̈ [ VD, E0), which has only a

linear number of edges and a linear number of dummy vertices, in O(n) time (instead of O(n2)

time), with n the number of vertices in the input graph G. Checking whether GA admits a

perfect matching can be thus done in O(
q

|V̈ [ VD||E0|) = O(n1.5) time, using the algorithm

due to Gabow [50]. According to Proposition 3.18, 4.4, 4.10 (characterizations), Lemma 4.14

and Lemma 4.15 this decides whether G admits the required planar 3-regular augmentation. By

the latter lemma we obtain a node assignment A (induced by the matching in GA and A) that

satisfies the parity condition, the relaxed matching condition and the (bi)connectivity condition
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for each face. Using Lemma 4.14 and one of the Lemmas 3.17, 4.3, or 4.9, we obtain in O(n)

time a node assignment A0 that satisfies the (non-relaxed) matching condition instead, and

additionally the planarity condition for each face. A corresponding planar realization of A0 can

then be obtained in O(n) time by Proposition 3.16, Proposition 4.2, or Proposition 4.8.

4.3 Complexity of Triconnected 3-Fepra

We contrast the results from the previous section by showing that triconnected 3-Fepra is

NP-complete. Altogether this completely settles the complexity of c-connected 3-Fepra.

Theorem 4.19. Triconnected 3-Fepra is NP-complete, even if the input graph is biconnected.

Proof. First note that triconnected 3-Fepra is in NP since, given a planar graph G with a fixed

embedding, we can guess a set W ✓
�
V
2

�
of non-edges of G and then test e�ciently whether the

graphG+W is 3-regular, planar, and triconnected, and thatW respects the given embedding ofG

(the latter can be checked using an algorithm due to Angelini et al. [5]). We prove NP-hardness by

reducing from the monotone planar 3-satisfiability problem (MonotonePlanar3Sat), which

is known to be NP-hard [29]. It is a special variant of Planar3Sat, which we already used in

Section 3.1 for the hardness proof of 3-Pra.

A monotone planar 3Sat formula is a 3Sat formula whose clauses either contain only positive

or only negated literals and whose variable–clause graph is planar. A monotone rectilinear repre-

sentation of a monotone planar 3Sat formula is a drawing of the variable–clause graph such that

the variables correspond to axis-aligned rectangles on the x-axis and clauses correspond to non-

crossing three-legged “combs” above the x-axis if they contain positive variables and below the

x-axis otherwise; see Fig. 3.1. An instance of MonotonePlanar3Sat is a monotone rectilinear

representation of a monotone planar 3Sat formula '. We now construct a biconnected graph G'

with a fixed planar embedding that admits a planar 3-regular triconnected augmentation if and

only if ' is satisfiable.

Similar to the proof of Theorem 3.1, the graph G' consists of so-called gadgets, which are

subgraphs that represent the variables, literals, and clauses of '. The reduction is illustrated

in Fig. 4.6. For each gadget, we will argue that there are only a few ways to augment it

to be 3-regular, triconnected and planar. Again, our construction connects variable gadgets

corresponding to neighboring variables in the layout of the variable–clause graph of '. Hence G'

is always connected. Additionally, we identify the left boundary of the leftmost variable gadget

with the right boundary of the rightmost variable gadget. In the figure vertices with degree less

than 3 are highlighted by empty disks. All bends and junctions of line segments represent vertices

of degree at least 3. Vertices of degree greater than 3 are actually modeled by small cycles of

vertices of degree 3, as indicated in the left of Fig. 4.6. The (black) solid line segments between

adjacent vertices represent the edges of G'; the (red) dotted line segments represent non-edges

of G' that are candidates for an augmentation of G'. Gaps in the thick black line segments of

the variable gadgets indicate positions where further subgraphs (which we will describe in more

detail in the following) can be plugged in, depending on the number of clauses that contain the

literal.

Each variable gadget consists of two symmetric parts, which correspond to the two literals.

These literal (sub)gadgets are separated by thick horizontal edges. The degree-2 vertex u is

incident to both literal gadgets. The thin triangle at the right side is called the parity triangle.

Each literal gadget contains a subgraph that is attached in only two vertices to the horizontal
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edges separating the literals, and thus, induces a separator of size 2. We call this subgraph the

literal body. The literal body can be considered as a path of smaller subgraphs (drawn with

thin black edges) connected by thick black edges. The thin subgraphs can be characterized as

a triangle at the front side (front triangle) that is based on another triangular shaped subgraph

(triangle basement) and further oppositely placed pairs of triangles. In Fig. 4.6, we exemplarily

marked a front triangle with its triangle basement and a pair of triangles. In the construction, the

number of pairs of triangles in the literal body corresponds to the number of clauses containing

the literal. Note that, without loss of generality, we may assume that each literal appears in at

least one clause. The necessary number of pairs of triangles can be plugged in at the gaps. The

corresponding clauses are attached to the outer boundary of the literal gadget, as exemplarily

shown in Fig. 4.6. Each attached clause thereby requires a pair of adjacent degree-2 vertices at

the boundary of the literal gadget, which are thus incident to the literal gadget and to the clause

gadget. We call the corresponding valencies the boundary valencies of the literal gadget. Thus,

each literal gadget has twice as many boundary valencies as clauses contain the literal.

Consider the graph G0' that we obtain by deleting the literal bodies and contracting the parity

triangles and the degree-2 vertices. We claim that G0' is triconnected. This is true since (a) the

subgraph of G0' induced by the variable gadgets is triconnected and (b) each subgraph induced

by a clause gadget is also triconnected and is attached in twelve vertices to the subgraph of the

variable gadgets. Hence, a 3-regular triconnected augmentation of G' only needs to care for the

connectivity at the literal bodies and the parity triangles. Note that G' is already biconnected,

since it is obtained from the triconnected graph G0' by subdividing edges, replacing degree-2

vertices by (parity) triangles and adding paths of biconnected subgraphs (literal bodies) between

existing endpoints. In the following, we call a 3-regular, triconnected, planar augmentation a

valid augmentation. We show two properties of G':

(P1) Let W denote a valid augmentation and let x be a variable gadget. Then, for at least

one literal gadget in x, the augmentation W assigns all boundary valencies to the incident

literal face.

(P2) Given a literal L of a variable x and a (sub)set of clauses containing L, there exists a set

of augmenting edges embedded in a planar way in the variable gadget corresponding to x

such that all demands in the variable gadget of x are satisfied apart from those of the

boundary vertices that are incident to the given clauses.

We start with (P1). Consider the exemplary variable gadget in Fig. 4.6. The valency of u

is incident to both literal (sub)gadgets, and hence, is either assigned to x or ¬x by a valid

augmentation. Without loss of generality, assume that u is assigned to x. The opposite case

is symmetric. The two degree-2 vertices in the triangle basement in ¬x are thus connected,

since the inner face of the literal body provides no further valencies. Let ` denote the number

of clauses containing ¬x. The outer face of the literal body of ¬x is incident to 2(2` + 1)

valencies; 2`+ 1 stem from the triangles at the literal body, 2` are boundary valencies and one

additional valency is placed at the triangle to the right. We argue that the valencies at the

triangles of the literal body of ¬x are not connected to each other by a valid augmentation. This

is true since such an edge would immediately induce a subgraph that is separated from the rest

by only two vertices; namely two of the vertices where the connected triangles are attached to

the literal body. Consequently, a valid augmentation must assign all 2` boundary valencies of ¬x
to the literal face. The last valency, which is necessary due to the parity condition, is provided

by the vertex at the thick triangle to the right. This concludes the proof of (P1).
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Figure 4.6: Variable gadget for variable x and clause gadget for clause (y_x_z) in graph G'.
The augmentation (dotted edges) corresponds to the assignment x = true, ¬x = false.

For the proof of (P2) consider again Fig. 4.6 and let (without loss of generality) x denote

the given literal. The number of clauses containing x is `, and s, with 0  s  `, denotes

the cardinality of the given subset of the clauses containing x. In order to construct a planar

augmentation in the variable gadget that uses exactly 2(` � s) boundary valencies of x, we

connect u to a valency in x. This induces an augmentation of ¬x as described in the proof of

(P1). Note that this augmentation makes the triangle basement in ¬x triconnected and all the

triangles of the literal body are connected to vertices outside the literal body, which also makes

the literal body triconnected. In the literal gadget of x, the only vertex that can be connected

to u belongs to the triangle basement. Hence, the two remaining degree-2 vertices at the front

side of the literal body are also connected. Furthermore, we connect the valency at the parity

triangle to the only possible vertex at the opposite thick edge, which makes the parity triangle

triconnected. Finally, we choose the s pairs of triangles of the literal body of x closest to the

front triangle of x and connect each of these s pairs by an edge. In contrast to the proof of (P1),

connecting opposite triangles at the literal body is feasible, since the augmenting edge incident

to u ensures triconnectivity. The remaining 2(`�s) valencies at the literal body can be obviously

connected in a planar way to the 2(`� s) boundary valencies that are not incident to the given

clauses, which finally ensures the triconnectivity of the (partially) augmented variable gadget.

With the help of (P1) it is now easy to show that, if G' admits a valid augmentation, then '

is satisfiable. Assume that W is a valid augmentation for G'. Then W connects the two degree-

2 vertices of each clause to two boundary valencies of literal gadgets, since connecting these

degree-2 vertices to each other would yield a parallel edge. This selects a set of literal gadgets

in the sense that a gadget is selected if at least one of its boundary valencies is assigned to a

clause face. According to (P1), the boundary valencies of the negated literal gadget of a selected

gadget are all assigned to the literal face, and hence, a literal and its negation are never selected

at the same time. Thus, the literal selection induces a truth assignment of the variables, which

satisfies ' since each clause selects at least one (true) literal.

Conversely, we need to show that, if ' is satisfiable, then G' admits a valid augmentation.

Assume we have a satisfying truth assignment for '. For each clause, we choose exactly one

true literal L and connect the two degree-2 vertices of the clause to the two boundary valencies

of L that are incident to the clause gadget. This ensures triconnectivity at the former degree-

2 vertices of the clause and at the former degree-2 vertices providing the boundary valencies.

Recall that G0' is already triconnected. With the help of (P2) this can be finally extended to a
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valid augmentation of G'.

Since we add, for each clause gadget, only a constant number of vertices to the attached

variable gadgets and the number of the remaining vertices and edges in the clause and variable

gadgets is also constant, our reduction is polynomial. Recall that the layout of the planar

variable–clause graph (that is, the monotone rectilinear representation of �) is already part of

the instance of MonotonePlanar3Sat.





CHAPTER 5

Complexity of Planar 4- and 5-Regular Augmentation

In this chapter, we study the complexity of k-Pra and k-Fepra for k � 4. We show that

c-connected k-Pra and c-connected k-Fepra are NP-complete for k = 4, 5 and 0  c  k. As

in the previous section, we reduce from MonotonePlanar3Sat. The general structure of the

proofs follows the outline of the previous hardness proofs. The main di↵erence is that, in the

previous section, triconnected 3-Fepra turned out to be NP-hard due to the special connectivity

constraint, which must be provided by the augmentation. In contrast, in the following proofs

any planar k-regular augmentation W implies the existence of a so-called canonical augmen-

tation W 0 that provides k-connectivity for the resulting graph. Furthermore, the gadgets are

constructed such that the input graph is already (k � 1)-connected (k � 1 � 3). Since for a

planar 3-connected input graph the embedding is unique, and thus, already fixed, the following

constructions prove NP-hardness for both problem variants—variable and fixed embedding—and

all possible connectivity constraints.

The fact that the input graph has a fixed embedding allows us to carry over some tools from

the fixed embedding case for k = 3. Our construction will be such that in the hardness proof for

the k-regular augmentation all vertices will have degree at least k� 1. Thus, each vertex has at

most one valency, and there is again a notion of node assignments to faces as in Section 4.3. In

particular, several necessary conditions for such node assignments carry over. Namely, for each

face, the number of assigned valencies must be even (parity condition), a pair of adjacent degree-

(k � 1) vertices requires an additional valency (matching condition), and a path of p assigned

valencies demands p additional assigned valencies outside that path (planarity condition), since

the input graphs of the following proofs will be connected. The main di↵erence to 3-Fepra is

that the planarity condition cannot be ensured in a postprocessing step, since two nodes that

are part of a path whose vertices are all assigned to face f do not necessarily share a second

face f 0 that is distinct from f .

Analogous to the proofs of Theorem 3.1 and Theorem 4.19, it is easy to see that c-connected

k-Pra and c-connected k-Fepra are both in NP for k = 4, 5. We start with the NP-hardness

proof for k = 4.

5.1 NP-Completeness of C-connected 4-Pra/Fepra

We prove the following theorem.

Theorem 5.1. The problems c-connected 4-Pra and c-connected 4-Fepra are NP-hard for

0  c  4, even if the input graph is already triconnected.

79
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Figure 5.1: Variable gadget for variable x and clause gadget for clause (x_y_z) in graph G'.
The augmentation (dotted edges) corresponds to the assignment x = true, ¬x = false.

Proof. Let ' denote the 3Sat formula represented by an instance of MonotonePlanar3Sat.

In the following, we construct a triconnected graph G' with the following properties. First, ' is

satisfiable if and only if G' admits a planar 4-regular augmentation. Second, if ' is satisfiable,

then G' admits a planar 4-regular so-called canonical augmentation W 0, for which we show

that G + W 0 is 4-connected. This immediately implies hardness for all variants of the planar

4-regular augmentation problem. The proof that G' is triconnected and G'+W 0 is 4-connected

for each canonical augmentation W 0 is deferred to Lemma 5.2.

Figure 5.1 shows the variable and clause gadgets in G'. Vertices with degree less than 4 (that

is, vertices of degree 3) are highlighted by empty disks, the small black disks depict degree-4

vertices and the green boxes mark the corners of the variable gadgets, which are also degree-4

vertices. The (black) solid line segments between adjacent vertices represent the edges of G'; the

(red) dotted line segments represent non-edges of G' that are candidates for an augmentation

of G'.

Each variable gadget consists of two symmetric parts (upper and lower part), which correspond

to the two literals (positive and negated literal) of the variable. The degree-3 vertex u is incident

to both literal parts. Vertex v at the right side is called the parity vertex. From another point of

view, each variable gadget consists of four corners (green boxes in Fig. 5.1) and three horizontally

embedded subgraphs, which arise from deleting the corners in the gadget. We call the inner (grid-

shaped) subgraph the variable body. The outer subgraphs consist of pairs of degree-3 vertices,

each pair connecting to a clause gadget or being part of a dead end. Dead ends are formed by

linking gadgets that stick to the boundary of the variable gadgets. A second function of the

linking gadgets is to form the clause gadgets together with some edges that imitate the “comb”

structure given by the layout of the variable–clause graph of '. We exemplarily marked a linking

gadget and a dead end in Fig. 5.1.

Analogous to the previous NP-hardness proofs, the variable gadgets are not only connected to

clause gadgets but form a ring called variable ring, which guarantees that G' is always connected.

Two adjacent variable gadgets are linked by two edges incident to the corners. Similarly, clause

gadgets are not only connected to variable gadgets but also to other clause gadgets as follows.

If a clause gadget is nested in the “comb” of another clause gadget such that both gadgets are

incident to a common face (see, for example, the clauses c3 and c2 in Fig. 3.1), the linking

gadget of the nested clause gadget is linked to the gadget above, as shown in Fig. 5.1. The
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linking gadgets of clause gadgets that are not nested in the “comb” of any other clause gadget

are linked to an outer ring, which we additionally introduce above all clause gadgets at each side

of the variable ring. Hence, the construction contains two outer rings, an upper and a lower one.

Figure 5.1 depicts a part of the upper outer ring. Linking gadgets in dead ends are analogously

linked to a next higher clause gadget or an outer ring.

Each clause that contains a literal of a variable requires one pair of degree-3 vertices in the

outer subgraph of the corresponding literal part of the variable. We call these pairs the boundary

vertices, the corresponding valencies the boundary valencies, and the face of the variable gadget

incident to the boundary vertices the literal face of the literal part. Note that degree-3 vertices

in dead ends are not considered as boundary vertices, since they are only incident to the variable

gadget. Thus, each literal part has twice as many boundary valencies as clauses contain the

literal. The required number of boundary vertices can be achieved by adding copies of the

subgraphs shown in the right of Fig. 5.1 at the positions A and B indicated by the two dotted

vertical lines in the variable gadget. For symmetry reasons, the number of inserted subgraphs

at A and B must be the same. A dead end is constructed whenever there occurs a pair of

degree-3 vertices at the boundary that is not required by any clause.

If, after this construction, one of the outer rings is only linked to one linking gadget, there

exists a separator of size 2 in G', that is, G' is not triconnected. In this case, we add two

further subgraphs (one at A and one at B) to one of the variable gadgets that share a face with

the outer ring and construct dead ends at the outer degree-3 vertices of those subgraphs. Then,

the dead end of at least one subgraph can be also linked to the outer ring. With at least two

linking gadgets linked to the outer ring, now at least four vertices must be deleted in order to

separate vertices of the outer ring from the remaining graph. In the following, we call a 4-regular,

planar augmentation a valid augmentation. We show two properties of G':

(P1) Let W be a valid augmentation and let x be a variable gadget. Then, for at least one literal

part in x, the augmentation W assigns all boundary valencies to the incident literal face.

(P2) Given a literal L of a variable x and a (sub)set of clauses containing L, there exists a set

of augmenting edges embedded in a planar way in the variable gadget corresponding to x

such that all demands in the variable gadget of x are satisfied apart from those of the

boundary vertices that are incident to the given clauses.

We start with (P1). Consider the exemplary variable gadget x in Fig. 5.1. The valency of u

is incident to both literal parts of the variable gadget, and hence, is either assigned to x or ¬x
by a valid augmentation. Without loss of generality, assume that the valency at u is assigned

to x. The opposite case is symmetric.

Let ` denote the number of clauses containing ¬x, let d be the number of dead ends in the

literal part of ¬x and let f be the literal face of ¬x. The vertices of the variable body provide

2(`+d)+1 valencies incident to f , only one of which, namely the valency at the degree-3 vertex w

that shares a common face with v, can be assigned to a face di↵erent from f (recall that the

valency at u is assigned to x). The remaining 2(` + d) valencies must be assigned to f by any

valid augmentation. Observe further that these valencies induce a path of degree-3 vertices, this

is, by the planarity condition, they demand additional 2(` + d) valencies assigned to f . If w

was additionally assigned to f , the path would be even longer, and the demand would even

be 2(` + d) + 1, which cannot be satisfied, since there are not enough boundary valencies. It

follows that the 2(`+ d) boundary valencies of ¬x must be also assigned to f , while w must be

connected to v due to the parity condition. This concludes the proof of (P1).
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For the proof of (P2), consider again Fig. 5.1 and let (without loss of generality) x denote

the given literal. The number of clauses containing x is `, d is the number of dead ends in

the part of x, f is the literal face of x, and s, with 0  s  `, denotes the cardinality of the

given subset of the clauses containing x. In order to construct a planar augmentation in the

variable gadget that uses exactly 2(`+d�s) of the boundary valencies of x, we connect u to the

degree-3 vertex w0 in the literal part of x such that the number of remaining degree-3 vertices

at the variable body incident to f is the same at both sides of w0. This is possible due to the

construction, which requires that the subgraphs that are added to a variable gadget are inserted

in a balanced way to the left and right of u (and w0, respectively). Connecting u in this way

induces an augmentation in the literal part of ¬x as described in the proof of (P1). In particular,

the valency of v is assigned to the literal part of ¬x.
Hence, we observe again that the variable body provides 2(`+d) valencies incident to f , each

of which must be assigned to f . In contrast to the proof of (P1), these valencies induce two

paths of degree-3 vertices of the same length, separated by w0. This is, their vertices can be

pairwise connected by augmentation edges in a planar way. Hence, connecting the s pairs of left

and right vertices closest to w0 leaves 2(` + d � s) valencies at the variable body that can be

obviously connected in a planar way to the 2(`+d�s) boundary valencies incident to f that are

not incident to the given clauses. Thus, exactly the demands of the boundary vertices incident

to the given clauses are not satisfied. This concludes the proof of (P2).

With the help of (P1), it is now easy to show that, if G' admits a valid augmentation, then '

is satisfiable. Assume that W is a valid augmentation. Then W connects the two degree-3

vertices of each clause gadget to two boundary valencies of variable gadgets since connecting

those degree-3 vertices to each other would yield a parallel edge. This selects a set of literals in

the sense that a literal is selected if at least one of the boundary valencies in the corresponding

literal part of the variable gadget is assigned to a clause face. According to (P1), the boundary

valencies of the negated literal of a selected literal are all assigned to a literal face in the variable

gadget, and hence, a literal and its negation are never selected at the same time. Thus, the

literal selection induces a truth assignment of the variables, which satisfies ', since each clause

selects at least one (true) literal.

Conversely, if ' is satisfiable, then G' admits a valid augmentation as follows. Assume we

have a satisfying truth assignment for '. For each clause, we choose exactly one true literal L

and connect the two degree-3 vertices in the linking gadget of the clause to the two boundary

valencies of L that are incident to the clause gadget. This augments the clause gadgets to 4-

regularity in a planar way. With the help of (P2) this can be extended to a valid augmentation

of G'. In particular, (P2) allows a valid augmentation that connects the remaining boundary

valencies, which are not connected to degree-3 vertices in clause gadgets, to vertices in the

variable bodies. We call such an augmentation a canonical augmentation and show in Lemma 5.2

that each canonical augmentation of G' is 4-connected. This finally proves that G' admits a

planar 4-regular 4-connected augmentation if and only if ' is satisfiable. Recall that the layout

of the planar variable–clause graph (that is, the monotone rectilinear representation of �) is

already part of the instance of MonotonePlanar3Sat. Furthermore, we add, for each clause

gadget, only a constant number of vertices to the attached variable gadgets and the number of

the remaining vertices and edges in the clause and variable gadgets is also constant, thus our

reduction is polynomial.

Lemma 5.2. Any canonical augmentation of G' is 4-connected, G' is triconnected.
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Figure 5.2: (a) Subgraph U induced by vertices of linking gadget. (b) Schematization of
set M in the variable gadgets distinct from x. Filled boxes depict vertices adjacent to the

corners of x, empty disks depict boundary vertices.

Proof. Let W 0 denote a canonical augmentation of G'. We argue in one go that G' is tricon-

nected and G' + W 0 is 4-connected. To this end, let S denote a set of vertices in G' such

that G' � S (respectively G' +W 0 � S) consists of at least two connected components. Note

that, for the purpose of this proof, we consider dead ends to be part of the variable gadget they

are attached to. Then, at least one of the following scenarios occurs.

1) S splits a variable gadget.

2) S separates two variable gadgets.

3) S splits a linking gadget.

4) S separates a linking gadget from the variable ring.

For each of these scenarios we prove that |S| � 3 (respectively |S| � 4).

Scenario 1: If s and t are vertices of the same variable gadget, we claim that there exist three

vertex-disjoint paths between s and t in G' and four such paths in G'+W 0. We defer the proof

of this claim to the end. Hence, separating s and t requires the deletion of at least three (four)

vertices and it follows that |S| � 3 (|S| � 4).

Scenario 2: If S separates two variable gadgets, S induces a separator S0 ✓ S in the variable

ring. If S0 splits a variable gadget, we know from scenario 1 that |S| � 3 (|S| � 4). Otherwise,

consider two variable gadgets x and y that are neighbors in the variable ring. Since x and y

are connected by two disjoint edges (sharing no common vertex), separating x and y requires at

least two vertices. Since S0 needs to split the ring of variable gadgets twice, it is 4  |S0|  |S|
in G' and G' +W .

Scenario 3: Consider a linking gadget U that is split by S, and let s and t denote vertices

of U that are separated by S. Then, S induces a separator S0 ✓ S in U . We examine the

structure of the subgraph U ; see Fig. 5.2(a). We first observe that U is triconnected. Thus, it is

3  |S0|  |S| in G'.

Furthermore, after the augmentation, the vertices a and b are the only vertices in U that are

not adjacent to a vertex in (G'+W )�U , which is connected. Recall that the outer rings in G'

are linked to at least two linking gadgets (or dead ends). Let Cs and Ct denote the connected

components in U induced by S0 containing s and t, respectively. If Cs and Ct both contain

a vertex in U \ {a, b}, then there exists a path in (G' + W ) � U connecting Cs and Ct. It

follows that |S| � 4. Otherwise, Cs or Ct contains only vertices in {a, b}. Then it is readily seen

that 4  |S0|  |S|.
Scenario 4: Let C be a connected component of G' � S (G' + W 0 � S) that contains a

linking gadget but not the variable ring. Recall, that the dead ends are considered to be part of

the variable ring. Hence, C does not contain any dead end. If C contains only a single linking

gadget U , observe that U is connected to the rest of the graph by four disjoint edges (here we use
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the assumption that there are at least two linking gadgets incident to each of the outer rings).

It follows that |S| � 4 in G' and G' + W . If C contains at least two linking gadgets, each

linking gadget is connected to the variable ring by two disjoint edges of the corresponding clause

gadget, and the edges of distinct clause gadgets are disjoint. Thus, it is again |S| � 4 in G'

and G' +W .

Overall, it follows from these scenarios that a vertex set S needs cardinality |S| � 3 (|S| � 4)

in order to disconnect the graph, which implies the statement of the lemma. It remains to prove

the claim stated in the first scenario.

Claim: Let s and t denote two vertices in the same variable gadget. There exist three vertex-

disjoint paths between s and t in G' and four such paths in G' +W .

First observe that each vertex has degree 3 in G' and degree 4 in G' +W . In the following we

route red tokens starting at s and green tokens starting at t through the graphs. In G' we route

three tokens per vertex, in G' + W we route four tokens per vertex. The sequence of vertices

that are passed by a token yields a path between the token and its starting point. We say that

a path is partial x-y-monotone if each subpath of vertices in the variable body visits the vertices

in an x-y-monotone order in the drawing shown in Fig. 5.1. Two paths cross if they share a

common vertex. Whenever a red token meets a green token, a path between s and t is found.

Tokens that have neither crossed any other path nor met with a counterpart yet are free. Our

goal is to route the tokens such that four disjoint paths are formed.

Let x denote the variable gadget containing s and t. We denote by M the set consisting

of the boundary vertices of all variable gadgets besides x together with the four corner vertices

outside x that are adjacent to the corners of x. Figure 5.2(b) shows a schematization of M in the

variable gadgets distinct from x. Without loss of generality, we assume that there are at least

three variables in '. The vertices adjacent to the corners of x are depicted as filled (green) boxes,

the boundary vertices are shown as empty disks. Now consider two red and two green tokens at

vertices in M such that tokens of the same color are at di↵erent vertices. The order in which

they occur at the outer face of the schematization in Fig. 5.2(b) is either red–red–green–green or

red–green–red–green. In both cases the tokens can be easily routed within the schematization

such that they form vertex-disjoint paths. If there is only one red and one green token in M ,

they can meet in M as well. Hence, we observe the following. If we place in M at most four

tokens such that the number of red and green tokens is the same, then the tokens can always be

routed via the remaining variable gadgets (besides x) such that they meet a correct counterpart

forming vertex-disjoint paths. With this observation it su�ces to route at most four tokens to

vertices in M and the remaining tokens within x.

In the remainder of this proof we only consider four tokens in G' +W . Routing three tokens

in G' is analogous. We first sketch the construction and give details afterwards. The idea is to

route tokens of the same color in di↵erent directions to the corners, the boundary vertices or the

two vertices in each dead end in x that are incident to a clause or an outer ring. The routing

is done on vertex-disjoint partial x-y-monotone paths such that we can resolve the resulting

crossings between paths of di↵erent colors iteratively as follows. By exploiting the monotonicity,

we show that, as long as there are crossings, there exists a red path ⇡ and a green path ⇡0 such

that ⇡0 is the first path (in the direction the token was routed) that is crossed by ⇡ and vice versa.

However, if ⇡ and ⇡0 cross more than once, the first crossing a in the direction of the green token

does not necessarily equal the first crossing b in the direction of the red token; see Fig. 5.6(b). In

this case, ⇡ and ⇡0 must have the same monotonicity, and we show that no other path crosses ⇡



Chapter 5 : Complexity of Planar 4- and 5-Regular Augmentation 85

Type 2Type 1 Type 3
(upper subgraph)

Type 3
(lower subgraph)

Type 4
(lower subgraph)

Type 4
(upper subgraph)

Figure 5.3: Tokens (filled boxes) routed in schematized variable gadget consisting of a variable
body (rectangle in center) framed by boundary edges and linked by four edges connecting the

corners to the variable body. Tokens start at vertices of di↵erent types (empty boxes).

or ⇡0 between the crossings a and b. Thus, starting from s, following ⇡ up to the first crossing

and then traversing ⇡0 in opposite direction to t always yields a path between s and t that does

not cross any path besides ⇡ and ⇡0. Replacing ⇡ and ⇡0 by this new path resolves at least one

crossing. We iterate this operation until all crossings are resolved. Afterwards, the tokens that

did not cross another path remain at the corners, the boundary vertices or the two vertices of

each dead end in x that are incident to a clause or an outer ring. We show that all but at most

four of these tokens can be further routed within x. By finally routing the remaining tokens via

the clause gadgets or the outer rings (if they are at a boundary vertex or a vertex in a dead end)

or the connecting edges between x and its adjacent variable gadgets (if they are at a corner), we

obtain at most four tokens at distinct vertices in M , which can then be matched up as described

above.

In the following, we make this more precise and show that such paths exist for each vertex

pair s, t in x. We distinguish four types of vertices for s and t and give for each type a scheme

that sketches how to route the tokens to the corners, the boundary vertices and the designated

vertices in the dead ends of x. Following these schemes, for any two vertices in x, we can find a

set of paths that admits resolving crossings as described above. Figure 5.3 outlines the schemes

described in the following; the arrows indicate the further routing direction for each token in

case it is not involved in a crossing.

Type 1: The vertices of the variable body of x. Starting at such a vertex, we route four tokens to

the four corners of x. All tokens are routed via the variable body, except if the starting

point is adjacent to a vertex outside the variable body that is not a corner. Then we

route one token via an outer subgraph.

Type 2: The corners of x. Starting at a corner of x, we route three tokens within x to the

remaining corners, one of them via the variable body. The fourth token remains at the

starting point.

Type 3: The boundary vertices of x whose augmentation edges are embedded into a face of

a clause gadget and the two vertices of each dead end that are adjacent to vertices

outside x. Starting at a Type 3 vertex (in the upper or lower outer subgraph), we route

two vertices along the boundary of x to the upper left and right corner. The two last

tokens remain at the starting point.

Type 4: The boundary vertices of x whose augmentation edges are embedded into a literal face

and the remaining vertices of the dead ends. Starting at a Type 4 vertex (in the upper

or lower outer subgraph), we route three tokens within x to all corners apart from the

lower right one. In doing so, one token is routed via the augmentation edge and through

the variable body. The fourth token remains at the starting point if the starting point
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Types: 1+1 Types: 1+2 Types: 1+3 Types: 1+4 Types: 2+2

Types: 2+3 Types: 2+4 Types: 3+3 Types: 3+4 Types: 4+4

Figure 5.4: Exemplary paths resulting from routing tokens (filled boxes) for di↵erent types
of s and t (empty boxes). The small icons sketch the situation after resolving the crossings.

Types: 2+3 Types: 3+3 Types: 3+4

Figure 5.5: Exemplary paths resulting from routing tokens (filled boxes) for di↵erent types
of s and t (empty boxes) in the same outer subgraph. In these cases, only one path between s
and t arises from resolving the crossings (see small icons, dashed lines sketch how a second

path can be found).

is a boundary vertex, and is routed to one of the two vertices in the dead end that are

incident to a clause or an outer ring, otherwise.

Note that, when routing only three tokens in G', it is not necessary to distinguish Type 3

and Type 4 vertices. For each type of s and t Fig. 5.4 and Fig. 5.5 sketch an example of a set

of paths resulting from routing the tokens from s and t according to the schemes. We observe

that, due to the x-y-monotonicity within the variable body and the directions dictated by the

schemes, a situation as depicted in Fig. 5.6(a), where each path ⇡ that is involved in the first

crossing on a paths ⇡0 also crosses another path ⇡00 before it reaches its crossing with ⇡0, does

not occur. We further see that, for the same reason, ⇡ and ⇡0 are not crossed by any other path

between their first crossings if ⇡0 is the first path that is crossed by ⇡ and vice versa, but the first

crossings on both paths are distinct; see Fig. 5.6(b)). Hence, resolving the crossings as described

above is possible.

We observe that, following the schemes, we can find a set of paths such that resolving the

crossings either yields at least two new paths between s and t (see the cases in Fig. 5.4) or, if we

get only one path between s and t, this path runs in one of the outer subgraphs and we get two

further free tokens of di↵erent color that can be routed along the free boundary of the variable

gadget until they meet (see the cases in Fig. 5.5). Hence, there remain at most four free tokens,

which, in a second step, are routed to vertices in M via clause gadgets, outer rings or the edges

that connect x to its adjacent variable gadgets.
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⇡1

⇡4

⇡2

⇡

⇡0

(a) (b)

a 6= b

⇡3

Figure 5.6: (a) Set of paths where no paths ⇡,⇡0 exist such that ⇡ is the first path that
crosses ⇡0 and vice versa. (b) Two paths ⇡ and ⇡0 such that ⇡ is the first path that crosses ⇡0

and vice versa, but the crossings a and b are distinct. A third path (indicated by the dashed
line) that crosses one of the previous paths between a and b does not exist.

sts t

Figure 5.7: Exemplary paths resulting from routing tokens for s and t through clause gadgets.

It remains to argue that in this step tokens of the same color can be still routed on vertex-

disjoint path. Tokens at the corners of x reach M via single edges (namely the edges that

connect x to its adjacent variable gadgets), which readily form a set of vertex-disjoint path.

Within the clause gadgets of one side of the variable ring, we can route up to four tokens

(one or two per color) such that paths of the same color are vertex-disjoint and crossings of

paths of di↵erent colors can be again resolved. Note that tokens of the same color are always

routed within the same clause gadget. Figure 5.7 shows two examples. Each token that is not

involved in any crossing reaches a vertex in M . Through an outer ring we can route up to r  4

tokens such that br/2c tokens of di↵erent color meet, while the possibly remaining token reaches

a vertex in M . Finally, the free tokens in M easily meet their counterparts, as we have seen

before.

5.2 NP-Completeness of C-connected 5-Pra/Fepra

For k = 5, the proof of NP-hardness for c-connected k-Pra and c-connected k-Fepra follows

exactly the previous proof for k = 4. We use again ' for the given monotone planar 3Sat

formula, G' for the constructed graph and W for an augmentation. Figure 5.8 shows the gadgets

of our construction. The conventions for the drawing are the same as in the previous case. The

graph G' consisting of variable gadgets, which are connected to a variable ring, clause gadgets

and two outer rings, is exactly constructed as before. Within a variable gadget there are again

a variable body, outer subgraphs, literal parts, corners, a k � 1-degree vertex u, a parity vertex v

and dead ends consisting of linking gadgets, boundary vertices, boundary valencies and literal

faces, all having the same function as before, although some are constructed slightly di↵erent in

detail. A canonical augmentation W 0 is defined analogously to the proof above. We only point

out the di↵erences in the following proof sketch. The assertion of Theorem 5.3 finally follows

by the same arguments as before, in particular by the help of analogous properties (P1) and

(P2) of G' and a valid augmentation, which is now 5-regular and planar. The proof that G' is
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Figure 5.8: Variable gadget for variable x and clause gadget for clause (x_y_z) in graph G'.
The augmentation (dotted edges) corresponds to the assignment x = true, ¬x = false.

4-connected and G' +W 0 is 5-connected for each canonical augmentation W 0 is again deferred

to a separate lemma (Lemma 5.4).

Theorem 5.3. The problems c-connected 5-Pra and c-connected 5-Fepra are NP-hard for

0  c  5, even if the input graph is already 4-connected.

Sketch of proof. In the 5-regular case, the variable body is separated from the remaining gadget

by the four green vertices (boxes) to the left and the three green vertices (boxes) to the right

depicted in Fig. 5.8. We call these green vertices the body separator. If we additionally delete

the separator tuple, which is marked in Fig. 5.8, the rest of the gadget splits into two outer

subgraphs. To the right, each outer subgraph contains a corner square of four vertices, of which

one is a corner of the whole gadget. In contrast to these corners of the whole gadget, which we

call the outer corners, we call the four corner vertices in the body separator the inner corners

of the variable gadget.

The outer subgraphs contain triples of vertically arranged pairs of degree-4 vertices. We

call these vertices the boundary vertices of the outer subgraph (and the corresponding literal

part) and distinguish outer, middle and inner boundary vertices. The outer boundary vertices

connect to a clause gadget or are part of a linking gadget that forms a dead end. Note that

the linking gadgets are more complicated than in the previous case. For clarity, we replaced

them by conceptional boxes in Fig. 5.8, each representing the linking gadget C depicted at the

right. Note further that, if C is part of a clause gadget, the two empty discs are connected

by an edge thereby becoming degree-4 vertices. If C is part of a dead end, the empty discs

are connected to a common neighbor. The inner boundary vertices share the literal face with

vertices of the variable body. The middle boundary vertices are the remaining ones. We call the

corresponding valencies the outer, middle and inner boundary valencies of the outer subgraph

or the corresponding literal part.

In order to finish the proof according to the previous structure, observe that, if an inner

boundary vertex is assigned to the literal face, the associated middle and outer boundary vertices

need to be connected by a valid augmentation, that is, the outer boundary vertex is not assigned

to a clause face. Conversely, if an outer boundary vertex is assigned to a clause face, any valid

augmentation connects the associated middle and inner boundary vertices. This is, the inner

boundary vertex is not assigned to the literal face. This establishes analogs to properties (P1)

and (P2) from the proof of Theorem 5.1. The remaining arguments are analogous.
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Figure 5.9: Schematization of set M in the variable gadgets distinct from x. Filled boxes
depict vertices adjacent to x, empty disks depict outer boundary vertices.

Lemma 5.4. Any canonical augmentation of G' is 5-connected, G' is 4-connected.

Sketch of proof. The proof of Lemma 5.4 follows the proof of Lemma 5.2. We consider the same

four scenarios regarding splitting and separation of substructures with respect to a separator S.

According to the first scenario in the proof of Lemma 5.2, we first claim that no pair of vertices

in the same variable gadget can be separated by a set S of size less than 4. Again, we defer the

proof of this claim to the end.

It is again easy to see (scenario 2) that splitting the variable ring requires at least five vertices.

Now consider a linking gadget U that is no dead end, and that is split by S (scenario 3). We

analyze the structure of the new linking gadget in more detail; see gadget C in Fig. 5.8. We

first observe that U is 4-connected. Thus, the separator S0 induced by S in U contains at least

four vertices of U and it is 4  |S0|  |S| in G' and G' + W . Observe further that the only

separators in U that contain exactly four vertices are those that separate a single corner or a

single empty vertex from the rest of U . However, in G' +W , the corners as well as the empty

vertices are also incident to vertices in (G' +W ) � U , which is connected. Hence, in order to

expand a 4-vertex separator S0 to a separator in G' + W we need to add at least one further

vertex, that is, separating two vertices in U requires at least five vertices.

Finally, for scenario 4, observe that splitting a single linking gadget from the rest requires

at least four (five) vertices in G' (in G' +W ). As in the previous case, each linking gadget is

further connected to the variable ring by two (four) disjoint edges. Thus, separating more than

one linking gadget from the rest requires four (eight) vertices. Thus, analogous to the proof of

Lemma 5.2, it follows that G' (G' +W ) is 4-connected (5-connected).

We finally prove the claim stated in the first case—again following the structure of the previous

claim in Lemma 5.2.

Claim: Let s and t denote two vertices in the same variable gadget. There exist four vertex-

disjoint paths between s and t in G' and five such paths in G' +W .

Analogous to the 4-regular case, starting at s, we route four red tokens in G' and five red tokens

in G'+W and the same numbers of green tokens starting at t. In contrast to the 4-regular case,

here tokens in the outer subgraphs of the variable gadgets in G' are able to visit vertices in a

non-monotone order. For example, a token at an inner boundary vertex can be easily routed via

the associated middle boundary vertex to the outer one on a zig-zag path. This is why we extend

the definition of partial x-y-monotone paths to outer subgraphs. A path is partial x-y-monotone

if its subpaths in the variable body and in the outer subgraphs, apart from zig-zag paths, visit

the vertices in an x-y-monotone order.

Let x denote the variable gadget containing s and t, and let M consist of those vertices

outside x that are adjacent to vertices in x and the outer boundary vertices of the variable

gadgets distinct from x. Figure 5.9 shows a schematization of M . By the same arguments as in

the 4-regular case, we see that, if we place at most four tokens with the same number of red and
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Type 2(b)

Type 3(b)

Type 1(d)

Type 4 Type 5

Type 2(a)

Type 3(a)

Type 1(a) Type 1(b) Type 1(c)

Figure 5.10: Tokens (filled boxes) routed in schematized variable gadget consisting of the
variable body (rectangle in the center) framed by the body separator, the separator tuple and
the outer subgraphs and linked by four edges connecting the corners to the variable body.

Tokens start at vertices of di↵erent types (empty boxes).

green tokens at vertices in M (tokens of the same color at di↵erent vertices), we can always route

these tokens via the variable gadgets distinct from x such that they meet a correct counterpart

forming vertex-disjoint paths. Hence, in the following we route at most four tokens to vertices

in M and the remaining tokens within x.

In the remainder of this proof we only consider five tokens in G' +W . Routing four tokens

in G' is analogous. Analogous to the 4-regular case, we give a schematization on how the tokens,

starting at di↵erent types of vertices, can be routed on partial x-y-monotone vertex-disjoint path

such that we can resolve crossings as described in the 4-regular case and such that, after resolving

the crossings, there remain at most four free tokens at vertices in M . With the help of these

schemes, we finally see that there exist five vertex-disjoint paths between each vertex pair s, t

in x. Figure 5.10 outlines the schemes described in the following; the arrows indicate the further

routing direction for each token in case it is not involved in a crossing. We note that some of

the vertex types considered in the 4-regular case are further split into subtypes, here.

Type 1: We distinguish the Type 1 vertices depending on the number of tokens that are routed

via di↵erent subgraphs. For all Type 1 vertices, we seek to route one token to an outer

boundary vertex and four tokens to the outer corners of x. Type 1(a): The vertices

of the variable body of x, apart from v. For these vertices we route all tokens via the

variable body. Due to the zig-zag paths in the outer subgraphs and since routing a token

from any inner corner to the next outer corner is straightforward, routing five tokens as

described above can be done once we can route five tokens to the inner corners and one

inner boundary vertex. Type 1(b): The vertex v. Starting from v, we route two tokens

via the variable body, and three tokens via the outer subgraphs. Type 1(c): The right

vertices of the body separator. Here we route one token via the variable body and four

tokens—two per subgraph—via the outer subgraphs. Type 1(d): The left vertices of

the body separator and the two vertices that are adjacent to a left vertex of the body

separator and a left outer corner. In this case we also route one token via the variable

body and four tokens via the outer subgraphs, however, here we have three tokens in

one subgraph and one token in the other subgraph.

Type 2: The left vertex of the separator tuple (a) and the vertices in the corner squares (b).

Starting at a vertex of Type 2, we route one token to an outer boundary vertex, two

tokens to the left outer corners and, if the Type 2 vertex is in a corner square, two

tokens to the right outer corners of x. If we consider the left vertex of the separator
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tuple, we route one token to a right outer corner and the second one to the second

vertex of the separator tuple.

Type 3: The right vertex of the separator tuple (a) and the left outer corners (b). Starting at

one of these vertices, we route three tokens via the outer subgraphs; one to an outer

boundary vertex and two to the outer corners at the opposite side. The two last tokens

remain at the starting point.

Type 4: The vertices in the outer subgraphs that are incident to an augmentation edge that is

embedded into a clause face. Starting at such a vertex we route three tokens to the left

outer corners and one right outer corner. The two last tokens remain at the starting

point.

Type 5: The remaining vertices in the outer subgraphs. Starting at one of the remaining vertices

we route two tokens to the left outer corners and two tokens to the right outer corners.

The fifth token remains at the starting point.

Note that none of the schemes routes more than two tokens via the three vertices that con-

nect x to its adjacent variable gadget to the right. Analogously, at most two tokens are routed

via the left outer corners of x. This ensures that, when routing these free tokens to M , tokens

of the same color do not meet in M , and thus the paths in M can be build as described above.

The details of the construction of the paths inside x and inside the clause gadgets and outer

rings are analogous the proof of Lemma 5.2.





Conclusion of Part I

In this part we have studied the problem of augmenting a planar graph (with a variable or fixed

embedding) such that it becomes k-regular, c-connected and remains planar for 0  c  k  5.

We have completely determined the complexity of these problems by either giving an NP-

hardness proof or an e�cient algorithm. For k  2 all problems can be solved in linear time,

whereas for k � 4 all variants are NP-complete. For k = 3, we showed NP-completeness for the

case of variable embedding and gave a simple testing algorithm for the existence of an arbitrary

3-regular augmentation with a fixed embedding. We then considered the 3-regular case with a

fixed embedding in more detail and showed that for c = 0, 1, 2 the problem can be characterized

in terms of the existence of node assignments that satisfy, for each face, certain conditions. We

first gave relatively simple O(n2.5)-time algorithms to find such node assignments. The bottle-

neck here was finding a generalized perfect matching in an assignment graph with potentially

quadratically many edges. By giving a construction for an equivalent sparse assignment graph

we reduced the running time to O(n1.5) for all cases. The proof that the problem is NP-complete

for k = c = 3, even for the fixed embedding case, finished the treatment of the case k = 3.

Open Problems. Our main question is whether there are reasonable parameters or restric-

tions subject to which the NP-complete variants become tractable. For example, what is the

complexity of augmenting a (k � 1)-regular graph or a graph of maximum degree k � 1 to be

k-regular and c-connected? Recently we could show that for k = 3 all problem variants become

solvable in linear time if we restrict the input to 2-regular instances. However, it is still open,

whether similar improvements are possible for k = 4, 5. Another interesting direction is fixed-

parameter tractability. Is 3-connected 3-Fepra possibly fixed-parameter tractable with respect

to the number of faces of the input graph?

Notes. For the final publication at Algorithmica, we recently also conducted a computer-aided

proof of the c-connectivity (c = 3, 4) of the gadgets in Chapter 5, which additionally confirms

the correctness of our gadgets.
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All-Pairs Minimum Cut
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CHAPTER 6

Introduction –

Gomory-Hu Trees and Other Data Structures

In 1961 Gomory and Hu claimed to solve the multiterminal network flow problem1 stated by

Mayeda [106], which asks for the edge connectivity �(u, v) of each vertex pair {u, v} in an

undirected, weighted graph G = (V,E, c). In fact, with their elegant construction of a Gomory-

Hu tree, they even solve the all-pairs minimum-cut problem, which besides the connectivity value,

also asks for a concrete minimum separating cut. Clearly, a solution of the all-pairs minimum-

cut problem consists of at least n � 1 minimum separating cuts. The remarkable thing is that,

according to Gomory and Hu, n�1 cut computations are also su�cient to represent at least one

minimum separating cut for each of the
�
n
2

�
di↵erent vertex pairs in the graph.

Gomory and Hu also introduced flow-equivalent trees for undirected, weighted graphs, which

also need n� 1 cut computations for the construction, but just solve the multiterminal network

flow problem (besides other advantages which we will see below). That is, dropping the require-

ment of a concrete cut does not result in a faster approach. This is comparable to the situation

of a single minimum separating cut, where the computation of the connectivity �(u, v) of two

vertices u and v also implies the construction of a minimum s-t-cut (see Section 1.3).

Gomory-Hu Trees. A Gomory-Hu tree T (G) = (V,ET , cT ) of an undirected, weighted graph

G = (V,E, c) is a weighted tree on the vertices of G that represents at least one minimum s-t-cut

(and the corresponding cost) for each pair {s, t} ✓ V in the form of an edge. An edge induces a

cut in the underlying graph G by decomposing the tree into two connected subtrees when it is

deleted. The vertices of the resulting subtrees then induce the sides of a cut in G.

This property holds for any tree on the vertices of G. In a Gomory-Hu tree T (G), the cut

represented by an edge e = {s, t} 2 ET is further a minimum s-t-cut in G, and the cost cT (e) of

the edge e corresponds to �G(s, t) in G. As a consequence, it also holds that a minimum s-t-cut

for an arbitrary vertex pair {s, t} ✓ V is represented by a cheapest edge on the (unique simple)

path between s and t in T (G), that is, �T (G)(s, t) = �G(s, t). Figure 6.1(b) exemplarily shows

a Gomory-Hu tree and the cuts represented by the edges for the graph in Fig. 6.1(a), which is

taken from Nagamochi [110]. Note that a Gomory-Hu tree is not necessarily a spanning tree.

This is, the tree edges do not necessarily correspond to edges in G.

A Gomory-Hu tree T (G) thus represents n � 1 non-crossing minimum s-t-cuts, one cut per

edge {s, t} 2 ET , and can be also considered as a set of cuts, or even more, as aminimum cut basis

1This misleading name was not used by Mayeda but by Gomory and Hu and many subsequent authors. Mayeda
called the resulting matrix the terminal capacity matrix and was interested in its characterization.
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(a) Undirected, weighted graph G = (V,E, c). Unla-
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(b) Undirected, weighted Gomory-Hu tree T (G) =
(V,E

T
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T

) and induced cuts.

Figure 6.1: Example of an undirected, weighted graph G and a corresponding Gomory-Hu
tree T (G). Red numbers denote edge costs, dashed red lines indicate the minimum separating

cuts represented by T (G).

of G. The latter also follows from the considerations of Gomory and Hu [59]. The construction

of a Gomory-Hu tree for a general undirected weighted graph G = (V,E, c) needs n�1 minimum

separating cut computations with respect to n � 1 distinct cut pairs {u, v} ✓ V . Hence, the

running time of the construction depends on the running time of the chosen maximum-flow

algorithm. In this work, we do not care about the explicit running time but quantify the running

time of constructing a Gomory-Hu tree by counting cut computations. We further remark that

the cut pairs {u, v} used for computing the cuts do not necessarily correspond to the final tree

edges. The tree in Fig. 6.1(b), for example, was constructed using the following sequence of cut

pairs (see Algorithm 1): {v1, v2}, {v2, v3}, {v3, v4}, {v3, v5}, {v5, v6}, {v5, v7}, {v7, v8}, {v7, v9},
{v9, v10}, {v9, v11}, {v11, v12}, {v12, v13}, {v13, v14}, {v14, v15}, {v13, v16}, {v16, v17}, {v17, v18},
{v17, v19}. The edges in ET however do not correspond to these vertex pairs. This is due

to the fact that during the tree construction intermediate tree edges may change in order to

guarantee that each cut is indeed represented by an edge in the end. In Section 7.1 we describe

the construction of a Gomory-Hu tree in detail.

Interestingly, it is not possible to generalize Gomory-Hu trees for vertex connectivity in undi-

rected graphs without weakening the notion of vertex connectivity, as shown by Benczúr [12]. He

further showed that also a generalization to directed graphs (and edge connectivity) is impossible.

In this way, he disproved the results of Schnorr [126, 127, 128] and Gusfield and Naor [67, 68],

who first attempted this directions. Vahrenkamp [136] discusses how the contraction technique

used in the Gomory-Hu tree construction (see Algorithm 1) can be used for directed graphs,

while Gupta [65] describes a straightforward generalization at least to directed Eulerian graphs.

Some special graph classes further admit adapted techniques that exploit special graph prop-

erties to construct a Gomory-Hu tree. Borradaile et al. [17] provide an algorithm that returns

a Gomory-Hu tree for a planar, undirected, weighted graph in O(n log5 n) time and O(n log n)

space if shortest paths in the graph are unique. Otherwise, the running time of the algorithm in-

creases by a log2 n factor. Bhalgat et al. [13] consider undirected, unweighted graphs and exploit

techniques for computing Steiner cuts in order to develop a Gomory-Hu tree algorithm with an

expected running time of Õ(mn). In general, undirected, weighted graphs, however, to the best

of our knowledge, the original Gomory-Hu tree construction based on n � 1 cut computations

is still the best we can do. Since the actual running time of this construction depends on the

used maximum-flow algorithm for computing the minimum separating cuts, developing faster

maximum-flow algorithms for special graph classes is another way to speed up a Gomory-Hu

construction. For graphs with bounded treewidth, for example, the construction runs in O(n2)
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(a) Maximal components of the graph in Fig. 6.1(a) de-
rived from the Gomory-Hu tree in Fig. 6.1(b).
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(b) Undirected, weighted flow-equivalent tree T (G) =
(V,E

T

, c
T

) of the graph G in Fig. 6.1(a).

Figure 6.2: All maximal components (a) of the graph G of Fig. 6.1(a), and an exemplary
flow-equivalent tree of G (b). Red numbers denote edge costs, dashed black lines indicate the
maximal components. The flow-equivalent tree T (G) was constructed using the same sequence
of cut pairs as for the Gomory-Hu tree of Fig. 6.1(b). But here the edges in ET correspond to

these cut pairs.

time, due to the linear-time maximum-flow algorithm by Hagerup et al. [71] for these special

graphs. We further note that the choice of cut pairs and cuts in the original construction of a

Gomory-Hu tree is not determined, and thus, leaves room for di↵erent strategies and heuristics.

Goldberg and Tsioutsiouliklis [58] compare the performance of some interesting heuristics in an

experimental study. In this work we will exploit these degrees of freedom in the design of our

algorithms from a more theoretical point of view.

Due to their special structure, Gomory-Hu trees are however not only representations of

minimum s-t-cuts, but can be also considered as a data structure that is able to answer several

queries. In this light the all-pairs minimum-cut problem is a query that expects a minimum

s-t-cut and �G(s, t) for a given vertex pair {s, t} as an answer. Given a Gomory-Hu tree for G,

this query can be answered in O(n) time. Another query example considers maximal components

studied by Nagamochi [110]. A (proper) subset S of the vertex set V of an undirected, weighted

graph G is a maximal component if the edge connectivity of each vertex pair {u, v} with u 2 S

and v 2 V \ S is less than the minimum edge connectivity among all pairs {s, t} ✓ S, that

is, 8u 2 S, v 2 V \ S : �G(u, v) < mins,t2S �G(s, t). That is, separating any vertex pair {s, t}
within a maximal component S is more expensive than separating a vertex u inside of S from a

vertex v outside of S, which implements a kind of cohesion property. Nagamochi shows that two

maximal components are either nested or disjoint, and all maximal components can be easily

derived from any Gomory-Hu tree T (G) by considering the values k 2 c(ET ) in an increasing

order. Then, deleting the edges in ET with cost less than k, iteratively for all k, decomposes T (G)

into connected subtrees such that the vertices of each subtree induce a maximal component S

in G with mins,t2S �G(s, t) � k. Figure 6.2(a) exemplarily shows the maximal components of

the graph given in Fig. 6.1(a) together with the Gomory-Hu tree of Fig. 6.1(b). In this way,

a Gomory-Hu tree also admits to answer queries which, for example, ask for each maximal

component S with mins,t2S �G(s, t) � k, or for the inclusion-maximal maximal component that

contains a given vertex, both in O(n) time.

Flow-Equivalent Trees. A data structure closely related to Gomory-Hu trees are flow-equi-

valent trees. A weighted tree T (G) = (V,ET , cT ) on the vertices of G is a flow-equivalent tree if

it is weighted by a cost function cT : ET ! R+
0 such that the cost cT ({s, t}) of each edge {s, t}

corresponds to �G(s, t). As a consequence, it also holds that the edge connectivity �G(s, t)

for an arbitrary vertex pair {s, t} ✓ V is given by the cost of a cheapest edge on the (unique
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simple) path between s and t in T (G), that is, �T (G)(s, t) = �G(s, t). Hence, flow-equivalent

trees represent the edge connectivity of arbitrary vertex pairs {s, t} in G in the same way as

Gomory-Hu trees, but the edges do not necessarily provide any information about the shape

of the minimum s-t-cuts that induce these values. That is, Gomory-Hu trees form a subclass

of flow-equivalent trees, that is, each Gomory-Hu tree is also a flow-equivalent tree, and thus,

admits to answer at least each query that can be answered by a flow-equivalent tree, while the

converse is not true. The two queries described above, for example, cannot be answered by

flow-equivalent trees. Consequently, Gomory-Hu trees are more powerful.

Flow-equivalent trees as well as Gomory-Hu trees were both introduced by Gomory and

Hu [59], however, they did not introduce concise names for these structures. The terms Gomory-

Hu tree and flow equivalent tree used in this work are chosen according to Nagamochi [110].

Gusfield [66, 69], who also worked a lot on this kind of data structures, uses the terms Gomory-

Hu cut tree and equivalent-flow tree. In his pioneering work [66], he introduced a simplification

of Gomory’s and Hu’s algorithm for constructing a Gomory-Hu tree, which we describe in Sec-

tion 7.1.2, and gave a simple algorithm for the construction of a flow-equivalent tree, which

not necessarily returns a Gomory-Hu tree. The latter is further not solution-complete, that is,

there exist flow-equivalent trees that cannot be constructed. Nevertheless, the collection of all

flow-equivalent trees of a given graph can be compactly represented, fully characterized and

recognized in polynomial time [80]. We review Gusfield’s algorithm in more detail and give an

example for its solution-incompleteness in Section 6.2.1. The algorithm also constructs n � 1

cuts in order to determine the necessary edge-connectivity values, but the remarkable property

of this algorithm is that, in contrast to the construction of a Gomory-Hu tree, the n� 1 distinct

cut pairs used for the construction finally also form the tree edges in ET . Figure 6.2(b) shows

an example. If we now compute full maximum flows during the construction of a flow-equivalent

tree, instead of just minimum separating cuts (which can be already obtained from preflows), this

property admits to additionally assign these flows to the edges in ET . From each flow assigned

to an edge {s, t} we can then derive a data structure called Picard-Queyranne DAG [118], which

represents all minimum s-t-cuts in the underlying graph G, in O(m) time. Furthermore, a DAG

is able to answer whether a given vertex pair {u, v} is separated by a minimum s-t-cut in constant

time. The corresponding cut can be deduced in time O(m). For a more detailed description on

how to construct these DAGs see Section 6.2.3. Together with such a DAG assigned to each

edge, flow-equivalent trees become very powerful. Gusfield and Naor [69] showed that such an

extended flow-equivalent tree may now also answer the all-pairs minimum-cut problem, as the

DAG for an arbitrary vertex pair {s, t} (and a minimum s-t-cut therein) can be also derived

in O(m) time.

However, extended flow-equivalent trees are less adapted to queries like those related to max-

imal components, which strongly depend on the tree representation of minimum separating

cuts, since, in contrast to Gomory-Hu trees, they do not provide the required structure directly.

Instead, the structure must be first extracted from the information stored in the DAGs. In

Chapter 12 we will see a further example where Gomory-Hu trees are more appropriate than ex-

tended flow-equivalent trees. In this chapter we introduce a query that asks for inclusion-maximal

source-community clusterings with respect to a given community. These queries are answered

by a special Gomory-Hu tree, we call it unique-cut tree, which is developed in Section 7.2.
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Marrying Gomory-Hu Trees and Extended Flow-Equivalent Trees. In Chapter 8 we

consider the all-pairs minimum-cut problem in a dynamic scenario. That is, we seek a data struc-

ture answering the corresponding query that can be e�ciently updated whenever the underlying

graph changes. In this context we suggest a simple, and in many cases very fast, dynamic update

algorithm for Gomory-Hu trees but with a worst-case running time of n�2 cut computations. In

Chapter 9, however, we show that (under a plausible assumption, which we call the recomputation

conjecture, and which we discuss in Section 6.2.3) this worst-case running time is asymptotically

optimal in the following sense: we marry Gomory-Hu trees and extended flow-equivalent trees

to a very powerful data structure, which we call extended Gomory-Hu trees (see below). Then

we show that, even if we have such a comprehensive data structure at hand in the current time

step, there still exists a situation where, under the assumption of the recomputation conjecture,

n � O(1) cut computations are necessary in order to solve the all-pairs minimum-cut problem

after a change in the underlying graph. The considered extended Gomory-Hu tree consists of

an arbitrary Gomory-Hu tree T (G), an arbitrary extended flow-equivalent tree T 0(G), and all

maximum flows computed in G during the construction of the trees T (G) and T 0(G). Hence,

extended Gomory-Hu trees subsume the advantages of both concepts, the structural information

on cuts given by (regular) Gomory-Hu trees and the possibility to derive a minimum s-t-cut for

any vertex pair {s, t} ✓ V in O(m) time given by extended flow-equivalent trees. Additionally

they provide all flows that led to T (G) and T 0(G), which is a true added value, since updating

flows maintains more information than updating DAGs, as we will see in Section 6.2.3.

Further Data Structures Providing Information about Minimum Cuts. An inter-

esting generalization of Gomory-Hu trees was developed by Cheng and Hu [24]. They show

that n� 1 minimum separating cuts still su�ce to separate all
�
n
2

�
vertex pairs in an undirected

graph G even if an arbitrary cost, that does not necessarily result from a cost function on the

edges, is assigned to each of the 2n�1 � 1 cuts in G. The resulting tree representing these n� 1

cuts is a rooted binary tree (edges directed to the leaves) where the leaves correspond to the

original vertices in the underlying graph, and the inner vertices represent the cuts. The costs of

the cuts are assigned to the inner vertices. A minimum separating cut for two original vertices

is then represented by the nearest common predecessor of the leaves representing the vertices.

Another idea are mimicking networks, which do not represent minimum separating cuts, but

the pairwise maximum-flow values for a set of k < n vertices (terminals) of a weighted graph.

Mimicking networks were introduced by Hagerup et al. [71] and consist of a constant number of

vertices, usually depending on k. The terminals in the original graph correspond to vertices in

the mimicking network such that a maximum s-t-flow in the mimicking network has the same

value as in the original graph. Hagerup et al. showed that a mimicking network of at most 22
k

vertices exists for each (directed and undirected) weighted graph, and presented an e�cient

algorithm for the construction of such a network if the given graph has bounded treewidth.

Chaudhuri et al. [23] improve the bound for graphs with bounded tree width to O(k) vertices in

the mimicking network, and Krauthgamer and Rika [97] give a bound of O(k222
k

) vertices for

planar networks. In contrast, a cactus representation of all global minimum cuts in an undirected

(possibly weighted) graph, is a graph with O(n) vertices together with a mapping that maps

inclusionwise minimum cuts in the cactus to global minimum cuts in the original graph. This

representation was first introduced by Dinits et al. [32]. Nagamochi and Kameda [114] devel-

oped an algorithm that runs in O(m + �n2) time for unweighted graphs, while Fleischer [43]

presented an approach for weighted graphs that benefits from the fast minimum-cut algorithm
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of Hao and Orlin [74] and achieves the same running time as this minimum-cut algorithm, which

is O(nm log(n2/m)). Karger and Panigrahi [92] employ randomization to obtain a near linear

time Monte Carlo algorithm for constructing a cactus representation.

6.1 Contribution and Outline

The results in Part II are either new or in parts based on joint publications with di↵erent

coauthors. That is, the chapters in this part do not correspond to single publications. Hence, in

this outline, we shortly discuss the new and already published parts per chapter.

Chapter 6: Introduction –
Gomory-Hu Trees and Other Data Structures
In the remainder of this chapter, that is, in Section 6.2, we introduce specific notations related to

the construction of Gomory-Hu trees and explain two special concepts, namely the equivalence

of cuts in disconnected and dynamic graphs, and reusable cuts in dynamic graphs, which we will

in particular use in Chapter 8 and Chapter 9. Furthermore, we briefly sketch the construction

of flow-equivalent trees in Section 6.2.1 and introduce the classes of U-cuts and M-sets in Sec-

tion 6.2.2, which will be intensively used throughout Part II and Part III. In Section 6.2.3, we

briefly consider maximum flows in undirected, weighted networks and sketch how to construct

Picard-Queyranne DAGs from given flows. Moreover, we discuss the task of updating maximum

flows and DAGs, and state our recomputation conjecture, which is the main assumption in Sec-

tion 9.3, where we claim the optimality of the asymptotic worst-case running time of our update

procedures developed in Chapter 8.

Chapter 7: Gomory-Hu Trees in Static Graphs
In Section 7.1 we provide a compact and clearly structured description of Gomory’s and Hu’s

algorithm that is somewhat easier to understand than the original publication of Gomory and

Hu [59]. We particularly point out the fundamental ideas and techniques, the degrees of freedom,

and the relation to the simpler algorithm introduced by Gusfield [66]. The latter is remarkably

easy to implement, due to a special representation of intermediate trees, which we slightly gen-

eralize with respect to our purposes.

In Section 7.2 we develop a new data structure that represents a class of special cuts, namely

the class of U-cuts, which consists of those minimum separating cuts that minimize one side of

the cut. The new data structure, which we call unique-cut tree, is basically a Gomory-Hu tree

representing a set of special cuts. Nevertheless, we will see that adapting the original Gomory-Hu

tree construction is not straightforward. The e�cient construction of maximum SC-clusterings

in Part III employs unique-cut trees as underlying data structure.

Publications. Since unique-cut trees form the basis of the construction of maximum SC-

clusterings, but are not directly related to the field of graph clustering, the results of Section 7.2

are only sketched in a joint publication on cut-based graph clustering with Michael Hamann and

Dorothea Wagner [73].

Chapter 8: Gomory-Hu Trees in Dynamic Graphs
We consider Gomory-Hu trees also in a dynamic scenario where the underlying graph evolves

due to atomic changes. This scenario is also regarded in a field called sensitivity analysis, where

the main focus is on the costs of minimum separating cuts, that is, the goal is to understand

the behavior of the local connectivity values when the underlying graph changes. In contrast,
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we aim at e�ciently and smoothly updating the whole structure of a Gomory-Hu tree with all

its special properties. To this end, in Section 8.1 we examine di↵erent conditions that admit

the reuse of a cut represented in a previous tree for the construction of a new tree. Based

on these insights, we then develop a fully-dynamic update algorithm for Gomory-Hu trees in

Section 8.2, which provides a high potential for saving cut computations and guarantees optimal

temporal smoothness. This algorithm consists of several update procedures adapted to the

di↵erent changes that may occur in the underlying graph. Among these, the update procedure

for the case of an edge deletion or decreasing edge cost is the most challenging one, which has

been also stated by other authors like Barth et al. [11], who formulated the design of such an

update procedure as an open problem. Since an updated Gomory-Hu tree already represents the

all-pairs local connectivity values in the changing graph, our procedures also provide a sensitivity

analysis for undirected, weighted multiterminal flow networks and solve the open problem stated

by Barth et al.

In Section 8.3, we confirm the high potential of our update algorithm for saving cut compu-

tations in a brief experiment using a dynamic real-world network. Furthermore, we conduct a

detailed experimental study that itemizes the savings according to di↵erent factors that influence

the running time. This study confirms what is already to be expected due to the tools exploited

by the algorithm in order to find reusable cuts, namely, a strong dependency of the running time

on the shape of the Gomory-Hu trees in the corresponding time steps.

Publications. The main results in this chapter are published jointly with Dorothea Wagner

in [79]. The detailed experimental study of the factors influencing the savings of our update

approach in Section 8.3 tops these results o↵ and has not yet been published.

Chapter 9: Optimality in Smoothness and Running Time
We finally prove that our update approach indeed provides optimal temporal smoothness, that

is, we show that the number of equivalent cuts that are represented in the Gomory-Hu trees of

consecutive snapshots is as large as possible. We further argue that also the worst case running

time of our approach is optimal under the assumption of the reconnection conjecture introduced

in Section 6.2.3.

More precisely, in Section 9.1, we prove optimal temporal smoothness for the update procedure

for edge deletion and cost decrease, and improve the update procedure for edge insertion and

cost increase in Section 9.2, such that optimal temporal smoothness can be also proven in this

case. In order to argue for the optimality of the asymptotic worst-case running time, we describe

an exemplary situation with an initial graph and an initial, even extended, Gomory-Hu tree in

Section 9.3 and show that also with this additional information (recall that an extended Gomory-

Hu tree provides comprehensive information on the structure of the minimum separating cuts in

the graph) it is not possible to update a (regular) Gomory-Hu tree with less cut computations,

given that the recomputation conjecture holds.

Publications. The results in this chapter are exclusively presented in this thesis.

We finally remark that, in contrast to many proofs, the implementation of the algorithms

developed in Part II is quite easy, since all algorithms rely on the simple construction techniques

introduced by Gusfield [66].
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6.2 Preliminaries

Notation. A Gomory-Hu tree is a weighted tree T (G) = (V,ET , cT ) on the vertices of an

undirected (weighted) graph G = (V,E, c) (with edges not necessarily in G) such that each

{u, v} 2 ET induces a minimum u-v-cut in G (by decomposing T (G) into two connected compo-

nents) and such that cT ({u, v}) is equal to the cost of the induced cut. The cuts induced by T (G)

are non-crossing and for each {s, t} ✓ V each cheapest edge on the path ⇡(s, t) between s and t

in T (G) corresponds to a minimum s-t-cut in G. If G is disconnected, T (G) contains edges of

cost 0 between connected components. We identify the edges in a Gomory-Hu tree with the

corresponding cuts without further notice. This allows for saying that a vertex is incident to a

cut and an edge separates a pair of vertices. Furthermore, we consider a graph, and particularly,

the path ⇡(u, v) between u and v in T (G) and the tree T (G), as the set of edges or the set of

vertices it contains, as convenient. We say a cut crosses a set of vertices or a graph if it separates

at least two vertices in the particular object (note, a set of edges also forms a graph). In few

cases, we emphasize how often a cut crosses a (sub)graph, referring to the number of connected

components that result from splitting. A cut crosses a connected graph k times if it decomposes

the graph into k + 1 connected components.

Depending on the context, we also identify Gomory-Hu trees with the sets of cuts they

represent. This admits to consider intersections, unions and subsets of Gomory-Hu trees and

to denote the sizes of the resulting sets by | · |. We call a set H of at most n � 1 cuts in a

graph G a (partial) Gomory-Hu set if there exists a Gomory-Hu tree T (G) of G with T (G) ◆ H.

If H = T (G) we call H the Gomory-Hu set of T (G). We say a Gomory-Hu tree T (G) contains

a cut ✓ if {✓} ✓ T (G). We may also write ✓ 2 T (G).

Reconnecting an edge in T (G) means replacing the edge by another edge with the same

attributes without creating a cycle. Recall further that a pair {s, t} in G is called a cut pair of a

cut if the cut is a minimum s-t-cut in G. In the next chapter, in the context of the construction of

a Gomory-Hu tree, we will also introduce step pairs referring to the cut pairs that are considered

for the computation of minimum separating cuts during the construction. These step pairs do

not necessarily correspond to the final edges in the Gomory-Hu tree. Hence, if we talk about the

step pairs of a Gomory-Hu tree T (G), we mean the cut pairs considered during the construction.

If we mention the cut pairs of a Gomory-Hu tree T (G), we either mean any set of cut pairs with

respect to the cuts in T (G) or the cut pairs that are indicated by the tree edges. The particular

interpretation is given by the context.

Equivalent Cuts in Disconnected Graphs and Consecutive Snapshots. Let G =

(V,E, c) denote an undirected, weighted graph that consists of at least two connected com-

ponents. We say two cuts in G are equivalent if they cross the same set of edges. Hence,

equivalent cuts in G have the same cost. Since G is disconnected, the cut sides of equivalent cuts

however may di↵er in those connected components that are not split by the cuts. Nevertheless, a

minimum s-t-cut is only equivalent to minimum s-t-cuts (not to other cuts), and two equivalent

minimum s-t-cuts share the same set of cut pairs in G.

In a dynamic scenario, we can similarly compare cuts of consecutive snapshots G and GU .

If GU results from a vertex insertion or deletion, this particular vertex is a connected component

in GU in the first case and in G in the second case, while the edge set of G and GU is the

same. Hence, we define equivalent cuts in G and GU as described above. Then it also holds

that minimum s-t-cuts are only equivalent to minimum s-t-cuts, and two equivalent minimum



Chapter 6 : Introduction – Gomory-Hu Trees and Other Data Structures 105

ba c
3 2

Graph G Tree T (G)

d
1

ac b
2 3

d
1

c

a

b

d

b

a

c

d

a

b

c

d

d

a

b

c

d

a

b

c

c

Figure 6.3: Example of an undirected, weighted graph G (top left) and a flow-equivalent
tree T (G) (top right) that cannot be constructed by Gusfield’s algorithm.

s-t-cuts in G and GU share the same set of cut pairs. If GU results from an edge insertion or

deletion or the increase or decrease of an edge cost, two cuts in G and GU are equivalent if, apart

from the changing edge {b, d}, they cross the same edges and if they both either separate b and d

or do not separate b and d. Note that in this case, a cut in GU that is equivalent to a minimum

s-t-cut in G is not necessarily a minimum s-t-cut in GU , and vice versa. In any case, we denote

the equivalence of two cuts ✓1 and ✓2 by ✓1 = ✓2 and use the usual notation to describe relations

between sets of cuts. We describe, for example, the set of equivalent cuts in a set S1 of cuts in G

and a set S2 of cuts in GU by S1 \ S2.

Reusable Minimum Separating Cuts. In a dynamic scenario, we say a minimum separating

cut in the current graph G is reusable or remains valid if it is also a minimum separating cut

in GU with respect to any cut pair. Some cuts can be only proven to remain valid with respect

to a designated cut pair. In this case we usually also mention the cut pair or it is clear from the

context that we currently consider only cuts that are reusable with respect to special cut pairs

as, for example, the cut pairs given by the edges in the Gomory-Hu tree T (G).

6.2.1 Constructing Flow-Equivalent Trees

Gusfield’s algorithm for constructing a flow-equivalent tree T (G) = (V,ET , cT ) of a given

graph G = (V,E, c) is very simple. It assumes increasing indices 1, . . . , n of the vertices in V

and initially represents V as a star with center 1. This intermediate tree T⇤ is then rebuild step

by step to the final flow-equivalent tree T (G). To this end, the following operations are applied

for i = 2, . . . , n. Let c denote the (unique) neighbor of i in T⇤ and compute a minimum c-i-cut

in G. Label the edge {c, i} in T⇤ with �G(c, i). Then reconnect each j > i that is a neighbor of c

but ends up on the same cut side as i to i, this is, replace the edge {c, j} by the edge {i, j} in T⇤.

Note that j is a leaf of T⇤ before and after this reconnection. The algorithm ends after n� 1 cut

computations and returns a flow equivalent tree T⇤ = T (G) where the edges correspond to the

vertex pairs {c, i} used for computing the minimum separating cuts. The only degree of freedom

provided by this simple procedure is the choice of the initial indices of the vertices. This however

does not su�ce to ensure solution-completeness, as the small example in Fig. 6.3 shows.

In order to understand the example, we observe the following. First, the minimum separating

cuts in G are unique. Second, since the vertex pairs used for the construction of the flow-

equivalent tree correspond to the edges in the tree, depending on the center 1 of the initial

star T ⇤, we can already exclude those vertices from being indexed by 2 that are not incident to

the center in the desired flow equivalent tree T (G). With this kind of argument we can now show

that the flow-equivalent tree T (G), depicted at the top right in Fig. 6.3, cannot be constructed
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for the graph G, depicted at the top left in Fig. 6.3, by Gusfield’s algorithm. To this end, we

consider the initial stars at the bottom of Fig 6.3, each with another center. The first star has

center c. Since a is the only vertex in T (G) incident to c we must index a by 2 and apply the

minimum a-c-cut in G depicted by the dashed red line in the star. This cut however separates

all vertices from c besides d. Consequently, the algorithm must consider a minimum c-d-cut at

one point, and thus, other than in T (G), d becomes adjacent to c in the resulting tree. The

second star has center b. By the same argument as above, we need to index either a or d by 2

and apply one of the corresponding minimum separating cuts (dashed red lines). However, none

of these cuts separates c from b such that, other than in T (G), in the final tree {b, c} will occur

as an edge. The third start has center a. Here, either c or b needs to be indexed by 2. With

the minimum a-b-cut, however, a becomes a leaf in the final tree, while applying the minimum

a-c-cut results in an edge {c, d} in the final tree. In both cases the resulting tree is di↵erent

from T (G). The last star finally has center d. Hence, in a first step we need to apply the

minimum b-d-cut, which separates d from all remaining vertices. Thus, in the second step b

(indexed by 2) is the center. Now we need to apply the minimum a-b-cut in order to achieve

the edge {a, b} in the final tree. This cut however does not separate c from b such that in the

end, we also get the edge {b, c}, which contradicts the edge structure in T (G). In total, we have

seen that there exists no indexing of the vertices in G such that the algorithm described above

returns the flow equivalent tree T (G).

6.2.2 The Classes of U-Cuts and M-Sets

Among all minimum separating cuts in a graph G, we point out the class UC(G) of U-cuts,

which are used in many proofs and application due to their uniqueness. The class UC(G) is

defined by the surjective mapping uc : V ⇥ V �! UC(G), (s, t) 7! the unique minimum s-t-cut

that minimizes the cut side that contains s. The uniqueness of these cuts follows from the Non-

Crossing Lemma (7.2), which induces that at least one of two di↵erent minimum s-t-cuts with cut

sides of s of the same size can be reshaped resulting in a minimum s-t-cut with a smaller cut side

of s. Hence, the unique smallest cut side of s is nested in any other cut side of s with respect to t.

We denote U-cuts in UC(G) by uc(s, t). We further call the minimized cut sides of U-cuts M-sets

and denote the M-set of a cut uc(s, t) by m(s, t) and the class of all M-sets by MC(G). This also

induces a surjective mapping � : MC(G)! UC(G). In this way, each cut pair {s, t} is associated

with two U-cuts, namely uc(s, t) and uc(t, s) and two M-sets, namely m(s, t) and m(t, s). We

call uc(s, t) the opposite U-cut of uc(t, s), and m(s, t) the opposite M-set of m(t, s), and vice

versa. Note further that neither uc nor � is injective, that is, for two vertex pairs (s, t) 6= (u, v)

it might be uc(s, t) = uc(u, v). Then it is �(m(s, t)) = �(m(u, v)), however, it is not necessarily

m(s, t) = m(u, v). In particular it might happen that uc(s, t) = uc(t, s). In this case, the minimum

s-t-cut is unique and induces two di↵erent M-sets, namely m(s, t) and m(t, s). We remark that

a cut that is equivalent to an U-cut in a disconnected graph is not necessarily a U-cut.

We further introduce generalized U-cuts and generalized M-sets. For a vertex s and a sub-

set T $ V , we call the minimum s-T -cut that minimizes the cut side of s a generalized U-cut and

the cut side containing s a generalized M-set. Analogous to U-cuts and M-sets we denote general-

ized U-cuts by uc(s, T ) and generalized M-sets by m(s, T ). Note that a generalized U-cut uc(s, T )

in G corresponds to a (regular) U-cut uc(s, {T}) in the graph G0 that is obtained from G by

contracting T , resulting in a compound node denoted by {T}. Hence, generalized U-cuts and

generalized M-sets behave like regular U-cuts and regular M-sets and can be computed just like



Chapter 6 : Introduction – Gomory-Hu Trees and Other Data Structures 107

5[5]

10[13] 4[10]

1[13] 6[15]

1[12]

1[1]

9[10]

1[1]

4[4]

2[2]

7[7]

2[5]

5[5]

2[2]

4[15]
4[4]

5[6]

7[7]
2[10]

12[20]

7[13]

7[7]

2[2]

10[14]

s

t

2[2]

2[2]

4[4]

3[4]
5[5]

7[10]
5[5]

3[8]

2[6]

10[13]

15[15]

4[4]

2[2]

5[5]

4[4]

2[2]

5[5]

1[20]
1[1]

3[5]

3[3]
2[5]

2[2]

10[20]

3[3]

4[10]

3[10]

2[8]

3[3] 2[2]

2[3]

5[5]

2[2]

1[1]

1[1]

1[1]

1[1] 1[1] 1[1]

1[1]

Figure 6.4: Graph G00 resulting from a maximum s-t-flow f with value v(f) = 20 in an
augmented, directed graph G0. The edge costs (in G0 as well as in the original undirected
graph G) are denoted in brackets, the remaining numbers denote the flow per edge. Saturated
edges (that is, edges e with f(e) = c(e)) are depicted as dashed green arrows. The minimum
s-t-cut that minimizes the cut side S of s is depicted as dashed red line. Here, S consists of

four vertices, the cut is crossed by seven saturated edges.

these. On the other hand, each regular U-cut is also a generalized U-cut and each regular M-set

is also a generalized M-set.

6.2.3 Maximum Flows and DAGs

Classically, network flows are considered in directed graphs with capacities assigned to the edges,

instead of undirected graphs. However, there are many ways to interpret an undirected, weighted

graph as a directed flow network. In this work, we follow the approach of Nagamochi [110].

Maximum Flows in Undirected, Weighted Graphs. Let G = (V,E, c) denote an undi-

rected, weighted graph. Then a directed, weighted graph G0 = (V,E0, c0) can be obtained from G

by replacing each edge in E with two oppositely oriented edges of the same cost. The costs de-

fined by the function c0 are considered as edge capacities. For a fixed vertex pair {s, t} ✓ V ,

a flow from s to t (or an s-t-flow for short) in G0 is then defined as in Section 1.3.1, that

is, as a function f : E0 ! R+
0 that satisfies the flow conservation property and the capac-

ity constraint. Each flow f in G0 can be further transformed into a flow f 0 of the same

value where f 0(u, v) = 0 or f 0(v, u) = 0 for each edge {u, v} 2 E. To this end, we define

f 0(u, v) := f(u, v) � f(v, u) if f(u, v) � f(v, u) > 0 and f 0(u, v) = 0, otherwise. Analogously,

we define f 0(v, u) := f(v, u) � f(u, v) if f(v, u) � f(u, v) > 0 and f 0(v, u) = 0, otherwise. The

edges e 2 E0 with f 0(e) > 0 then induce a directed graph G00 without edges in opposite direc-

tions. Figure 6.4 shows such a graph G00 resulting from a maximum s-t-flow in an augmented,

directed graph G0. The famous MaxFlow-MinCut Theorem finally states that v(f) = �G(s, t)

for each maximum flow f from s to t in G0 and G00, respectively. Since the edge connectivity

of {s, t} in G does not depend on the order of s and t, it further follows that �G(s, t) = v(f) also

holds if f is a maximum flow from t to s.

Besides the connectivity value �G(s, t), which can be easily determined in linear time, a

maximum s-t-flow f in G00 (or G0) provides even more information. By applying a BFS in G00

(or G0) starting at s and not passing saturated edges, that is, edges e where f(e) = c(e) holds,
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Figure 6.5: Graph H resulting from graph G00 in Fig. 6.4. The edge costs at the saturated
edges are denoted in brackets. Oppositely oriented edge pairs are depicted as undirected black

edges. Gray regions indicate strongly connected components.

we can also determine the side S 3 s of the minimum s-t-cut in G that is crossed by exactly

the saturated edges that have their head in S and their tail in V \ S, see Fig. 6.4. Hence, S,

and thus, the minimum s-t-cut (S, V \ S), can be determined in O(m) time. We further remark

that the cut (S, V \ S) determined in this way is the unique cut among all minimum s-t-cuts

in G that minimizes the size of the cut side that contains s. We call such a cut a U-cut. The

class of U-cuts is introduced in the next paragraph. Depending on the exact definition and the

exact use of the labels, some push-relabel algorithms for computing a maximum flow further

allow to decide in constant time (by the help of the labels finally assigned to the vertices) to

which cut side of the U-cut a given vertex belongs. One example is the pioneering algorithm

of Goldberg and Tarjan [57]. Today many of the fastest maximum-flow algorithms rely on the

push-relabel technique. For an introduction to push-relabel algorithms see for example [27].

Picard and Queyranne [118] showed that even all minimum s-t-cuts in G can be determined

from a maximum s-t-flow in G00. The minimum s-t-cuts can be represented by a directed acyclic

graph (a so-called DAG), which can be constructed in O(m) time. We describe the construction

of such a Picard-Queyranne DAG in more detail in one of the following paragraphs.

Picard-Queyranne DAGs. In the literature exist many di↵erent ways to construct a Picard-

Queyranne DAG (or PQ-DAG for short) from a given maximum s-t-flow. Here we follow the

approach of Gusfield and Naor [69].

We consider a maximum s-t-flow in a directed graph G00 that has no oppositely oriented edges

resulting from an underlying undirected graph G, as described above. This graph is now again

augmented by oppositely oriented edges, resulting in a directed graph H, however, this time

only non-saturated edges with positive flow are replaced, while saturated edges (with positive

flow) are just reversed. Furthermore, the flow values are no longer interesting in H. We only

keep the edge costs at the saturated edges (which for these edges correspond to the flow values).

Figure 6.5 shows the graph H resulting from the graph G00 in Fig. 6.4. The Picard-Queyranne

DAG with respect to s and t, denoted by DAGs,t, is then obtained from H by contracting each

strongly connected component in H. A set S of vertices in H is a strongly connected component

if each vertex in S is reachable from every other vertex in S and S is maximal with respect to

this property. The partition of a directed graph into its strongly connected components, and
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Figure 6.6: DAGs,t resulting from the graph H in Fig. 6.5. The (accumulated) edge costs
resulting from the contraction of strongly connected components are denoted in brackets. The
U-cut uc(s, t) and the opposite U-cut uc(t, s) as well as two further minimum s-t-cuts are
depicted as dashed red lines. The dashed black line indicates an s-t-cut that is not minimum,

since it does not correspond to a closed set in the DAGs,t.

thus the DAGs,t, can be computed in O(m) time. Figure 6.6 shows the DAGs,t resulting from

the graph H in Fig. 6.5. According to Picard and Queyranne [118], there is then a one-to-one

correspondence between the minimum s-t-cuts in G and the closed sets (containing the node

that contains s) in the DAGs,t. A set S of nodes in the DAGs,t is closed if there are no outgoing

edges leaving S. Figure 6.6 exemplarily depicts some minimum s-t-cuts corresponding to closed

sets. Furthermore, let {u, v} denote a pair of nodes in the DAGs,t such that, without loss of

generality, v is not reachable from u. This situation always exists, since the DAGs,t is acyclic.

Then u together with the nodes that are reachable from u form a closed set in the DAGs,t that

does not contain v. This set thus corresponds to a minimum s-t-cut that separates all original

vertices (in G) that are contained in u from all original vertices (in G) that are contained in v.

In particular, deciding whether two original vertices x and y are separated by a minimum s-t-cut

in G equals the decision whether x and y are contained in di↵erent nodes in the DAGs,t, and

thus, can be done in constant time, given that membership of the vertices in G to the nodes

in the DAGs,t is indicated for example by indices assigned to the vertices, which can be easily

achieved during the construction of the DAGs,t.

Updating DAGs and Maximum Flows. In Chapter 8 we consider the all-pairs minimum-

cut problem in a dynamic scenario and prove (see Chapter 9) that our update algorithm proposed

for Gomory-Hu trees is optimal in terms of asymptotic worst-case running time compared to the

asymptotic worst-case running time that could be achieved if, instead of a regular Gomory-Hu

tree, an extended Gomory-Hu tree was available for the current snapshot. The proof relies on the

recomputation conjecture, which we argue in the following is reasonable. The conjecture states

that finding a minimum s-t-cut in GU that is neither an old minimum separating cut in G (with

respect to any cut pair) nor associated with a known maximum s-t-flow in G, needs at least one

cut computation from scratch in GU . The first condition says that the minimum s-t-cut is not

represented by a DAG in G. The second condition implies that there is no maximum flow that

can be updated, even if e�ciently updating a maximum flow was possible. In the following, we

briefly discuss update techniques for maximum flows and DAGs, which we think are reasonable
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and not too far from the best we can do. The di�culties in updating maximum flows suggest that

e�ciently deducing a maximum s-t-flow in G (which then could be updated) from the known

maximum flows in G is not possible. The discussion on updating DAGs will show that updating

a DAG does not generate new cuts, but restricts the previous DAG to a subset of the previously

represented cuts. Hence, updating DAGs maintains even less information than updating flows.

Together, these observations suggest that the recomputation conjecture is plausible.

Recall that in the dynamic scenario we consider atomic edge changes, while vertex changes

are only allowed for singletons. We start with the discussion on update techniques for maximum

flows. In the literature many results can be found for so-called dynamic flows in networks with

transit times [117, 44]. However, the graph models used for these dynamic flow problems and

the flow problems themselves are fundamentally di↵erent from the task of e�ciently updating

a given maximum flow after a change in the underlying graph. The latter problem seems to be

discussed only rarely although one could imagine many fields of application. Computer vision,

more precisely, image segmentation in videos, is one field where such incremental flow updates are

actually used. Hence, we exemplarily refer to Kohli and Torr [96] who present a fully-dynamic

update algorithm for maximum flows, which seems to perform well at least in the context of

image segmentation in videos. Unfortunately, it also seems that proving a concrete speedup of

this and other update techniques for maximum flows is very di�cult. The technique of Kohli

and Torr modifies the current graph G according to the previous change in G and the previous

flow value of the changing edge in constant time, such that the previous s-t-flow can be easily

modified satisfying the capacity constraint in the modified graph G0. A maximum s-t-flow is then

obtained from the modified s-t-flow by iteratively finding augmenting paths from s to t where the

flow can be increased. The running time of this approach depends on the number of paths found

during this procedure and the di↵erence of the values of the modified s-t-flow and the resulting

maximum s-t-flow. Furthermore, the resulting maximum s-t-flow in the modified graph G0 is

not necessarily a maximum s-t-flow in the original graph G. Just the connectivity �G(s, t) and

at least one minimum s-t-cut can be obtained from the maximum s-t-flow in G0. We further

remark that, in contrast to DAGs, where a new DAGt,u can be deduced form a DAGs,t and a

DAGu,v in time O(m) [69], to the best of our knowledge, generating new flows in this way is not

possible with a better asymptotic worst-case running time than a maximum-flow computation

from scratch. This is due to similar di�culties that prevent a fast and elegant flow update.

For updating DAGs we can give a very natural approach. First, consider the insertion of an

edge {b, d} in G or the increase of the edge cost. If for a vertex pair {s, t} the connectivity does

not change, that is, �G(s, t) = �G�(s, t), then the new DAGs,t represents exactly the previous

minimum s-t-cuts that do not separate b and d. If the connectivity increases by exactly � (that

is, the amount the cost of {b, d} increases), all previous minimum s-t-cuts separate b and d

but remain valid and the new DAGs,t represents those cuts and possibly some additional new

cuts. If the connectivity increases by an amount less than �, then the new DAGs,t represents

a completely new set of cuts. In the first case, we obtain the new DAGs,t from the current

DAGs,t by simply contracting the nodes B and D that contain b and d and the nodes on any

path between B and D, resulting in exactly one new node. Since deciding which node contains b

and d, respectively, is possible in constant time, this can be done in O(m) time, where m refers

to the set of edges in the DAGs,t. In the second case we can either be satisfied with keeping

the old DAGs,t, which at least represents some of the new cuts or we seek for a maximum flow

in the new graph in order to construct the new DAGs,t from scratch. The latter can be done
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by either updating (if known) or recomputing the current maximum s-t-flow. The same holds

for the third case, where computing the new DAGs,t from scratch seems to be the most natural

approach.

Now consider the deletion of an edge {b, d} in G or the decrease of the edge cost. If for a

vertex pair {s, t} the connectivity does not change, that is, �G(s, t) = �G�(s, t), then none of the

previous minimum s-t-cuts separates b and d but all cuts remain valid. Thus, the new DAGs,t

represents those cuts and possibly some additional new cuts. If the connectivity decreases by

exactly � (that is, the amount the cost of {b, d} decreases), the new DAGs,t represents exactly

the previous minimum s-t-cuts that separate b and d. If the connectivity decreases by an amount

less than �, then the new DAGs,t represents a completely new set of cuts. In the first case we

can either be satisfied with keeping the old DAGs,t, which at least represents some of the new

cuts or we seek for a maximum flow in the new graph in order to construct the new DAGs,t from

scratch. The latter can be again done by either updating (if known) or recomputing the current

maximum s-t-flow. The same holds for the third case, where computing the new DAGs,t from

scratch seems to be the most natural approach. In the second case, without loss of generality,

let B denote the node that contains b and D the node that contains d and D not reachable

from B. Then we obtain the new DAGs,t from the current DAGs,t by simply contracting B

and all nodes that are reachable from B as well as D and all nodes from which D is reachable,

resulting in exactly two new nodes. Since deciding which node contains b and d, respectively, is

possible in constant time, this can be done in O(m) time, where m refers to the set of edges in

the DAGs,t.

We conclude that with this natural update approach for DAGs the worst case running time

for finding a new minimum s-t-cut in GU is still equal to the asymptotic worst-case running time

of a maximum-flow computation from scratch. Such a worst case occurs if �
GU

(s, t) changes by

less that �, and thus, the previous DAGs,t in G becomes invalid.

Summing up the discussion, we see that if for a vertex pair {s, t} in GU there is no corre-

sponding flow known in G that could be updated, constructing such a flow from other flows

does not pay o↵. Furthermore, if the DAGs,t becomes invalid in GU , we also need to invest a

maximum-flow computation in order to find a new minimum cut in GU . Note that the DAGs,t

becomes invalid if and only if the DAGt,s becomes invalid. This justifies the recomputation

conjecture.





CHAPTER 7

Gomory-Hu Trees in Static Graphs

In this chapter we provide the basics for Chapter 8 where we will consider Gomory-Hu trees in

dynamic scenarios, and Chapter 14 where we employ the results of Chapter 8 to also dynamically

update cut-based clusterings, which are closely related to Gomory-Hu trees. Furthermore, we de-

velop the concept of unique-cut trees, which provide the base for the maximum source-community

clusterings considered in Chapter 12. Moreover, unique-cut trees are also of great interest by

themselves. In contrast to Gomory-Hu trees, which provide an arbitrary minimum separating

cut for each vertex pair, they represent all regular U-cuts and the corresponding M-sets of an

undirected, weighted graph. Unique-cut trees are presented in Section 7.2. In Section 7.1 we

start with a characterization of the sets of minimum separating cuts that can be represented by a

Gomory-Hu tree and a description of the original algorithm of Gomory and Hu for constructing

a Gomory-Hu tree. Compared to the original paper, our description is much more compact and

we introduce some special terms for important objects considered by the algorithm in order to

refer to these objects in later argumentation. Furthermore, we reformulate Gomory’s and Hu’s

algorithm based on the ideas of Gusfield, who presented an elegant simplification of the algo-

rithm in 1990. Compared to the algorithm given by Gusfield, our reformulation is more general,

that is, it provides a higher degree of freedom in choosing vertices and cuts. We will exploit this

fact for the update procedures developed in Chapter 8 and Chapter 14.

7.1 Basics for Constructing Gomory-Hu Trees

In Chapter 6 we have seen that without further modification Gusfield’s algorithm for constructing

flow-equivalent trees is not solution-complete, that is, there exist flow-equivalent trees that cannot

be constructed by this algorithm. For Gomory-Hu trees one can postulate the same question. In

this section we will see that the original algorithm of Gomory and Hu as well as our formulation

of Gusfield’s simplification are solution-complete. To this end, we characterize Gomory-Hu sets,

that is, the sets of minimum separating cuts that can be represented by a Gomory-Hu tree, in

Lemma 7.1, and observe that each Gomory-Hu set allows to completely fix the degree of freedom

in the algorithms, such that an execution of the algorithms returns the unique Gomory-Hu tree

that represents the initial Gomory-Hu set.

Lemma 7.1. A set H of n�1 cuts is a Gomory-Hu set if and only if the cuts in H are pairwise

non-crossing and for each cut exists a cut pair that is exclusively separated by this cut, that is,

that is not separated by any other cut in H.

113
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Figure 7.1: Situation of the Non-Crossing Lemma (7.2). Reshaping newly found minimum
separating cuts (solid black lines) along previous minimum separating cuts (dotted black lines)
resulting in new cuts with the same costs (dashed red lines). Note that y is not depicted, since

the statement does not depend on the position of y.

Proof. Obviously, each Gomory-Hu set satisfies the conditions of Lemma 7.1. Now let H denote

a set of n � 1 pairwise non-crossing cuts and P a set of |H| exclusively separated cut pairs,

as described in Lemma 7.1. Since the cuts in H are non-crossing, their cut sides are nested,

and since there are n � 1 of these cuts, there exists exactly one vertex pair for each cut that is

exclusively separated by this cut. Hence, these vertex pairs must correspond to the cut pairs

in P. Connecting cut pairs in P by edges then yields a Gomory-Hu tree that represents H.

7.1.1 The Algorithm of Gomory and Hu

The simple idea of this algorithm is to iteratively construct a Gomory-Hu set by choosing in

each step a vertex pair (a so-called step pair consisting of step vertices) that is not yet separated

and computing a minimum separating cut for this pair. The challenging part is to ensure that

the found cut does not cross any of the previous cuts. Gomory and Hu solve this problem by

contracting at least one cut side of each cut found so far and computing the minimum separating

cut in the resulting graph. This is feasible due to the following key lemma, which we will use

extensively in the remainder of this work, and thus, refer to as Non-Crossing Lemma. According

to this lemma, there always exists a minimum separating cut that does not cross any of the

previous cuts. While Gomory and Hu proved this assertion in a much more complicated way,

this lemma was formulated and proven by Gusfield. It shows that any arbitrary minimum

separating cut can be bent along the previous cuts without changing costs, thus resolving any

potential crossings (see also Fig. 7.1)

Lemma 7.2 (Non-Crossing Lemma, Lem. 1 in Gus. [66]). Let (X,V \X) be a minimum x-y-cut

in G, with x 2 X. Let (H,V \H) be a minimum u-v-cut, with u, v 2 V \X and x 2 H. Then

the cut (H [X, (V \H) \ (V \X)) is also a minimum u-v-cut.

We say that (X,V \X) shelters X, meaning that each minimum u-v-cut with u, v /2 X can

be reshaped, such that it does no longer split X.

Algorithm 1 briefly describes the tree construction of Gomory and Hu. The intermediate

tree T⇤ = (V⇤, E⇤, c⇤) is initialized as an isolated, edgeless node containing all original vertices.

Then, until each node of T⇤ is a singleton node, a node S 2 V⇤ is split and an edge representing

a new cut is added to E⇤. To this end, nodes S0 6= S, which are related to cut sides of previously

found cuts, are dealt with by contracting in G whole subtrees Nj of S in T⇤, connected to S

via edges {S, Sj}, to single nodes [Nj ] before cutting, which yields GS . The split of S into Su

and Sv is then defined by a minimum u-v-cut (split cut) in GS (with step pair {u, v} ✓ S), which
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Algorithm 1: Gomory-Hu

Input: Graph G = (V,E, c)
Output: Gomory-Hu tree of G

1 Initialize tree T⇤ := (V⇤, E⇤, c⇤) with V⇤  {V }, E⇤  ; and c⇤ empty
2 while 9S 2 V⇤ with |S| > 1 do // unfold all nodes

3 {u, v} arbitrary pair of vertices in
�
S
2

�

4 forall the Sj adjacent to S in T⇤ do Nj  subtree of S in T⇤ with Sj 2 Nj

5 GS = (VS , ES , cS) in G contract each Nj to [Nj ] // contraction

6 (U, V \ U) min-u-v-cut in GS , cost �G
S

(u, v), u 2 U
7 Su  S \ U and Sv  S \ (VS \ U) // split S = Su ·[Sv

8 V⇤  (V⇤ \ {S}) [ {Su, Sv}, E⇤  E⇤ [ {{Su, Sv}}, c⇤(Su, Sv) �G
S

(u, v)
9 forall the former edges ej = {S, Sj} 2 E⇤ do

10 if [Nj ] 2 U then ej  {Su, Sj} ; // reconnect Sj to Su

11 else ej  {Sv, Sj} ; // reconnect Sj to Sv

12 return T⇤
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(a) If x 2 S
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, {x, y} is still a cut pair of {S
u

, S
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x

u
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(b) If x /2 S
u

, {u, y} is a cut pair of {S
u

, S
j

}.

Figure 7.2: Situation in Lemma 7.3. There always exists a cut pair of edge {Su, Sj} in the
incident nodes Su and Sj , independent of the shape of the split cut (dashed line).

does not cross any of the previously used cuts due to the contraction technique. Recall that this

split cut in GS also induces a minimum u-v-cut in G, due to the Non-Crossing Lemma (7.2).

After the splitting, the edge {Su, Sv} is added to E⇤, and each Nj is reconnected, again by Sj ,

to either Su or Sv depending on which side of the cut [Nj ] ended up. This reconnection ensures

that the edge {Su, Sv} indeed represents the split cut.

The previous split cuts represented in T⇤, and in particular the cuts represented by the

reconnected edges, do not change due to the reconnection. But the reconnection changes the

incident nodes of the reconnected edges, and thus, in order to ensure the correctness of the

algorithm, the new nodes incident to such an edge also need to contain a cut pair of the cut

represented by the edge. This is guaranteed by Lemma 7.3, which states that each edge {S, Sj}
in T⇤ has a cut pair {x, y} with x 2 S, y 2 Sj (see Fig. 7.2). An intermediate tree satisfying this

condition is valid. The lemma was formulated and proven by Gomory and Hu [59] and rephrased

by Gusfield [66].

Lemma 7.3 (Lem. 4 in Gus. [66]). Let {S, Sj} be an edge in T⇤ inducing a cut with cut pair

{x, y}, where x 2 S and y 2 Sj. Consider step pair {u, v} ✓ S that splits S into Su and Sv,

without loss of generality Sj and Su ending up on the same cut side, that is {Su, Sj} becomes a

new edge in T⇤. If x 2 Su, {x, y} remains a cut pair for {Su, Sj}. If x 2 Sv, {u, y} is also a cut

pair of {Su, Sj}.
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7.1.2 A Simpler Version of the Gomory-Hu Algorithm

While Gomory and Hu use contractions in G to prevent crossings of the cuts, as a simplifi-

cation, Gusfield computes arbitrary minimum separating cuts directly in G (without previous

contraction) and resolves potential crossings by the help of the Non-Crossing Lemma. To this

end, he introduces a special representation of the intermediate tree that admits to reshape the

cuts according to the Non-Crossing Lemma by just reconnecting further edges. The results on

Gomory-Hu trees in this work will be all based on Gusfield’s simplification instead of the original

Gomory-Hu algorithm, but we slightly generalize Gusfield’s representation of intermediate trees

in order to make it compatible with the special intermediate trees we will use in the dynamic

scenario in the next chapter.

Representation of Intermediate Trees. In an intermediate tree T⇤ = (V⇤, E⇤, c⇤), we

present each node in V⇤, which consists of original vertices in V , by an arbitrary tree of thin

edges connecting the contained vertices in order to indicate their membership to the node. An

edge connecting two nodes in V⇤ is represented by a fat edge in E⇤, which we connect to an

arbitrary vertex in each incident node. Fat edges represent minimum separating cuts in G, and

are thus associated with costs. If a node contains only one vertex, we color this vertex black.

Black vertices are only incident to fat edges. The vertices in non-singleton nodes are colored

white. White vertices are incident to at least one thin edge. In this way, T⇤ = (V,Et, Ef , cf )

can be also considered as a tree on V with two types of edges (thin edges in Et, fat edges in Ef )

and vertices (black and white), and a cost function cf on the fat edges. For an example see the

intermediate tree depicted in Fig. 7.3(a).

Description of the Algorithm. With this representation, addressing the subtrees of a node

in T⇤ can be easily done by just addressing the vertices that are linked by a fat edge to a vertex

in the node. Hence, Algorithm 1 can be reformulated as done in Algorithm 2. In order to

distinguish this simpler version from the original algorithm, we refer to this algorithm as Cut

Tree algorithm.

According to the representation described above, Algorithm 2 considers the intermediate tree T⇤

as a tree on the vertices of G consisting of thin and fat edges and omits any contraction in G.

Instead, Line 12 and 13 implement the reconnection of the subtrees of the current node S with

respect to this more direct representation of T⇤, and additionally, also realize the reshaping of

the current split cut (U, V \ U) according to the Non-Crossing Lemma (7.2). Figure 7.3 again

illustrates these reconnection steps. The current step pair {u, v} (filled gray) is separated by the

current split cut (U, V \U) (dashed red line), which crosses the previously found cut (X,V \X)

represented by the edge e (solid black line), see Fig. 7.3(a). Thus, according to the Non-Crossing

Lemma (7.2), (U, V \ U) is meant to be reshaped resulting in the cut indicated by the solid

red line. Furthermore, the edge {u, v} is meant to represent this reshaped cut. Both issues

are now handled by reconnecting edges, compare Fig. 7.3(b). The edge e is reconnected such

that (U, V \ U) no longer splits the cut side X. This realizes the reshaping. Furthermore, the

thin edges in the current node S, that is, the node that contains u and v, are reconnected such

that the edge {u, v} indeed represents the reshaped cut.

Since the step pairs and the split cuts are chosen arbitrarily, the procedure Cut Tree is

non-deterministic, but a single run of Cut Tree is characterized by a sequence F of n� 1 step

pairs and a sequence K of n�1 corresponding split cuts, and thus, returns a unique Gomory-Hu
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Algorithm 2: Cut Tree

Input: Graph G = (V,E, c)
Output: Gomory-Hu tree of G

1 Initialize tree T⇤ = (V,Et, Ef , cf ) with Et  thin edges forming an arbitrary spanning tree
of V , Ef  ; and cf empty

2 while 9 thin edge {s, t} in Et do // unfold all nodes

3 S  subtree of thin edges that contains {s, t} // choose node

4 {u, v} arbitrary pair of vertices in
�
S
2

�
// choose step pair

5 (U, V \ U) min-u-v-cut in G, cost �G(u, v), u 2 U // choose split cut

6 Et  Et \ S
7 forall the x 2 S \ {u, v} do // split S = Su ·[Sv

8 if x 2 U then Et  Et [ {{u, x}}; // reconnect x to u
9 if x 2 V \ U then Et  Et [ {{v, x}}; // reconnect x to v

10 N  all vertices x that are linked by a fat edge to a vertex vx 2 S
11 forall the x 2 N do // reconnect subtrees to Su and Sv

12 if x 2 U then Et  (Et \ {{vx, x}}) [ {{u, x}}; // reconnect x to u
13 if x 2 (V \ U) then Et  (Et \ {{vx, x}}) [ {{v, x}}; // reconnect x to v

14 Ef  Ef [ {{u, v}}, Et  Et \ {{u, v}}, cf (u, v) �G(u, v) // draw {u, v} fat

15 return T⇤

v

u x

V \X X

e

(a) Original and reshaped split cut in an intermediate
tree T⇤ before the reconnection. Nodes in T⇤ are indi-
cated by dotted frames.

v

u x

V \X X

e

(b) Reconnecting edges according to Cut Tree ensures
the reshaping of the split cut and the representation of
the reshaped cut by the new fat edge {u, v}.

Figure 7.3: Reconnecting edges implements splitting of the current node and reshaping of the
split cut. The original split cut (U, V \U) (dashed red line) with respect to step pair {u, v} is
bent along the cut (X,V \X) represented by edge e (solid black line) resulting in a non-crossing

split cut (solid red line).

tree. We call a triple (G,F ,K) consisting of a graph G, a sequence F of |F|  n � 1 step

pairs, and a sequence K of |K| = |F| corresponding split cuts a (partial) Cut Tree execution,

and observe that each (partial) Cut Tree execution returns a unique valid intermediate tree,

which is a Gomory-Hu tree for |F| = n � 1. The set K of split cuts is represented by the (fat)

edges of this intermediate tree and can be considered as a (partial) Gomory-Hu set, since further

processing the intermediate tree would yield a Gomory-Hu tree with a Gomory-Hu set H such

that K ✓ H.

Vice versa, the following lemma states su�cient conditions for a set K of k  n� 1 cuts in G,

such that there exists a valid intermediate tree that exactly represents the cuts in K.

Lemma 7.4. Let K denote a set of k  n�1 pairwise non-crossing cuts in G such that for each

cut exists a cut pair that is exclusively separated by this cut, that is, that is not separated by any

other cut in K. Then there exists a valid intermediate tree representing exactly the cuts in K.

Proof. Let F denote the set of |K| exclusively separated cut pairs, as described in Lemma 7.4.

The statement follows inductively from the correctness of the procedure Cut Tree. Consider

a run of Cut Tree that uses the elements in F as step pairs in an arbitrary order and the
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U

Figure 7.4: Crossing U-cuts in a graph G. Fat edges are very expensive, thin edges cost 1.
The two remaining edges cost 6, each. Cut (X,V \X) (solid green line) is the minimum x-y-cut
that minimizes the cut side of y. Cut (U, V \ U) (solid red line) is the minimum u-v-cut that
minimizes the cut side of u, and is bent along X by the Non-Crossing Lemma (7.2) resulting

in the cut indicated by the dashed red line.

associated cuts in K as split cuts. Since the cuts in K are non-crossing, each separating exactly

one cut pair in F , splitting a node neither causes reconnections nor the separation of a pair that

was not yet considered. Thus, Cut Tree reaches an intermediate tree representing the cuts

in K with the cut pairs located in the incident nodes.

This characterizes partial Gomory-Hu sets analogously to Gomory-Hu sets. In particular, there

exists a Cut Tree execution for each Gomory-Hu set, and thus for each Gomory-Hu tree T (G),

that returns T (G). Hence, the procedure Cut Tree (and also Gomory-Hu) is solution-

complete. A Gomory-Hu tree as well as a valid intermediate tree can be further returned by

several (partial) Cut Tree executions, since any permutation of F (and the same permutation

applied to H and K, respectively) yields the same tree.

7.2 Unique-Cut Trees

In the previous section we have seen that a Cut Tree execution (G,F ,K) returns a unique

Gomory-Hu tree T (G) for a given graph G. However, the cuts in the corresponding Gomory-Hu

set H, that is, the cuts finally represented by the edges of the tree, are not necessarily equal to

the split cuts given in K. In contrast to the cuts in H, the cuts in K possibly cross and are thus

reshaped during the execution according to the Non-Crossing Lemma (7.2). That is, if we seek

a Gomory-Hu tree that represents a special type of cuts, like, for example, U-cuts, in general, it

does not su�ce to just choose such cuts as split cuts, since due to the reshaping the split cuts

may loose again their special properties. Figure 7.4 shows that this indeed happens for U-cuts.

Here the cut (X,V \ X) (solid green line), which corresponds to the U-cut uc(y, x), does not

separate u and v. Now suppose a Cut Tree execution that considers {u, v} as next step pair

with the split cut (U, V \U) (solid red line), which corresponds to the U-cut uc(u, v). Since this

cut crosses (X,V \X), it is reshaped according to the Non-Crossing Lemma (7.2), such that the

resulting cut (dashed red line) is no U-cut anymore; neither with respect to u nor to v, since the

opposite U-cut uc(v, u) is given by the cut ({v}, V \ {v}).
In this section, we show that, nevertheless, there exists a Gomory-Hu tree with a Gomory-Hu

set consisting of U-cuts, and present an algorithm to construct such a tree. Furthermore, we

extend this tree by some additional information such that the resulting data structure represents

all regular U-cuts. This data structure will play a fundamental role in Chapter 12 of Part III
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Figure 7.5: The data structure of unique-cut trees. Each edge (t, s) is associated with two
opposite M-sets m(s, t) (induced by the U-cut represented by the edge) and m(t, s) (stored in

a matrix as a vector indicating the vertices that are contained in the set).

where we consider queries that ask for clusterings of special cohesive subsets. We call this data

structure a unique-cut tree.

7.2.1 The Data Structure

A unique-cut tree T (G) = (V,ET , cT ) of an undirected, weighted graph G = (V,E, c) consists of

two parts. The first part is a special Gomory-Hu tree and the second part is an (n�1)⇥n matrix

that stores additional information associated with the edges in the tree. The special Gomory-Hu

tree has the following form. It is a directed, weighted tree where each edge (t, s) represents

a regular U-cut uc(s, t), that is, a regular U-cut that minimizes the cut side that contains the

head s of the edge. Furthermore, the opposite U-cut uc(t, s) is stored in the additional matrix

in form of a vector that indicates which vertices belong to the corresponding M-set m(t, s), and

is also associated with the edge (t, s), besides the connectivity �G(s, t) (see Fig. 7.5). In this

way, each edge of T (G) is associated with opposite U-cuts, which induce opposite M-sets, and

vice versa. For the opposite M-sets associated with an edge (t, s), it further holds that the M-

set m(t, s), that is, the M-set that is stored in the matrix, contains at least as many vertices as

the M-set m(s, t), which is induced by the edge (t, s). In this way, a unique-cut tree decomposes

the set of M-sets that are associated with its edges into two subsets; the M-sets in the matrix,

and the remaining M-sets. For a simpler notation in the later proofs, we call the M-sets that are

stored in the matrix the matrix sets. We further remark that, although opposite U-cuts may be

identical, they always induce two di↵erent opposite M-sets. Di↵erent edges, however, may have

the same associated matrix set. We will see that during the construction of a unique-cut tree

most of these cases can be easily identified, such that avoiding the storing of duplicate matrix

sets is often possible. Furthermore, there exists at least one matrix set, since each regular M-set

has a di↵erent opposite M-set. From the existence of a unique-cut tree it thus follows that there

exist at least n�1 di↵erent regular U-cuts (one per edge in T (G)) and at least n di↵erent regular

M-sets (one per edge in T (G) plus one matrix set) in an undirected, weighted graph G. We show

in the next section how a unique-cut tree for a given graph G can be e�ciently constructed by

computing at most 2(n� 1) maximum flows.

We further claim that each regular U-cut and each regular M-set in an undirected, weighted

graph G is associated with a unique edge in T (G) and can be deduced from the tree structure

as described in the following. We restrict the description to M-sets, since this already implies

the description for U-cuts. Let {u, v} ✓ V denote an arbitrary vertex pair in G. We distinguish

two cases regarding the position of u and v in the unique-cut tree T (G).

Case 1: u is a successor of v. In this case, the M-set m(u, v) is represented by the cheapest

edge on the (undirected) path ⇡(u, v) that is closest to u, that is, that is found first when

traversing ⇡(u, v) from u to v. The opposite M-set m(v, u) is the matrix set that is associated
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m(u, v)
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m(v, u)

(a) If u is a successor of v.

= m(u, v)
= m(u, r)
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r

(b) If no edge on ⇡(r, v) is cheaper than the cheapest
edge on ⇡(r, u).

u r

v
m(r, v) = m(u, v)

(c) If all edges on ⇡(r, u) are more expensive than the
cheapest edge on ⇡(r, v).

Figure 7.6: Illustration of rules to deduce the M-set of an arbitrary vertex pair {u, v} from
a unique-cut tree. Solid edges are more expensive than dashed edges. All dashed edges have

all the same cost.

with the cheapest edge on the path ⇡(u, v) that is closest to v (see Fig. 7.6(a)). The case where v

is a successor of u is symmetric.

Case 2: u is neither a successor nor a predecessor of v. In this case, also v is neither a

successor nor a predecessor of u, and we denote the nearest common predecessor of u and v by r.

If no edge on the path ⇡(r, v) is cheaper than the cheapest edge on ⇡(r, u), then the M-set m(u, v)

equals the M-set m(u, r), which can be deduced as in Case 1 (see Fig. 7.6(b)). Otherwise, it

equals the M-set m(r, v), which can be also deduced as in Case 1 (see Fig. 7.6(c)). The opposite

M-set m(v, u) can be obtained symmetrically, changing the roles of u and v.

Proving this claim immediately yields that a unique-cut tree represents all regular U-cuts and

all regular M-sets in an undirected, weighted graph G. Since each edge in T (G) is associated with

at most two di↵erent U-cuts or M-sets, it follows that there are at most 2(n� 1) U-cuts in the

class UC(G) and at most 2(n� 1) M-sets in the class MS(G). Taking further the construction

of a unique-cut tree into account, we can state the following theorem.

Theorem 7.5. For an undirected, weighted graph G = (V,E, c) it is (n�1)  |UC(G)|  2(n�1)
and n  |MS(G)|  2(n�1). Constructing the sets UC(G) and MS(G) needs at most 2(n�1)

maximum-flow computations.

We will prove Theorem 7.5 by proving the claim above. This proof will be based on a central

lemma (Lemma 7.6) that characterizes the nesting behavior of generalized M-sets. The di↵erent

cases considered in this lemma are depicted in Fig. 7.7. Lemma 7.6 will also be the key to many

further proofs regarding unique-cut trees and M-sets in this section and also in Part III.

Lemma 7.6. Consider two generalized M-sets S1 := m(s1, T1) and S2 := m(s2, T2).

(1) If {s1, s2} \ (S1 \ S2) = ;, then S1 \ S2 = ;.
(2) If T2 \ S1 = ; and s1 2 S2, then S1 ✓ S2 (i). If further T1 \ S2 = ; and s2 2 S1, then

S1 = S2 (ii).

(3) Otherwise, S1 and S2 are neither nested nor disjoint.
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Figure 7.7: Situation of Lemma 7.6. Filled areas are proven to not exist.

Proof of Lemma 7.6. We prove the cases (1), (2i), (2ii) and (3) separately. The proof is very

technical. It exploits the properties of generalized U-cuts and generalized M-sets and compares

costs of cuts by representing the costs as sums of cheaper costs with respect to subsets of the

cut sides.

Proof of (1): If at least one of the two generalized M-sets is a singleton, (1) immediately holds.

Otherwise, we observe the following. First recall that S1 \ T1 = S2 \ T2 = ;. Now suppose S1 \
S2 6= ; (see Figure 7.7(a)). Since U := (S1\S2) ✓ S1 with s1 /2 U it is c(U, V \S1) < c(U, S1\U),

since otherwise, (S1 \ U, V \ (S1 \ U)) would be either a cheaper s1-T -cut than (S1, V \ S1) or a

cut of the same cost but inducing a side of s1 smaller than S1. Since (S2 \U) ✓ (V \S1), it thus

follows

c(U, S2 \ U)  c(U, V \ S1) < c(U, S1 \ U). (7.1)

We apply inequality (7.1) in order to show that the cut (S2 \ U, V \ (S2 \ U)), which also

separates s2 and T2, is cheaper than the generalized U-cut uc(s2, T2) = (S2, V \ S2). This leads

to a contradiction.

We represent the costs of the two cuts as follows:

c(S2, V \ S2) =

c(S2 \ U, S1 \ U) + c(U, S1 \ U) + c(S2, V \ (S1 [ S2)) (7.2)

c(S2 \ U, V \ (S2 \ U)) =

c(S2 \ U, S1 \ U) + c(S2 \ U,U) + c(S2 \ U, V \ (S1 [ S2)) (7.3)

Since (S2 \ U) ✓ S2 it is c(S2 \ U, V \ (S1 [ S2))  c(S2, V \ (S1 [ S2)) and with (7.1) we see

that (7.3) < (7.2).

Proof of (2), general case (i): If S1 is a singleton, (2i) immediately holds. If S2 is a singleton,

it is s1 = s2 and since T2 is supposed to be outside of S1, it must hold S1 = {s1} = {s2} = S2.

That is, (2i) holds. In any other case, we observe the following.

Suppose S1 \S2 6= ; (see Fig. 7.7(b)). Then it is c(U, S2)  c(U, V \ (S1[S2)), since otherwise

(S1 [ S2, V \ (S1 [ S2)) would be a cheaper s2-T2-cut than uc(s2, T2) = (S2, V \ S2). Since

(S1 \ U) [ (S2 \ S1) = S2, it is

c(U, S1 \ U) + c(U, S2 \ S1)  c(U, V \ (S1 \ S2)). (7.4)

We apply inequality (7.4) in order to show that the cut (S1 \U, V \(S1 \U)), which also separates

s1 and T1, is at most as expensive as uc(s1, T1) = (S1, V \ S1), which leads to a contradiction,

since |S1 \ U | < |S1|.
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We represent the costs of the two cuts as follows:

c(S1, V \ S1) =

c(S1 \ U, S2 \ S1) + c(U, S2 \ S1) + c(S1 \ U, V \ (S1 [ S2))

+ c(U, V \ (S1 [ S2)) (7.5)

c(S1 \ U, V \ (S1 \ U)) =

c(S1 \ U, S2 \ S1) + c(S1 \ U,U) + c(S1 \ U, V \ (S1 [ S2)) (7.6)

If we add c(U, S2 \ S1) to (7.6) and apply (7.4) we get a result that is at most as expensive

as (7.5). Hence, (7.6)  (7.5). But S1 \ U is smaller than S1 contradicting the fact that S1 is a

generalized M-set.

Proof of (2), special case (ii): If S1 = {s1} is a singleton, we already know from (2i) that s1 2 S2.

Now it is additionally required that T1 is outside of S2. Hence, it must be S1 = S2 and (2ii)

holds. If S2 is a singleton, we already know from (2i) that S1 = {s1} = {s2} = S2, and thus (2ii)

holds. In any other case, we argue as follows.

Since the general case applies, it is S1 ✓ S2 (see Fig. 7.7(c)). Furthermore, with S1 also

separating s2 and T2 and S2 also separating s1 and T1 we get �(s1, T1) = �(s2, T2), and thus,

(S1, V \S1) is also a minimum s2-T2-cut with |S1|  |S2|. Hence, it must be S1 = S2, otherwiseS2

would not be the source community of s2 with respect to T2.

Proof of (3): In the remaining cases, at least one source is in S1 \ S2, that is, S1 \ S2 6= ;.
Hence, S1 and S2 are not disjoint. Furthermore, it is either T1 \ S2 6= ; and T2 \ S1 6= ; or

T1 \ S2 6= ; and s1 2 S1 \ S2. Thus, S1 and S2 are not nested. Figure 7.7(d) shows an example

proving that there exist S1 and S2 that are neither nested nor disjoint.

Proof of Theorem 7.5. We prove that the regular M-sets of an arbitrary vertex pair {u, v}
can be deduced from the tree structure of a unique-cut tree T (G) as claimed above. The

corresponding statement for regular U-cuts then holds implicitly. First observe that if u is a

successor of v, it follows directly from the structure of T (G) that the M-set m(u, v) is given by

the cheapest edge on the path between u and v that is closest to u. We further show that (i) the

opposite M-set m(v, u) is the matrix set associated with the cheapest edge on the path from v

to u that is closest to v.

If u and v are not in successor-predecessors relation with r the nearest common predecessor,

we prove that the M-set m(u, v) (ii) equals the M-set m(u, r) if no edge on the path from r to v

is cheaper than the cheapest edge on the path from r to u, and (iii) equals the M-set m(r, v),

otherwise.

Proof of (i): Let (t, s) 2 ET denote the cheapest edge on ⇡(v, u) that is closest to v. Obviously

it is �G(v, u) = cT (t, s). Since (t, s) is closest to v it is further �G(v, t) > cT (t, s), and thus,

neither the U-cut inducing m(t, s) separates v and t nor the U-cut inducing m(v, u). Hence, we

have {v, t} ✓ m(v, u) \ m(t, s), while u /2 m(t, s). If s /2 m(v, u), we thus get the situation of

Lemma 7.6(2ii), which yields m(v, u) = m(t, s). If s 2 m(v, u), we get m(t, s) ✓ m(v, u), according

to Lemma 7.6(2i). However, since �G(v, u) = �G(t, s) and m(t, s) also separates u and v, it must

hold |m(v, u)| = |m(t, s)|, which contradicts the assumption that s 2 m(v, u).
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Proof of (ii): If no edge on ⇡(r, v) is cheaper than the cheapest edge on ⇡(r, u), it is �G(u, v) =

�G(r, u), and any cheapest edge on ⇡(r, u) also induces a minimum u-v-cut. In particular the U-

cut of m(u, r) is a minimum u-v-cut, and thus it is v /2 m(u, r), while clearly u 2 m(u, v)\m(u, r).

If r /2 m(u, v), we thus get the situation of Lemma 7.6(2ii), which yields m(u, v) = m(u, r).

If r 2 m(u, v), we get m(u, r) ✓ m(u, v), according to Lemma 7.6(2i). However, since �G(u, v) =

�G(u, r) and m(u, r) also separates u and v, it must hold |m(u, v)| = |m(u, r)|, which contradicts

the assumption r 2 m(u, v).

Proof of (iii): If all edges on ⇡(r, u) are more expensive than the cheapest edge on ⇡(r, v), it

is, �G(u, v) = �G(r, v), and neither the U-cut inducing m(u, v) separates u and r nor the U-cut

inducing m(r, v). That is, u 2 m(u, v) \ m(r, v). Since v is neither in m(u, v) nor in m(r, v), we

get the situation of Lemma 7.6(2ii), and it follows m(u, v) = m(r, v).

7.2.2 Constructing a Unique-Cut Tree

For the construction of the special Gomory-Hu tree that forms the basis of a unique-cut tree, we

simply choose the regular U-cuts as split cuts in the procedure Cut Tree that are supposed to be

represented by the directed edges in the final tree. That is, for the step pair {s, t}, we choose the
U-cut with the smallest M-set. Furthermore, we direct the resulting tree edge to the chosen M-set

and store the opposite M-set in the matrix. At first, this approach might sound contradictory

to the explanations at the beginning and the example with the crossing U-cuts in Fig. 7.4.

However, we can show that simply comparing the sizes of the M-sets already admits to choose

non-crossing U-cuts, which prevents a reshaping of the original split cuts and guarantees that the

cuts represented in the final tree are the same cuts as chosen for the construction. In Fig. 7.4, we

observe that choosing the opposite U-cut uc(v, u) = ({v}, V \{v}) instead of uc(u, v) = (U, V \U),

whose corresponding M-set m(u, v) = U is clearly larger than m(v, u) = {v}, already resolves the

crossing.

However, reconnecting edges in the intermediate tree during the construction might be still

necessary in order to ensure that each final edge indeed represents the correct cut. It is therefore

necessary to implement a statement similar to Gomory’s and Hu’s Lemma 7.3, which ensures

that after a reconnection the new compound nodes incident to the reconnected edge still contain

a cut pair of the edge, also for U-cuts and M-sets. The key lemmas to our construction of

unique-cut trees, which we introduce in the next section, thus consist of two parts, each. The

first part ensures that the chosen U-cuts do not cross, the second part guarantees that after the

reconnection of a (directed) edge in the intermediate unique-cut tree the induced M-set is also

an M-set with respect to the new tail and head of the reconnected edge. For the matrix sets

associated with reconnected edges, the lemmas show that at least in most cases the previous

sets remain valid. Thus, explicitly recomputing a matrix set is rarely necessary and avoiding the

storing of duplicate matrix sets is often possible. So the construction of a unique-cut tree needs

at least (n� 1) maximum-flow computations, but is often possible with much less than 2(n� 1)

maximum-flow computations. In this way, the lemmas prove the correctness of Algorithm 3,

which presents the modification of Cut Tree as described above, and thus, the existence of

unique-cut trees.

Theorem 7.7. For an undirected, weighted graph G = (V,E, c) there exists a rooted Gomory-

Hu tree T (G) = (V,ET , cT ) with edges directed to the leaves such that each edge (t, s) 2 ET

represents the U-cut uc(s, t) with |m(s, t)|  |m(t, s)|. Such a tree can be constructed by n � 1
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maximum-flow computations. Additionally associating the opposite M-sets with the edges costs

at most n� 1 additional maximum-flow computations.

The Unique-Cut Tree Algorithm. In the modification of the procedure Cut Tree pre-

sented in Algorithm 3, we use stars to represent nodes in the intermediate tree, choose star edges

as step pairs, and use U-cuts that induce the smallest M-set of the current step pair as split cuts.

Furthermore, we compute complete maximum flows in line 4, while for the construction of gen-

eral Gomory-Hu trees, the computation of minimum cuts su�ces, which can be already deduced

from preflows. Here, complete maximum flows are necessary in order to compare the sizes of the

M-sets and to choose the U-cut with the smallest M-set. Recall that a maximum s-t-flow induces

a DAG that represents all minimum s-t-cuts. Hence, the two opposite M-sets with respect to s

and t can be deduced from this DAG. Note further that, for the sake of simplicity, Algorithm 3

does not deal with the matrix sets of the unique-cut tree. However, these M-sets can be easily

handled according to the cases given by the key lemmas (see Section 7.2.3).

Algorithm 3: Unique-Cut Tree

Input: Graph G = (V,E, c)
Output: Gomory-Hu tree of G

1 Initialize tree T⇤ = (V,Et, Ef , cf ) with Et  thin edges forming a star of V , Ef  ; and cf
empty

2 while 9 thin edge {u, v} in Et do // unfold all nodes

3 S  star of thin edges with center v that contains {u, v} // choose node

4 compute max-u-v-flow with value �G(u, v)
5 X  argmin{|m(u, v)|, |m(v, u)|} // choose split cut

6 x X \ {u, v}, y  (V \X) \ {u, v}
7 Et  Et \ S
8 forall the s 2 S \ {x, y} do // split S = Su ·[Sv = Sx ·[Sy

9 if s 2 X then Et  Et [ {{s, x}}; // reconnect s to x
10 if s 2 V \X then Et  Et [ {{s, y}}; // reconnect s to y

11 center of Sx  x, center of Sy  y
12 N  all vertices s that are linked by a fat edge to a vertex vs 2 S
13 forall the s 2 N do // reconnect subtrees to Sx and Sy

14 if s 2 X then // reconnect s to x
15 if s is a head then Et  (Et \ {(vs, s)}) [ {(x, s)}
16 if s is a tail then Et  (Et \ {(s, vs)}) [ {(s, x)}
17 if s 2 (V \X) then // reconnect s to y
18 if s is a head then Et  (Et \ {(vs, s)}) [ {(y, s)}
19 if s is a tail then Et  (Et \ {(s, vs)}) [ {(s, y)}

20 Ef  Ef [ {(y, x)}, Et  Et \ {{x, y}}, cf (y, x) �G(u, v) // draw (y, x) fat

21 return T⇤

7.2.3 The Key Lemmas to the Construction of Unique-Cut Trees

Lemma 7.8 states that if we chose a step pair {s, x} in an M-set that is the smallest M-set with

respect to a cut pair {s, t}, the U-cut that induces the smallest M-set with respect to {s, x} does

not cross the previous U-cut of {s, t} (see also Fig. 7.8). Furthermore, the considered U-cuts can

be represented by directed edges and the opposite M-sets can be associated with the edges.
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Lemma 7.8. For a cut pair {s, t}, let |m(s, t)|  |m(t, s)|, and let S0 denote a smallest M-set with

respect to a cut pair {s, x} ✓ m(s, t). Then S0 $ m(s, t) (Fig. 7.8). If S0 = m(s, x) (Fig. 7.8(b)),

then m(s, t) = m(x, t) is the smallest M-set with respect to {x, t} and m(t, s) = m(t, x).

Besides choosing step pairs inside of previous M-sets as in Lemma 7.8, the construction of a

Gomory-Hu tree also requires the possibility of choosing step pairs outside of previous M-sets.

This possibility is given by the next lemma.

Lemma 7.9. For a cut pair {u, s}, let |m(u, s)|  |m(s, u)|, and let S0 denote a smallest M-set

with respect to a cut pair {s, x} ✓ V \m(u, s). Then m(u, s) $ S0 (Fig. 7.9) or m(u, s) \ S0 = ;
(Fig. 7.10).

If m(u, s) $ S0 and S0 = m(x, s) (Fig. 7.9(b,c)), then m(u, s) = m(u, x) is the smallest M-set

with respect to {u, x}. If further x 2 m(s, u) (Fig. 7.9(b)), then m(s, u) = m(x, u). Other-

wise, if x /2 m(s, u) (Fig. 7.9(c)), then m(s, u) = m(s, x), but the opposite M-set m(x, u) of the

reconnected edge must be computed additionally.

If m(u, s) \ S0 = ; and S0 = m(s, x) (Fig. 7.10(b,c,d)), then m(u, s) = m(u, x) is again

the smallest M-set with respect to {u, x}. If further x 2 m(s, u) (Fig. 7.10(b)), then m(s, u) =

m(x, u). Otherwise, if x /2 m(s, u) (Fig. 7.10(c,d)), then m(s, u) = S0 and if further u /2 m(x, s)

(Fig. 7.10(c)), then m(x, s) = m(x, u). Otherwise (Fig. 7.10(d)), the opposite M-set m(x, u) of

the reconnected edge must be computed additionally.

t

x

s

S0

m(s, t)

(a) S0 = m(x, s), reconnecting edges is not necessary.

t

x

s

S0

= m(s, t)
= m(x, t) = m(t, s)

= m(t, x)

(b) S0 = m(s, x), t needs to be reconnected to x.

Figure 7.8: Situation in Lemma 7.8. In order to represent U-cuts by directed tree edges,
depending on the shape of S0 (dashed red line) a reconnection becomes necessary; see (b)
where t is reconnected to x. This reconnection is feasible, since the second part of Lemma 7.8
guarantees that the new vertices incident to the reconnected edge are still a cut pair of the
represented cut and the opposite M-set possibly assigned to the edge (dashed black line) is

also an opposite M-set with respect to this new cut pair.

Proof of Lemma 7.8. We distinguish two cases, S0 = m(x, s), that is, x 2 S0 (Fig. 7.8(a)) and

S0 = m(s, x), that is, s 2 S0 (Fig. 7.8(b)). The cases are (almost) symmetric with respect to the

first assertion that S0 ⇢ m(s, t). Hence, we prove S0 ⇢ m(s, t) just for the first case. The second

part of Lemma 7.8 refers to the second case, where the edge (t, s) needs to be reconnected, and

we thus need to show that the M-set to which the reconnected edge points and the opposite

M-set assigned to the tail remain valid.

First assertion S0 ⇢ m(s, t):

Consider the case where S0 = m(x, s), that is, x 2 S0 (Fig. 7.8(a)). If t /2 S0, it is S0 ⇢
m(s, t) according to Lemma 7.6(2i). Hence, suppose t 2 S0. We show that this case yields a

contradiction, and thus, does not occur.

Consider the opposite M-set m(s, x) of S0. Note that t /2 m(s, x), since m(s, x)\S0 = ;. Thus,
it must hold m(s, x) ⇢ m(s, t), since otherwise t would deflect the corresponding U-cut uc(s, x)
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according to the Non-Crossing Lemma (7.2) resulting in a smaller cut side containing s, and

hence, m(s, x) would not be an M-set. In the following we argue that if t 2 S0 then |m(s, x)| < |S0|
and hence, S0 is not the smallest M-set with respect to s and x, which is the final contradiction.

Hence, the case t0 2 S0 does not occur.

We first observe that if t0 2 S0, then uc(s, t) is also a minimum x-t-cut, since uc(x, s) (which

is the cut associated with S0) could be bent along m(s, t) deflected by t (according to the Non-

Crossing Lemma (7.2)), such that it separates t and s. Hence, according to the correctness of

the Gomory-Hu algorithm (Lemma 7.3), {x, t} is also a cut pair of uc(s, t). Thus, deflected

by s, uc(s, t) can be bent along (the original) S0 (which contains x and t) yielding a cut side

T 3 t of a minimum s-t-cut. Since m(s, t) is the smallest M-set with respect to s and t, it follows

|m(s, t)|  |T |, while T ⇢ S0 and m(s, x) ⇢ m(s, t). Finally it is |m(s, x)| < |m(s, t)|  |T | < |S0|.
Second part regarding S0 = m(s, x):

Now we know that the first assertion S0 ⇢ m(s, t) holds for both cases S0 = m(x, s) and S0 =

m(s, x). We show next that if S0 = m(s, x), that is, s 2 S0 and the edge (t, s) is reconnected

becoming the edge (t, x) (Fig. 7.8(b)), m(s, t) is also the smallest M-set with respect to x and t

and m(t, s) = m(t, x).

Analogously to the observation above, we observe again that, according to the correctness

of the Gomory-Hu algorithm (Lemma 7.3), uc(s, t) is also a minimum x-t-cut, since S0 again

separates s and t. Consequently, it is �(x, t) = �(s, t) and m(s, t) = m(x, t), since otherwise, if

there was a smaller M-set m(x, t), this would not contain s, and thus, separate x and s. This

means that �(s, x)  �(s, t). Then, however, S0 contradicts the assumption that m(s, t) is an

M-set. Hence, it must be m(s, t) = m(x, t).

Furthermore, for the opposite M-sets it is m(t, s) = m(t, x), as x 2 m(s, t), and together with

m(s, t) = m(x, t), m(s, t) is the smallest M-set with respect to x and t, since |m(t, s)| � |m(s, t)|.

Proof of Lemma 7.9. We distinguish two cases, S0 = m(s, t), that is, s 2 S0 (Fig. 7.9) and

S0 = m(x, s), that is, x 2 S0 (Fig. 7.10). The first assertion, which is U \ S0 = ; or U ⇢ S0,

follows for both cases directly from Lemma 7.6(1),(2i), depending on whether or not u 2 S0.

The second part of the lemma again focuses on the situations where a reconnection of an edge

becomes necessary (see all but the first cases in Fig. 7.9 and Fig. 7.10). In the following we proof

the assertions of this second part.

Second part if m(u, s) $ S0 and S0 = m(x, s) (Fig. 7.9(b,c)):

We first observe that due to the correctness of the Gomory-Hu algorithm (Lemma 7.3), uc(u, s) is

also a minimum u-x-cut, and hence, it is �(u, x) = �(u, s) and m(u, s) = m(u, x), since a smaller

M-set m(u, x) would also induce a smaller M-set m(u, s), which is a contradiction. That m(u, x)

is further the smallest M-set with respect to u and x, we will see later.

Before we continue to prove further assertions regarding opposite M-sets, at this point, we

prove by contradiction that s 2 m(x, u) (which is not depicted in Fig. 7.9(b,c)). This will admit to

apply Lemma 7.6, and thus, help to prove the remaining assertions of the second part in the case

that m(u, s) $ S0 and S0 = m(x, s). Suppose s /2 m(x, u). Then uc(x, u) would also separate x

from s, and thus, it would be �(x, s)  �(x, u). However, since �(x, u) = �(s, u) and S0 also

separates s and u, it must be also �(x, u)  �(x, s). Consequently, it would be �(x, u) = �(x, s)

if s /2 m(x, u). Furthermore, according to the Non-Crossing Lemma (7.2), uc(x, u) could be bent

along S0 (deflected by s) such that m(x, u) $ S0. Recall that we assumed s /2 m(x, u), and hence,

m(x, u) $ S0 contradicts the fact that S0 is the M-set m(x, s). Hence, we know that s 2 m(x, u).
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Figure 7.9: Situation in Lemma 7.9 if m(u, s) $ S0. In order to represent U-cuts by directed
tree edges, depending on the shape of S0 (dashed red line) a reconnection becomes necessary.
(a) S0 = m(s, x), reconnecting edges is not necessary, (b,c) S0 = m(x, s), x needs to be recon-
nected to u. This reconnection is feasible, since Lemma 7.9 guarantees that the new vertices
incident to the reconnected edge are still a cut pair of the represented cut. Furthermore, in (b),
the opposite M-set possibly assigned to the reconnected edge (dashed black line) is also an
opposite M-set with respect to this new cut pair, since x is contained in this opposite M-set.

In (c), the opposite M-set for the reconnected edge must be computed additionally.
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Figure 7.10: Situation in Lemma 7.9 if m(u, s) \ S0 = ;. In order to represent U-cuts by
directed tree edges, depending on the shape of S0 (dashed red line) a reconnection becomes
necessary. (a) S0 = m(x, s), reconnecting edges is not necessary, (b,c,d) S0 = m(s, x), x
needs to be reconnected to u. This reconnection is feasible, since Lemma 7.9 guarantees that
the new vertices incident to the reconnected edge are still a cut pair of the represented cut.
Furthermore, in (b), the opposite M-set possibly assigned to the reconnected edge (dashed
black line) is also an opposite M-set with respect to this new cut pair, since x is contained in
this opposite M-set. In (b), the opposite M-set of the edge that is not reconnected (dashed
black line) is also an opposite M-set with respect to the new cut pair of the reconnected
edge, since u is contained in this opposite M-set. In (c), the opposite M-set m(x, u) for the

reconnected edge must be computed additionally.

Now we continue to prove the remaining assertions regarding the opposite M-sets. We still

consider the case where m(u, s) $ S0 and S0 = m(x, s) (Fig. 7.9(b,c)). If x 2 m(s, u) (Fig. 7.9(b)),

together with s 2 m(x, u), it follows directly from Lemma 7.6(2ii) that the opposite M-set of the

reconnected edge is m(x, u) = m(s, u).

Based on this insight, we can now also prove for x 2 m(s, u) (Fig. 7.9(b)) the missing assertion

from above, namely that m(u, x) is the smallest M-set with respect to u and x. We have already

seen that m(u, s) = m(u, x), and we know that |m(u, s)|  |m(s, u)|. Hence, it is |m(u, x)| =
|m(u, s)|  |m(s, u)| = |m(x, u)|.

If x /2 m(s, u) (Fig. 7.9(c)), it is �(s, x)  �(s, u). Since S0 also separates s and u, it is further

�(s, x) � �(s, u), and thus, �(s, x) = �(s, u) and m(s, u) = m(s, x). However, the opposite

M-set m(x, u) for the reconnected edge must be computed separately.

Finally, we again prove the missing assertion from above, namely that m(u, x) is the smallest

M-set with respect to u and x, now for the case that x /2 m(s, u) (Fig. 7.9(c)). We exploit

that we showed above that s 2 m(x, u). Together with x /2 m(s, u) it follows directly from



128 Chapter 7 : Gomory-Hu Trees in Static Graphs

Lemma 7.6(2i) that m(s, u) $ m(x, u). We have further seen that m(u, s) = m(u, x) and we

know that |m(u, s)|  |m(s, u)|. Hence, it is |m(u, x)| = |m(u, s)|  |m(s, u)| < |m(x, u)|.
Second part if m(u, s) \ S0 = ; and S0 = m(s, x) (Fig. 7.10(b,c,d)):

Analogously to the second part where m(u, s) $ S0 and S0 = m(x, s) (Fig. 7.9(b,c)), we observe

again that due to the correctness of the Gomory-Hu algorithm (Lemma 7.3), uc(u, s) is also

a minimum u-x-cut, and hence, it is �(u, x) = �(u, s) and m(u, s) = m(u, x), since a smaller

M-set m(u, x) would also induce a smaller M-set m(u, s), which is a contradiction. That m(u, x)

is further the smallest M-set with respect to u and x, we will see later.

For the case that x 2 m(s, u) (Fig. 7.10(b)), we further argue again (by contradiction) that

s 2 m(x, u), in order to apply later Lemma 7.6. Suppose s /2 m(x, u). Then it would be

�(s, x)  �(u, x). Since S0 also separates u and s it is further �(u, s)  �(s, x). Since we

already know that �(u, s) = �(u, x), this would yield �(s, x) = �(u, x). Furthermore, it holds

S0 ⇢ m(s, u), according to Lemma 7.7(2i). Together, S0 would thus contradict the fact that

m(s, u) is an M-set. Hence, we know that s 2 m(x, u) if x 2 m(s, u) (Fig. 7.10(b)).

Now we see that for the opposite M-set of the reconnected edge it follows directly from

Lemma 7.7(2ii) that m(s, u) = m(x, u). The still missing assertion from above saying that

m(u, x) is the smallest M-set with respect to u and x now also follows, since we already know

that m(u, s) = m(u, x) and |m(u, s)|  |m(s, u)|.
For the case that x /2 m(s, u) (Fig. 7.10(c,d)), we note that S0 = m(s, u) follows directly from

Lemma 7.7(2ii). If further u /2 m(x, s), again by Lemma 7.6(2ii), it follows for the opposite

M-set of the reconnected edge that m(x, u) = m(x, s). The still missing assertion from above

saying that m(u, x) is the smallest M-set with respect to u and x follows again, since we already

know that m(u, s) = m(u, x) and S0 = m(s, u) (and S0 = m(s, x)). Hence, we get |m(u, x)| =
|m(u, s)|  |m(s, u)| = |m(s, x)|  |m(x, s)| = |m(x, u)|.
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Gomory-Hu Trees in Dynamic Graphs

Gomory-Hu trees are a powerful data structure that admits to answer a variety of queries re-

lated to edge connectivity, minimum s-t-cuts, and interesting subgraphs of undirected, weighted

graphs. Hence, seeking for methods to e�ciently maintain a Gomory-Hu tree also in a dynamic

scenario, where the underlying graph changes over time, is a natural further step, all the more in

the light of existing approaches in the context of sensitivity analysis of multiterminal flow net-

works. Shortly after the introduction of Gomory-Hu trees [59] in 1961, in 1964, Elmaghraby [36]

already studied the sensitivity of minimum separating cuts to changes in the underlying graph.

He considers an undirected, weighted graph and a designated edge whose cost continuously

changes. For this scenario he proposes an iterative approach that detects all breakpoints in

the range of the varying edge cost where the corresponding Gomory-Hu tree changes. When-

ever he finds such a breakpoint, he accordingly adapts the edge cost in the underlying graph

and computes a new Gomory-Hu tree from scratch. Hence, a more e�cient update approach

for Gomory-Hu trees would already speed up this method. Barth et al. [11] already improved

this method and showed that Elmaghraby’s breakpoints can be found by constructing only two

Gomory-Hu trees in total. They further extend the sensitivity analysis to several varying edges

and point out some first relations to dynamic Gomory-Hu trees in undirected, weighted graphs.

Nevertheless, they do not solve the latter problem. Instead they in particular declare the update

after the decrease of an edge cost as a di�cult open problem. For Gomory-Hu trees in undi-

rected, unweighted graphs (the authors call them 0-1 undirected networks) Lin and Ma [100]

already solved this problem with worst-case running time of n � 1 cut computations. Their

approach exploits the fact that the cost of an edge changes by exactly 1. This allows some nice

conclusions on reusable cuts after a change, which do not apply to general weighted graphs.

Cuts that cannot be proven to remain valid are computed from scratch. A sensitivity analysis

for only one cut is further realized by parametric maximum flows. This problem considers a flow

network with only two terminals s and t but with several parametric edge capacities. The goal

is again to determine the breakpoints in the parameter ranges of the edge capacities, and to

give corresponding maximum s-t-flows (or minimum s-t-cuts). Parametric maximum flows are

studied, for example, by Gallo et al. [54] and Scutellà [131].

In this work we do not seek for breakpoints in parameter ranges, but for e�cient updates of

Gomory-Hu trees in undirected, weighted graphs after the change of an edge or a vertex. More

precisely, we consider a dynamic scenario in which the underlying graph evolves due to atomic

changes, and we aim at e�ciently and smoothly maintaining an initial Gomory-Hu tree over

the time. An atomic change is either the increase or decrease of an edge cost, the insertion
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or deletion of an edge, or the insertion or deletion of a vertex, where the latter only occur for

isolated vertices. Hence, inserting or deleting a vertex changes neither the cost function nor

the connectivity of the underlying graph. We can immediately describe update procedures for

these cases as follows. Recall that, according to our definition, a Gomory-Hu tree T (G) may also

contain edges of cost 0 in case the underlying graph G is disconnected. A Gomory-Hu tree is thus

always connected. Furthermore, observe that after reconnecting an edge of cost 0 in T (G) each

edge represents a cut that is still equivalent to the cut it previously represented. Consequently,

the resulting tree is again a Gomory-Hu tree of G. Moreover, deleting or inserting a leaf in T (G)

that is incident to an edge of cost 0 results in a Gomory-Hu tree of GU . According to these

observations, an isolated vertex can be inserted by simply connecting it to an arbitrary vertex

in T (G) via an edge of cost 0. An isolated vertex in G that is supposed to be deleted forms a

connected component in G, and is thus only incident to edges of cost 0 in T (G). Reconnecting

these edges such that the vertex becomes a leaf and then deleting the leaf yields again a Gomory-

Hu tree of GU . These update procedures trivially abandon cut computations. In this chapter we

thus focus on the non-trivial cases of edge insertion and deletion, and cost increase and decrease.

The Main Idea and the Hidden Problems Within. The main idea of our approach is to

determine cuts in a given Gomory-Hu tree T (G) that are still minimum separating cuts in the

graph GU after a change, and thus, can be reused for the construction of a new Gomory-Hu

tree T (GU ); the missing cuts are constructed from scratch. This idea however requires that the

reusable cuts form a partial Gomory-Hu set. Otherwise, not all of the independently reusable

cuts can be reused in the same construction. A naive method to check whether an old cut is

reusable is to choose a cut pair of the old cut and to compute a new minimum separating cut

for this cut pair in GU . Comparing the costs of both cuts then admits to identify old cuts

that are reusable with respect to the checked cut pair. However, if the old cut is not reusable

with respect to the checked but with respect to another cut pair, this cannot be detected. In

this case, the hope is that we can at least use the newly computed cut as a split cut in the

construction of the new tree. This, however, is only possible if the checked cut pair is not yet

separated by a previously considered cut. Otherwise, we would have performed cut computation

that unnecessarily increases the running time. Conversely, if the newly found cut separates cut

pairs of old cuts that have been not yet checked, these old cuts cannot be reused together with

the new cut in a Gomory-Hu tree construction; at least not with respect to the separated cut

pairs. This, however, is an obstacle to temporal smoothness.

In this work, we state several lemmas that admit to detect reusable cuts in at most linear

time without any cut computation. Furthermore, we show that for the remaining cuts it is yet

possible to choose the cut pairs for checking in a clever way, such that the newly computed cuts

can be always used for the construction of a new tree in case the old cut is not reusable, and at

the same time, no possibly reusable cut is missed. In this way, our update approach provides

a high potential for saving cut computations, which is also confirmed by our experiments in

Section 8.3, and additionally guarantees optimal temporal smoothness (see Chapter 9). The key

to these results is provided by two lemmas (one for edge deletions and decreasing edge costs

(Lemma 8.9) and one for edge insertions and increasing edge costs (Lemma 9.4)) that, similar

to the Non-Crossing Lemma (7.2), admit to bend newly found cuts in GU along old cuts in G,

such that the edges in T (G) representing cut pairs of old cuts are not crossed.
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Obviously Reusable Cuts. Coming from the direction of sensitivity analysis, Barth et al. [11]

already stated that after an cost increase the path ⇡(b, d) in T (G) = (V,ET , cT ) is the only part

of a given Gomory-Hu tree that needs to be recomputed. Recall that the vertices b and d define

the changing edge. This result is rather obvious according to the fundamental insight given by

the following Lemma 8.1 and the observation that the cuts represented by the edges that are not

on ⇡(b, d) form a partial Gomory-Hu set K in G� (as they are clearly non-crossing and, according

to Lemma 8.1, the vertices incident to the edges represent cut pairs of the corresponding cuts).

Hence, K induces a valid intermediate tree (by Lemma 7.4), which can be further processed by

Cut Tree resulting in a Gomory-Hu tree that contains K. This directly shows the result of

Barth et. al. [11] without any further proof.

Lemma 8.1. If c(b, d) changes by � > 0, then each {u, v} 2 ET remains a minimum u-v-cut (i)

in G� with cost �G(u, v) if {u, v} /2 ⇡(b, d), (ii) in G with cost �G(u, v)�� if {u, v} 2 ⇡(b, d).

Proof. The edges on ⇡(b, d) are the only edges in ET that represent cuts separating b and d.

Thus, these edges represent the only cuts with changing costs in T (G). The costs of those edges

change exactly by �. If c({b, d}) decreases, let {u, v} 2 ⇡(b, d) and observe that the connectivity

of any vertex pair decreases by at most �. Hence, {u, v} is a minimum u-v-cut in G , since

�G (u, v) = �G(u, v)�� = c⇤(u, v)��. If the cost of {b, d} increases, the cuts whose costs do

not change obviously remain minimum separating cuts in G�.

For the case of decreasing edge costs, Barth et al. stress the di�culty of dynamically updating a

Gomory-Hu tree, since in this case, Lemma 8.1 admits to only reuse the edges on the path ⇡(b, d).

They leave this issue open.

In order to yet solve this problem and to give an e�cient update approach for all types of

changes, we start with the construction of two valid intermediate trees that represent the reusable

cuts of Lemma 8.1 for the case of increasing edge costs and the case of decreasing edge costs.

Note that for the latter such a tree exists by the same arguments as for the case of increasing

costs. We stick with the convention for representing intermediate trees introduced in the previous

section. The resulting tree for the increase of an edge cost is shown in Fig. 8.1(a). In this case,

all but the edges on ⇡(b, d) can be reused. Hence, we draw these edges fat. The remaining

edges are thinly drawn. The vertices are colored according to the compound nodes indicated

by the thickness of the edges. Vertices incident to a fat edge correspond to a cut pair. For the

decrease of an edge cost, the edges on ⇡(b, d) are fat, while the edges that do not lie on ⇡(b, d)

are thin (see Fig. 8.1(b)). Furthermore, the costs of the fat edges decrease by �, since they all

cross the changing edge {b, d} in G. Compared to a construction from scratch, starting the Cut

Tree procedure from these intermediate trees already saves n�1� |⇡(b, d)| cut computations in

the first case and |⇡(b, d)| cut computations in the second case, where |⇡(b, d)| counts the edges

on ⇡(b, d). Hence, in scenarios with only little varying path lengths and a balanced number of

increasing and decreasing costs, we can already save about half of the cut computations. In the

following we want to use even more information from the previous Gomory-Hu tree T (G) when

executing Cut Tree unfolding the intermediate tree to a final Gomory-Hu tree of (n � 1) fat

edges. To this end, we introduce some further lemmas that allow the reuse of old cuts given

by T (G). By the help of these lemmas, we enhance the obvious approach for increasing edge

costs by a special treatment of newly inserted bridges, and give an update algorithm for the

case of an edge deletion or a decreasing edge cost that provides much better changes to save

cut computations that the obvious approach considered so far. In Chapter 9 we will see that
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(a) Intermediate tree for G�.
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(b) Intermediate tree for G .

Figure 8.1: Intermediate trees representing reusable cuts detected by Lemma 8.1. Fat edges

represent (reused) minimum cuts in GU , thin edges indicate compound nodes. Contracting
thin edges yields nodes of white vertices (indicated by dotted lines). Black vertices correspond

to singletons.

the latter also provides optimal temporal smoothness, that is, the number of cuts that occur in

both Gomory-Hu sets of consecutive trees is maximum. In contrast, the approach for increasing

edge costs and edge insertions nicely enforces temporal smoothness by reusing all edges that are

not on the path ⇡(b, d), but it does not provide any smoothness guarantee for the remaining

edges and cuts. Hence, in Chapter 9, we further develop this approach, such that updating the

path ⇡(b, d) can be also done in an optimally smooth way.

8.1 Finding Reusable Cuts

We now focus on the reuse of those cuts that are still represented by thin edges in Fig. 8.1. If {b, d}
is inserted or the cost increases, the following corollary obviously holds, since the edge {b, d}
crosses each minimum b-d-cut.

Corollary 8.2. If {b, d} is newly inserted with c�(b, d) = � or c(b, d) increases by �, any

minimum b-d-cut in G remains valid in G� with �G�(b, d) = �G(b, d) +�.

Note that reusing a valid minimum b-d-cut as split cut in the procedure Cut Tree separates b

and d such that {b, d} cannot be used again as step pair in a later iteration step. That is, we can

reuse only one minimum b-d-cut, even if there are several such cuts represented in T (G). Together

with the following corollary, Corollary 8.2 directly allows the reuse of the whole Gomory-Hu

tree T (G) if {b, d} is an existing bridge in G with increasing cost.

Corollary 8.3. An edge {u, v} is a bridge in G if and only if c(u, v) = �G(u, v) > 0. Then {u, v}
is also an edge in T (G).

Proof. The first part of Corollary 8.3 is obvious. In order to see that {u, v} is also an edge

in T (G), first observe the following. The minimum u-v-cut in G is unique (up to equivalences

if G is disconnected). Furthermore, none of the minimum separating cuts of a vertex pair {x, y}
that is no cut pair of the unique minimum u-v-cut ✓ in G separates u and v.

Now assume, {u, v} is no edge in T (G). Then the minimum u-v-cut is represented by another

edge {w, z}, with w on ⇡(u, z). Hence, each cheapest edge on ⇡(u,w) in T (G) represents a

minimum u-w-cut that separates u and v, although {u,w} is no cut pair of ✓. This contradicts

the observation above.

If b and d are in di↵erent connected components in G and {b, d} is a new bridge in G�, according

to the next lemma, reusing the whole Gomory-Hu tree is also possible by replacing a single edge.

This case can be easily detected having the Gomory-Hu tree T (G) at hand, since {b, d} is a new
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bridge if and only if �G(b, d) = 0. New bridges particularly occur if newly inserted vertices are

connected for the first time.

Lemma 8.4. Let {b, d} be a new bridge in G�. Then replacing an edge of cost 0 on ⇡(b, d)

in T (G) by {b, d} with cost c�(b, d) yields a new Gomory-Hu tree T (G�).

Proof. Since {b, d} is a new bridge, b and d are in di↵erent connected components inG, and ⇡(b, d)

in T (G) contains at least one edge of cost 0. Replacing this edge by {b, d} (of cost 0) does

not create a cycle and is thus feasible. The resulting tree is again a Gomory-Hu tree for G,

according to the observation we have already made in the context of vertex changes. According

to Corollary 8.2, the minimum b-d-cut represented by {b, d} in the new Gomory-Hu tree remains

valid after the insertion of {b, d} in G, and thus, it is feasible to simply increase the cost of {b, d}
in the tree.

If {b, d} is deleted or the cost decreases, handling bridges (always detectable by Corollary 8.3)

is also easy, as stated by Lemma 8.5.

Lemma 8.5. If {b, d} is a bridge in G and the cost decreases by � (or {b, d} is deleted),

decreasing all edge costs on ⇡(b, d) in T (G) by � yields a new cut tree T (G ).

Proof. Since {b, d} is a bridge in G, according to Corollary 8.3 and the observations in the proof

thereof, the path ⇡(b, d) in T (G) consists of only {b, d} and represents the unique minimum b-d-

cut ✓ in G. By Lemma 8.1, {b, d}, and thus ✓, further remains a valid cut with cost �G(b, d)��

in G . All other edges in T (G) are incident to vertices that lie on a common cut side of the cut

induced by {b, d}. Hence, those vertex pairs are no cut pairs of ✓ in G , however, {b, d} is still

a bridge (possibly with cost 0) in G . By the observation in proof of Corollary 8.3, none of the

minimum separating cuts of these vertex pairs in G thus separates b and b, and the old cuts

represented by these edges are still valid with respect to the vertices incident to the edges.

If {b, d} is no bridge, at least other bridges in G can be reused in case of an edge deletion or

the decrease of an edge cost. Observe that a minimum separating cut in G only becomes invalid

in G if there is a cheaper cut in G that separates the same vertex pair. Such a cut must cross

the changing edge {b, d} in G, since otherwise it would have been already cheaper in G. Hence,

an edge in ET corresponding to a bridge in G cannot become invalid, since any cut in G that

crosses {b, d} besides the bridge would be more expensive. In particular, this also holds for edges

of cost 0 in ET .

Corollary 8.6. Let {u, v} denote an edge in T (G) with cT (u, v) = 0 or an edge that corresponds

to a bridge in G. Then {u, v} is still a minimum u-v-cut in G .

The next lemma shows how a cut that remains valid in G may allow the reuse of all edges

in ET that lie on a common cut side. Figure 8.2 shows an example.

Lemma 8.7. Let (U, V \U) be a minimum u-v-cut in G with {b, d} ✓ V \U and let {g, h} 2 ET

be an edge in T (G) with g, h 2 U . Then {g, h} is a minimum separating cut in G for all its

previous cut pairs within U .

Proof. Suppose there exists a minimum g-h-cut in G that is cheaper than the cut represented

by {g, h}. Note that the cut {g, h} costs the same in G and G . Such a cheaper minimum g-h-

cut in G would separate b and d in V \ U . At the same time, the Non-Crossing Lemma (7.2)

would allow to bend such a cut along V \ U such that it induces a minimum g-h-cut that does

not separate b and d. The latter would have been already cheaper in G.
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Figure 8.2: Situation of Lemma 8.7 in
an intermediate tree forG . Cut (U, V \
V ) (dashed red line) remains valid,
edges of the subtree in U can be reused.

⇡(b, d)
v

u

v u

before after

x x

Figure 8.3: New cheaper cut for {u, v}
(solid black line) can be reshaped by
Theorem 8.9 (dashed red line), such
that the subtrees rooted at x and x0

are not split. Reshaping is realized by
reconnecting edges, {u, v} becomes fat

edge on ⇡(b, d).

Finally we see that a cut that is cheap enough cannot become invalid in G . Note that the

bound considered in this context depends on the current intermediate tree.

Lemma 8.8. Let T⇤ = (V,E⇤, c⇤) denote a valid intermediate tree for G , where all edges

on ⇡(b, d) are fat and let {u, v} be a thin edge with v on ⇡(b, d) such that {u, v} represents an

old minimum u-v-cut in G. Let N⇡ denote the set of neighbors of v on ⇡(b, d). If �G(u, v) 
minx2N

⇡

{c⇤(x, v)}, then {u, v} is a minimum u-v-cut in G .

Proof. The edges on ⇡(b, d) incident to v are fat, and thus, already represent minimum separating

cuts in G . Any new u-v-cut in G that is cheaper than the cut represented by {u, v}, must

separate b and d, that is, must separate two adjacent vertices on ⇡(b, d). However, the fat edges

incident to v on ⇡(b, d) shelter the remaining path edges from being separated by a new cut (due

to the Non-Crossing Lemma (7.2)). Thus, there would exist a new cheaper cut that separates v

from exactly one of its neighbors on the path, denoted by x. That is, the new cut must be at

least as expensive as the cost of a minimum x-v-cut in G , which is not possible if �G(u, v) in G

is already lower or equal.

8.2 The Dynamic Gomory-Hu Tree Algorithm

We introduce two update procedures for the di↵erent edge changes, one for edge insertions and

increasing costs, and one for edge deletions and decreasing costs. These procedures rely on the

static iterative approach Cut Tree, but involve the results from Section 8.1 in order to save

cut computations. The update procedures for vertex insertion and vertex deletion have been

already discussed at the beginning of this chapter. We again represent intermediate trees by fat

and thin edges, which simplifies the reshaping of cuts.

The procedure for an increasing edge cost or the insertion of an edge first checks if {b, d} is

a (maybe newly inserted) bridge in G. In this case, it adapts cT (b, d) according to Corollary 8.2

if {b, d} already exists in G, and rebuilds T (G) according to Lemma 8.4 otherwise. Both requires

no cut computation. If {b, d} is no bridge, the procedure constructs the intermediate tree shown

in Figure 8.1(a), reusing all edges that are not on ⇡(b, d). Furthermore, it chooses one edge

on ⇡(b, d) that represents a minimum b-d-cut in G� and draws this edge fat (see Corollary 8.2).

The resulting tree is then further processed by the procedure Cut Tree, which costs |⇡(b, d)|�1
cut computations and is correct according to Lemma 7.4.

The procedure for decreasing an edge cost or deleting an edge is given by Algorithm 4.

We assume G and G to be available as global variables. Whenever the intermediate tree T⇤
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Algorithm 4: Decrease or Delete

Input: T (G), b, d, c(b, d), c (b, d), � := c(b, d)� c (b, d)
Output: T (G )

1 T⇤  T (G)
2 if {b, d} is a bridge then apply Lemma 8.5; return T (G ) T⇤
3 Construct intermediate tree according to Figure 8.1(b)
4 Q thin edges non-increasingly ordered by their costs
5 while Q 6= ; do
6 {u, v} most expensive thin edge with v on ⇡(b, d)
7 N⇡  neighbors of v on ⇡(b, d); L minx2N

⇡

{c⇤(x, v)}
8 if L � �G(u, v) or {u, v} 2 E with �G(u, v) = c(u, v) then // Lem. 8.8 and Cor. 8.6

9 draw {u, v} as a fat edge
10 consider the subtree U rooted at u with v /2 U , // Lem. 8.7 and Fig. 8.2

11 draw all edges in U fat, remove fat edges from Q
12 continue loop

13 (U, V \ U) minimum u-v-cut in G with u 2 U
14 draw {u, v} as a fat edge, remove {u, v} from Q
15 if �G(u, v) = c (U, V \ U) then goto line 10 // old cut still valid

16 c⇤(u, v) c (U, V \ U) // otherwise

17 N  neighbors of v
18 forall the x 2 N do // bend split cut by Theo. 8.9 and Lem. 7.2

19 if x 2 U then reconnect x to u

20 return T (G ) T⇤

changes during the run of Algorithm 4, the path ⇡(b, d) is implicitly updated without further

notice. Thin edges are weighted by the old connectivity, fat edges by the new connectivity of

their incident vertices. Whenever an edge is reconnected (by reconnecting one of its incident

vertices), the newly occurring edge inherits the cost and the thickness from the disappearing

edge. Algorithm 4 starts by checking if {b, d} is a bridge (line 2) and reuses the whole Gomory-

Hu tree T (G) with adapted cost cT (b, d) (see Lemma 8.5) in this case. Otherwise (line 3), it

constructs the intermediate tree shown in Figure 8.1(b), reusing all edges on ⇡(b, d) with adapted

costs. Then it proceeds with iterative steps similar to Cut Tree. However, the di↵erence is,

that the step pairs are not chosen arbitrarily, but according to the edges in T (G), starting with

those edges that are incident to a vertex v on ⇡(b, d) (line 6). In this way, each edge {u, v} which

is found to remain valid in line 8 or line 15 allows to retain a maximal subtree (see Lemma 8.7),

since {u, v} is as close as possible to ⇡(b, d). The problem however is that cuts that are no longer

valid, must be replaced by new cuts, which not necessarily respect the tree structure of T (G).

This is, a new cut possibly separates adjacent vertices in T (G), which hence cannot be used as

a step pair in a later step. Thus, we potentially miss valid cuts and the chance to retain further

subtrees.

We solve this problem by reshaping the new cuts in the spirit of Gusfield, similar to the

Non-Crossing Lemma (7.2). Lemma 8.9 shows how arbitrary cuts in G can be bent along old

minimum separating cuts in G without becoming more expensive (see Figure 8.4).

Lemma 8.9. Let (X,V \ X) denote a minimum x-y-cut in G with x 2 X, y 2 V \ X and

{b, d} ✓ V \X. Let (U, V \ U) denote a further cut. If (i) (U, V \ U) separates x, y with x 2 U ,

then c (U [ X,V \ (U [ X))  c (U, V \ U). If (ii) (U, V \ U) does not separate x, y with

x 2 V \ U , then c (U \X,V \ (U \X))  c (U, V \ U).
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d y

x

V \X

V \U

(a) Deflected by x, Lemma 8.9(i) bends (U, V \U) down-
wards along X.

X

U

b

d y x

V \X

V \U

(b) Deflected by x, Lemma 8.9(ii) bends (U, V \ U) up-
wards along X.

Figure 8.4: Situation of Lemma 8.9. Reshaping cuts in G (solid black lines) along previous
cuts in G (dotted black lines) resulting in new cuts in G (dashed red lines). Since we will
apply Lemma 8.9 to cuts (U, V \ U) that separate b and d, without loss of generality b is

depicted in (V \X) \ U , and d is depicted in (V \X) \ U in this figure.

Proof. We prove Lemma 8.9(i) by contradiction, using the fact that (X,V \ X) is a minimum

x-y-cut in G. We show that (U \X,V \ (U \X)) would have been cheaper than the minimum

x-v-cut (X,V \X) in G if c (U, V \U) was cheaper than c (U[X,V \(U[X)) in G . We express

the costs of (U\X,V \(U\X)) and (X,V \X) with the help of (U, V \U) and (U[X,V \(U[X))

considered in Lemma 8.9(i). Note that (U \X,V \ (U \X)) and (X,V \X) do not separate b

and d. Thus, their costs are una↵ected by the deletion and it makes no di↵erence whether we

consider the costs in G or G . We get

(i) c(U \X,V \ (U \X)) = c (U, V \ U)

- c (U \X,V \ U) + c (U \X,U \X)

(ii) c(X,V \X) = c (U [X,V \ (U [X))

- c (U \X,V \ (U [X)) + c (U \X,X)

Since V \ (U [X) ✓ V \ U , it is c (U \X,V \ (U [X))  c (U \X,V \ U). From U \X ✓ X

further follows that c (U \ X,U \ X)  c (U \ X,X); together with the assumption that

c (U, V \ U) < c (U [X,V \ (U [X)), by subtracting (ii) from (i), we get:

c(U \X,V \ (U \X)) � c(X,V \X)

= [c (U, V \ U)� c (U [X,V \ (U [X))]

� [c (U \X,V \ U)� c (U \X,V \ (U [X))]

+ [c (U \X,U \X)� c (U \X,X)] < 0

This contradicts the fact that (X,V \X) is a minimum x-y-cut in G.

We prove Lemma 8.9(ii) with the help of the same technique. We show that (X \U, V \ (X \U))

would have been cheaper than the minimum x-y-cut (X,V \X) in G if c (U, V \U) was cheaper

than c (U \X,V \ (U \X)) in G . We express the costs of (X \U, V \ (X \U)) and (X,V \X)

with the help of (U, V \ U) and (U \ X,V \ (U \ X)) considered in Lemma 8.9(ii). Note that

(X \U, V \ (X \U)) and (X,V \X) do not separate b and d. Thus, their costs are una↵ected by

the deletion and it makes no di↵erence whether we consider the costs in G or G . We get

(i) c(X \ U, V \ (X \ U)) = c (U, V \ U)

- c (U, V \ (X [ U)) + c (X \ U, V \ (X [ U))

(ii) c(X,V \X) = c (U \X,V \ (U \X))

- c (U \X,V \ (X [ U)) + c (X,V \ (X [ U))
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Since U \X ✓ U , it is c (U \X,V \ (X [ U))  c (U, V \ (X [ U)). From X \ U ✓ X further

follows that c (X \ U, V \ (X [ U))  c (X,V \ (X [ U)); together with the assumption that

c (U, V \ U) < c (U \X,V \ (U \X)), by subtracting (ii) from (i), we get:

c(X \ U, V \ (X \ U)) � c(X,V \X)

= [c (U, V \ U)� c (U \X,V \ (U \X))]

� [c (U, V \ (X [ U))� c (U \X,V \ (X [ U))]

+ [c (X \ U, V \ (X [ U))� c (X,V \ (X [ U))] < 0

This contradicts the fact that (X,V \X) is a minimum x-y-cut in G.

Whenever a new cheaper cut is found in line 13, which separates b and d, we apply Lemma 8.9 to

this cut regarding the old cuts that are induced by the other thin edges {x, v} incident to v. As

a result, the new cut gets reshaped without changing its cost such that each subtree rooted at a

vertex x is completely assigned to either side of the reshaped cut (line 19), depending on whether

or not the new cut separates x and v. Figure 8.3 shows an example. Here the subtree at x is on

the side of u, while the subtree at x0 is on the side of v. That is, similar to the situation of the

Non-Crossing Lemma (7.2), the old minimum separating cuts shelter the subtrees rooted at the

neighbors of v. Furthermore, the Non-Crossing Lemma (7.2) allows the reshaping of the new cut

along the cuts induced by the fat edge on ⇡(b, d) that are incident to v. This ensures that the

new cut does not cross parts of T⇤ that are sheltered by the cuts induced by these flanking fat

edges. Since after the reshaping exact one vertex adjacent to v on ⇡(b, d) ends up on the same

cut side as u, u finally becomes a part of ⇡(b, d).

It remains to show that after the reconnection the reconnected edges are still incident to one

of their cut pairs in G (for fat edges) and G (for thin edges), respectively. For fat edges this

holds according to Lemma 7.3. For thin edges the order in line 4 guarantees that an edge {x, v}
that will be reconnected to u in line 19 is at most as expensive as the current edge {u, v}, and
thus, also induces a minimum u-x-cut in G. This allows to apply Lemma 8.7 and Lemma 8.8 as

well as the comparison in line 15 also to reconnected thin edges. In the end all edges in T⇤ are

fat, since each edge is either a part of a reused subtree or was considered in line 6. We finally

note that reconnecting a thin edge in line 19 makes this edge incident to a vertex on ⇡(b, d) and

decrements the height of the related subtree.

8.3 Running Times of the Update Procedures

The running times of our fully-dynamic update procedures are clearly dominated by the com-

putation of the new minimum separating cuts in GU . Thus, in the following, we evaluate the

performance of our procedures by the number k of applied minimum-cut computations. Com-

pared to the static algorithm Cut Tree, which in each time step constructs a Gomory-Hu

tree from scratch, this yields (n � 1) � k saved cut computations. In this light, the procedures

for vertex insertion and vertex deletion save n � 1 cut computations, which is 100% of e↵ort

saving. The saving for increasing edge cost and edge insertions simply depends on the length

of the path ⇡(b, d) in the considered Gomory-Hu tree T (G). Hence, in most cases one would

expect high savings, unless the cut structure of the underlying graph is that much degenerated

that the shape of the Gomory-Hu tree is close to a path. In fact, Gomory-Hu trees rather

tend to a star-like shape, particularly for very regular graph structures. While a star yields
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optimal savings in the case of edge insertion or cost increase, namely (n � 1) � 1 = n � 2

saved computations, it constitutes the worst-case with respect to an edge deletion or cost de-

crease. Figure 8.5 shows an example based on a regular (unweighted) grid. In this example

each vertex has degree 4, and we assume that the (global) edge connectivity is also 4 (imagine

b

d

c

c

b

d

4

4
4
4

(3)

(3)

Figure 8.5: Grid graph G with

star-shaped tree T (G).

for example a grid of at least 4 rows and 4 columns on

a torus). Then, the edge connectivity �G(u, v) is also 4

for each vertex pair {u, v} ✓ V , and ({u}, V \ {u}) is a

minimum u-v-cut. Hence, any star with an arbitrary ver-

tex c as center and edges of cost 4 is a Gomory-Hu tree

of G. Now assume the edge {b, d} depicted in Fig. 8.5 is

deleted. For each vertex pair that contains at least b or d,

this decreases the connectivity to 3, however, the deletion

has no e↵ect on the connectivity of the remaining vertex pairs. Thus, decreasing the costs at

the edges {c, b} and {c, d} in T (G) would su�ce to update the Gomory-Hu tree. Instead, Algo-

rithm 4 checks each edge, apart from the two edges on ⇡(b, d), by computing a new minimum

separating cut in G in line 13. Consequently, it needs n � 3 cut computations, which is the

worst possible running time (recall that, according to Lemma 8.5, maintaining the whole tree

is possible if ⇡(b, d) = {b, b}, that is, if {b, d} is a bridge). In Chapter 9 we will see that, with

respect to the recomputation conjecture, this worst-case running time is still asymptotically

optimal in the sense that even with the help of an extended Gomory-Hu tree, which provides

comprehensive information about all minimum separating cuts in G, we cannot achieve a better

asymptotic worst-case running time for solving the all-pairs minimum cut problem. Nevertheless,

a first experimental proof of concept involving all types of changes promises high practicability,

particularly on graphs with less regular structures. In the next section, we further present some

experiments on non-consecutive edge changes, which we conducted in order to investigate the

impact of the di↵erent factors that potentially help saving cut computations in the case of edge

deletion and cost decrease.

8.3.1 Experimental Proof of Concept

In the following brief experiment we use an evolving network of email communications within

the Department of Informatics at KIT, obtained from data described in Section 1.4. In this

instance, vertices represent members, and edges correspond to email contacts, weighted by the

number of emails sent between two individuals during the last 72 hours. We process a queue of

924 900 atomic changes, which indicate the time steps in Fig. 8.6, and 923 031 of which concern

edges. We start with an empty graph, constructing the network from scratch. Figure 8.6 shows

the ratio of cuts computed by the update procedures and cuts needed by the static approach

accumulated over all time steps so far. The ratio is shown in total, that is, for all procedures

together (red line), as well as broken down to edge insertions (151 169 occurrences), increasing

costs (310 473 occurrences), edge deletions (151 061 occurrences) and decreasing costs (310 328

occurrences). The trend of the curves follows the evolution of the graph, which slightly densifies

around time step 100 000 due to a spam-attack; however, the update approach needs less than 4%

of the static computations even during this period. These results are not least due to the less

regular graph structures of the snapshots of this real world instance (see also Section 1.4). We

further remark that for decreasing costs and edge deletions, Lemma 8.9 together with the Non-

Crossing Lemma (7.2) allows to contract all subtrees incident to the current vertex v on ⇡(b, d)
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Figure 8.6: Cumulative ratio of dynamic and static minimum-cut computations over 924 900
time steps in the email-communication network of the Department of Informatics at KIT.

in line 6 of Algorithm 4, which shrinks the underlying graph to deg⇤(v) vertices, with deg⇤(v)

the unweighted degree of v in the intermediate tree T⇤. Such contractions could further speed

up the single cut computations. Similar shrinkings can obviously be done for increasing costs

and edge insertions, as well.

8.3.2 Experiments on Non-Consecutive Edge Changes

The performance of our update algorithm depends on two main factors, the changing edge and

the shape of the current Gomory-Hu tree, where the latter highly depends on the structure of

the underlying graph. Together these factors determine the length of the path ⇡(b, d) in the

tree and the size of the subtrees that are potentially reusable according to Lemma 8.7. In a

dynamic scenario, however, where we consider consecutive changes over the time, we face a

slightly di↵erent graph structure before each change, which makes it di�cult to see how the

di↵erent factors a↵ect the algorithm’s performance.

In this experimental setup, we thus apply each possible change in a given graph independently,

that is, with respect to the same initial graph structure, and aggregate the results as described in

the following subsections. We give a detailed analysis in order to better understand the behavior

of the di↵erent tools—Lemma 8.5, Corollary 8.6, Lemma 8.7 and Lemma 8.8—that allow to save

cut computations in the case of edge deletion and decreasing cost.

The initial Gomory-Hu tree is constructed by applying the following version of Gusfield’s

algorithm (Algorithm 5) where the choice of the step pairs is determined by the non-increasing

order of the vertices according to their weighted degrees. In line 6, Algorithm 5 uses the unique

minimum u-v-cut that yields a smallest cut side for the source u, that is, the U-cut uc(u, v) in G.

We use real world instances as well as generated instances. Most instances are taken from the

testbed of the 10th DIMACS Implementation Challenge, which provides benchmark instances

for partitioning and clustering. Additionally, we consider a snapshot of the linked wiki pages at

www.dokuwiki.org, which we gathered ourselves. For more details see Section 1.4.

8.3.2.1 Experimental Setup

In the following setup each edge in the given graph is deleted once. After each deletion the

initial Gomory-Hu tree is updated by the procedure Decrease or Delete (Algorithm 4),

counting the applied cut computations. Before deleting the next edge, we return to the initial

graph and the initial Gomory-Hu tree. The results for the single edge deletions are aggregated

and normalized yielding one value per instance G, as described below. We restrict ourselves to

deletions, since deleting an edge that is, decreasing the edge cost as much as possible, intuitively
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Algorithm 5: Cut Tree (Gusfield)

Input: Graph G = (V,E, c)
Output: Cut tree T (G)

1 Q vertices non-increasingly ordered by their weighted degrees
2 root first vertex in Q
3 T⇤  all u 2 V \ {root} linked to root by thin edges // root is predecessor of u
4 forall the u 2 Q \ {root} do
5 {u, v} unique thin edge incident to u in T⇤ // u is a leaf in T⇤
6 (U, V \ U) uc(u, v) in G
7 c⇤(u, v) c(U, V \ U)
8 draw {u, v} as fat edge
9 N  neighbors of v in T⇤

10 forall the x 2 N do
11 if x 2 U then reconnect x to u

12 return T (G) T⇤

a↵ects the minimum separating cuts the most, and thus, can be seen as a worst case scenario,

which yields a lower bound on the performance of our algorithm.

The following tables provide the experimental results per instance. The key words local and

global distinguish two di↵erent versions of the update algorithm. The local version uses the

local bound L (as given in line 7 of Algorithm 4 and Lemma 8.8) to decide whether a cut can

be reused, while the global version considers the new connectivity �G (b, d) instead, which is

a global bound that does not depend on a special vertex on ⇡(b, d). Note that Lemma 8.8

also holds for �G (b, d). Since L � �G (b, d), the local bound allows to save at least as many

cut computations as the global one. Our experiment shows how much better the performance

actually is due to the local bound.

8.3.2.2 Overview on Savings (Table 8.1)

The values in Table 8.1 are decreasingly ordered by column 7. We consider actual savings and

potential savings for single edge deletions and for the whole instance G. The actual saving for one

edge deletion in G is the di↵erence between the n� 1 cut computations, which are necessary in

order to construct a Gomory-Hu tree for G from scratch, and the number of cut computations

actually applied by the update algorithm after the edge deletion. However, the update algorithm

may also recompute cuts that turn out to remain valid (see line 15, Algorithm 4). Such cut

computations are needless, since they yield no additional information compared to the previous

Gomory-Hu tree. A cut computation that is not needless is necessary. The potential saving for

one edge in G is the saving that would be possible if we could decide for each cut whether it

remains valid or not, applying a cut computation only if the cut does not remain valid. Note

that the potential saving is the same for the local and the global version of the update algorithm,

since the total number of necessary cut computations does not dependent on whether the local

or the global bound is used. The total saving for an instance G (column 4 and 5) is the sum of

the actual savings for all edge deletions. The potential saving for G (column 6) is the sum of the

potential savings for all edge deletions. The values in column 4 to 6 are further normalized by

100/(m(n�1)), yielding percentage savings with respect to the total number of cut computations

needed for m Gomory-Hu tree constructions from scratch.
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Table 8.1: Saved cut computations compared to computations from scratch.

graph n m
total

potential
worst edge potential

local global local global worst edge

netscience 1589 2742 99.65 99.62 99.98 96.91 95.15 99.75
power 4941 6594 98.33 98.33 99.98 88.62 88.62 99.80
lesmis 77 254 91.64 90.12 99.77 67.11 60.53 97.37
dokuwiki org 4416 12914 86.52 83.75 100.00 51.98 46.66 99.93
karate 34 78 80.50 71.33 98.80 48.48 6.06 93.94
dolphins 62 159 75.36 73.43 99.66 44.26 18.03 95.08
as-22july06 22963 48436 93.94 76.27 100.00 42.60 41.33 99.98
polblogs 1490 16715 76.85 76.21 100.00 27.60 27.54 99.87
email 1133 5451 66.49 64.28 100.00 14.22 14.13 99.82
adjnoun 112 425 59.33 57.23 99.96 10.81 9.91 99.10
polbooks 105 441 73.38 72.42 99.93 9.62 4.81 99.04
celegansneural 297 2148 50.76 49.03 99.99 8.78 8.45 99.32
data 2851 15093 50.26 50.26 100.00 7.54 7.54 99.96
celegans metabolic 453 2025 60.54 58.58 99.99 6.64 6.19 99.78
jazz 198 2742 54.56 54.52 100.00 5.08 4.57 99.49
football 115 613 22.87 22.87 99.98 1.75 1.75 99.12
delaunay n10 1024 3056 27.55 27.55 100.00 0.20 0.20 99.90
delaunay n11 2048 6127 28.18 28.18 100.00 0.10 0.10 100.00
delaunay n12 4096 12264 27.79 27.79 100.00 0.05 0.05 100.00

The worst edge of an instance G is the edge whose deletion causes the most cut computations

during the update procedure. The actual saving for this deletion, normalized by 100/(n � 1)

(column 7 and 8), is a lower bound on the algorithm’s performance on G. The potential worst

edge is the edge whose deletion requires the most necessary computations. Column 9 shows the

potential saving for this edge deletion, also normalized by 100/(n� 1).

Discussion. At a first glance we observe that the potential saving for all instances is very

high. That is, the cut structure of the graphs is very robust with respect to single edge deletions.

Even by deleting the potential worst edges only few cuts become invalid. Note that in column 6

some instances have 100% saving, while deleting the potential worst edge in column 9 may save

less than 100%. This is because the total number of cuts that change due to all edge deletions

is that small that it is not visible in the normalized potential saving in column 6.

The total saving, as well as the lower bound on the algorithm’s performance given by the

worst edge, varies very much. At the top we have netscience, which can be updated by saving at

least 96.91% of the n�1 cut computations needed by the static algorithm. At the bottom we see

delaunay n12, for which the update algorithm still computes 95% of the n� 1 cut computations

that are needed by the static algorithm. In most cases, however, the update algorithm could save

at least half of the static cut computations. Considering Table 8.2 we will see how the actual

saving depends on the structure of the Gomory-Hu tree.

We finally observe that a di↵erence between the local and the global version of the update

algorithm is visible, however, the global version competes well, which will be also confirmed

by the results in Table 8.2. Nevertheless, with respect to a single edge deletion it might be a

considerable advantage using the local version. See, for example, the results for the worst edges

of karate and dolphins.
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Table 8.2: Saved cut computations by causative factors.

graph n m
total

bDel path bridge
cost

subT
local global local global

netscience 1589 2742 99.65 99.62 7.80 0.10 0.04 0.20 0.18 91.50
power 4941 6594 98.33 98.33 24.43 0.03 0.04 3.50 3.50 70.32
as-22july06 22963 48436 93.94 76.27 16.51 0.01 1.38 37.76 20.09 38.29
lesmis 77 254 91.64 90.12 7.09 2.48 3.36 10.09 8.57 68.62
dokuwiki org 4416 12914 86.52 83.75 12.68 0.04 0.19 23.51 20.73 50.11
karate 34 78 80.50 71.33 1.28 5.17 1.67 35.04 25.87 37.33
polblogs 1490 16715 76.85 76.21 0.84 0.13 0.13 48.63 47.99 27.12
dolphins 62 159 75.36 73.43 5.66 3.04 1.07 22.27 20.34 43.31
polbooks 105 441 73.38 72.42 0.00 1.86 0.00 23.71 22.75 47.81
email 1133 5451 66.49 64.28 2.84 0.17 0.13 49.74 47.53 13.61
celegans metabolic 453 2025 60.54 58.58 0.40 0.41 0.01 51.25 49.29 8.47
adjnoun 112 425 59.33 57.23 2.35 1.68 1.15 46.52 44.42 7.62
jazz 198 2742 54.56 54.52 0.18 1.00 0.02 49.16 49.11 4.20
celegansneural 297 2148 50.76 49.03 0.70 0.66 3.38 41.04 39.30 4.99
data 2851 15093 50.26 50.26 0.00 0.07 0.00 27.93 27.93 22.26
delaunay n11 2048 6127 28.18 28.18 0.00 0.10 0.00 28.08 28.08 0.00
delaunay n12 4096 12264 27.79 27.79 0.00 0.05 0.00 27.74 27.74 0.00
delaunay n10 1024 3056 27.55 27.55 0.00 0.20 0.00 27.36 27.36 0.00
football 115 613 22.87 22.87 0.00 1.74 0.00 21.13 21.13 0.00

8.3.2.3 Savings by Causative Factors (Table 8.2)

The values in Table 8.2 are decreasingly ordered by column 4. Column 1 to 5 review the

total saving per instance G from Table 8.1, while the remaining columns itemize the di↵erent

arguments or insights that lead to the saving. Note that column 6 to 11 add up to column 4

and 5, respectively. All values are again normalized by 100/(m(n � 1)). The first argument

concerns edges that are bridges in G. After the deletion of such an edge in G, the Gomory-Hu

tree can be updated without computing any cut (see Lemma 8.5). Column 6 (bDel) shows the

saving for G that is due to deleted bridges.

In any other case, that is, if the deleted edge is no bridge, cut computations are saved due

to further arguments regarding special edges in the intermediate tree T⇤. Column 7 (path) lists

the saving due to tree edges on ⇡(b, d), which can be reused according to Lemma 8.1. Column 8

(bridge) lists the saving due to tree edges in T⇤ that are bridges in G and thus can be reused as

stated by Corollary 8.6. Column 9 and 10 (cost) list the saving due to tree edges in T⇤ that cost

at most L (local bound) or �G (b, d) (global bound) and are reusable according to Lemma 8.8.

Finally, column 11 (subT ) lists the saving due to subtrees that are linked by a reusable tree edge,

and thus, can be reused according to Lemma 8.7.

Discussion. Here the di↵erent Gomory-Hu tree structures become obvious. Since the cut

structures of all instances turned out to be quite robust, we know that most of the existing

subtrees are reused according to Lemma 8.7. Thus, high values in column 11 indicate that the

Gomory-Hu trees have a substantial subtree structure (see netscience). If the value is low, the

Gomory-Hu tree must be close to a star (see delaunay n12). In a star-like tree exist no substantial

subtrees, since the diameter is small and most edges link only few vertices (that is, tiny subtrees)

to the rest of the tree. Gomory-Hu trees close to stars occur for graphs with a very regular edge
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Table 8.3: Edge frequencies by applied/necessary cut computations.

graph
none appl majority appl

none nec majority nec
local global local global

netscience 12.29 12.22 87.71 (0-1/8] 87.78 (0-1/8] 69.62 30.38 (0-1/8]
power 25.08 25.08 74.92 (0-1/8] 74.92 (0-1/8] 52.64 47.36 (0-1/8]
lesmis 7.48 7.48 70.47 (0-1/8] 64.17 (0-1/8] 84.25 15.75 (0-1/8]
as-22july06 16.52 16.52 68.71 (0-1/8] 37.49 (0-1/8] 63.44 36.56 (0-1/8]
dokuwiki org 12.70 12.69 43.19 (0-1/8] 37.59 (0-1/8] 90.92 9.08 (0-1/8]
karate 2.56 2.56 35.90 (0-1/8] 30.77 (1/8-2/8] 61.54 38.46 (0-1/8]
polblogs 0.84 0.84 28.39 (0-1/8] 31.87 (1/8-2/8] 98.76 1.24 (0-1/8]
polbooks 0.68 0.68 28.12 (1/8-2/8] 26.98 (1/8-2/8] 92.52 7.48 (0-1/8]
dolphins 6.29 6.29 27.67 (1/8-2/8] 29.56 (1/8-2/8] 84.28 15.72 (0-1/8]
email 2.86 2.86 22.89 (2/8-3/8] 22.11 (2/8-3/8] 95.60 4.40 (0-1/8]
adjnoun 2.59 2.59 21.41 (2/8-3/8] 21.18 (2/8-3/8] 95.06 4.94 (0-1/8]
data 0.00 0.00 56.79 (3/8-4/8] 56.79 (3/8-4/8] 99.74 0.26 (0-1/8]
jazz 0.26 0.26 19.37 (3/8-4/8] 19.33 (3/8-4/8] 99.85 0.15 (0-1/8]
football 0.00 0.00 50.41 (5/8-6/8] 50.41 (5/8-6/8] 98.04 1.96 (0-1/8]
celegans metabolic 0.59 0.59 22.27 (5/8-6/8] 22.07 (5/8-6/8] 95.70 4.30 (0-1/8]
celegansneural 0.74 0.74 18.81 (5/8-6/8] 18.62 (5/8-6/8] 95.90 4.10 (0-1/8]
delaunay n11 0.00 0.00 37.23 (6/8-7/8] 37.23 (6/8-7/8] 100.00 0.00 (0-1/8]
delaunay n12 0.00 0.00 53.42 (7/8-8/8] 53.42 (7/8-8/8] 100.00 0.00 (0-1/8]
delaunay n10 0.00 0.00 53.21 (7/8-8/8] 53.21 (7/8-8/8] 99.61 0.39 (0-1/8]

structure (see the example in Figure 8.6). In such structures the cheapest way to separate two

vertices is mostly to cut o↵ the vertex of cheaper degree. The Delaunay triangulation exemplarily

shown in Fig. 1.5(b) confirms a regular structure of the graph delaunay n12. We observe that

for instances with a substantial subtree structure, Lemma 8.7 is also the most powerful tool to

speedup the Gomory-Hu tree calculation. For instances with Gomory-Hu trees close to stars,

the comparison to the costs of path edges (Lemma 8.8) saves the most computations, while the

savings due to the path ⇡(b, d) are marginal. The savings due to bridges directly correspond to

the amount of bridges in the instances. In our test instances most bridges are edges incident to

degree-1 vertices.

8.3.2.4 Edge Frequencies by Applied/Necessary Computations (Table 8.3)

The total range of savings for a single edge deletion reaches from no computations applied/neces-

sary (⌘maximum saving) to n�3 computations applied/necessary (⌘minimum saving). We split

this total range into the following intervals. Each interval is defined by a factor �i := i/8, with

i 2 {1, . . . , 8}, that fixes the following bounds for interval i. The lower bound is �i�1(n� 1), the

upper bound is �i(n�1). We assign each edge deletion, that is, each single run of the update algo-

rithm that applies/necessarily needs at least one cut computation, to the interval corresponding

to applied/necessarily needed amount of cut computations. The values are decreasingly ordered

by column 4 and 5.

Column 2 and 3 (none appl) list the percentage of edge deletions for which no cut computation

is applied. Column 4 and 5 (majority appl) show in brackets the interval to which most of the

remaining edge deletions are assigned and list the number of edge deletions in this interval in %
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with respect to m. Column 6 (none nec) and 7 (majority nec) show the analogous results with

respect to necessary cut computations.

Discussion. For most instances the values in column 2 and 3 are equal, although the sav-

ings that depend on the used bound (local or global) di↵er (see column 9 and 10, Table 8.2).

Furthermore, the ranking of the instances with respect to column 2 closely corresponds to the

ranking given by column 6 in Table 8.2. This indicates that most of the edge deletions where no

cut computation is applied are deletions of bridges in G. Nevertheless, a closer look at the data

shows that there are two instances, netscience and dokuwiki org, where also deleting an edge that

is no bridge allows an update without cut computations.

The majorities in column 4 and 5 further show that good total savings in Table 8.2 are clearly

due to many edges, each of which saving a many computations. Other instances have only few

total savings in Table 8.2, since the majority of their edges causes many cut computations. All in

all we see that the total saving of an instance in Table 8.2 is the better the more cut computations

are saved by the majority of edges. The majorities with respect to necessary cut computations

correlate in a similar way to the total potential saving in Table 8.1.



CHAPTER 9

Optimality in Smoothness and Running Time

In the context of dynamic updates, the two main tasks are temporal smoothness and the im-

provement of the running time compared to a computation from scratch. The idea of temporal

smoothness is that the update results for consecutive time steps are as similar as possible. That

is, the updated object or structure evolves smoothly over time. The formal definition of similar-

ity is individual for each particular object or structure. In this work, we consider Gomory-Hu

trees in dynamic scenarios and proposed an update algorithm for this structure in Chapter 8. In

Section 9.1 and Section 9.2 of this chapter, we now prove that Gomory-Hu trees can be updated

with optimal temporal smoothness. To this end we define the similarity of two Gomory-Hu trees

of consecutive snapshots G and GU as follows. Let T (G) and T (GU ) denote the Gomory-Hu trees

of G and GU . We consider both trees as sets of cuts and measure the similarity by the number of

cuts that appear in both sets. Recall the definition of equivalent cuts in G and GU in Section 6.2.

For the sake of simplicity, we refrain from a normalization of this similarity measure. Hence, it

ranges between 0 and n� 1. That is, T (G) and T (GU ) are identical if |T (G) \ T (GU )| = n� 1

and they are completely di↵erent if |T (G) \ T (GU )| = 0. The temporal smoothness of T (G)

and T (GU ) is optimal if |T (G) \ T (GU )| is as large as possible, where large as possible means

there exists no other Gomory-Hu tree T 0(GU ) such that |T (G)\ T 0(GU )| > |T (G)\ T (GU )| for
the fixed tree T (G). We show that in all cases of atomic edge changes in G, the new Gomory-Hu

tree resulting from our update algorithm contains a maximum number of old cuts, that is, cuts

that have been already represented by the Gomory-Hu tree before the change. This in particular

implies the stability of our update approach, saying that a Gomory-Hu tree that can be preserved

indeed is preserved in the next time step. In Section 9.1, we start with the cases of edge deletion

and cost decrease, which we consider as one case, since our algorithm handles them by the same

dynamic update procedure. The same holds for the cases of edge insertion and cost increase,

which we consider in Section 9.2. In contrast to the case of edge deletion or cost decrease, where

optimal smoothness is already guaranteed by the update procedure presented in Chapter 8, in

the case of edge insertion or cost increase, we still need to modify the update procedure presented

in Chapter 8 in order to achieve optimal temporal smoothness. The modified procedure is also

described in Section 9.2. We further remark that the temporal smoothness is trivially optimal

in the cases of vertex insertion and vertex deletion, since only singletons are inserted or deleted.

In Section 9.3, we finally show that our update algorithm is also optimal in terms of asymptotic

worst-case running time. More precisely, we give an example that shows that providing further

information about the cut structure of the current snapshot (beyond the information provided by

a Gomory-Hu tree) does not achieve any better asymptotic worst-case running time for solving

145
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the all-pairs minimum-cut problem in a dynamic scenario. This result is based on the assumption

that finding a minimum s-t-cut in GU that is neither an old minimum separating cut in G (with

respect to any cut pair) nor associated with a known maximum s-t-flow in G, needs at least one

cut computation from scratch in GU . According to the discussion on updating flows and DAGs

in Section 6.2.3, this recomputation conjecture is a reasonable assumption.

Before we start with Section 9.1, we stress the following fact that is implicitly used in the

following proofs. According to the Non-Crossing Lemma (7.2), cuts that are represented by

fat edges in any intermediate tree always shelter a whole cut side. That is, reconnecting such

an edge does not change the represented cut. This further guarantees that each old cut that

once became a fat edge in an intermediate tree for GU definitely contributes to the temporal

smoothness.

9.1 Optimal Temporal Smoothness

in Case of Edge Deletion or Cost Decrease

In this section we prove that the update procedure Decrease or Delete (Algorithm 4) pre-

sented in Chapter 8 satisfies the following smoothness condition and argue that this condition is

su�cient to guarantee optimal temporal smoothness.

Condition 9.1 (smoothness). Let ✓ denote a cut in T (G) and let Q denote the set of cut pairs

of ✓ in G . An update procedure for T (G) (for the case of edge deletion or cost decrease) satisfies

the smoothness condition if the following holds. If Q 6= ; (that is, ✓ is also a minimum separating

cut in G ), the updated Gomory-Hu tree T (G ) contains again a set O of old cuts that together

separate all cut pairs in Q. This set O either consists of only the cut ✓ or does not contain ✓.

In the latter case, the set O further has the following properties:

(i) Let eQ denote the set of all cut pairs of the cuts in O in G . Each cut in O shares each of

its cut pairs in eQ with at least one other cut in O [ {✓}.
(ii) Let ✓0 be another cut in T (G) with Q0 6= ; and O0 6= {✓0}. Then it is O0 \O = ;.

Theorem 9.2. Any update procedure (for the case of edge deletion or cost decrease) that satisfies

the smoothness condition guarantees optimal temporal smoothness.

Proof. Let T (G ) denote a Gomory-Hu tree that results from an update procedure that satisfies

the smoothness condition, let T 0(G ) denote another Gomory-Hu tree for G such that T (G)\
T 0(G ) 6= T (G) \ T (G ). That is, T 0(G ) contains at least one old cut ✓ (from T (G)) that is

not in T (G ). We show that, nevertheless, T (G ) contains at least as many old cuts as T 0(G ),

and thus, contains a maximum set of old cuts proving that the update procedure guarantees

optimal temporal smoothness.

Let Q 6= ; denote the set of cut pairs of ✓ in G . Since ✓ is not in T (G ), the set O of old

cuts in T (G ) that separate the cut pairs in Q does not consist of ✓, that is, O 6= {✓}. Instead, O
has properties (i) and (ii). From (i) follows, due to the characterization of partial Gomory-Hu

sets (see Lemma 7.4), that O [ {✓} is no partial Gomory-Hu set of T 0(G ), and hence, at least

one old cut in O is contained in T (G ) but not in T 0(G ). More generally, for each old cut ✓i

in T 0(G ) that is not in T (G ) there is at least one other old cut �i 2 Oi 63 ✓i in T (G )

that is not in T 0(G ). Since all these sets satisfy Oi 6= {✓i}, it follows from property (ii) that

Oi \ Oj = ; for i 6= j. Thus, all the cuts �i are distinct and T (G ) contains at least as many

old cuts as T 0(G ).
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The rest of this section now focuses on the proof of the following key theorem.

Theorem 9.3. The update procedure Decrease or Delete (Algorithm 4) presented in Chap-

ter 8 satisfies the smoothness condition.

Proof of Theorem 9.3

Let {u, v} denote the edge in T (G) that represents ✓ = (U, V \U) with u 2 U and assume Q 6= ;.
We distinguish whether or not {u, v} is an edge on the path ⇡(b, d) in T (G) between the vertices b

and d of the changing edge in G.

Claim: If {u, v} is an edge on ⇡(b, d), it is O = {✓}. If {u, v} is an edge on ⇡(b, d), the

cut (U, V \U) is also a minimum u-v-cut in G , but with reduced cost. This is Q 6= ;. We argue

that the construction of T (G ) preserves an edge (not necessarily incident to u and v in T (G ))

on ⇡(b, d) that still represents (U, V \U). This follows directly from the following key observation:

during the construction of T (G ), tree edges in U are only reconnected within U and tree edges

in V \ U are only reconnected within V \ U . This can be easily seen, since edges are always

reconnected to a neighbor of their center that is not on ⇡(b, d) before the reconnection (recall the

reconnection operation illustrated in Fig. 8.3. Note that u and v denote other vertices there).

Furthermore, we observe that, besides the edge representing ✓, each edge on ⇡(u, v) in T (G )

represents a new cut, since, besides ✓, no old cut in T (G) separates u and v. Thus, no other old

cut in T (G ) separates u and v, and it is O = {✓}. Hence, Theorem 9.3 holds.

If the edge {u, v} is not on ⇡(b, d) in T (G), we distinguish whether or not Algorithm 4

considers this edge in line 6 (at this point the edge is possibly incident to new vertices), and if it

is considered, whether or not Algorithm 4 finds the cut ✓ = (U, V \U) to be a minimum separating

cut in G with respect to the vertices currently incident to the edge representing (U, V \ U).

More precisely, if the edge {u, v} is not on ⇡(b, d) in T (G) the situation in Algorithm 4 is as

follows. After the construction of the intermediate tree according to Fig. 8.1(b) (line 3), the

edge {u, v} is a thin edge. During the construction of T (G ), it is then possibly reconnected

several times still remaining a thin edge (but incident to new vertices) and still representing the

cut (U, V \ U).

Claim: If the edge representing ✓ = (U, V \ U) is not considered in line 6, it is O = {✓}. If

the edge is not considered in line 6, it must have become a fat edge due to the reuse of a subtree

according to Lemma 8.7, that is, Q 6= ;. Then however it was never incident to a vertex on the

path ⇡(b, d) in the intermediate tree, and thus, it was never reconnected. Hence, {u, v} is a final

edge in T (G ) and no other old cut in T (G ) separates u and v, which still form a cut pair

of (U, V \ U). That is, O = {✓} and Theorem 9.3 holds.

Otherwise, at some time, the procedure finally considers the edge that represents (U, V \U) in

line 6 checking if it represents a minimum w-z-cut in G with respect to their currently incident

vertices w and z. Observe that at this point the fat edges on ⇡(u, v) in the intermediate tree

result from only new cuts. Without loss of generality, we assume z is the center and w 2 U .

Now we distinguish the two cases described above.

Claim: If Algorithm 4 finds the cut (U, V \U) to be a minimum w-z-cut in G , it is O = {✓}.
In this case, it is Q 6= ; and the edge becomes a thick edge, still representing (U, V \ U). Since

any further reconnection of this thick edge does not change the represented cut, and thick edges

become edges in T (G ) in the end, it is ✓ 2 T (G ). Moreover, each further edge on ⇡(u, v) in

T (G ) represents a new cut, and thus, no other old cut in T (G ) separates u and v. Hence, it

is O = {✓} and Theorem 9.3 holds.
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⇡(b, d)
z

w

W

U
x

Figure 9.1: Partition of V induced

by cut (W,V \W ) and cut (U, V \U).

Bold-framed vertices represent set A,

(gray) filled vertices represent set B,

and empty vertices represent set U .

Claim: If Algorithm 4 finds that the cut (U, V \U)

is no minimum w-z-cut in G , it is ✓ /2 O. Since

we assume that Q 6= ;, in this case, (U, V \ U) is no

minimum separating cut with respect to w and z,

but with respect to another cut pair {x, y} 2 Q.

However, as it is not found to be reusable by the

algorithm, it is ✓ /2 O.

In the following, we explicitly define the set O of

old cuts in T (G ) that separate the cut pairs in Q

and show that O satisfies the properties (i) and (ii)

given in Theorem 9.3. This will finish the proof of

Theorem 9.3.

Since (U, V \ U) is a minimum x-y-cut in G , with x 2 U , but no minimum separating cut

with respect to {w, z}, there is a cheaper minimum w-z-cut (W,V \ W ) in G with a special

shape according to Lemma 8.9 and the Non-Crossing Lemma (7.2) (see Fig. 9.1). In particular

we may assume U ⇢ W . This minimum w-z-cut together with the cut (U, V \ U) induces a

partition V = A [ B [ U of V with A := W \ U and B := V \W . In a first step, we show that

the second vertex y of the cut pair {x, y} of (U, V \ U) must be in A \ ⇡(b, d) (while x 2 U).

There will follow three further steps.

Step 1: y 2 A \ ⇡(b, d). Obviously, y /2 U , since otherwise, (U, V \ U) would not separate x

and y. If y 2 B, the cut (W,V \W ) separates x and y, which contradicts the assumption that

(U, V \ U) is a minimum x-y-cut in G , since c (W,V \W ) < c (U, V \ U). If y 2 A \ ⇡(b, d),
let {r, z} denote the edge on ⇡(b, d) that is crossed by (W,V \W ). The cut induced by this edge

separates U from all vertices in A\ ⇡(b, d) and in particular x from y. Since this edge is a thick

edge crossed by (W,V \W ), the corresponding cut in G is at most as expensive as (W,V \W ),

which is cheaper than (U, V \ U). This again contradicts the assumption that (U, V \ U) is a

minimum x-y-cut in G . Hence, it must be y 2 A \ ⇡(b, d).
Step 2: Preliminaries for the definition of O in T (G ). Now consider y 2 A \ ⇡(b, d), and

let {r, z} denote the edge incident to the center z such that the subtree rooted at r contains y.

Observe that {r, z} is crossed by (W,V \W ), since otherwise y would have been in B. Moreover,

we observe that the cut induced by {r, z} separates x and y. If {r, z} was a thick edge, the

corresponding cut in G would be at most as expensive as (W,V \W ) (otherwise it would not

have been crossed by (W,V \W )), which is cheaper than (U, V \U), again yielding a contradiction.

Hence, {r, z} must be a thin edge. Due to the sorting in line 4 it costs at most c(U, V \ U) =

c (U, V \U), as otherwise it would have been considered before the edge {w, z}, and thus, would

have been a thick edge. If {r, z} was cheaper than c (U, V \ U), it follows that in G the cut

represented by {r, z} (which separates x and y) is cheaper than (U, V \ U), contradicting the

assumption that (U, V \ U) is a minimum x-y-cut in G . Hence, the thin edge {r, z} costs

exactly c (U, V \ U) = c(U, V \ V ).

Moreover, it is �G (r, w) = c (U, V \ U). This can be seen as follows. Obviously, (U, V \ U)

separates r and w and thus it is �G (r, w) � c (U, V \U). On the other hand, a minimum r-w-

cut in G either separates r form z or w from z, and thus, can be always reshaped according to

Lemma 8.9, such that it does not split the subtrees rooted at r and w. Then, however, it needs

to separate x and y. Consequently, �G (r, w) < c (U, V \ U) is not possible.

In Section 8.2, we have seen that after reconnecting {r, z} according to cut (W,V \W ) (see
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Fig. 9.1 and recall the reconnection operation illustrated in Fig. 8.3), the (reconnected) thin

edge {r, w} represents a minimum separating cut in G, denoted by (R, V \ R), with respect

to {r, w} and {x, y}. Since c(R, V \R) = c (R, V \R) = c (U, V \ U) = c(U, V \ U), and since

we know that �G (r, w) = c (U, V \ U), it finally holds that the cut (R, V \ R) represents a

minimum separating cut in G with respect to it incident vertices.

Step 3: Definition of O in T (G ) and proof of (ii). At this point, we define O as the set

consisting of all such cuts (R, V \ R) associated with a cut pair {x, y} 2 Q of ✓ = (U, V \ U)

at the time the edge representing (U, V \ U) is considered by Algorithm 4. These cuts together

separate all cut pairs in Q and are all represented in T (G ), since all edges that now (after the

reconnection according to (W,V \W )) are incident to w (apart from {w, z}) represent minimum

separating cuts in G with respect to their incident vertices. Note that for the edges that do

not represent a cut in O this holds by Lemma 8.7, since (U, V \U) is still a minimum separating

cut in G . Hence, all edges incident to w are no more reconnected before they become thick

edges in T (G ). From this observation it follows directly that di↵erent sets O and O0 regarding
di↵erent cuts ✓ and ✓0 (considered at di↵erent times) are disjoint, since thick edge are never

chosen by a set O0. Hence, O satisfies (ii).

Step 4: Proof of (i). It remains to show (i), that is, each cut in O shares each of its cut pairs

in eQ with at least one cut in O [ {✓}. To this end, consider cut (R, V \R) (associated with the

cut pair {x, y} of (U, V \U) in G , u 2 U and y 2 R) in O and let {h, `}, with h 2 R, denote an

arbitrary cut pair of (R, V \R) in G . If ` 2 U , (R, V \R) shares its cut pair with ✓ = (U, V \U).

If ` /2 U , by the same arguments as before, `must be in A\(⇡(b, d)[R) (see Fig. 9.1). In this case,

let {s, z} denote the edge incident to the center z such that the subtree rooted at s contains `.

Observe that {s, z} is crossed by (W,V \W ), since otherwise ` would have been in B. Moreover,

we observe that the cut (S, V \S) induced by {s, z} separates h and `. In the following we show

that (S, V \ S) is in O and is a minimum h-`-cut. This basically follows from the symmetry

incorporated in (U, V \ V ) and (R, V \ R), since (W,V \W ) is also a minimum r-z-cut in G .

This is because if �G (r, z) was smaller than c (W,V \ W )  �G(r, z), the corresponding r-

z-cut would not separate z and w, but x and y due to reshaping, which is a contradiction to

the assumption that (U, V \ U) is a minimum x-y-cut in G (since c (U, V \ U) = �G(r, z),

as we know from above). Hence, (R, V \ R) gets the role of (U, V \ U) and (S, V \ S) gets the

role of (R, V \ R). Then by the same arguments as before it follows that (S, V \ S) also costs

c (U, V \ U) and is a minimum h-`-cut.

In order to see that (S, V \S) is also in O we observe the following. The cut (S, V \S) is also
a minimum `-x-cut, since any cheaper `-x-cut would neither separate x and y nor h and `. But h

and y are both in R, and thus, due to the Non-Crossing Lemma (7.2), there exists a minimum

`-x-cut that either separates x and y or h and `. By implication, this means that {`, x} is also

a cut pair of ✓ = (U, V \ U) in G , since c (S, V \ S) = c (U, V \ U). Hence, {`, x} 2 Q

and (S, V \ S) 2 O. This is, the cut (R, V \R) shares its cut pair {h, `} with another cut in O,

which finally proves (i).

9.2 Optimal Temporal Smoothness

in Case of Edge Insertion or Cost Increase

Since the very simple and obvious update procedure for the case of edge insertion or cost increase

presented in Section 8.2 provides a large number of degrees of freedom in choosing step pairs
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and split cuts, this procedure is not about to guarantee any smoothness property. Hence, we

first modify this update procedure such that it chooses designated split cuts with respect to

designated step pairs, which finally allows to prove optimality in terms of temporal smoothness.

In order to point out where exactly the modification steps in, we briefly review the main steps

of the update procedure as described in Section 8.2.

The procedure starts with checking whether {b, d} is a (maybe newly inserted) bridge in G.

If the answer is yes, it adapts cT (b, d) according to Corollary 8.2 if {b, d} already exists in G,

and rebuilds T (G), without computing further cuts, according to Lemma 8.4, otherwise. In

the first case, T (G�) obviously contains exactly the same cuts as T (G), and thus, guarantees

optimal temporal smoothness. In the second case, the cuts represented by T (G�) equal those

represented by T (G) in the sense that they induce the same cuts in the connected components

of G, which also guarantees optimal temporal smoothness. If {b, d} is no bridge, the update

procedure constructs the intermediate tree shown in Figure 8.1(a), reusing all edges that are

not on ⇡(b, d). These edges are thus fat edges in the intermediate tree. Additionally, it chooses

one edge on ⇡(b, d) that represents a minimum b-d-cut in G� and draws this edge also fat,

according to Corollary 8.2. Finally, it processes the resulting compound nodes by applying the

procedure Cut Tree, which is correct since the fat edges represent a partial Gomory-Hu set.

In this section, however, we skip the choice of this last edge and directly apply Cut Tree to

the intermediate tree shown in Figure 8.1(a). In this tree the thin edges on ⇡(b, d) induce the

only compound node of vertices that still need to be separated. We denote this compound node

by S⇡.

Since Cut Tree admits an arbitrary sequence of step pairs and the use of arbitrarily shaped

split cuts, processing S⇡ by an arbitrary run of Cut Tree, however, does not guarantee any

temporal smoothness. In the following we thus aim at controlling the choice of the step pairs and

the shape of the split cuts during the run of Cut Tree, in order to achieve optimal temporal

smoothness. More precisely, we aim at finding split cuts that cross ⇡(b, d) as few times as possible,

thus preserving as many thin edges as possible for a potential reuse during the construction of a

new Gomory-Hu tree for G�.

For the modified update procedure we will then show that it finds a maximum set of reusable

cuts on ⇡(b, d) in T (G), that is, no other Gomory-Hu tree of G� contains more old cuts

from ⇡(b, d) than the tree constructed by our procedure. Since a Gomory-Hu tree constructed

by our procedure additionally contains all old cuts that are not on ⇡(b, d) in T (G), it directly

follows that no other Gomory-Hu tree contains more old cuts in total, which finally proves opti-

mality in terms of temporal smoothness. The next two sections, however, first focus on finding

appropriate split cuts and modifying the update procedure accordingly.

9.2.1 Reshaping Split Cuts

In a first step we describe how potential split cuts can be reshaped according to the aim pro-

claimed above. To this end, we introduce Lemma 9.4, which, similar to Lemma 8.9, allows to

bend cuts in G� along old minimum separating cuts in G without becoming more expensive.

The situation of Lemma 9.4 is shown in Fig. 9.2.

Lemma 9.4. Let (X,V \ X) denote a minimum x-y-cut in G with x 2 X and y 2 V \ X

that also separates b and d. Let (U, V \ U) denote a further cut. If (i) (U, V \ U) separates x

and y with x 2 U and either b or d in U \ X, then c�(U [ X,V \ (U [ X))  c�(U, V \ U).
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X

U

b d

y

x

V \X

V \U

(a) Deflected by x, Lemma 9.4(i) bends (U, V \U) down-
wards along X.

X

U

V \U
b dy x

V \X

(b) Deflected by x, Lemma 9.4(ii) bends (U, V \ U) up-
wards along X.

Figure 9.2: Situation of Lemma 9.4. Reshaping cuts in G� (solid black lines) along previous
cuts in G (dotted black lines) resulting in new cuts in G� (dashed red lines). Since we will
apply Lemma 9.4 to cuts (U, V \U) that do not separate b and d, without loss of generality, b

is depicted in U \X and (V \ U) \X, respectively, in this figure.

If (ii) (U, V \ U) does not separate x and y with x 2 V \ U and either b or d in (V \ U) \ X,

then c�(U \X,V \ (U \X))  c�(U, V \ U).

We remark that in this section we will only need case (i). However, in Part III, where we

consider dynamic unrestricted cut clusterings, we will also make use of (ii).

Proof. The Proof of Lemma 9.4 is based on the same idea as the proof of Lemma 8.9. Using the

fact that (X,V \X) is an old minimum x-y-cut in G, we prove Lemma 9.4(i) by contradiction.

The idea is to show that (U \ X,V \ (U \ X)) would have been cheaper than the minimum

x-y-cut (X,V \ X) in G if c�(U, V \ U) was cheaper than c�(U [ X,V \ (U [ X)) in G�.

Since (U\X,V \(U\X)) and (X,V \X) both separate b and d, it holds that c(U\X,V \(U\X)) =

c�(U \X,V \ (U \X))�� and c(X,V \X) = c�(X,V \X)��. Thus, for the contradiction, it

also su�ces to show that c�(U \X,V \ (U \X)) would have been cheaper than c�(X,V \X).

We express the costs of (U \X,V \ (U \X)) and (X,V \X) in G� with the help of (U, V \ U)

and (U [X,V \ (U [X)) considered in Lemma 9.4(i). In doing so, we get

(i) c�(U \X,V \ (U \X)) = c�(U, V \ U)

- c�(U \X,V \ U) + c�(U \X,U \X)

(ii) c�(X,V \X) = c�(U [X,V \ (U [X))

- c�(U \X,V \ (U [X)) + c�(U \X,X)

Since V \ (U [X) ✓ V \ U , it is c�(U \X,V \ (U [X))  c�(U \X,V \ U). From U \X ✓ X

further follows that c�(U \ X,U \ X)  c�(U \ X,X); together with the assumption that

c�(U, V \ U) < c�(U [X,V \ (U [X)), by subtracting (ii) from (i), we get:

c�(U \X,V \ (U \X))� c�(X,V \X) = [c�(U, V \ U)� c�(U [X,V \ (U [X))]

� [c�(U \X,V \ U)� c�(U \X,V \ (U [X))]

+ [c�(U \X,U \X)� c�(U \X,X])] < 0

This contradicts the fact that (X,V \X) is a minimum x-y-cut in G.

We prove Lemma 9.4(ii) with the help of the same technique. We show that (X\U, V \(X\U))

would have been cheaper than the minimum x-y-cut (X,V \X) in G if c�(U, V \U) was cheaper

than c�(U \X,V \(U \X)) in G�. Since (X\U, V \(X\U)) and (X,V \X) both separate b and d,

it holds c(X \U, V \ (X \U)) = c�(X \U, V \ (X \U))�� and c(X,V \X) = c�(X,V \X)��.

Thus, for the contradiction, it also su�ces to show that c�(X \U, V \ (X \U)) would have been



152 Chapter 9 : Optimality in Smoothness and Running Time

U

v
8 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > :

cut out segment

b

V \U

u
d

(a) If {u, b, d} ✓ U , cut out segment contains v.
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(b) If {v, b, d} ✓ V \ U , cut out segment contains u.

Figure 9.3: Reshaping cuts in G� (solid lines) according to Lemma 9.4 and the Non-Crossing
Lemma (7.2). Resulting cuts (dashed lines) cross ⇡(b, d) exactly twice and respect the subtrees.

cheaper than c�(X,V \X). We express the costs of (X \ U, V \ (X \ U)) and (X,V \X) with

the help of (U, V \U) and (U \X,V \ (U \X)) considered in Lemma 9.4(ii). In doing so, we get

(i) c�(X \ U, V \ (X \ U)) = c�(U, V \ U)

- c�(U, V \ (X [ U)) + c�(X \ U, V \ (X [ U))

(ii) c�(X,V \X) = c�(U \X,V \ (U \X))

- c�(U \X,V \ (X [ U)) + c�(X,V \ (X [ U))

Since U \X ✓ U , it is c�(U \X,V \ (X [ U))  c�(U, V \ (X [ U)). From X \ U ✓ X further

follows that c�(X \ U, V \ (X [ U))  c�(X,V \ (X [ U)); together with the assumption that

c�(U, V \ U) < c�(U \X,V \ (U \X)), by subtracting (ii) from (i), we get:

c�(X \ U, V \ (X \ U)) � c�(X,V \X)

= [c�(U, V \ U)� c�(U \X,V \ (U \X))]

� [c�(U, V \ (X [ U))� c�(U \X,V \ (X [ U))]

+ [c�(X \ U, V \ (X [ U))� c�(X,V \ (X [ U))] < 0

This contradicts the fact that (X,V \X) is a minimum x-y-cut in G.

Together with the Non-Crossing Lemma (7.2), Lemma 9.4 provides the key to reshape split

cuts in G� in an appropriate way. Consider the following situation in the intermediate tree shown

in Figure 8.1(a). As we will refer to this special tree many further times, we denote this fixed tree

structure by T̂ . Let {u, v} denote a step pair of vertices on ⇡(b, d) in T̂ , and let (U, V \U) denote

a minimum u-v-cut in G� with u 2 U . Assume further that �G�(u, v) < �G(u, v)+�, that is, old

minimum u-v-cuts that separate b and d (and in particular those induced by edges on ⇡(b, d)) are

no minimum u-v-cuts in G� anymore. Consequently, (U, V \ U) does not separate b and d, and

thus, crosses ⇡(b, d) at least twice, decomposing ⇡(b, d) into several subpaths or segments. For

fixed vertices u and v, we now distinguish two cases; first, {u, b, d} ✓ U ; second, {v, b, d} ✓ V \U .

In the first case, we focus on the segment of ⇡(b, d) that is cut out by (U, V \ U) and contains v

(see Fig. 9.3(a)). At the beginning and the end of this segment (U, V \ U) crosses an edge

on ⇡(b, d), which represents a minimum separating cut with respect to its incident vertices in G,

each (see dotted vertical lines in Fig. 9.3(a)). According to Lemma 9.4, (U, V \ U) can thus be

bent along both of these cuts (in the role of (X,V \X)) such that the resulting cut (see dashed

line in Fig. 9.3(a)) crosses ⇡(b, d) exactly twice. In the second case, we consider the segment

of ⇡(b, d) that is cut out by (U, V \ U) and contains u (see Fig. 9.3(b)). Here (U, V \ U) can be

bent analogously along the old cuts bounding the segment.
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u2v1 v2u1

v1 v2

u2v1 v2u1

v1 v2

subtree

(a) Second arch is stretched (left), and clinched (right).
The latter yields an overhanging subtree.

u2v1 v2u1

v1 v2

subtree

(b) Clinched arch can be truncated by Lemma 9.4, remov-
ing the overhang.

Figure 9.4: Exemplary sequence {u
1

, v
1

}, {u
2

, v
2

} of step pairs and corresponding arch-
shaped split cuts (solid lines), possibly reshaped (dashed lines). Vertices ui, vi of the step
pairs are depicted as squares, corresponding split cuts are also labeled by vi, the base vertex

of the indicated subtree is filled gray.

Finally, we observe that the subtrees that are connected to ⇡(b, d) by fat edges are sheltered

by these edges such that (U, V \ U) can be additionally reshaped by applying the Non-Crossing

Lemma (7.2) resulting in a cut that respects the subtrees, that is, each subtree is completely

assigned to one cut side, as shown in Fig. 9.3. As we will refer to these special subtrees in T̂

many further times, we call them fat subtrees and the (fat) edges connecting them to ⇡(b, d)

linking edges. A linking edge of a fat subtree is incident to a base vertex on ⇡(b, d) and the root

of the fat subtree and shelters the fat subtree against any minimum separating cut that has a cut

pair on ⇡(b, d). In the following we imply the reshaping steps described so far without further

notice, and depict split cuts that do not separate b and d as arch-shaped curves that are open at

the bottom. We call the total reshaping so far the arch-reshaping. Assuming further that ⇡(b, d)

is horizontally embedded with a fixed order of the vertices from left to right, we talk about a

right arch if the cut out segment is to the right of the cut vertex that shares a cut side with b

and d, as in Fig. 9.3(a), and a left arch if the cut out segment is to the left of the cut vertex that

shares a cut side with b and d, as in Fig. 9.3(b).

Applying again the Non-Crossing Lemma (7.2), crossing arches can further be stretched or

clinched such that they become either disjoint or nested. Such an adjustment, however, may

blur the arch-shaped appearance of the cuts, as shown on the right part of Fig. 9.4(a). Consider

two crossing arches and a fat subtree whose linking edge is crossed by only one of these arches,

while the second arch separates the fat subtree from b and d. Then, depending on whether the

second arch is stretched or clinched, it happens that the fat subtree causes an overhang, since the

second arch spans the subtree but not its base vertex. We call such a fat subtree an overhanging

subtree. However, the resulting cut is of the same form as the cut (U, V \ U) in Fig. 9.3, and

thus, can be again truncated by applying Lemma 9.4, removing the overhang. In this way we

get again a properly arch-shaped split cut (see Fig 9.4(b)).

9.2.2 Modifying the Update Procedure

In order to guarantee temporal smoothness, we now modify the update procedure—more pre-

cisely, the subroutine Cut Tree. To this end we proceed as follows. We consider the inter-

mediate tree T̂ and its compound node S⇡ induced by the thin edges on ⇡(b, d). We note that

splitting S⇡ according to a split cut would change the intermediate tree such that the old cuts

formally represented by edges on ⇡(b, d) loose their easily recognizable form making it more

di�cult to see how new cuts can be reshaped. Hence, for the sake of simplicity, in a first phase,

we will defer the splitting of S⇡ choosing the step pairs and reshaping the newly found cuts



154 Chapter 9 : Optimality in Smoothness and Running Time

with respect to the fixed tree T̂ . The aim of this first phase is to find a set of split cuts in S

that contains as many reusable cuts as possible. In a second phase, we split S according to the

found cuts and finally process the resulting compound nodes by the help of the procedure Cut

Tree. The latter does not a↵ect the temporal smoothness, since we will see that a maximum

set of reusable cuts is already found in the first phase. However, dividing the Gomory-Hu tree

construction into a cut computing phase and a splitting phase, instead of splitting the current

compound node immediately after each cut computation, requires the storing of the found cuts

and is not very convenient. Hence, in Section 9.2.4, we present a pseudo-code that, in the spirit

of Gomory and Hu, immediately splits the current compound node in each step, thus avoiding

that the found split cuts need to be stored until the splitting phase. In the remainder of this

section, however, we stick with the two phase approach, focusing on the description of the first

phase and the proof showing that in this phase already a maximum set of reusable cuts is found.

In the first phase, we seek a set O of old cuts on ⇡(b, d) that can be reused as split cuts

for the construction of T (G�). Following the notion of arches that represent newly found split

cuts, reusable split cuts on ⇡(b, d) can be seen as vertical pillars. Arches that are possibly found

during the search for O are stored in a set A for later use. The following operations are repeated

until all vertices in S⇡ are separated from d by cuts in A [ O. The vertices not yet separated

from d are called free. At the beginning, S⇡ consists of only free vertices.

In each step we do the following. We assume that d is the rightmost vertex on ⇡(b, d) and

consider the free vertices in S⇡ according to the order induced by their positions on ⇡(b, d).

We choose the free vertex u furthest from d and the free vertex v closest to u as step pair and

compute a minimum u-v-cut (U, V \ U) in G�.

If �G�(u, v) < �G(u, v)+�, then (U, V \U) is a new split cut in A, which does not separate b

and d, and we apply the arch-reshaping (recall Fig. 9.3) such that (U, V \ U) becomes a right

or left arch depending on whether u or v shares a cut side with b and d. If the resulting arch

crosses a previously found cut in O [ A, it is further adjusted (clinched or stretched) according

to the Non-Crossing Lemma (7.2) and Lemma 9.4, removing possible overhangs. The vertices

cut out from ⇡(b, d) by the resulting arch are now separated from d, and hence, no longer free.

Thus, they are not considered when choosing the next step pair. We observe that, as long as

only right arches are found in consecutive steps, u remains free and the same vertex in each step

pair (see Fig. 9.6(a)). In contrast, as soon as a left arch is found, u is immediately separated

from d, while v takes the role of u in the next step, as it becomes the free vertex furthest from d

(see Fig. 9.6(b)).

If �G�(u, v) � �G(u, v) +�, the old minimum u-v-cuts on ⇡(b, d) remain valid and we chose

a corresponding vertical pillar. If this pillar does not cross any previously found cut in O [ A

we add it to O. Otherwise, it crosses a (non-nested) arch. However, we can show that in this

case there exists another pillar of the same cost that does not cross the cuts in O [A, and thus

can be added to O instead. Suppose the chosen pillar crosses a (non-nested) arch. Then, it can

be bent along this arch, according to the Non-Crossing Lemma (7.2), resulting in a cut of the

same cost that does not cross any cut in O [ A, still separates b and d, and crosses an edge e

on ⇡(b, d) that is also crossed by the non-nested arch (see Fig. 9.5). The pillar induced by e

thus also crosses no cut in O [ A, but separates u and v since neither u nor v is spanned by an

arch. Hence, e costs at least �G�(u, v) in G�. On the other hand, the reshaped cut separates

the two vertices incident to e, which are a cut pair of e in G. Since both, the reshaped cut and e,

separate b and d, e costs at most �G(u, v) in G and �G(u, v) +� = �G�(u,v) in G�. Thus, e is
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v2v1 v3u v4 d

v1 v2 v3 v4

v5

v5

(a) Deflected by v
1

, the minimum u-v
5

-cut is bent to the
right, according to the Non-Crossing Lemma (7.2). The
dotted pillar finally separates u from d, v

5

becomes free
vertex furthest from d in next step.

v2v1 v3u v4 dv5

v1 v2 v3 v4

v5

(b) Deflected by v
4

, the minimum u-v
5

-cut is bent to the
left, according to the Non-Crossing Lemma (7.2). The dot-
ted pillar finally separates u from d, v

5

becomes free vertex
furthest from d in next step.

Figure 9.5: Exemplary sequence of step pairs {u, v
1

} . . . {u, v
5

} and corresponding split cuts
(solid lines), where the last split cut is an old cut on ⇡(b, d), adjusted (dashed line) such that
it does not cross any arches. The vertical pillar finally added to O is drawn as dotted line.

Vertices vj are depicted as squares, corresponding split cuts are also labeled vj .

v2v1 v3u v4 d

v1 v2 v3 v4

(a) Sequence of right arches. Minimum u-v
3

-cut and min-
imum u-v

4

-cut adjusted according to the Non-Crossing
Lemma (7.2) and Lemma 9.4.

v2v1 v3u v4 dv5

v1 v2 v3 v4v5

(b) Minimum u-v
5

-cut is a left arch, adjusted according to
the Non-Crossing Lemma (7.2) and Lemma 9.4. It sepa-
rates u from d, v

5

becomes free vertex furthest from d.

Figure 9.6: Exemplary sequence of step pairs {u, v
1

} . . . {u, v
5

} and corresponding arch-
shaped split cuts (solid lines), possibly adjusted (dashed lines). Vertices vj are depicted as

squares, corresponding split cuts are also labeled vj .

a minimum u-v-cut in G�, and we finally add it to O. In doing so, u is separated from d and is

thus no longer free, v becomes the free vertex furthest from d, and thus, takes the role of u in

the next step.

Again summarizing, we remark that u is separated from d by either a vertical pillar or a left

arch, and vice versa, as long as u is not separated from d only right arches are found. A right

arch thus never crosses a previously found vertical pillar since such a pillar would have already

separated u and v. At the beginning, b is chosen as the first vertex having the role of u. In this

special situation, u can only be separated from d by a pillar since arches never separate b and d.

Furthermore we observe that, whenever u is separated from d, the free vertices in the next step

form a subpath of ⇡(b, d), and thus, can be iteratively handled in the way described above, until

no free vertices (apart from d) remain.

9.2.3 Proving Optimality

In order to prove optimality in terms of temporal smoothness, we show that the set O found

by our modified update routine is a maximum set of reusable cuts on ⇡(b, d), that is, there

exists no Gomory-Hu tree of G� that contains more old cuts from ⇡(b, d) in T (G) than the tree

constructed by our update routine. This key assertion follows from the next theorem. Since a

Gomory-Hu tree constructed by our update routine additionally contains all old cuts that are

not on ⇡(b, d) in T (G), it directly follows that no other Gomory-Hu tree contains more reusable

cuts in total, thus proving optimal temporal smoothness.
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Figure 9.7: Exemplary sequence of step pairs {ui, vj} and corresponding split cuts (solid
lines). Vertices vj taking the role of u are bold-framed, remaining vertices vj are depicted as
squares, corresponding split cuts are also labeled vj . Step pair {u

4

, v
16

= u
5

} would be next
in the sequence resulting in a split cut (not shown in this figure) that separates u

4

from d.
Reusable cut (X,V \ X) is on ⇡(ui, ui+1

) for i = 4. Besides v
15

, all split cuts have their
step pairs in X \ ⇡(b, d). Split cuts drawn as fat lines already su�ce to isolate ui = u

4

in a
compound node of a notional run of Cut Tree. Note that v

14

can be bent along (X,V \X)
(dashed line).

Theorem 9.5. Let ui and ui+1 denote two vertices in ⇡(b, d) such that ui+1 is the next vertex

after ui that takes the role of u during the modified update routine. Let ⇡(ui, ui+1) denote the

subpath of ⇡(b, d) induces by these vertices, and let Q denote the set of old cuts on ⇡(ui, ui+1)

that are also minimum separating cuts in G� with respect to any cut pair. If Q 6= ;, Q consists

of minimum ui-ui+1-cuts, each of which share all its cut pairs with all other cuts in Q.

Theorem 9.5 partitions the old cuts in ⇡(b, d) into (disjoint) subsets of cuts (given by the

subpaths ⇡(ui, ui+1)) such that no two cuts of the same subset can be realized at the same time

in a Gomory-Hu tree, as all reusable cuts in each subset have the same cut pairs. Vice versa,

for each step pair {ui, ui+1} the update routine saves a reusable cut (that is, a vertical pillar)

in O if there exists a reusable minimum ui-ui+1-cut. Hence, O contains a maximum number of

reusable cuts on ⇡(b, d).

Proof of Theorem 9.5. Let (X,V \X) with ui 2 X denote a cut in Q and {x, y} with x 2 X

and y 2 V \X a cut pair of (X,V \X) in G�. In order to show Theorem 9.5, we will examine

which vertices in X and V \X are candidates for x and y. We start with the candidates for x.

Claim (1): If {x, y} is a cut pair of (X,V \X) 2 Q, then {ui, y} is also a cut pair of (X,V \X).

Proof. We show this claim by applying a notional run of Cut Tree to find further cut pairs,

which result from the correctness of Cut Tree established by Lemma 7.3. We will also use this

technique in the context of other claims in this proof.

We apply the notional run of Cut Tree starting at the intermediate tree resulting from V by

splitting V according to (X,V \X) and {x, y}, which results in the compound nodes X and V \X.

In the following we argue that we can further split X until it only consists of ui and is connected

to V \X 3 y by a fat edge that represents (X,V \X). Then, due to Lemma 7.3, {ui, y} is also

a cut pair of (X,V \X).

First we consider the fat subtrees of T̂ contained in X. Splitting X according to the linking

edges of these subtrees results in a compound node X \ ⇡(b, d) that still contains ui and one

further compound node per subtree. Now we consider the cuts in O [ A (found during the

modified update routine) that result from step pairs in X \⇡(b, d). Note that none of these cuts

separates ui from d since the first cut that separates ui from d appears with respect to the step

pair {ui, ui+1} 6✓ X. Due to the choice of the step pairs and the reshaping of the cuts in O [A,

these cuts separate at least the vertices in (X \ ⇡(b, d)) \ {ui} from ui (and d). Figure 9.7
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(a) Sequence of right arches where V \ X only consists of
R [ R
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[ R̄
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[H [ {u
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}.
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(b) Sequence of right arches where V \ X also contains
vertices in L [ L
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.

Figure 9.8: Exemplary sequence of step pairs {ui, v1} . . . {ui, v5} and corresponding split
cuts. Vertices vj are depicted as squares, corresponding split cuts are also labeled vj . Step
pair {ui, v6 = ui+1

} would be next in the sequence resulting in a split cut (not shown in this
figure) that separates ui from d. Reusable cut (X,V \X) induces sets R,L,RT , LT , R̄T , L̄T , H.
Vertices in R are filled gray, vertices in L are filled black. Subtrees in RT are indicated by gray
areas, those in LT by black areas. The remaining sets L̄T , R̄T and H are labeled accordingly.

exemplarily shows the situation. Since (X,V \X) shelters V \X 3 y, these cuts can be further

bent along (X,V \X) such that they exactly separate the vertices in (X \⇡(b, d)) \ {ui} from ui

(and also from y). Hence, splitting X \⇡(b, d) according to these cuts (in the order given by the

step pairs) is feasible and yields a final compound node that only contains ui and is linked (by

a fat edge that represents (X,V \X)) to the compound node V \X containing y. This finishes

the proof of claim (1).

Regarding the possible candidates for y, we decompose V \X into several disjoint subsets. To

this end, we observe the following. At the time {ui, ui+1} becomes the step pair in the update

routine, the vertices in ((V \X)\⇡(ui, ui+1))\{ui+1} are all separated from d (and ui and ui+1)

by right arches (see Fig. 9.8). We denote the set of vertices in ((V \X) \ ⇡(ui, ui+1)) \ {ui+1}
that are separated from d by an arch whose step pair {ui, vj} is separated by (X,V \X), that

is, vj 2 V \ X, by R. The set of the remaining vertices in ((V \ X) \ ⇡(ui, ui+1)) \ {ui+1} is

denoted by L. A vertex in L is thus separated from d only by arches whose step pairs are not

separated by (X,V \X). Note that such an arch is necessarily crossed by (X,V \X), since vj is

in X and the vertex in L is in V \X, whereas both vj and the vertex in L are spanned by the

arch. Furthermore, consider the fat subtrees that are linked to ((V \X) \ ⇡(ui, ui+1)) \ {ui+1}
and recall that these subtrees are completely assigned to either side of the cuts induced by the

arches. Those subtrees that are separated from d (and ui and ui+1) by an arch whose step pair is

separated by (X,V \X) contribute to the vertex set RT . The vertices of the remaining subtrees

separated from d form the set LT . A vertex in LT thus belongs to a fat subtree that is separated

from d only by arches whose step pairs are not separated by (X,V \X). The subtrees that are

not separated from d, but from their base vertex in ((V \X)\⇡(ui, ui+1))\{ui+1} contribute to

the vertex sets R̄T and L̄T , respectively, depending on whether or not they are separated from

their base vertex by an arch whose step pair is separated by (X,V \X). A vertex in R̄T or L̄T

thus belongs to a fat subtree whose linking edge is crossed by at least one arch. The remaining

vertices in (V \X) \ {ui+1} are denoted by H. With this notation each vertex in V \X (that is,

each candidate for y) is either in L, R, LT , RT , L̄T , R̄T , H or {ui+1}. The following two claims

now exclude some of these candidate sets for y.

Claim (2): There exists no cut pair {x, y} of (X,V \X) 2 Q with y 2 R [RT [ R̄T .
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Proof. We prove this claim by contradiction. Suppose a cut pair {x, y} with y 2 R [ RT [ R̄T .

Then, by definition, there exists an arch whose step pair {ui, vj} is separated by (X,V \ X),

and that separates y from ui if y 2 R [ RT , and crosses the linking edge of the fat subtree

containing y if y 2 R̄T . Since (X,V \ X) separates ui and vj , c(X,V \ X) + � must be more

expensive than �G�(ui, vj), otherwise such an arch would not have been added to A by the

update routine. We now distinguish y 2 R [ RT and y 2 R̄T , considering an arch as described

above.

If y 2 R[RT , the arch separates ui and y, and it is �G�(ui, y)  �G�(ui, vj) < c(X,V \X)+�.

On the other hand, (X,V \ X) is a minimum ui-y-cut in G�, according to claim (1). Hence,

the above observation contradicts the assumption that (X,V \X) is a minimum x-y-cut with y

in R [RT .

If y 2 R̄T , the linking edge of the subtree that contains y is crossed by the arch, and thus, costs

at most �G�(ui, vj) < c(X,V \X)+� in G�. Furthermore, the linking edge separates y from ui.

Since (X,V \X) is a minimum ui-y-cut, according to claim (1), this is again a contradiction.

Claim (3): There exists no cut pair {x, y} of (X,V \X) 2 Q wit y 2 L [ LT .

Proof. We prove this claim again by contradiction. Suppose a cut pair {x, y} with y 2 L [ LT .

Then, by definition, there exists an arch whose step pair {ui, vj} is not separated by (X,V \X)

and that separates y from ui. As a consequence, this arch is crossed by (X,V \X). Since the

step pair {ui, vj} of the arch is in X, we can however apply the Non-Crossing Lemma (7.2)

bending the arch upwards along (X,V \ X) (deflected by y) resulting in a cut of the same

cost that still separates ui and vj , but further separates b and d. This contradicts the fact

that �G�(ui, vj) < �G(ui, vj) +�, which ensured that the arch was added to A by the update

routine.

The next two claims show that the remaining candidates of y, which are either in H or in L̄T

always induce the cut pair {ui, ui+1} for (X,V \X). Claim (4): If {x, y} with y 2 H is a cut

pair of (X,V \X) 2 Q, then (X,V \X) is a minimum ui-ui+1-cut in G�.

Proof. This claim is quite obvious. Suppose there is a cut pair {x, y} with y 2 H, but (X,V \X)

is no minimum ui-ui+1-cut in G�. According to claim (1), (X,V \ X) is a minimum ui-y-

cut in G�. On the other hand, the minimum ui-ui+1-cut found by the update routine will be

either a left arch or a vertical pillar, and will separate ui from d, and even more, ui from y.

Consequently, (X,V \X) costs at most �G�(ui, ui+1) in G�. Vice versa, (X,V \X) separates ui

and ui+1, and we get c(X,V \ X) + � = �G�(ui, ui+1), which contradicts the assumption

that (X,V \X) is no minimum ui-ui+1-cut in G�.

Claim (5): If {x, y} with y 2 L̄T is a cut pair of (X,V \ X) 2 Q, then (X,V \ X) is a

minimum ui-ui+1-cut in G�.

Proof. We prove this claim by applying the same technique as in the proof of claim (1), that

is, we apply a notional run of Cut Tree in order to find a cut pair {x0, y0} of (X,V \ X)

with y0 2 H [{ui+1}. According to claim (1) and (4), (X,V \X) is then a minimum ui-ui+1-cut

in G�.

In a first step, we split V according to (X,V \X) and {ui, y}, which is a cut pair of (X,V \X),

according to claim (1). This results in two compound nodes X and V \ X. In the following,

we further split V \ X. To this end, we consider the fat subtrees in V \ X. Splitting (V \ X)
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according to the linking edges of these subtrees results in the compound node (V \X)\⇡(b, d) =
L[R[(H\⇡(b, d))[{ui+1} and several further compound nodes corresponding to the subtrees.

Since one of these subtrees contains y (as y 2 L̄T ), the edge that represents (X,V \X) in the

intermediate tree is finally incident to X and L [ R [ (H \ ⇡(b, d)) [ {ui+1}. Hence, according

to Lemma 7.3, which establishes the correctness of the procedure Cut Tree, there exists a cut

pair {x0, y0} of (X,V \X) with y0 2 L[R[(H\⇡(b, d))[{ui+1}. As y0 is not in L[R (according

to claim (2) and (3)), y0 must be in H [ {ui+1}.

From the claims so far it follows that each cut in Q is a minimum ui-ui+1-cut in G�, which

proves the first assertion of Theorem 9.5. The final claim now states that at most one cut in Q

can be realized in a Gomory-Hu tree for G�, since all cuts in Q share all their cut pairs with all

other cuts in Q. This proves the second statement of Theorem 9.5, and thus, finishes the proof.

Claim (6): If {x, y} is a cut pair of (X,V \X) 2 Q, it is also a cut pair of any further cut

in Q.

Proof. Let (U, V \U), with ui 2 U , denote another cut in Q. According to claim (1)-(5), (U, V \U)

is a minimum ui-ui+1-cut. We prove claim (6) by contradiction, applying again a notional run

of Cut Tree. Without loss of generality, suppose the vertical pillar (X,V \X) is closer to ui

than the vertical pillar (U, V \ U), and {x, y} is a cut pair of (X,V \ X) that is no cut pair

of (U, V \U). That is, {x, y} ✓ U . Hence, we can split V according to (U, V \U) and {ui, ui+1}
and then split U according to (X,V \X) and {x, y}. The edge that represents (X,V \X) in the

intermediate tree is now incident to the compound nodes X and (V \X)\U , which contains y.

More precisely, y belongs to one of the fat subtrees in (V \X) \ U , since otherwise it would be

in L [ R contradicting claim (2) and (3). However, in the following we argue that there exists

another cut pair {x0, y0} of (X,V \X) with y0 in L[R. This also contradicts claim (2) and (3),

and thus, finishes the proof.

We split (V \X)\U according to the linking edges of the fat subtrees in (V \X)\U . Since one

of these subtrees contains y, the edge that represents (X,V \X) in the intermediate tree is finally

incident to X and L [ R. Hence, according to Lemma 7.3, which establishes the correctness of

the procedure Cut Tree, there exists a cut pair {x0, y0} of (X,V \X) with y0 2 L [R.

9.2.4 A Simple Implementable Algorithm

For the description of the modified update routine in the previous section, we considered the split

cuts with respect to the fixed intermediate tree T̂ , since this allows a better understanding of the

applied reshaping steps. However, reshaping the split cuts with respect to a fixed intermediate

tree in a first phase and storing the resulting cuts until the compound nodes are split in a second

phase, is not much applicable. Instead it would be nice to have an algorithm that, following

the procedure Cut Tree, immediately splits the current compound node with respect to the

(possibly reshaped) split cut computed in the current step. In this section, we provide a simple

implementable algorithm for the modified update routine (see Algorithm 6) that proceeds in this

way, realizing the reshaping of the split cuts by reconnecting edges in the intermediate tree.

In Algorithm 6, we assume G and G� are available as global variables. The connectivity

values for vertex pairs in G are provided by T (G). The first lines handle the cases that {b, d}
is a bridge in G and G�, respectively, and are just listed for the sake of completeness, since in

these cases, Algorithm 6 implements exactly what is described in Section 8.2. The interesting

part of Algorithm 6, namely the modification of the update routine, starts at line 4.
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Algorithm 6: Increase or Insert

Input: T (G), b, d, c(b, d), c�(b, d), � := c�(b, d)� c(b, d)
Output: T (G�)

1 T⇤  T (G)
2 if {b, d} is a bridge in G then apply Corollary 8.2; return T (G�) T⇤
3 if {b, d} is a bridge in G� then apply Lemma 8.4; return T (G�) T⇤
4 T⇤  intermediate tree shown in Figure 8.1(a)

5 P̂  subgraph of T̂ consisting of ⇡(b, d) and the roots of the fat subtrees, edges on ⇡(b, d)
unmarked, roots of the fat subtrees colored red

6 S⇡  vertices on ⇡(b, d) // free vertices

7 i 0; j  0; ui  b; vj  neighbor of b on ⇡(b, d); // step pair

8 while S⇡ 6= {d} do
// compute split cut ---------------------------------

9 (U, V \ U) minimum ui-vj-cut in G� with ui 2 U
10 if �G�(ui, vj) < �G(ui, vj) +� then // arch

11 if {ui, b, d} ✓ U then M  V \ U ; m vj ; // right arch

12 if {vj , b, d} ✓ U then M  U ; m ui ; // left arch

13 Ce, Cv  edges, vertices on segment cut out from ⇡(b, d) containing m

14 Cv  Cv [ {vertices r in P̂ incident to a vertex in Cv with r 2M}
15 if {ui, b, d} ✓ U then markSpannedEdges(Ce, P̂ , i, j)

16 if �G�(ui, vj) � �G(ui, vj) +� then // vertical pillar

17 (U, V \ U) reusable cut (ui 2 U) induced by unmarked edge on ⇡(ui, vj) in P̂
18 Cv  U

// reconnect edges ---------------------------------

19 draw {ui, vj} as a fat edge in T⇤; c⇤(ui, vj) c�(U, V \ U)
20 F  S⇡ \ Cv

21 N  all vertices that are linked to a vertex in F by a fat edge in T⇤
22 if {ui, b, d} ✓ U then // right arch

23 N̄  all neighbors of ui in T⇤
24 T⇤  reconnect(Cv, T⇤, N , N̄ , ui, vj)
25 S⇡  S⇡ \ Cv; v0  vertex closest to ui on ⇡(b, d) \ S⇡; reconnect v0 to ui

26 j  j + 1; vj  v0 // next step pair

27 if d 2 V \ U then // left arch, vertical pillar

28 T⇤  reconnect(Cv, T⇤, N , ;, vj , ui)
29 i i+ 1; ui  vj ; S⇡  S⇡ \ Cv // next step pair

30 j  j + 1; vj  vertex incident to ui on ⇡(b, d) \ S⇡ // next step pair

31 apply Cut Tree to remaining compound nodes in T⇤
32 return T⇤

The modification uses a fixed substructure P̂ of the tree T̂ , which consists of the path ⇡(b, d)

together with the root vertices of the fat subtrees in T̂ . The edges on ⇡(b, d) are initially

unmarked (marks on these edges will be set in markSpannedEdges and used in line 17), the

roots of the subtrees are marked red (these marks will be used in reconnect). Whenever ⇡(b, d)

occurs in the pseudo-code, this refers to the corresponding (fixed) path in P̂ . In contrast, the

intermediate tree T⇤ changes during the run of Algorithm 6, as it is rebuilt by reconnecting edges

and assigning new costs to the edges, finally providing the new Gomory-Hu tree T (G�). The free

vertices on ⇡(b, d) are stored in S⇡, the first step pair {ui, vj} is initialized in line 7. The indices

for ui and vj are chosen consecutively, as in Fig. 9.7. The modification repeats the computation

of split cuts and the reconnection of edges until d is the only free vertex (see line 8).
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Procedure markSpannedEdges(Ce, P̂ , i, j)

1 on ⇡(b, d) in P̂ , iterate edges in Ce from the vertex closest to d towards b
2 if current edge e is already marked with (i0, j0) then
3 if (U, V \ U) separates ui0 and vj0 then // stretching

4 mark e with (i, j)
5 if e is the last edge in Ce then
6 mark also all following edges that are already marked with (i0, j0) with (i, j)

7 if ui0 and vj0 are not separated by (U, V \ U) then // clinching

8 stop iterating

Procedure reconnect(Cv, T⇤, N , N̄ , c, c̄)

1 forall the x 2 N \ {c} do // reconnect to outer side

2 if (x 2 V \ Cv) or (x 2 Cv and marked with y and y 2 V \ Cv) then
3 T⇤  reconnect x to c in T⇤
4 if x is red then mark x with c̄

5 forall the x 2 N̄ \ {c̄} do // reconnect to inner side

6 if x 2 Cv and [(x is marked with y and y 2 Cv) or (x is unmarked)] then
7 T⇤  reconnect x to c̄ in T⇤

8 return T⇤

Computing the Split Cut. After the computation of a minimum ui-vj-cut (with respect to

step pair {ui, vj}) in line 9, the algorithm decides whether the final split cut will be an arch or

a vertical pillar (see line 10 and line 16). In case of an arch it further decides whether it will be

a left or a right arch. Note that here right and left refer to the determination in the previous

section that ⇡(b, d) is horizontally embedded with b on the left and d on the right side. If we

swap b and d, right arches become left and left become right arches.

The arch-reshaping of the found minimum ui-vj-cut (recall Fig. 9.3), is now realized by storing

the cut side that is spanned by the resulting arch in a variable Cv (line 13 and line 14). Note that

this cut side is already characterized by the cut out segment on ⇡(b, d) and the roots of the fat

subtrees that are part of the cut side. Storing the whole subtrees on the cut side is not necessary,

since the corresponding linking edges already shelter the trees such that a later reconnection of

edges (according to Gusfield [66]) will automatically assign these subtrees completely to the

correct cut side. The variable Ce (line 13) stores only the edges of the cut out segment. If the

current split cut is a right arch, that is, ui is still free, this information is used to mark the

edges between ui and vj on ⇡(b, d) that are already spanned by a (right) arch, and thus, are

no candidates for a reusable vertical pillar in a later step (see markSpannedEdges in line 15).

The edges are marked by a tuple (i, j) referring to the step pair of the non-nested arch that

spans them. However, marking just the edges in Ce, that is, the edges on the cut-out segment,

would result in wrong marks if the current split cut needs to be clinched later in order to prevent

crossings with previously found arches. We will see later that the clinching and stretching

also happens automatically during the reconnection of edges according to Gusfield. However,

when marking the edges on ⇡(b, d), we need to explicitly distinguish the cases of clinching and

stretching, as it is done in markSpannedEdges. Note that removing a possible overhang after the

clinching does not a↵ect the set of spanned vertices on ⇡(b, d).



162 Chapter 9 : Optimality in Smoothness and Running Time

If the final split cut will be a vertical pillar (see line 16), an appropriate reusable cut can be

easily found due to the marks previously set on ⇡(b, d); any unmarked edge between ui and vj

on ⇡(b, d) with cost �G(ui, vj) can be chosen.

The edge {ui, vj} in T⇤ that will later represent the final split cut is created in line 19. Note

that {ui, vj} is already a thin edge in T⇤ due to the choice of the step pair after a left arch or a

vertical pillar has occurred as split cut (see line 30), and due to the choice of v0 in line 25 if the

split cut is a right arch; v0 is reconnected to the current vertex ui and becomes vj+1 in the next

step.

Reconnecting Edges. The reconnection in reconnect is done according to Gusfield [66],

where the free vertices form the compound node containing the current step pair, and the set Cv

represents the cut side that is spanned by the split cut. In this context, we define that a vertical

pillar (U, V \ U) in line 17 spans all vertices in U . In order to prevent crossings with previously

found split cuts, the general procedure is to appropriately reconnect the linking edges of the

subtrees of the current compound node in T⇤. In our modified update routine we further use

the reconnection of such edges to establish the final form of the split cuts as described in the

previous section. Recall that if the current split cut is an arch, it is already arch-reshaped, but

not yet stretched or clinched and possible overhangs are not yet removed. While stretching and

clinching directly follows from preventing crossings with previous split cuts, possible overhangs

must be removed explicitly. This is described in the next paragraph. In that paragraph, we

show how the subtrees of the compound node can be found. If the current split cut is a vertical

pillar, no further reshaping is necessary, that is, Cv already induces the final cut.

The linking edges of the subtrees of the current compound node can be easily determined

by the help of the structure of the current intermediate tree T⇤. We observe that a subtree of

the current compound node in T⇤ either corresponds to a fat subtree (in T̂ ) or results from a

previous split cut, and thus, corresponds to the cut side that is spanned by this cut (in T̂ ). A

subtree of the latter form is always linked to ui, while a fat subtree may be linked to ui as well

as to another free vertex in T⇤. For an example, see Fig 9.9(a). The upper drawing shows a

sequence of right arches in T̂ . In the middle, the split cuts induced by the step pairs {u, v1}
and {u, v2} are already processed resulting in the intermediate tree T⇤ right before the next split

cut with respect to step pair {u, v3} is considered. The solid arch-shaped line indicates this split

cut right before line 19 in Algorithm 6, that is, the cut that is induced by Cv so far. In this

example, four subtrees (two of which are fat subtrees) are linked to u and one subtree, which is

also a fat subtree, is linked to a free vertex in Cv.

If a fat subtree is linked to a free vertex that is not in Cv, that is, a free vertex that is not

spanned by the current split cut, the subtree is also not spanned by the split cut, and thus, there

is no need for reconnecting. Hence, we may skip these subtrees of the compound node in the

remaining considerations, and restrict ourselves to the subtrees that are linked to a free vertex

in Cv or to ui. Note that for a vertical pillar or a left arch, the only free vertex in Cv is ui, and

thus, both cases describe the same set of subtrees. In Algorithm 6, the subtrees that are linked

to a free vertex in Cv are stored in N (more precisely, the roots are stored), while the remaining

subtrees are stored in N̄ . The latter set is empty for vertical pillars and left arches.

Removing Overhanging Subtrees. In the following, we show how reconnect removes over-

hanging subtrees, while reconnecting edges according to Gusfield. We observe that an overhang-

ing subtree is not spanned by any previously found split cut, but is separated from its base
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Figure 9.9: Exemplary reconnection of edges in the intermediate tree T⇤. Top: Exemplary
sequences of arches. Current split cut is only arch-reshaped (solid line), but not yet clinched,
which will result in overhangs (dashed line). Removing the overhangs will result in the dotted
line. Middle: Intermediate tree before the current split cut is considered. Bottom: Interme-
diate tree after reconnecting edges for the current split cut. The edge {ui, vj} now represents
the split cut without any overhanging subtrees. Free vertices are empty and become gray
when they are separated from d, fat subtrees are red colored and possibly marked by c̄. Step

vertices ui are bold-framed, step vertices vj are depicted as squares.

vertex (in T̂ ) by at least one previous split cut. Thus, it is must be linked to ui in T⇤. Hence, the

fat subtrees linked to ui are the candidates for overhanging subtrees with respect to the current

split cut if this split cut is an arch. Moreover, all candidates were separated from their base

vertices by at least one previous split cut; otherwise they would not have been connected to ui

in T⇤. In the middle part of Fig. 9.9(a), the red dashed line depicts the current split cut with an

overhanging subtree that is linked to u, due to the reconnection caused by the step pair {u, v1}.
In T⇤, the base vertex of each candidate is part of a subtree that is linked to the current

compound node, and the linking edge of this subtree represents the latest split cut that separates

the candidate from its base vertex. The root of this subtree corresponds to the latest step vertex

on the same cut side as the base vertex. We denote this root by c̄, and observe that c̄ was

assigned to the candidate in line 4 of reconnect, in addition to the red color that all fat subtrees

get at the beginning of Algorithm 6 in line 5. In the middle of Fig. 9.9(a), the fat subtrees that

are linked to u are marked with v1 and v2, while the third subtree is not yet marked, since it is

no candidate for an overhanging subtree with respect to the current split cut. However, after the

splitting, the third subtree becomes a candidate with respect to the next split cut and is thus

marked with v3 at the bottom of Fig. 9.9(a). By the help of these marks, we can now remove

possibly overhanging subtrees from the current split cut as follows.

Consider a fat subtree that is linked (in T⇤) to a free vertex in Cv, and is thus represented
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in N by its root. Such a subtree is an overhanging subtree if and only if it is in Cv, that is, it is

spanned by the current split cut, but its associated vertex c̄ is not in Cv (see second condition in

line 2 in reconnect). We note that this situation only occurs for left arches and vertical pillars,

where the only free vertex in Cv is ui, since any candidate for an overhanging subtree is linked

to ui. An example of overhanging subtrees at a left arch is shown in Fig. 9.9(b). The overhanging

subtree then needs to be reconnected to the opposite step vertex of the current split cut, that

is, the step vertex that is not spanned by the split cut. Any further subtree of the compound

node that is linked to a free vertex in Cv is reconnected, according to Gusfield, if and only if it is

not spanned by the current split cut, that is, if its root is in V \Cv (see first condition in line 2

in reconnect). Consider the third subtree in Fig. 9.9(a) or the subtree marked with v4 in the

middle of Fig. 9.9(b) for an example.

If the current split cut is a right arch, N does not contain any candidate for an overhanging

subtree, since ui /2 Cv. Thus, the subtrees of the compound node that are linked to ui in T⇤

are additionally stored in N̄ , represented by their roots. A fat subtree in N̄ is an overhanging

subtree if and only if it is in Cv, but its associated vertex c̄ is not in Cv. This subtree then must

not be reconnected. Instead, the remaining subtrees in N̄ that have their root in Cv (see line 6

in reconnect) need to be reconnected to the current step vertex in Cv, that is, the step vertex

of the current split cut that is spanned by the split cut. Consider the subtree marked with v2 in

Fig. 9.9(a) for an example.

Finishing the Gomory-Hu Tree for G�. After the reconnection in line 24 and line 28 of

Algorithm 6, the set of free vertices is updated (line 25 and 29), the indices for the step pairs

are increased and the new step pair is chosen. In line 31, the intermediate tree resulting from

the reconnection is finally processed by Cut Tree until all compound nodes are singletons and

all edges are fat edges. In this phase, arbitrary step pairs and arbitrary split cuts are allowed,

since a further processing does not change the cuts that are already represented by fat edges in

the tree.

9.3 Optimality of Asymptotic Worst-Case Running Time

As demonstrated by the example in Fig. 8.5, there exist instances where our dynamic algorithm

proposed in Section 8.2 still needs as many cut computations as a computation from scratch. In

this section we argue that there also exist instances, for which we probably cannot do any better

if the task is to solve the all-pairs minimum-cut problem. To this end, we compare the asymptotic

worst-case running time of our algorithm to the asymptotic running time needed in the worst

case for dynamically solving the all-pairs minimum-cut problem under the assumption of the

recomputation conjecture (Section 6.2.3) and assuming that we have an extended Gomory-Hu

tree, which provides comprehensive information about the cut structure in the current graph G

(see Chapter 6), available in the current time step. We will see that even in this situation

solving the all-pairs minimum cut problem in the next snapshot GU may require at least n� 6

cut computations.

Suppose we are given an extended Gomory-Hu tree for the current graph G, that is, a Gomory-

Hu tree together with n � 1 maximum flows resulting from the construction of the tree and an

extended flow-equivalent tree again with n � 1 maximum flows resulting from the construction

(which are not necessarily distinct form the flows of the Gomory-Hu tree construction). That is,

besides the two tree structures, we may assume that we know
�
n
2

�
DAGs, which we can derive
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from the extended flow-equivalent tree, n � 1 maximum flows associated with the edges in the

flow-equivalent tree and further maximum flows resulting from the Gomory-Hu tree construction.

After a change in G, we aim at a new data structure that again admits to answer the queries of

the all-pairs minimum-cut problem. Due to the nature of the all-pairs minimum-cut problem,

the new data structure thus needs to know at least n � 1 minimum separating cuts in GU ,

independent from its actual form.

Based on our preliminary discussion about di↵erent possibilities for updating given maximum

flows and DAGs, we assume in the following the recomputation conjecture, that is, we assume

that finding a minimum s-t-cut in GU that is not represented in one of the
�
n
2

�
DAGs provided

by an extended Gomory-Hu tree, and for which further no minimum s-t-flow is known that could

be updated, costs a full cut computation. With this assumption, we can imagine the following

situation, where we definitely need n�O(1) cut computations in order to construct the desired

data structure for GU . Let G denote the current graph for which we know an extended Gomory-

Hu tree. After a change in G, suppose that only a constant number c of the minimum separating

cuts represented in the known DAGs remain valid in GU , that is, are still minimum separating

cuts in GU with respect to any cut pair. In other words, at least n�O(1) minimum separating

cuts in GU cannot be deduced from the known DAGs. Suppose further that updating the

known maximum flows also results in new maximum flows that together just induce the few

minimum separating cuts which we already know from the DAGs. In this situation, n � O(1)

cut computations from scratch is the best we can do. In the following we will show an example

where exactly this situation occurs. This proves the following theorem.

Theorem 9.6. The asymptotic worst-case running time of n � O(1) cut computations of our

fully dynamic update algorithm for Gomory-Hu trees is optimal, under the assumption of the

recomputation conjecture, in the sense that also providing further information about the cut

structure of the current snapshot (in form of an extended Gomory-Hu tree) does not achieve any

better asymptotic worst-case running time for solving the all-pairs minimum-cut problem in a

dynamic scenario.

9.3.1 Outline of the Example

For n � 10, we construct a graph Gn = (V,E, c) with n = |V | as follows. The base of Gn is

a wheel graph Wn consisting of a center c and an (n � 1)-cycle v1 . . . vkzyxw that is extended

by two further edges {w, y} and {x, z} (see Fig. 9.10(a)). Due to these additional edges, the

vertices w, x, y, z, c induce a K5-minor such that Gn is not planar. The main ingredient of

the construction is a carefully chosen (initial) cost function c : E ! N, which we define in

the next section, together with a change of the cost of a particular edge. The initial cost

function is chosen such that the set of all minimum separating cuts in Gn consists of exactly

n cuts, which are depicted in Fig. 9.10(b). That is, the
�
n
2

�
DAGs provided by the extended

Gomory-Hu tree in this example together represent exactly these minimum separating cuts.

The numbers associated with these cuts indicate a non-decreasing order of the cuts by costs,

where the cuts ✓k and ✓k+1 as well as ✓k+4 and ✓k+5 are the only pairs of cuts with identical

costs. Figure 9.10(c) shows a Gomory-Hu tree T (Gn) of Gn, which we assume to result from

the Cut Tree execution (Gn,F ,K) with F = {vk, c}, . . . , {v1, c}, {z, c}, {w, c}, {x, c}, {y, c} and

K = ✓1, . . . , ✓k�1, ✓k+1, . . . , ✓k+5. Furthermore, we assume that the sequence vk, . . . , v1, z, w, x, y

of vertices and the sequence K of cuts was used to construct the flow-equivalent tree (starting
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Figure 9.10: Outline of the example proving Theorem 9.6. The colors in (a) will be used to
define the precise cost function. Dashed red lines indicate minimum separating cuts.

with a star with center c); see Section 6.2.1 for a description of the algorithm. The resulting flow-

equivalent tree is shown in Fig. 9.10(d). Hence, the extended Gomory-Hu tree in this example

provides n�1 maximum flows with respect to the vertex pairs in F . We remark that, apart from

the maximum v1-c-flow, which represents ✓k and ✓k+1, each of the remaining flows represents

exactly one cut. That is, the minimum v-c-cut depicted in Fig. 9.10(b) is unique for each vertex

pair {v, c} with v 2 V \ {c, v1}
In the next time step the cost of the cycle edge {w, v1} decreases. As a consequence, the cut

✓k+1 becomes the unique minimum vi-c-cut for all vertices vi with i 2 {2, . . . , k}. Furthermore, ✓k

and ✓k+1 remain the only minimum v1-c-cuts, and ✓k+2, . . . , ✓k+5 remain unique minimum v-c-

cuts for v = z, w, x, y. That is, updating the n � 1 maximum flows provided by the extended

Gomory-Hu tree yields just the cuts depicted in Fig. 9.10(e). Note, that this is only a constant

number of cuts. Furthermore, we will see that the cuts in Fig. 9.10(e) are the only minimum

separating cuts in G n that have been already presented by a DAG of the extended Gomory-

Hu tree in the previous time step (or the other way round, these cuts are the only minimum

separating cuts of the known DAGs that are also minimum separating cuts in G n ). Hence, our

example satisfies exactly the conditions claimed above.

In the following we give the precise cost function for Gn and define the change of the cost of

the cycle edge {w, v1}. Then, we show that the order given by the numbers in Fig. 9.10(b) is

correct, and that ✓k and ✓k+1 are the only minimum v1-c-cuts in Gn and G n and that each of

the remaining cuts depicted in Fig. 9.10(b) is a unique minimum v-c-cut in Gn for the vertex v 2
V \ {c, v1} it separates from c. To this end, we generally compare the costs of the depicted cuts

to the costs of other possible minimum v-c-cuts (v 2 V \ {c}) in Gn and in G n . Based on this
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comparison, we will further see that in G n the cut ✓k+1 is the unique minimum vi-c-cut for

all vertices vi with i 2 {2, . . . , k} and that ✓k+2, . . . , ✓k+5 are still unique minimum v-c-cuts for

v = w, x, y, z.

In a final step, we will then argue that each of the
�
n
2

�
DAGs provided by the extended Gomory-

Hu tree either equals one DAG or is a union of two DAGs in the set {DAGv,c | v 2 V \ {c}}
(considering DAGs as sets of cuts). Together with the considerations above, this yields that the

cuts depicted in Fig. 9.10(a) are indeed the only minimum separating cuts in Gn and that our

example behaves as described in the outline, which finally proves Theorem 9.6.

9.3.2 Cost Function and Change of Edge Cost

In order to define the initial cost function c : E ! N0, we define partial cost functions on subsets

of edges, yielding c by combining these functions. We distinguish the subsets of edges by colors,

as indicated in Fig. 9.10(a). The change of the edge cost in the next time step is defined as a

decrease of the cost of the cycle edge e0,1 = {w, v1} from A to 1.

• red spokes: We denote the red spokes by {vi, c} =: ei, i = 1, . . . , k. Note that by assumption

Gn has at least 10 vertices and thus k � 5. The idea of the partial cost function defined

for these spokes is that each spoke ei is at least as expensive as all the spokes e1, . . . , ei�1

together. Thus, we define the costs as follows: c(e1) := k, c(ei) :=
Pi�1

j=1 c(ej) for i =

2, . . . , k. This yields c(e1) = c(e2) = k and c(ei) = 2(i�2)k for i = 3, . . . , k. The total costs

of all spokes are denoted by A :=
Pk

j=1 c(ej) = 2c(ek) = 2(k�1)k.

• green cycle edges: The green cycle edges are denoted by {vi, vi+1} =: ei,i+1 for i = 1, . . . , k�
1 and {w, v1} =: e0,1. We define c(e0,1) := A and the partial cost function on the remaining

edges such that each cycle edge ei,i+1 together with the spokes e1, . . . , ei costs exactly A+i,

for i = 1, . . . , k � 1. This yields c(ei,i+1) := A �
Pi

j=1 c(ej) + i for i = 1, . . . , k � 1. Note

that due to the choice of the costs of the red spokes it further holds for i = 1, . . . , k � 1

that each cycle edge ei,i+1 together with the single spoke ei+1 also costs A+ i.

• thin cycle edge {vk, z}: We define c(vk, z) := 1.

• remaining black edges: The edges {w, y} and {x, z} cost 1, each. The remaining black

edges are very expensive, close to infinity. We denote the cost of such an expensive spoke

by I.

9.3.3 Comparing Cut Costs

In order to compare the costs of the cuts considered in this example, which we claim to be

minimum v-c-cuts (for v 2 V \ {c}), to the costs of other possible minimum v-c-cuts, we state a

central observation regarding the shape of possible minimum v-c-cuts in Gn. Due to the wheel

structure of Gn, the candidates for minimum v-c-cuts in both time steps are all of the form

(⇡, V \ ⇡) with ⇡ a path in the (n � 1)-cycle containing v. In order to prove that a given cut

is a minimum v-c-cut, it thus su�ces to compare its cost to the costs of cuts that separate a

path ⇡ 3 v from c. Referring to the end points of ⇡ = p̄ . . . q̄, we denote such a cut by ✓p̄,q̄ with q̄

following p̄ in a counterclockwise direction in Fig. 9.10(a). If p̄ = q̄ we also write ✓p̄.

We further observe that, due to the high costs of the spokes connected to w, x, y and z, in

both time steps, the path ⇡ of a minimum vi-c-cut (⇡, V \ ⇡) with i 2 {1, . . . , k} contains no
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vertex from the set {w, x, y, z}. If (⇡, V \ ⇡) is a minimum v-c-cut with v 2 {w, x, y, z}, then v

is the only vertex from the set {w, x, y, z} that is contained in ⇡. This yields directly that the

cuts ✓k+4 and ✓k+5 are the unique minimum separating cuts for the vertex pairs {x, c} and {y, c}
in both time steps.

Comparing Costs of ✓k+2

, . . . , ✓k+5

. In this paragraph we will see the following.

(1) it is c(✓k+2) < c(✓k+3) < c(✓k+4) = c(✓k+5) in Gn

(2) each cut in {✓k+2, . . . , ✓k+5} is the unique minimum v-c-cut in Gn and G n with respect to

the vertex v 2 {w, x, y, z} it separates from c

For ✓k+4 and ✓k+5 we have already seen above that (2) holds. For ✓k+2 and ✓k+3 the following

table lists the costs in both time steps. The first column is associated with the initial time step,

the second column represents the costs after the change in Gn. Due to the change in Gn, the

cost of ✓k+3 decreases by A� 1, while the cost of ✓k+2 remains the same.

initially after change

✓k+2 2I + 2

✓k+3 2I +A+ 1 2I + 2

Now we compare the cost of ✓k+2 and ✓k+3 to the costs of all further candidates of minimum

v-c-cuts with v 2 {z, w}. According to the notation introduced above, the latter are denoted

by ✓v
p

,z and ✓w,v
q

with p, q 2 {1, . . . , k}. Recall that the indices indicate the endpoints of paths

in the (n� 1)-cycle of Gn.

The costs of ✓v
p

,z and ✓w,v
q

are given for each time step in the following two tables.

✓v
p

,z initially after change

p > 1 2I +A+ p+
Pk

j=p+1 c(ej)

p = 1 2I + 2A+ 1 2I +A+ 2

✓w,v
q

initially after change

q < k 2I +A+ q + 1

q = k 2I +A+ 2

We observe that for p > 1 the cut ✓v
p

,z does not cross the changing cycle edge e0,1 = {w, v1}.
Hence, the cost remains stable in both time steps. For p = 1 the cost of ✓v

p

,z decreases by A� 1

after the change, since in this case ✓v
p

,z crosses e0,1 = {w, v1}. The cost of ✓w,v
q

remains stable

in all cases and time steps, since ✓w,v
q

never crosses the changing cycle edge e0,1 = {w, v1}.
To further verify the values in the tables, observe that the cost of ✓v

p

,z can be determined

by c(✓v
p

,z) = c(ep�1,p) +
Pk

j=p c(ej) + 2I + 1 and the cost of ✓w,v
q

is given by c(✓w,v
q

) =

1 + 2I +
Pq

j=1 c(ej) + c(eq,q+1), and recall the principles of the initial cost function. In the first

table we exploit the fact that c(ep�1,p) + c(ep) = A+ (p� 1) for p = 2, . . . , k. The values of the

second table are based on the fact that
Pq

j=1 c(ej) + c(eq,q+1) = A+ q for q = 1, . . . , k.

Finally comparing the costs to the costs of ✓k+2 and ✓k+3 yields the following. The minimum

cost of ✓v
p

,z over all choices of p 2 {1, . . . , k} in any time step is 2I +A+ 2. With A � k this is

still more expensive than 2I+2, which is the cost of ✓k+2 (see the first row in the previous table).

Hence, ✓k+2 is the unique minimum z-c-cut in both time steps, that is, (2) also holds for ✓k+2.

The minimum cost of ✓w,v
q

over all choices of q 2 {1, . . . , k} in any time step is 2I +A+2. This
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is again still more expensive than 2I+A+1, which is the maximum cost of ✓k+2 (see the second

row in the previous table). Hence, ✓k+3 is the unique minimum w-c-cut in both time steps, that

is, (2) finally holds for ✓k+3, and thus, (2) is totally proven.

In order to prove (1), we finally consider the costs of ✓k+4 and ✓k+5 and compare them to the

costs of ✓k+2 and ✓k+3 presented in the first column of the first table. Obviously, ✓k+4 and ✓k+5

have cost 3I + 1 in Gn, which is more expensive than c(✓k+3) = 2I +A+ 1. The latter is again

more expensive than c(✓k+2) = 2I + 2. Thus, (1) holds. In the same manner, we now consider

the costs of the remaining cuts depicted in Fig. 9.10(a).

Comparing Costs of ✓
1

, . . . , ✓k+1

. In this paragraph we will see the following.

(3) it is c(✓1) < · · · < c(✓k�1) < c(✓k) = c(✓k+1) in Gn

(4) each cut in ✓j is the unique minimum vk+1�j-c-cut in Gn for j = 1, . . . , k � 1

(5) ✓k and ✓k+1 are the only minimum v1-c-cuts in Gn and G n
(6) ✓k+1 is the unique minimum vi-c-cut for i = 2, . . . , k in G n

We compare again the costs of ✓1, . . . ✓k+1 in each time step to the costs of all candidates for

minimum vi-c-cuts with i = 1, . . . , k. According to the notation introduced above, the latter are

denoted by ✓v
p

,v
q

with p, q 2 {1, . . . , k} and p  i  q. We also allow p = q = i. Note that this

classes of cuts represent all candidates for minimum vi-c-cuts, including ✓1, . . . ✓k+1.

The next two tables list the costs of all these candidates (including ✓1, . . . ✓k+1) for each time

step. For the sake of clarity regarding the choice of parameters, we present the costs of the

candidates ✓v
p

,v
q

with p = q = i in the first table and the costs of all remaining candidates in

the second table.

✓v
i

initially after change

i 2 {2, . . . , k � 1} 2A+ 2i� 1�
Pi

j=1 c(ej)

i = k A+ k

i = 1 2A+ 1 A+ 2

✓v
p

,v
q

(p < q) initially after change

p > 1, q < k 2A+ (p� 1)�
Pp

j=1 c(ej) + q

p > 1, q = k 2A+ p�
Pp

j=1 c(ej)

p = 1, q < k 2A+ q A+ q + 1

p = 1, q = k 2A+ 1 A+ 2

We observe that for 1 < p  q < k none of the cuts ✓v
p

,v
q

crosses the changing cycle

edge e0,1 = {w, v1}. Hence, the costs remain stable in both time steps. For the remaining

parameter values the costs of the cuts ✓v
p

,v
q

decrease according to the decrease of the costs of

the changing cycle edge e0,1 = {w, v1}, which is A� 1.

To further verify the values in the tables, observe that the cost of any cut ✓v
p

,v
q

is given

by c(✓v
p

,v
q

) = c(ep�1,p) +
Pq

j=p c(ej) + c(eq,q+1), where the second term becomes c(ei) for

p = q = i, and recall the principles of the initial cost function. In both tables, we exploit the

fact that c(ep�1,p) + c(ep) = A+ (p� 1) for p = 2, . . . , k, and c(eq,q+1) = A�
Pq

j=1 c(ej) + q for

q = 0, . . . , k.

In order to prove (3), we explicitly extract the costs of ✓1, . . . , ✓k+1 in Gn from the tables

or directly from the cost function. First we see in the tables that ✓1 = ✓v
k

has cost A + k.
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Furthermore, for j = 2, . . . , k�1 ✓j = ✓v
k+1�j

,v
k

has cost 2A+p�
Pp

j=1 c(ej) with p = k+1� j.

For i = 2 this yields c(✓2) = A + (k � 2) + 2k�2k + 1 (by the principles of the cost function),

which is more expensive than c(✓1) = A + k. For increasing j, we observe that p = k + 1 � j

decreases by 1 in each step, while the sum that is subtracted in each step increases by c(ep) > 1.

Thus, the costs increase with increasing j. For j = k � 1 this yields c(✓k�1) = 2A � 2k + 1

(by the principles of the cost function). Finally, ✓k = ✓v
1

has cost 2A + 1, which is again

more expensive than c(✓k�1) = 2A � 2k + 1. For ✓k+1 = ✓v
1

,v
k

we see again in the table that

c(✓k+1) = 2A+ 1 = c(✓k). This proves (3).

In order to prove (4), (5) and (6), we seek the cheapest minimum vi-c-cut for each vertex vi,

i 2 {1, . . . , k} in each time step. We consider both time steps separately.

Initial time step. First observe that, due to the parameters, each row in tables above represents

a class of cuts. We first prove (4). In (4) we claim that ✓1 = ✓v
k

is the unique minimum vk-c-cut.

Hence, we must prove that c(✓v
k

) = A+k is cheaper than any other cut that separates vk from c.

The latter cuts are hidden in second table in the second and the last row. At a second glance,

we see that the cuts in these rows are exactly the cuts ✓2, . . . , ✓k�1, ✓k+1. For these cuts we have

already proven (when proving (3)) that they are all more expensive than ✓1. Hence, for ✓1 (4)

holds.

For ✓j with j = 2, . . . , k � 1, we claim in (4) that ✓j = ✓v
i

,v
k

is the unique minimum vi-c-cut

with i = k + 1� j. Any cut ✓j is hidden in the second table in the second row (with p = i) and

any other cut that also separates vi from c is either hidden in the first table in the first row or

in any row of the second table. Hence, we compare the cost of cut ✓j , which we denote by I,

to the cost in the first table in the first row, the minimum cost in second table in the first and

second row, and the costs in the second table in the third and fourth row. We denote the latter

costs by Q1, P1, P2, P3 and P4 and prove that for all P 2 {Q1, P1, P2, P3, P4} it is P � I > 0 for

all i 2 {2, . . . , k � 1}. For Q1 this directly yields

Q1 � I = [2A+ 2i� 1�
iX

j=1

c(ej)]� [2A+ i�
iX

j=1

c(ej)] = i� 1 > 0

For P1 and P2, that is, for the first and second row in the second table, we observe that the

costs among all cuts that separate vi from c become minimum (assuming a fixed q) for p = i.

Recall that for p > i the corresponding cut ✓v
p

,v
q

is no vi-c-cut anymore. Hence, we consider P1

and P2 assuming that p = i. For P1 this yields

P1 � I = [2A+ (i� 1)�
iX

j=1

c(ej) + q]� [2A+ i�
iX

j=1

c(ej)] = q � 1 > 0

For P2 we get exactly the cuts ✓j = ✓v
i

,v
k

with i = k + 1� j. Hence, there is nothing to prove.

For P3 and P4 we simply get

P3 � I = [2A+ q]� [2A+ i�
iX

j=1

c(ej)] = q � i+
iX

j=1

c(ej) > 0

P4 � I = [2A+ 1]� [2A+ i�
iX

j=1

c(ej)] � 1� i+ k > 0
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The equations above show that for j = 2, . . . , k � 1 the cut ✓j = ✓v
i

,v
k

with i = k + 1 � j is

indeed the unique minimum vi-c-cut in Gn. Hence, we have proven (4).

Now we prove (5) for Gn. In (5) we claim that ✓k = ✓v
1

and ✓k+1 = ✓v
1

,v
k

are the only

minimum v1-c-cuts in Gn. We already know from (1) that c(✓v
1

) = 2A + 1 = c(✓v
1

,v
k

). The

only row that remains for comparing in this case is the third row of the second table. In doing

so we get c(✓v
1

,v
q

)� c(✓v
1

) = [2A+ q]� [2A+ 1] = q � 1 > 0. Thus, ✓v
1

and ✓v
1

,v
k

are the only

minimum v1-c-cuts in Gn. Regarding the next time step, after the change in Gn, we still need

to prove (5) for G n and (6).

After the change. We first prove (5) for G n . In (5) we claim that ✓k = ✓v
1

and ✓k+1 = ✓v
1

,v
k

are the only minimum v1-c-cuts also in G n . The tables directly tell us that also after the change

it is c(✓v
1

) = A+ 2 = c(✓v
1

,v
k

). The only row that again remains for comparing is the third row

of the second table. In doing so we get c(✓v
1

,v
q

) � c(✓v
1

) = [A + q + 1] � [A + 2] = q � 1 > 0.

Thus, ✓v
1

and ✓v
1

,v
k

are also the only minimum v1-c-cuts in G n , which totally proves (5).

Now we prove (6). In (6) we claim that ✓k+1 = ✓v
1

,v
k

is the unique minimum vi-c-cut in G n
for i = 2, . . . , k. Similar to the initial time step, the cut ✓k+1 corresponds to the last row in the

second table and any other cut that also separates vi from c is either hidden in the first table in

the first row or in one of the remaining rows of the second table. Hence, we compare the cost of

cut ✓k+1, which we denote by I, to the cost in the first table in the first row, the minimum cost

in second table in the first and second row, and the costs in the second table in the third row.

We denote the latter costs by Q1, P1, P2, and P3 and prove that for all P 2 {Q1, P1, P2, P3, P4}
it is P � I > 0 for all i 2 {2, . . . , k}. For Q1 this directly yields

Q1 � I = [2A+ 2i� 1�
iX

j=1

c(ej)]� [A+ 2] > 2i� 3 > 0

For P1 and P2, that is, for the first and the second row in the second table, we already observed

before that the costs among all cuts that separate vi from c become minimum (assuming a

fixed q) for p = i. Hence, we consider P1 and P2 assuming again p = i. For P1 this yields

P1 � I = [2A+ (i� 1)�
iX

j=1

c(ej) + q]� [A+ 2] > q + i� 3 > 0

For P2 we get exactly the cuts ✓j = ✓v
i

,v
k

with i = k+1� j and j = 1, . . . , k�1. Since the costs

of these cuts do not change in G n , we already know from the proof of (3) that the minimum

costs are c(✓1) = A+ k. Hence, we get

P2 � I = [A+ k]� [A+ 2] = k � 2 > 0

For P3 we simply get

P3 � I = [A+ q + 1]� [A+ 2] = q � 1 > 0

The equations above show that the cut ✓k+1 = ✓v
1

,v
k

is indeed the unique minimum vi-c-cuts

for all vertices vi with i 2 {2, . . . , k} in G n . Hence, we have proven (6).

9.3.4 Concluding the Proof

Since in Gn the cost of ✓k+2, which is 2I + 2, is more expensive than the cost of ✓k+1, which

is 2A+1, we know by (1) and (3) that the non-decreasing order of the cuts given by the numbers
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in Fig. 9.10(b) is correct. From (2), (4), and (5) we further know that the cuts depicted in

Fig. 9.10(b) are the only minimum v-c-cuts in Gn for v 2 V \ {c}. Due to the order and the

shape of the cuts in Fig. 9.10(b) it further holds that each pair {x, y} ✓ V \ {c} is separated by

a cheapest cut among all minimum x-c-cuts and minimum y-c-cuts. Vice versa, we observe that

each minimum x-y-cut in Gn with x, y 2 V \ {c} either separates x or y from c. Thus, it must

be also a minimum x-c-cut or a minimum y-c-cut, respectively.

Regarding these facts, it can be seen that each of the
�
n
2

�
DAGs provided by the extended

Gomory-Hu tree either equals one DAG or is a union of two DAGs in the set {DAGv,c | v 2
V \{c}} (considering DAGs as sets of cuts). More precisely, besides DAGx,y = DAGx,c[DAGy,c,

all remaining DAGs provided by the extended Gomory-Hu tree form the equivalence classes

{DAGv
i

,c, DAGv
i

,v
i�1

, . . . ,DAGv
i

,v
1

, DAGv
i

,w, DAGv
i

,x, DAGv
i

,y, DAGv
i

,z} for i = k, . . . , 1,

as well as {DAGz,c, DAGz,w, DAGz,x, DAGz,y}, {DAGw,c, DAGw,x, DAGw,y}, and {DAGx,c},
{DAGy,c}. Hence, the cuts depicted in Fig. 9.10(b) are indeed the only minimum separating

cuts in Gn. Finally, we know from (6) that after the change the previous minimum separating

cuts in Gn behave as claimed before. According to the outline of this example this finally proves

Theorem 9.6.



Conclusion of Part II

We discussed the nature of Gomory-Hu trees as a data structure in comparison with similar data

structures in the field of minimum cuts and connectivity, thereby emphasizing the outstanding

role of Gomory-Hu trees regarding the all-pairs minimum-cut problem. We first considered

Gomory-Hu trees in a static context in Chapter 7.

Results for Static Scenarios. Since Gomory’s and Hu’s idea to represent all-pairs minimum

cuts in a tree [59] is rather old, notations and descriptions in their pioneering work appear a

bit outlandish in some points. Thus, we provided a more compact description of the Gomory-

Hu tree construction pointing out the degrees of freedom, the fundamental technique of edge

reconnection, and the relation to the simpler approach introduced by Gusfield [66]. The aim

was to give a formulation that is clearly structured and condensed to main techniques such

that similarities to other cut-based approaches become obvious. We will see that, for example,

the cut-clustering algorithm considered in Part III strongly relies on Gomory’s and Hu’s tree

construction. Furthermore, we developed the new data structure of unique-cut trees, which

represents all U-cuts of an undirected, weighted graph, that is, all minimum separating cuts that

minimize one side of the cut. In contrast to other attempts to represent cut structures in form of

Gomory-Hu trees (recall that Gomory-Hu trees for vertex cuts do not exist), this specialization

to U-cuts is possible, although in general U-cuts may cross, and the shape of the split cuts

originally used during the Gomory-Hu tree construction is not guaranteed to be the same in the

final tree.

Results for Dynamic Scenarios. In Chapter 8, we considered Gomory-Hu trees also in a

dynamic scenario. With our dynamic update algorithm developed for Gomory-Hu trees of undi-

rected, weighted graphs, we solve a problem that other authors also call sensitivity analysis in

undirected, weighted multiterminal flow networks and that was already claimed to be challenging

by authors like Barth et al. [11]. In the light of a dynamic scenario, the task is not only, as in

sensitivity analysis, to understand how minimum separating cuts and their values behave when

the underlying graph changes, but also to e�ciently and smoothly maintain the Gomory-Hu data

structure with all its special properties over the time. We proved in Chapter 9 that all update

procedures for the di↵erent types of changes occurring in the dynamic graph guarantee optimal

temporal smoothness. Interestingly, it turned out that obtaining a simple update algorithm in

the case of an edge insertion or increasing edge cost is almost trivial. However, this procedure

is far from temporal smoothness. Designing an algorithm that additionally guarantees tempo-

ral smoothness is surprisingly di�cult in this case. On the other hand, e�ciently updating a

Gomory-Hu tree in the case of an edge deletion or decreasing edge cost is a priori more di�cult,

but the resulting algorithm is still easy to implement and can be proven to already guarantee

temporal smoothness.

173
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In the experiments in Chapter 8.3, our update approach showed a high potential for saving

cut computations compared to a Gomory-Hu tree construction from scratch, and performed very

well on the tested instance of an email-communication network. A more detailed analysis focused

on the main factors that are responsible for potential savings showed that the shape of a Gomory-

Hu tree significantly influences the number of saved cut computations. Moreover, we have seen

that the cut structure of many graphs is very robust against changes, and hypothetically, even

more cut computations could be saved. The asymptotic worst-case running time of our update

algorithm, however, cannot be improved even by providing more information about the cut

structure of the current graph in form of an extended Gomory-Hu tree, which additionally has

access to several maximum flows and the DAGs that represent all existing minimum separating

cuts in the graph. In this sense, the asymptotic worst-case running time of our algorithm is

optimal.

Future Work and Further Notes. Due to the robustness of the cut structure of many

graphs, there is still potential for saving even more cut computations despite the already good

performance of our update algorithm. The search for additional techniques to also exploit this

potential could be addressed in future work. In more general dynamic scenarios, where the

consecutive snapshots di↵er in more than one edge or vertex, the cut structure is probably less

robust. An extension of our update algorithm to more general dynamic scenarios is also an

interesting challenge.

We finally remark that for both cases, edge deletion and cost decrease and edge insertion and

cost increase, the proof of optimal temporal smoothness in Chapter 9 implies that each old cut in

a Gomory-Hu tree that remains valid with respect to the vertices incident to its corresponding

edge also appears in the new Gomory-Hu tree returned by our update algorithm. This even

strengthens our smoothness result.
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Cut-Based Clustering
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CHAPTER 10

Introduction –

Graph Clustering and Cohesive Subsets

In contrast to augmentation problems as considered in Part I, which seek for increasing the

connectivity of a given graph by adding additional edges, graph clustering problems, roughly

speaking, aim at decomposing a given graph along sparse cuts into somehow dense subgraphs,

so-called clusters. This general aim is also expressed by the clustering paradigm of intra-cluster

density and inter-cluster sparsity (Fig. 10.1). The vague terms sparse and dense refer to the edge

structure of the underlying graph and are filled with di↵erent formal definitions, depending on

the application and the particular algorithm that claims to find such clusters. In this way, almost

every clustering algorithm induces its own formal problem definition. This is why comparing

di↵erent clustering algorithms is very di�cult.

On a high level, the literature distinguishes between algorithms that seek for pairwise disjoint

clusters as depicted in Fig. 10.1(a) and algorithms that aim at detecting overlapping clusters as

depicted in Fig. 10.1(b). Many of the former algorithms further allow to compute also cluster

hierarchies, where the clusters of each level are still disjoint, but the clusters of di↵erent levels

are nested, which depicts the nesting behavior of the clusters in a particular clear way. Consid-

ering several such hierarchies with di↵erent hierarchy levels of the same network further provides

insight into the structure of overlapping clusters. Since the idea of graph clustering is originally

motivated by the assumption that the structure of real-world networks naturally inheres signifi-

cant groups, which are usually not disjoint but intersect, clustering algorithms that find nested

or overlapping clusters became in particular important.

The techniques used by these clustering algorithms are as diverse as the applications they

are designed for. Some algorithms are especially geared to the needs of a particular application,

exploiting properties and possibly additional information provided by the networks typically

occurring in this application. Other algorithms are designed to find dense clusters in general

graphs just based on the edge structure. The results of these algorithms usually depend on

how well the formal problem definition solved by the particular algorithm fits the hidden cluster

structure in the given network; an issue that is, for example, also discussed in [143]. This is

one of the main reasons why there exists no commonly used framework for evaluating cluster-

ing results on general graphs and comparing di↵erent clustering approaches. The overwhelming

majority of algorithms that seek for good clusters in general graphs relies on heuristics for some

NP-hard optimization problems regarding di↵erent formal definitions of density and sparsity.

These algorithms are often evaluated just with respect to their special objective. Nevertheless,
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(a) Disjoint subgraphs. (b) Overlapping subgraphs.

Figure 10.1: Decompositions of a graph into subgraphs according to the intra-cluster density
and inter-cluster sparsity paradigm, that is, into subgraphs that are characterized by dense

internal connections while they are only sparsely connected to each other.

a few objectives, like modularity [116], became so popular that they are meanwhile also used

as general quality measures for clusters. For an overview on further quality indices see, for

example, the book of Brandes and Erlebach [21]. Other algorithms use special techniques that

guarantee in advance that the found clusters satisfy some special cohesion properties or exceed

a certain quality limit with respect to a numerical measure. The latter are in particular inter-

esting for measures that are even NP-hard to compute. Popular examples are expansion and

conductance [87, 55, 8]. In contrast to other measures, like modularity, these measures cannot

be handled by a greedy heuristic, since it is already NP-hard to determine the exact quality

of a single cluster. Instead, the corresponding algorithms employ, for example, spectral or cut-

based clustering techniques. For an overview on di↵erent clustering techniques see the surveys

of Schae↵er [125] and Fortunato et al. [46], as well as the thesis of Görke [60].

In this work, we will focus on a cut-based clustering algorithm originally presented by Flake

et al. [42], which detects hierarchies of clusters of a guaranteed expansion. We will intensively

investigate theoretical aspects of this algorithm and further develop this approach including an

adaption to evolving graphs based on our results for dynamic Gomory-Hu trees in Part II.

Cohesive Subsets. The quality guaranteed by algorithms that find clusters of special cohesion

properties is not measured by a numeric value. Instead, these algorithms guarantee the detection

of groups that already satisfy the clustering paradigm of intra-cluster density and inter-cluster

sparsity due to their formal definition. The idea of cohesive subsets originates from the analysis

of social networks, where they have a particularly nice interpretation. In this context, a cohesive

subset represents a community of predominantly connected entities, that is, a community whose

members are in some sense stronger connected to other members of the community than to

entities that are excluded from the community. One example of cohesive subsets in an undirected,

weighted graph G = (V,E, c) are LS-sets, first introduced by Luccio and Sami [103]. A set S $ V

is an LS-set if c(U, S) > c(U, V \ S) for each proper subset U $ S. That is, the members of S

are stronger connected to other members of S in terms of edge costs than to vertices that do

not belong to S. Borgatti et al. [15] extensively discuss further properties of LS-sets following

from this definition and the benefit of these properties in the context of network analysis and

graph clustering applications. The fact that LS-sets are hierarchically nested constitutes only

one of these properties. Borgatti et al. also propose an algorithm for enumerating all LS-sets

in a given graph based on �-sets. Interestingly, the �-sets of Borgatti et al. are equivalent to

the maximal components of Nagamochi [110], who considers this kind of sets from a theoretical

point of view in the light of graph connectivity (recall Chapter 6 of Part II). The algorithm

of Borgatti et al. extracts the �-sets from a Gomory-Hu tree, which needs at least n � 1 cut
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(a) LS-sets of the graph in Fig. 6.1(a).
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(b) �-sets of the graph G in Fig. 6.1(a).

Figure 10.2: Set of all LS-sets (extreme sets) (a) and set of all �-sets (maximal components)
(b) of the graph G in Fig. 6.1(a). Red numbers denote edge costs di↵erent from 1, dashed
black lines indicate LS-sets and �-sets. The set of LS-sets forms a proper subclass of the set

of �-sets.

computations. Nagamochi, however, presents a simple and very elegant approach to enumerate

all LS-sets (Nagamochi calls them extreme sets) based on MA-orderings [110] that runs inO(nm+

n2 log n) time. Figure 10.2(a) depicts the LS-sets (or extreme sets) of the graph in Fig. 6.1(a)

in comparison with the �-sets (or maximal components) of the same graph (Fig. 10.2(b)). Note

that LS-sets form a proper subclass of �-sets.

In this work, we will see that the cut-based clustering algorithm of Flake et al. [42] returns

not only clusters of a guaranteed expansion, but also special cohesive subsets. We will bring

these special cohesive subsets into line with existing concepts of cohesive subsets as discussed

by Borgatti et al. and Nagamochi, and we will show how inclusion-maximal decompositions

of a graph into such subsets can be obtained from the unique-cut tree introduced in Part II,

Chapter 7.

Other Significant Subgraphs. Besides �-sets and LS-sets, many further significant sub-

structures have been considered in graphs. A very fundamental structure are, for example,

cliques [104]. A set of vertices in a graph is a clique if each vertex is adjacent to any other

vertex in the set. The clique percolation method (PCM) of Derényi et al. [31] detects groups

of maximal overlapping cliques in an undirected, unweighted graph that can be interpreted as

(overlapping) clusters. This method is a special case of a more general clique-clustering frame-

work proposed by Everett and Borgatti [40], which applies an arbitrary clustering algorithm to a

weighted auxiliary graph H that represents the overlap of inclusion-maximal cliques in the input

graph. In the special case considered by Derényi et al., the auxiliary graph H encodes if two

inclusion-maximal cliques (of at least size k) overlap in at least k� 1 vertices. More precisely, H

is a graph where inclusion-maximal cliques in the input graph are represented by vertices and

two vertices are connected by an edge if and only if the corresponding cliques share at least k�1

vertices. As clustering algorithm on H, Derényi et al. simply employ a depth-first search (DFS),

which returns the connected components of H. In the original graph this still induces overlap-

ping clusters, since inclusion-maximal cliques may also overlap in less than k � 1 vertices. The

running time of this approach is dominated by the computation of inclusion-maximal cliques,

which is exponential in the number of vertices [22].

Another very fast approach, called Orca [30], relies on dense subgraphs similar to a clique.

Roughly speaking, it considers a dense subgraph as a set of vertices within distance d of some

center, such that each vertex in the subgraph is within distance at most d of at least a given

fraction of the neighbors of the center. If the distance is set to 1, we obtain the center together
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with those neighbors that are connected to enough other neighbors. Mishra et al. [108] introduce

overlapping (↵,�)-clusters based on parameters that regulate the external sparsity and internal

density. More precisely, ↵ denotes the maximum fraction of internal vertices each external vertex

connected to, while � denotes the minimum fraction of internal vertices each internal vertex is

connected to. The authors investigate combinatorial properties of these clusters and show in

an experiment that their algorithm detects around 90% of all (↵, 1)-clusters, which correspond

to cliques. Borgatti et al. [15] introduce further relaxations of LS-sets and �-sets and discuss

several relations between cliques and further structures like k-plexes [132], n-clans, n-clubs,

and n-cliques [109], which can be also seen as generalizations of cliques. We remark that the

structures listed above are primarily defined for unweighted graphs. However, most of them

possess a straightforward adaption to weighted graphs.

10.1 Contribution and Outline

The results in Part III are based on di↵erent publications with di↵erent coauthors. Since the

arrangement of topics in these publications does not necessarily agree with the structure of

chapters in this part, in this outline, we shortly discuss the underlying publications per chapter.

Chapter 10: Introduction – Graph Clustering and Cohesive Subsets
We introduce specific notations related to graph clustering and briefly present the quality mea-

sures modularity and expansion at the end of this chapter.

Chapter 11: Static Hierarchies of Cut Clusterings
We introduce the static cut-based clustering algorithm of Flake et al. [42], which plays the cen-

tral role in Part III, in Section 11.1. This elegant algorithm attracts our attention, since it

returns clusters with provable quality in terms of a quality measure (namely expansion) that is

NP-hard to compute, it enables the user to choose from clusters of di↵erent granularity, as it

can be iteratively applied in order to obtain hierarchically nested clusters, and it performed well

detecting reasonable clusters in the experimental study of the authors. We further introduce

source communities, which are a concept of cohesive subsets, and bring this concept in line with

existing cohesive subsets like LS-sets, systematically listing interchangeable names, definitions,

and di↵erent nesting behaviors. A full characterization of source communities based on general-

ized M-sets as well as a full characterization of the clusters that can be found by the algorithm of

Flake et al. based on source communities are finally provided at the end of Section 11.1. These

characterizations show that the clusters detected by the clustering algorithm form a proper sub-

class of source communities, that is, additionally to the quality guarantee proven by Flake et al.

the clusters provide desirable cohesion properties.

In Section 11.2, we improve the cut-based clustering algorithm by the help of a parametric

search technique. The algorithm takes an input parameter ↵ that controls the coarseness of the

resulting clusters and varying the parameter values prompts the algorithm to return a cluster

hierarchy. Flake at al. refer to Gallo et al. [54] for the question how to choose ↵ such that all

possible hierarchy levels are found. However, they give no further description how to extend the

approach of Gallo et al., which finds all breakpoints of ↵ for a single parametric flow, to a fast

construction of a complete hierarchy. While they simply propose a binary-search approach to find

good values for ↵, we introduce a parametric-search approach that guarantees the completeness

of the resulting hierarchy and clearly exceeds the running time of a binary-search-based approach,

whose running time strongly depends on the discretization of the parameter range.
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In Section 11.3 we conduct an experimental study on the guaranteed expansion of the clus-

ters found by the cut-based clustering algorithm. This study reveals that, compared to a trivial

bound, the given guarantee indeed allows for a deeper insight. Our experiment further docu-

ments that the true expansion even exceeds the guaranteed bound. In a second experiment we

investigate the quality of the clusters with respect to the widely used measure modularity. In

this study the clustering algorithm competes surprisingly well with a greedy modularity-based

heuristic, although it is not designed to optimize modularity. This attests a high trustability

of the cut-based clustering approach, confirming that the algorithm returns plausible clusters if

such clusters are clearly indicated by the graph structure.

Publications. Section 11.1 and Section 11.2 are based on [73], while the characterization of

the clusters as a subclass of source communities is new and not yet published. The results of

Section 11.3 are published in [72]. Both publications are joint work with Michael Hamann and

Dorothea Wagner.

Chapter 12: Maximum Source-Community Clusterings
The experimental evaluation of Flake et al. [42] showed that the cut-based clustering algorithm

finds meaningful clusters in real-world instances, but yet, it often happens that (even in a com-

plete hierarchy) non-singleton clusters are only found for a subgraph of the initial network,

while the remaining vertices stay unclustered even on the coarsest non-trivial hierarchy level.

The latter observation is also confirmed by the experiments in Section 11.3. Motivated by this

observation, in Section 12.1 and Section 12.2 we develop a framework that e�ciently answers

the following queries: (i) Given an arbitrary source community S, what does a clustering ⌦(S)

(that is, a partition of the network into (disjoint) clusters) look like that consists of S and fur-

ther source communities such that any source community not intersecting with S is nested in

a cluster of ⌦(S)? In particular, ⌦(S) is maximum in the sense that any clustering of source

communities that contains S is hierarchically nested in ⌦(S). We show that ⌦(S) can be deter-

mined in linear time. (ii) Given k disjoint source communities S1, . . . , Sk, which is the maximal

clustering ⌦(S1, . . . , Sk) that contains the given source communities, is nested in each ⌦(Si),

i = 1, . . . , k, and guarantees that any clustering of source communities that also contains the

given source communities is nested in ⌦(S1, . . . , Sk)? Computing ⌦(S1, . . . , Sk) takes O(kn)

time. These queries allow to examine the community structure of a given network beyond the

complete clustering hierarchy found by the cut-based approach. The framework relies on pre-

computing a unique-cut tree (see Section 7.2), which represents all regular M-sets and can be

constructed by at most 2(n � 1) maximum-flow computations. In Section 12.3, we exemplarily

apply both queries to a small real world network, thereby finding a new clustering beyond the

hierarchy that contains all non-singleton clusters of the best clustering in the hierarchy but far

less singletons.

Publications. The results of this chapter already appeared in a joint publication with Michael

Hamann and Dorothea Wagner [73].

Chapter 13: The Unrestricted Cut-Clustering Algorithm
The hierarchical version of the cut-based clustering algorithm, as proposed by Flake et al. [42],

uses U-cuts for the construction of each hierarchy level. Due to this restriction the returned

clusterings are unique. However, the algorithm possibly misses convenient clusters in graphs

where minimum separating cuts are not unique. We show that a restriction to U-cuts is not

necessary in order to construct a clustering hierarchy, that is, permitting arbitrary minimum

separating cuts in the construction is a feasible degree of freedom, which still maintains the
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guaranteed quality of the clusters in terms of expansion. This makes the method more powerful,

since it may choose the most appropriate cuts with respect to some special application or other

objectives like, for example, temporal smoothness in a dynamic scenario.

Publications. This short chapter is an extract of a joint publication with Christof Doll and

Dorothea Wagner [34].

Chapter 14:
Fully-Dynamic Hierarchies of Unrestricted Cut Clusterings
Employing the results on dynamic Gomory-Hu trees (see Chapter 8), we adapt the unrestricted

cut-based clustering approach to a dynamic scenario with atomic changes. This task has been

already considered by Saha and Mitra [124], however, we found their attempt erroneous beyond

straightforward correction. In Section 14.1 we discuss the structural problems of their approach

and give counterexamples proving its incorrectness. In Section 14.2 we propose update proce-

dures for maintaining a single clustering of an evolving graph. In Section 14.3 we exploit the

degree of freedom gained by the loss of the restriction to U-cuts in order to prove optimal tem-

poral smoothness of the clusterings returned by our procedures. Furthermore, our procedures

provide a high potential for saving cut computations, which we discuss in Section 14.4 and con-

firm by a brief experiment. In Section 14.5 we extend our update approach to hierarchies of

clusterings, resulting in update procedures that provide even more potential for savings. These

procedures in parts employ the update procedures of the previous section inheriting the guaran-

tee of temporal smoothness.

Publications. Sections 14.1 to 14.4 are based on joint work with Robert Görke and Dorothea

Wagner [61, 62], however, in this thesis we are able to describe the update procedures much sim-

pler by referring to the comprehensive results on dynamic Gomory-Hu trees. Furthermore, we

modified the procedures such that they indeed guarantee optimal temporal smoothness. In the

previous publications only stability is proven. We call an update procedure stable if it returns

the previous clusterings whenever the previous clustering remains valid after a change in the

underlying graph. We note that some aspects of this sections also appear in the thesis of Robert

Görke [60]. Section 14.5 is based on joint work with Christof Doll and Dorothea Wagner [34],

while the procedures for maintaining whole hierarchies are again simplified and improved such

that temporal smoothness is guaranteed.

10.2 Preliminaries

At this point we introduce only notation that is exclusively used in the context of graph clustering.

More general notations, which also appear in the following chapters, are introduced in Section 6.2

if they are related to Gomory-Hu trees, U-cuts or M-sets, or in Section 1.2 if they concern

general concepts like static or dynamic graphs, cuts or connectivity. Our understanding of a

clustering ⌦(G) of an undirected weighted graph G = (V,E, c) is a partition of the vertex

set V into proper subsets C1, . . . , Ck, which define vertex-induced subgraphs, called clusters,

usually conforming to the paradigm of intra-cluster density and inter-cluster sparsity. We also

say that ⌦(G) contains the clusters C1, . . . , Ck. In the context of dynamic graphs and atomic

edge changes of an edge {b, d} we particularly designate Cb, Cd and Cb,d containing b and d,

respectively. A set of disjoint subsets C1, . . . , Ck with
Sk

i=1 C
i 6= V can be always extended to

a clustering by simply identifying the missing vertices as singleton clusters. A cluster is called

trivial if it corresponds to a connected component. Note that V is not considered as a cluster,
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not even if G is connected, and thus, V forms a connected component. A vertex that forms a

non-trivial singleton cluster we consider as unclustered. A clustering is trivial if it consists of

trivial clusters or if k = n, that is, all vertices are unclustered. A hierarchy of clusterings is a

sequence ⌦1(G)  · · ·  ⌦r(G) such that ⌦i(G)  ⌦j(G) implies that each cluster in ⌦i(G) is a

subset of a cluster in ⌦j(G). We say ⌦i(G)  ⌦j(G) are hierarchically nested. In order to stress

that the clusters of ⌦i(G) are proper subsets of the clusters in ⌦j(G), we write ⌦i(G) < ⌦j(G).

Similarly, we call a set of subsets of V hierarchically nested if every two subsets are either nested

or disjoint. Note that the indices indicating the hierarchy level of a clustering are denoted at

the bottom, while the indices that distinguish the clusters in a clustering are denoted at the top.

Accordingly, we denote a cluster Ci in a clustering ⌦j(G) by Ci
j . A clustering ⌦(G) is inclusion-

maximal with respect to a property P if there is no other clustering ⌦0(G) with property P and

⌦(G)  ⌦0(G). It is furthermaximum if it is the only inclusion-maximal clustering among a given

set of clusterings. A quality measure for clusterings is a mapping to real numbers. Depending on

the measure, either high or low values correspond to high quality. In this work we consider three

quality measures, modularity, intra-cluster expansion and inter-cluster expansion. The former

two indicate high quality by high values. Inter-cluster expansion indicates good quality by low

values.

Modularity. Modularity was first introduced by Newman and Girvan [116] as a quality mea-

sure for disjoint clusters in an undirected, unweighted graph G = (V,E). The modularity of

the corresponding clustering is based on the total edge cost in G that is covered by clusters.

The values range from �0.5 to 1, with 1 indicating the best quality. The measure expresses the

significance of a given clustering in G compared to the same clustering in a random graph of the

vertex set V . Formally, the modularity M(⌦) of a clustering ⌦ is defined as

M(⌦) :=
X

C2⌦
c(EC)/c(E)�

X

C2⌦
(
X

v2C
deg(v))2/4c(E)2

where EC denotes the set of edges with both endpoints in C, and the cost of a set E0 of edges

is denoted by c(E0) :=
P

e2E0 c(e). The first sum is also known as coverage of ⌦ in G, since it

describes the ratio of edges covered by clusters. The second sum describes the expected coverage

of ⌦ in a random graph on V whose expected vertex degrees corresponds to the degrees in G.

Modularity can be easily adapted to undirected, weighted graphs. Furthermore, the change

of modularity that occurs if ⌦ slightly varies, can be expressed in a closed form and computed

e�ciently. Hence, modularity is particularly suitable for being optimized by a greedy heuristic.

An exact maximization of modularity is NP-hard [20]. One of the fastest greedy approaches,

often called the Louvain method, was proposed by Blondel et al. [14]. This method improves

the modularity of a clustering by merging given subgraphs and moving vertices, thus building

new subgraphs representing a clustering of higher modularity. It finally returns a hierarchy of

clusterings where the top level represents a local maximum of all possible clusterings with respect

to modularity. The authors also provide an excellent free accessible implementation, which might

be one reason why today the Louvain method is one of the most popular and widespread graph

clustering algorithms. As a consequence, modularity became a very popular quality measure,

which nowadays is often used to evaluate also clusterings resulting from algorithms that do not

explicitly maximize this measure. This trend is further fanned by the fact that modularity is

close to human intuition of clustering quality. However, it also has some specific drawbacks
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as, for example, the resolution limit explored in [47]. That is, modularity-based methods tend

to detect subgraphs of specific size categories depending on the size of the network. Further

heuristic algorithms to optimize modularity are based on greedy agglomeration [116, 25], spectral

division [115, 139], simulated annealing [64, 120] or extremal optimization [35].

Expansion and Conductance. Originally, expansion and conductance are measures for cuts

in weighted graphs. Considering a cluster C as a subgraph of an underlying graph G = (V,E, c),

the expansion  (U,C \ U) of a cut (U,C \ U) in C is defined as

 (U,C \ U) :=
c(U,C \ U)

min{|U |, |C \ U |}

and expresses the cost of the cut in relation to the smaller cut side. The conductance �(U,C \U)

is a generalization of the expansion that considers weighted degrees instead of single vertices in

the sets of the denominator:

�(U,C \ U) :=
c(U,C \ U)

min{deg(U), deg(C \ U)} .

In order to derive a measure for the cohesion of a (sub)graph, we simply consider the mini-

mum expansion value or the minimum conductance value of all cuts in the (sub)graph. The

expansion of a (sub)graph or cluster C is then denoted by  (C), the conductance of C by �(C).

Unfortunately, this leads to measures that are already NP-hard to compute for a given graph.

Nevertheless, Kannan et al. [87] develop the following bicriteria measure for clusterings of dis-

joint clusters based on the conductance of subgraphs. They say the quality of a clustering ⌦ is

the better

• the higher �(⌦) := minC2⌦ �(C) (intra-cluster quality) and

• the lower �(⌦) :=
P

C2⌦ c(C, V \ C)/2c(E) (inter-cluster quality)

is. Unsurprisingly, it is also NP-hard to find, for a given value ↵, a clustering ⌦ with �(⌦) � ↵

that minimizes �(⌦). However, with the help of spectral clustering techniques, the solutions

of this problem can be approximated with good guarantees [87]. The cut-based algorithm of

Flake et al. [42], which we consider in this work, provides a similar quality guarantee regarding

expansion. The di↵erence is, that it is no approximation algorithm but a parametric algorithm,

and the quality guarantee depends on the parameter. More precisely, for each clustering ⌦ found

by this algorithm it holds that

•  (⌦) := minC2⌦  (C) � ↵ (intra-cluster quality) and

•  (⌦) := maxC2⌦ c(C, V \ C)/|V \ C|  ↵ (inter-cluster quality),

where ↵ is the input parameter. Moreover, the clusterings for di↵erent values of ↵ are hierarchi-

cally nested.
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Static Hierarchies of Cut Clusterings

Although the cut-based clustering algorithm of Flake et al. [42] provides already many desirable

features—it returns clusters of guaranteed quality, admits to find hierarchically nested clusters,

and, last but not least, proved successful in the experiments conducted by the authors—we will

see that there is still room for improvement and further development. In this chapter, we analyze

the algorithm of Flake et al. from a theoretical and a practical point of view in the context of

static graphs and present an improved strategy for detecting even better hierarchies of clusterings

of good quality.

11.1 Cut Clusterings and Source Communities

In the following, we describe the cut-based clustering algorithm of Flake et al. [42] and show

that, besides the elegant quality guarantee, the clusters also represent special cohesive subsets.

We also discuss the relations of these subsets to other cohesive subsets like LS-sets and �-sets.

11.1.1 The Static Cut-Clustering Algorithm

Inspired by the work of Kannan et al. [87], Flake et al. [42] presented a cut-based clustering

algorithm that exploits the properties of minimum separating cuts together with an input pa-

rameter ↵ in order to find hierarchically nested clusterings where each cluster C has the following

very reasonable bottleneck-property: For each U $ C it holds

c(C, V \ C)

|V \ C|  ↵  c(U,C \ U)

min{|U |, |C \ U |} . (11.1)

According to the left side of this inequality, which we denote by  (C), separating a cluster C from

the rest of the graph costs at most ↵|V \C|, which guarantees a certain inter-cluster sparsity. The

right side further guarantees a good intra-cluster density in terms of the expansion  (U,C \ U)

of an arbitrary cut (U,C \ U), saying that splitting a cluster C into U and C \ U costs at least

↵min{|U |, |C \ U |}. Hence, a subgraph C that is supposed to be a candidate for a cluster must

be very tight, providing an expansion  (C) that exceeds a given bound. For a clustering ⌦ this

implies the guaranteed inter- and intra-cluster quality introduced Chapter 10

 (⌦)  ↵   (⌦)
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Figure 11.1: Schematic illustration of U-cuts and M-sets computed by CutC.

with  (⌦) := maxC2⌦  (C) and  (⌦) := minC2⌦  (C). In the following, we call  (C) and  (⌦)

the inter-cluster expansion of a cluster C and a clustering ⌦, respectively, and analogously,  (C)

and  (⌦) the intra-cluster expansion. Flake et al. further call their algorithm cut-clustering

algorithm, and according to this, we call a clustering that is found by the cut-clustering algorithm

a cut clustering. We will see that, although the cut-clustering algorithm is not deterministic, it

returns a unique cut clustering for each parameter value.

Flake et al. develop their parametric cut-clustering algorithm step-by-step, each time simplify-

ing a previous version. They start with a version that involves the computation of a Gomory-Hu

tree [59], however, their final approach just uses U-cuts with respect to cut pairs that all contain

Algorithm 7: CutC

Input: Graph G↵ = (V↵, E↵, c↵)

1 ⌦ ;
2 while 9 u 2 V↵ \ {t} do

3 Cu  m(u, t) in G↵

4 r(Cu) u

5 forall the Ci 2 ⌦ do

6 if r(Ci) 2 Cu then ⌦ ⌦ \ {Ci}

7 ⌦ ⌦ [ {Cu} ; V↵  V↵ \ Cu

8 return ⌦

a common vertex. Hence, in most cases

the algorithm computes only a partial

Gomory-Hu tree by the use of special split

cuts. We describe the cut-clustering al-

gorithm more directly based on U–cuts

and corresponding M–sets and refer to this

method as CutC. Given a graph G =

(V,E, c) and a parameter ↵ 2 R+
0 , as a pre-

processing step, augment G by inserting an

artificial vertex t and connecting t to each

vertex in G by an edge of cost ↵. Denote

the resulting graph by G↵ = (V↵, E↵, c↵).

Then apply CutC (Algorithm 7) by iterating V and computing the M-set m(u, t) for each

vertex u not yet contained in a previously computed cluster. The vertex u becomes the repre-

sentative of the newly computed cluster m(u, t) (line 4). Note that m(u, t) might be equivalent

to an M-set m(u0, t) with respect to another vertex u0 6= u. Hence, if the algorithm chooses u0 in-

stead of u the same cluster is found, and u0 is also a representative of this cluster. Consequently,

each cluster can have several representatives. Since M-sets with respect to a common vertex t

are either disjoint or nested (Lemma 7.6(1),(2i)), we finally get a set of M-sets in G↵, in which

the inclusion-maximal M-sets together decompose V . This induces a unique clustering ⌦(G)

with respect to ↵ (see also Fig. 11.1).

Applying CutC iteratively with decreasing ↵ yields a hierarchy of at most n di↵erent clus-

terings (see Figure 11.2), where the clustering quality on level i depends on ↵i. This is due to

a special nesting property for di↵erent parameter values that is also used by Gallo et al. [54]
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Figure 11.3: Graph decomposed
into two web communities by the
dashed red line. Left web commu-

nity is disconnected.

in the context of parametric maximum-flow algorithms. Let C1 denote the cluster m(u, t) with

respect to G↵
1

and C2 the cluster m(u, t) with respect to G↵
2

. Then it is C1 ✓ C2 if ↵1 � ↵2.

The hierarchy is bounded by two trivial clusterings, which we already know in advance. The

clustering at the top consists of the connected components of G and is returned by CutC for

↵max = 0, the clustering at the bottom consists of singletons and occurs if we choose ↵0 equal

to the maximum edge cost in G. If G is connected, the algorithm returns {V } at the top level,

which we do not consider as a cluster, since it is no proper subset of the vertices in G.

11.1.2 Source Communities and Other Cohesive Subsets

In the context of large web-based graphs, Flake et al. [41] consider cohesive subsets in which

each vertex u is predominantly connected to the remaining vertices of the subset, that is, for

each vertex u 2 S $ V holds c({u}, S \ {u}) > c({u}, V \ S). Flake et al. call these subsets

web communities and claim that the clusters found by the cut-clustering algorithm are almost

web communities in the sense that all vertices apart from the particular representative are

predominantly connected. However, this is not a full characterization of the clusters. In the

following, we thus introduce a further type of cohesive subsets, which we call source communities,

and based on these, we fully characterize the clusters that can be found by the cut-clustering

algorithm. We will see that the clusters form a class of special source communities whose inter-

cluster quality  is not only bounded by ↵ but also by values independent from ↵, depending on

the graph structure of G and the individual cluster. Before we prove this characterization of the

clusters in Section 11.1.3, in this section, we fully characterize the class of source communities

and bring the concept of source communities in line with other existing definitions of cohesive

subsets like LS-sets, which we have already seen in the introduction of this part (Chapter 10).

Source Communities. A set S $ V is a source community with source s 2 S if c(U, S \U) >

c(U, V \ S) for all U $ S \ {s} and c({s}, S) > c({s}, V \ S). Obviously, if G is disconnected,

the connected component that contains s is the largest possible source community with source s.

Note that even if G is connected, V is no source community, since the definition requires S $ V .

Furthermore, we define c({s}, {s}) := 1 in order to also include singletons to the set of source

communities, which is a usual approach in the context of cohesive subsets. The concept of source

communities can be established between web communities and LS-sets, omitting the bad and

combining the desired properties of both. One bad property of web communities as defined by

Flake et al. [41] is, that they are not necessarily connected (see Fig. 11.3). On the other hand,

however, they may be overlapping, nested or disjoint, and thus, su�ce the notion of naturally

inhered groups in networks. In contrast, LS-sets as defined by Borgatti et al. [15] extend the

predominant connectivity from vertices to arbitrary subsets, and thus, satisfy a stricter condition
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Table 11.1: Overview of di↵erent concepts of cohesive subsets. Web communities/↵-sets
and source communities are introduced in this section, LS-sets/extreme sets are introduced in

Chapter 10, maximal components/�-sets are introduced in Chapter 6.

A subgraph S $ V is a structure

LS-set [15]
extm. set [110]

source com.
8U$ S

source com.
c(U, S \ U) > c(U, V \ S)

hierarchically
nested

source com.
source com.

9 s 2 S :
8U$ S \{s}
and for s

source com.
c(U, S \ U) > c(U, V \ S)
c({s}, S) > c({s}, V \ S)

overlapping,
nested, disjoint

↵-set [15]
web com. [41]

source com.
8u 2 S

source com.
c({u}, S \ {u}) > c({u}, V \ S)

overlapping,
nested, disjoint

�-set [15]
max. comp. [110]

source com.
8u 2 S, v 2 V \S

source com.
minx,y2S �G(x, y) > �G(u, v)

hierarchically
nested

that on the one hand guarantees connectivity but on the other hand restricts the appearance of

LS-sets in real data to only rare occasions. In particular, LS-sets are hierarchically nested but

not overlapping. For a further discussion on advantages and disadvantages of LS-sets and other

cohesive sets see also Borgatti et al. [15]. Unlike LS-sets, we will see that source communities

may also overlap, as web communities, while in contrast to web communities, the connectivity

of source communities follows directly from the definition, as it is the case also for LS-sets.

Table 11.1 systematically lists the di↵erent cohesive subsets considered in this work with their

definitions and their interchangeable names used by di↵erent authors. As already mentioned

before, Nagamochi [110] calls the LS-sets of Borgatti et al. extreme sets. On the other hand,

Borgatti et al. introduced the web communities of Flake et al. already in 1990 as ↵-sets. While

decomposing a graph into k web communities or ↵-sets is NP-hard [42], Nagamochi is able

to enumerate all extreme sets or LS-sets in O(nm + n2 log n) time with the help of maximum

adjacency orderings (MA-orderings). The latter form a subset of the maximal components in a

graph (recall Fig. 6.2(a)), and are thus hierarchically nested but not overlapping. Borgatti et al.

use the term �-sets to describe the maximal components of Nagamochi. Maximal components

or �-sets subsume vertices that are not separated by cuts cheaper than a certain lower bound

and can be deduced from a Gomory-Hu tree, whose construction needs n � 1 maximum-flow

computations [59]. They are used for example in the context of image segmentation by Wu and

Leahy [141]. In social networks, we might be also interested in communities that surround a

designated vertex, for instance a central person. Complying with this view, source communities

describe vertex sets where each subset that does not contain a designated vertex (which is

predominantly connected to the group) is predominantly connected to the remainder of the

group and the designated vertex. The members of a source community can be interpreted as

followers of the source in that sense that each subgroup feels more attracted by the source (and

other group members) than by the vertices outside of the group. This predominant connectivity

of source communities implements a close relation to minimum separating cuts. In fact, source

communities are characterized as follows.

Lemma 11.1. A set S $ V is a source community with source s 2 S if and only if there exists a

set T ✓ V \S such that (S, V \S) = uc(s, T ) and thus S = m(s, T ). That is, there is a one-to-one

correspondence between source communities and generalized M-sets in any undirected, weighted

graph G = (V,E, c).
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Proof. Let S $ V denote a source community with source s. If S = {s}, then ({s}, V \ {s}) is
the only cut that separates {s} and V \ {s}, and is thus the minimum s-T -cut with T = V \ {s}.
Hence, it is {s} = m(s, T ). In any other case, (S, V \S) must be a minimum s-T -cut for T = V \S,
since a cheaper s-T -cut would split S into U and S \U 3 s with c(U, S \U) < c(U, V \S), which
contradicts the definition of source communities. The cut (S, V \S) further minimizes the number

of vertices on the cut side of s, since a minimum s-T -cut with a smaller cut side of s would induce

a set U $ S, s /2 U , with c(U, S \ U) = c(U, V \ S), which is again a contradiction. Thus, it

is S = m(s, T ) with T = V \ S.
Now consider a generalized M-set m(s, T ) =: S and the corresponding U-cut uc(s, T ) =

(S, V \ S). We show that S is a source community with source s. If S = {s}, it is a source

community by definition. In any other case, we observe the following. Since (S, V \ S) is a

minimum s-T -cut with T ✓ V \S, it is c(U, S \U) � c(U, V \S) for all U $ S \{s}. Otherwise, if

there was a set U with c(U, S \U) < c(U, V \S), then (S \U, V \ (S \U)), which also separates s

and T , would be a cheaper s-T -cut. Since (S, V \S) further minimizes the number of vertices on

the cut side of s, it is c(U, S \U) > c(U, V \S) for all U $ S \{s}. Otherwise, (S \U, V \ (S \U)),

would be a minimum s-T -cut with a smaller side containing s. Hence, S is a source community

with source s.

Due to this correspondence between source communities and generalized M-sets, it follows

directly from Lemma 7.6 that source communities may be overlapping, nested or disjoint. Fur-

thermore, each source community can have several sources, since the corresponding M-set may

have several representations resulting from generalized U-cuts with respect to di↵erent (gener-

alized) cut pairs. We use the notation of M-sets also for source communities, that is, we denote

a source community with source s and with respect to T $ V by m(s, T ) and call m(T, s) the

opposite source community. We finally discuss some further properties of source communities

and their interpretation in the context of network analysis. Suppose a source community m(s, T )

m(s, t)

m(t, s)

Figure 11.4: Indecisive

vertices (green) with respect

to rivals s and t (black) in

the Zachary network.

whose corresponding U-cut uc(s, T ) is not the only minimum

s-T -cut in the underlying graph G. That is, the opposite U-

cut uc(T, s) di↵ers from uc(s, T ) and m(s, T ) 6= m(T, s). Con-

sequently, X := V \ (m(s, T ) [ m(T, s)) 6= ; and the vertices

in X are neither predominantly connected within m(s, T )[X
nor within m(T, s)[X, that is, for all U ✓ X the set U might

be as strongly connected to V \(m(s, T )[X) as to m(s, T )[X
(analogously for m(T, s)). In a social network this can be in-

terpreted as follows. Whenever s and the group T become

rivals, the network decomposes into followers of s (in m(s, T )),

followers of T (in m(T, s)) and possibly some indecisive indi-

viduals in X. Figure 11.4 exemplarily shows two indecisive

vertices in the (unweighted1) karate club network gathered by

Zachary [142]. Another interesting behavior of members in source communities follows from the

following observation. Let S1 denote a source community with source s and T2 $ V an arbitrary

set. If T2 \ S1 = ;, then S1 ✓ m(s, T2) =: S2. Now consider a source community S1 = m(s, T1)

and a further set of possible rivals T2 $ V . If T2 is outside of S1 and further S1 6= m(s, T2), the

observation states that S1 is a proper subset of S2 = m(s, T2). As described above, the followers

1Zachary considers the weighted network and therein the minimum cut that separates the two central vertices
of highest degree (black). In the weighted network this cut is unique.
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of T1 (in m(T1, s)) thus break with the members in S1 if s and T1 become rivals. However, if

there occurs a second rival group T2 outside of S1, then also vertices from outside of S1 become

followers of s, maybe even vertices of T1.

11.1.3 Characterizing the Cut-Clustering Clusters

The following theorem provides a full characterization of the clusters that can be found by the

cut-clustering algorithm. The clusters are special source communities, and thus, form a subclass

of the source communities. We further give a counterexample that shows that this subclass is

also a proper subclass. Let G = (V,E, c) denote an undirected, weighted graph and let G↵

denote the extended graph used by the cut-clustering algorithm, which in particular contains

the artificial vertex t.

Theorem 11.2. For a set S ✓ V there exists s 2 S and ↵ 2 R+
0 such that m(s, t) = S in G↵

(that is, S can be found by the cut-clustering algorithm) if and only if S is a source community

with source s in G with the following additional property: c2 < c1 where

c1 := minU$S,s2U [c(S, V \ S)� c(U, V \ U)]/(|U |� |S|) and
c2 := max{c3, c4} with

c3 := c(S, V \ S)/(|V |� |S|) and
c4 := maxS$U$V [c(S, V \ S)� c(U, V \ U)]/(|U |� |S|)

Note that this implies a correspondence between the representatives of the clusters and the

sources of the corresponding source communities. Furthermore, we can immediately deduce

two further bounds on the inter-cluster expansion  (C) of a cluster C from the correspondence

to such a special source community S. These bound depend on the individual cluster, but

not on ↵. First, observe that c3 exactly represents  (C) and thus it holds  (C) < c1. The

second bound results from the definition of source communities. Let C denote a cluster with

representative r, which corresponds to a source community with source s. For C holds that

c(C \ {r}, {r}) > c(C \ {r}, V \ C) and c({r}, C) > c({r}, V \ C). Adding up both inequalities,

we see that 2c({r}, C) > c(C, V \ C). This yields  (C) < 2c({r}, C)/|V \ C|.
Before we prove Theorem 11.2, we show the following lemma on the intersection behavior of

two source communities S1 and S2 in a graph G with the same source s. Note that for such

communities, we know that they are M-sets m(s, T1) and m(s, T2) in G, but we do not explicitly

know the sets T1 and T2. Thus, we cannot directly apply Lemma 7.6.

Lemma 11.3. Let S1 and S2 denote two source communities with the same source s. Then it

holds S1 ✓ S2 or S2 ✓ S1.

Proof. If at least one source community is a singleton, the lemma immediately holds. Thus,

suppose both source communities consist of at least two vertices. We assume that S1 and S2

overlap without being nested and show that this leads to a contradiction. We distinguish two

cases.

Case 1: S1 \ S2 = {s}. Due to the definition of a source community, it holds

(i) c({s}, S1) = c({s}, S1 \ S2) > c({s}, V \ S1) � c({s}, S2 \ S1), and analogously,

(ii) c({s}, S2) = c({s}, S2 \ S1) > c({s}, V \ S2) � c({s}, S1 \ S2)

This reveals a contradiction saying that c({s}, S1 \ S2) > c({s}, S2 \ S1) and vice versa.

Case 2: |S1 \ S2| > 1. Now we consider the set U := (S1 \ S2) \ {s}. Due to the definition of a

source community, it holds
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(i) c(U, S1 \ U) > c(U, V \ S1) � c(U, S2 \ U), and analogously,

(ii) c(U, S2 \ U) > c(U, V \ S2) � c(U, S1 \ U)

This reveals a contradiction saying that c(U, S1 \ U) > c(U, S2 \ U) and vice versa.

Proof of Theorem 11.2. First direction: We first consider the M-set m(s, t) =: S in G↵ (which

is found as a cluster for this fixed ↵) and show that it is a source community with source s in G.

In a second step, we show that c2  ↵ < c1 holds. This finishes the first direction of the proof.

If S = {s}, it obviously is an M-set in G, namely m(s, V \ {s}). According to the cor-

respondence of generalized M-sets and source communities (Lemma 11.1), it is also a source

community with source s in G. Otherwise, S = m(s, t) corresponds to a source community

with source s in G↵, again by Lemma 11.1, and thus, due to the definition of a source com-

munity, it holds for each U ✓ S \ {s} that c↵(U, S \ U) > c↵(U, V↵ \ S), and further, that

c↵({s}, S) > c↵({s}, V↵\S). We observe that c↵(U, S\U) = c(U, S\U) and c↵({s}, S) = c({s}, S)
also in G, and c↵(U, V↵ \S) = c(U, V↵ \S) + |U |↵ and c↵({s}, V↵ \S) = c({s}, V \S) +↵. From

this, it immediately follows that, according to the definition of source communities, S is also a

source community with source s in G. Now we prove by contradiction that c2  ↵ < c1.

Suppose ↵ � c1. Then there would exist a proper subset U of S with s 2 U such that

(|U | � |S|)↵  c(S, V \ S) � c(U, V \ U), since |U | � |S| < 0. This yields c(U, V \ U) + |U |↵ 
c(S, V \ S) + |S|↵, which means c↵(U, V↵ \ U)  c↵(S, V↵ \ S) contradicting the fact that S =

m(s, t), that is, S would not have been found by the algorithm.

Suppose ↵ < c2. We prove this case for c4 � c3. The proof for c3 > c4 is analogous. So if

↵ < c4, there would exist a set U $ V with S $ U such that (|U |�|S|)↵ < c(S, V \S)�c(U, V \U),

since |U |�|S| > 0. This yields c(U, V \U)+|U |↵ < c(S, V \S)+|S|↵, which means c↵(U, V↵\U) <

c↵(S, V↵ \ S) contradicting again the fact that S = m(s, t).

Second direction: We consider a source community S with source s inG that has the additional

property stated in Theorem 11.2. We show that S can be found by the cut-clustering algorithm,

more precisely, that for c2  ↵ < c1 it holds S = m(s, t) in G↵.

In G↵, (S, V↵ \ S) separates s and t, and is thus at least an s-t-cut. Now suppose, S is not

the (unique) M-set m(s, t) in G↵. Then, another set U ✓ V with s 2 U must be this M-set.

From the first part proven for the first direction it follows that any candidate for such a set U

is also a source community with source s in G. That is, S and the candidate U are both source

communities in G with the same source s, and are thus nested, according to Lemma 11.3, that

is, U ✓ S or S ✓ U . Since we assume U 6= S, we even get U $ S or S $ U . In the following, we

distinguish both cases and show that if we choose in each case c2  ↵ < c1, then S becomes the

M-set m(s, t) in G↵ instead of U .

Case 1: U $ S. With ↵ < c1, it holds in particular that (|U |�|S|)↵ > c(S, V \S)�c(U, V \U),

since |U |�|S| < 0. This yields c(U, V \U)+|U |↵ > c(S, V \S)+|S|↵, which means c↵(U, V↵\U) >

c↵(S, V↵ \ S). Thus, (U, V↵ \ U) is no minimum s-t-cut in G↵.

Case 2: S $ U . Here we consider ↵ � c2 = max{c3, c4}. If U = V it thus holds that

(|V | � |S|)↵ � c(S, V \ S), since |V | � |S| > 0. This yields |V |↵ � c(S, V \ S) + |S|↵, which
means c↵(V, {t}) � c↵(S, V↵ \S). If U $ V , it holds that (|U |� |S|)↵ � c(S, V \S)� c(U, V \U),

since |U |�|S| > 0. This yields c(U, V \U)+|U |↵ � c(S, V \S)+|S|↵, which means c↵(U, V↵\U) �
c↵(S, V↵ \ S). Thus, in both cases (U, V↵ \ U) might be indeed a minimum s-t-cut in G↵, but

with a larger side of s.

In total we see that for c2  ↵ < c1, there is no other cut in G↵ than (S, V↵ \ S) that could
be the U-cut uc(s, t), and thus, it is S = m(s, t).
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v1 v2

v4

t

Figure 11.5: counterexample G (solid lines) proving that the clusters that are found by the
cut-clustering algorithm form a proper subclass of the source communities. Artificial edges
(dotted lines) in G↵ are weighted with ↵, fat solid edge in G with 2, remaining edges with 1.

Dashed red line indicates U-cut uc(S, V \ S) with S = {v
1

, v
2

, s} in G.

Counterexample. The following counterexample finally shows that the clusters found by the

cut-clustering algorithm form a proper subclass of the source communities. More precisely, it

shows that in the graph G = (V,E, c) depicted by Fig. 11.5, the set S = {v1, v2, s} is a source

community that never becomes the M-set m(s, t) in G↵.

Claim 1: The set S is a source community with source s in G. We check the definition of a

source community. The subsets in S that do not contain s are

U1 = {v1} with c(U1, S \ U1) = 2 > 1 = c(U1, V \ S)
U2 = {v2} with c(U2, S \ U2) = 3 > 1 = c(U2, V \ S)

U3 = {v1, v2} with c(U3, S \ U3) = 3 > 2 = c(U3, V \ S)

Furthermore, it holds c({s}, S) = 3 > 2 = c({s}, V \ S). Thus S = {v1, v2, s} is a source

community with source s in G.

Claim 2: For ↵ < 2 the cut (S [ {v3}, V↵ \ (S [ {v3})) is a cheaper s-t-cut in G↵ than the

cut (S, V↵ \ S). We compare the costs of both cuts. We denote S [ {v3} by U .

c↵(S, V↵ \ S) = c(S, V \ S) + |S|↵ = 4 + 3↵

c↵(U, V↵ \ U) = c(U, V \ U) + |U |↵ = 2 + 4↵

In total we see that c↵(S, V↵ \S)�c↵(U, V↵ \U) = 2�↵ > 0 for ↵ < 2. Thus, the cut (U, V↵ \U),

which also separates s and t, is cheaper.

Claim 3: For ↵ � 2 the cut ({s}, V↵ \ {s}) is a cheaper s-t-cut in G↵ than the cut (S, V↵ \S).
We compare again the costs of both cuts.

c↵(S, V↵ \ S) = c(S, V \ S) + |S|↵ = 4 + 3↵

c↵({s}, V↵ \ {s}) = c({s}, V \ {s}) + ↵ = 5 + ↵

In total we see that c↵(S, V↵ \ S) � c↵({s}, V↵ \ {s}) = �1 + 2↵ > 0 for ↵ � 2. Thus, the

cut ({s}, V↵ \ {s}), which also separates s and t, is cheaper.

According to these claims, there exists no ↵ such that the cut (S, V↵ \ S) is a minimum s-

t-cut in G↵. Hence, S never becomes the M-set m(s, t) in G↵, and is thus, never found by the

cut-clustering algorithm.
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11.2 Complete Hierarchies of Cut Clusterings

As we have seen before, the cut-clustering algorithm of Flake et al. [42] admits to find hierarchies

of at most n di↵erent cut clusterings by applying CutC iteratively with decreasing ↵, which is a

nice and desirable property. The crucial point with the construction of such a hierarchy, however,

is the choice of ↵. If we choose the next value too close to a previous one, we get a clustering

we already know, which implies unnecessary e↵ort. If we choose the next value too far from

any previous value, we possibly miss a clustering. Flake et al. propose a binary search for the

choice of ↵. However, this necessitates a discretization of the parameter range—an issue where

we again need to deal with the trade-o↵ of improving the running time by choosing wide steps

and limiting the risk of missed clusterings by choosing small steps. In practice the choice of a

good coarseness of the discretization requires previous knowledge on the graph structure, which

we usually do not have. Thus, in this section, we introduce a simple parametric search approach

that guarantees to find each cut clustering that can be obtained by CutC for any parameter

value ↵. At the same time, this approach computes each level in the resulting hierarchy at

most twice. In other words, our approach e�ciently returns a complete hierarchy without the

necessity of discretization and without requiring any previous knowledge.

11.2.1 Simple Parametric Search Approach

In order to find all di↵erent levels in a cut-clustering hierarchy, our approach constructs the

breakpoints in the parameter range between consecutive levels. For two consecutive hierarchy

levels ⌦i < ⌦i+1 (recall Fig. 11.2), we call ↵0 the breakpoint if CutC returns ⌦i for ↵0 and ⌦i+1

for ↵0�" with "! 0. That is, each clustering ⌦i is assigned to an interval [↵0,↵00), where CutC

returns ⌦i. The breakpoint ↵00 marks the border between ⌦i and the previous clustering ⌦i�1.

Hence, it is ↵00 > ↵0. Based on this interval, the quality guarantee given by the parameter can

be extended to

 (⌦i)  ↵0 < ↵00 � "   (⌦i)

for each cut clustering ⌦i in the complete hierarchy. We call [↵0,↵00) the guarantee interval

of ⌦i. The simple idea of our approach is to compute good candidates for breakpoints during

a recursive search with the help of cut-cost functions of the clusters, such that each candidate

that is no breakpoint yields a new clustering instead. In this way, we apply CutC at most twice

per level in the final hierarchy. Beginning with the trivial clusterings ⌦0 < ⌦max (↵0 > ↵max),

the following theorem directly implies an e�cient algorithm that definitely finds all possible

clusterings.

Theorem 11.4. Let ⌦i < ⌦j denote two di↵erent clusterings with parameter values ↵i > ↵j.

In time O(|⌦i|) a parameter value ↵m with 1) ↵j < ↵m  ↵i can be computed such that 2) ⌦i 
⌦m < ⌦j, and 3) ⌦m = ⌦i implies that ↵m is the breakpoint between ⌦i and ⌦j.

For the proof of Theorem 11.4, we use cut-cost functions that represent, depending on the

parameter ↵, the cost !S(↵) of a cut (S, V↵ \ S) in G↵ based on the cost of the cut (S, V \ S)
in G and the size of S.

!S : R+
0 �! [c(S, V \ S),1) ⇢ R+

0

!S(↵) := c(S, V \ S) + |S| ↵
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The main idea is the following. Let ⌦i < ⌦j denote two hierarchically nested clusterings. We

call a cluster C 0 2 ⌦i that is nested in C 2 ⌦j a child of C and C the parent of C 0. If there exists

another level ⌦0 between ⌦i and ⌦j , at least two clusters in ⌦i must be merged yielding a larger

cluster in ⌦0. The maximal parameter value where this happens is a value ↵⇤ where a child C 0

!C 0

!C

↵⇤
↵

!(↵)

0

Figure 11.6: Intersec-

ting cut-cost functions.

in ⌦i becomes more expensive than its parent C in ⌦j , and

thus, is dominated by C in the sense that it will not become a

cluster in any hierarchy level above ↵⇤ (that is, where ↵ < ↵⇤).

For two nested clusters C 0 ✓ C this point is marked by the

intersection point of the cut-cost functions !C0 and !C (see

Fig. 11.6). Note that the cut-cost functions do not necessarily

intersect if the child C 0 does not contain a representative of the

parent C. On the other hand, the functions of C 0 ✓ C definitely

intersect if C 0 contains a representative of C. Since the slope

of the cut-cost function is determined by the size of the particular cluster, in the latter case it

holds c(C 0, V \ C 0) � c(C, V \ C). Otherwise, the functions would not intersect. Since at least

one of the representatives in C is contained in a child C 0, each parent C has at least one child C 0

such that the cut-cost functions intersect. This child dominates the parent for ↵ > ↵⇤ with

respect to the representative it contains. Thus, the intersection point ↵⇤ is a good candidate for

a breakpoint between ⌦i and ⌦0.

In the following, we show that if we choose the breakpoint candidate ↵m := minC2⌦
j

�C with

�C := maxC02⌦
i

:C0⇢C{↵ | !C(↵) = !C0(↵)}, then Claim 1) to 3) as stated in Theorem 11.4

hold with this choice of ↵m. The notation �C describes the maximum intersection point of a

parent function !C (parent C 2 ⌦j) with the functions of all children in ⌦i. The minimum of

these points among all parents in ⌦j then yields ↵m. For the running time, observe that ↵m

is well-defined as each parent function intersects with at least one child function. In practice

we construct ↵m by iterating the list of representatives stored for children in ⌦i. Each of these

representatives is assigned to a cluster in ⌦j , thus, matching children to their parents can be

done in time O(|⌦i|). The computation of the intersection points takes only constant time, given

that the sizes and costs of the clusters are stored with the representatives by CutC. In total,

the time for computing ↵m is thus in O(|⌦i|).
For the following proofs of Claim 1) to 3), let C denote a parent in ⌦j with minimum value �C ,

that is, �C = ↵m. Let further C 0 ✓ C denote a child in ⌦i that contains a representative r(C)

of C, and let ↵0 denote the intersection point of the corresponding cut-cost functions. Finally,

we denote by Cm ✓ C a child in ⌦i whose function intersects the parent function at exactly ↵m.

Proof of Claim 1). ↵j < ↵m  ↵i: We consider each inequality separately and prove them by

contradiction. First assume ↵j � ↵m. Since �C = ↵m denotes the maximum intersection point

between C and its children in ⌦i, this implies ↵j > ↵0. This however means, that C 0 dominates C

(with respect to the representative r(C)) in G↵
j

contradicting the fact that C is a cluster in ⌦j

with representative r(C). Now assume ↵i < ↵m. Then C immediately dominates Cm in G↵
i

contradicting the fact that Cm is a cluster in ⌦i.

After the computation of ↵m, we apply CutC with the newly obtained parameter value. The

resulting clustering is denoted by ⌦m. According to Claim 1) and the hierarchical structure of

the cut clusterings, it is ⌦i  ⌦m  ⌦j . Claim 2) states, that ⌦m never equals ⌦j .
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Proof of Claim 2). ⌦m 6= ⌦j: We show that C /2 ⌦m. Recall that ↵0  ↵m, since ↵m is the

maximum among all intersection points of C with its children. Thus, C 0 dominates C (with

respect to r(C)) in G↵
m

. Nevertheless, C might be a cluster in ⌦m with respect to another

representative u 6= r(C ). However, the intersection point of C with any child containing another

representative u is also smaller than ↵m because of the maximality of ↵m. Thus, C is dominated

by all these children in G↵
m

. Consequently, C is no cluster in ⌦m.

If we find that the newly computed clustering ⌦m equals ⌦i, Claim 3) states that we have

found a breakpoint. Hence, we can stop searching for further hierarchy levels between ⌦i and ⌦j .

Note that due to the hierarchical structure, ⌦m and ⌦i can be easily compared by just counting

clusters.

Proof of Claim 3). If ⌦m = ⌦i then ↵m is the breakpoint between ⌦i and ⌦j: We show first

that ↵m is the breakpoint between ⌦i and the next higher level in the complete hierarchy. In a

second step we prove that the clustering on the next higher level equals ⌦j .

To see the first statement consider ↵m� " < ↵m for "! 0. This yields that C dominates Cm

in G↵
m

�". Consequently, ⌦m = ⌦i contains a cluster Cm that will never appear for ↵m� ✏, and
thus, ↵m is the breakpoint between ⌦i and the next higher level in the complete hierarchy.

In order to prove the second statement saying that the next higher level equals ⌦j , we show

that each cluster in ⌦j corresponds to an M-set m(s, t) in G↵
m

�", which is not obvious, since

up to now, we just know that the clusters in ⌦j are M-sets with respect to ↵j , that is, in G↵
j

.

The nesting property of these M-sets (Lemma 7.6(1),(2i)) together with the hierarchical structure

then ensures that CutC returns ⌦j for ↵m�", which means that there exists no other clustering

between ⌦i and ⌦j . For this final step we overload the notation of C and Cm as follows: Let

C 2 ⌦j denote an arbitrary cluster and let Cm 2 ⌦i = ⌦m denote a child of C whose cut-cost

function intersects the parent function at �C , which now might be di↵erent from ↵m, since C

is now an arbitrary cluster. However, by definition, ↵m is still the minimum value among all

clusters in ⌦j , and thus it is �C � ↵m. Let further r denote the representative of Cm in ⌦m.

Recall that ⌦m = ⌦i does not imply the equivalence of the representative of Cm in ⌦i and the

representative of Cm in ⌦m, as long as ↵i 6= ↵m. We show that (a) �C = ↵m, and based on this,

that (b) C equals the M-set m(r, t) in G↵
m

�✏.

Claim (a). �C = ↵m: It already holds �C � ↵m. Now assume �C > ↵m. Since �C was

supposed to be the intersection point of C and Cm, the parent C would then dominate the

child Cm in G↵
m

. This, however, contradicts the fact that Cm is a cluster in ⌦m.

Claim (b). C equals the M-set m(r, t) in G↵
m

�✏: Let bC denote the M-set m(r, t) in G↵
m

�✏.

We show that C = bC. The hierarchical structure implies Cm ✓ bC ✓ C. It is further !Cm(↵m) 
! bC(↵m), since otherwise bC would induce a smaller r-t-cut in G↵

m

than the actual M-set Cm.

On the other hand, it is ! bC(↵m � ")  !C(↵m � "), by the same argument, that is, otherwise C

would induce a smaller r-t-cut in G↵
m

�" than the actual M-set bC. Finally, claim (a) tells us

that the intersection point of Cm and C is �C = ↵m, that is, !Cm(↵m) = !C(↵m). Thus, the

cost-function of bC must lie above !C at ↵m and below !C at ↵m � " (see Fig. 11.7). This

implies that the slope of ! bC is at least the slope of !C , which means | bC| � |C|. The hierarchical
structure, however, requires that bC ✓ C, with implies | bC|  |C|. Hence, it must hold | bC| = |C|
and it follows bC = C.
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11.2.2 Running Time

The parametric search approach calls CutC twice per level in the final hierarchy, once when

computing a level the first time and again right before recognizing that the level already exists and

a breakpoint is reached. The trivial levels ⌦max and ⌦0 are calculated in advance without using

CutC. Nevertheless, ⌦0 is recalculated once when the breakpoint to the lowest non-trivial level is

!C

↵m ↵

!(↵)

0

↵m ✏

!C 0

! bC

Figure 11.7: Intersec-

ting cut-cost functions

for C0, C, and bC.

found. This yields 2(h�2)+1 applications of CutC, with h the

number of levels. We denote the running time of CutC by T (n)

without further analysis. For a more detailed discussion on the

running time of CutC see [42]. Since common maximum-flow

algorithms run in O(nm log(n2/m)) time, a single minimum-cut

computation already dominates the cost for determining ↵m and

further linear overhead. The running time of our simple para-

metric approach thus is in O(2hT (n)), where h  n � 1. This

clearly improves the running time of a binary search, which is in

O(h log(d)T (n)), with d the number of discretization steps—in

particular since we may assume d � n in order to minimize the risk of missing levels. We also

tested the practicability of our simple approach by a brief experiment. The results confirm the

improved theoretical running time.

A Brief Experimental Evaluation. For our experiments we used the collection of real world

instances and generated instances listed in Table 11.2. Most instances are taken from the testbed

of the 10th DIMACS Implementation Challenge, which provides benchmark instances for par-

titioning and clustering. The implementation was realized within the LEMON framework ver-

sion 1.2.1. The instances and the LEMON framework are described in more detail in Section 1.4.

We implemented CutC as described in Algorithm 7, extended by a heuristic that chooses the

vertices in non-increasing order with respect to the weighted degree. Due to this heuristic, which

was proposed by Flake et al., the number of minimum-cut computations in CutC becomes pro-

portional to the number of clusters in the resulting clustering [42]. The implementation of a

minimum-cut construction provided by LEMON runs in O(n2pm). Note that we did not focus

on a notably fast implementation. Instead, the implementation should be simple and practical

using available routines for sophisticated parts like the minimum-cut computation.

In this context, it is however necessary to remark that most ready-to-use implementations of

maximum-flow algorithms/minimum-cut algorithms require non-negative integers as edge capac-

ities in the input graph. For many real-world instances this is no problem since their edge costs

model email contacts, linked web pages or numbers of other indivisible entities, and are thus

already in N0. However, in the extended graph G↵ considered by the complete hierarchical cut-

clustering approach, ↵ is in R+
0 . Thus, the costs in G↵ cannot be scaled exactly to values in N0,

and we possibly miss again some levels in the hierarchy. At this point, we stress that assuming ↵

in Q+
0 , instead of R+

0 , is no restriction to the algorithm, if we assume integer costs in the original

graph. It easy to see that then the intersection points of the cut-cost functions, and thus, the

potential breakpoints are also in Q. Since the proof of Theorem 11.4 does not care about the

range of the intersection points, our parametric search approach also works for ↵ 2 Q+
0 , we do

not miss any clustering in the hierarchy. Table 11.2 lists increasing CPU times determined on

an AMD Opteron Processor 252 with 2.6 GHz and 16 GB RAM.
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Table 11.2: Running times for the parametric search approach (ParS) and slowdown factors
for the binary search approach with (BinS cont.) and without contraction (BinS). Instances

are sorted by CPU times of ParS. Times longer than six days are marked by *.

graph n m h ParS [m:s] BinS cont. [fac] BinS [fac]

jazz 198 2742 3 0.062 7.726 7.871
celegans metabolic 453 2025 8 0.300 7.620 8.380
celegansneural 297 2148 17 0.406 8.653 9.919
delaunay n10 1024 3056 2 0.470 8.930 8.994
emailgraph550K 19 491 853 33 0.771 11.855 13.850
email 1133 5451 4 1.116 8.463 8.758
emailgraph550K 26 527 1046 38 1.231 10.434 11.957
delaunay n11 2048 6127 2 1.792 9.256 8.893
netscience 1589 2742 38 4.310 4.030 11.952
bo cluster 2114 2277 19 4.355 6.007 12.800
polblogs 1490 16715 7 4.493 11.560 12.097
delaunay n12 4096 12264 2 7.226 10.914 9.870
data 2851 15093 4 11.506 8.021 9.620
dokuwiki org 4416 12914 18 39.815 12.423 15.571
power 4941 6594 66 1:25.736 8.773 15.742
hep-th 8361 15751 56 6:26.213 7.373 18.183
PGPgiantcompo 10680 24316 94 13:25.121 6.463 18.575
as-22july06 22963 48436 33 39:54.495 12.419 20.583
cond-mat 16726 47594 80 44:15.317 14.917 27.425
astro-ph 16706 121251 60 98:25.791 21.843 24.825
rgg n 2 15 32768 160240 46 245:25.644 32.748 22.573
cond-mat-2003 31163 120029 74 268:14.601 18.306 20.933
G n pin pout 100000 501198 4 369:29.033 * *
cond-mat-2005 40421 175691 82 652:32.163 * 21.446

For comparison, we further ran a binary search, as proposed by Flake et al., on the same

instances, using the same CutC implementation in the same framework. Flake et al. [42] further

observed that due to the hierarchical structure, it is also possible to contract the clusters of the

lower hierarchy level in the current search interval in order to applyCutC to the resulting smaller

graph instead of the original graph. Hence, we also extended the binary search by the possibility

of contraction. In Table 11.2, the running times of both binary search variants are listed as factors

saying how much longer the binary search ran compared to the parametric search. However, this

is not meant to be a competitive running time experiment, since the running time of the binary

search mainly depends on the discretization. We just want to demonstrate that being compelled

to choose the discretization intuitively, without any knowledge on the final hierarchy, makes the

binary search less practical. From a users point of view focusing on completeness, we defined

the size of the discretization steps as 1/n2. The dependency on n is motivated by the fact

that the potential number of levels increases with n, and by the hope that the breakpoints are

distributed more or less equidistantly. For small graphs with n < 1000, one can even a↵ord some

more running time. Thus, we reduced the step size for those graphs to 1/(1000 n) in further

support of completeness. This yields 210 to 230 discretization steps depending on the length of

the parameter range [↵max,↵0]. With this discretization, the time for the binary search (with

and without contraction) exceeds the time for the parametric search by a factor of four up to 32.

Moreover, as expected, the running time does not only depend on the input size but also on the
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number of di↵erent levels in the hierarchy. This can be observed for both approaches, parametric

search and binary search, comparing the instances as-22july06 and cond-mat. Although the latter

is smaller, it takes longer to compute 80 levels compared to only 33 levels in the former graph.

Comparing the two binary search variants, we further observe that if the number of computed

hierarchy levels is high enough relative to the graph size, the additional cost for contracting seems

to pay o↵, see for example the instances netscience, bo cluster, power, hep-th, PGPgiantcompo,

as-22july06, and cond-mat. In contrast, finding only 46 hierarchy levels in the relative large

instance rgg n 2 15 was more time consuming at least with our implementation of the contraction

approach than with the regular binary search approach.

11.3 A Case Study on Expansion and Modularity

Flake et al. [42] tested their algorithm on a citation network and a network of linked web pages

with respect to the semantic meaning of the clusters. In this work we present an experimental

analysis of the general behavior of cut clusterings on benchmark instances proclaimed within

the 10th DIMACS Implementation Challenge on Graph Partitioning and Graph Clustering and

some further instances constructed from email data and collected by ourselves. The instances are

described in more detail in the next paragraph and in Section 1.4. Using the parametric search

approach introduced in the previous section, we construct complete cut-clustering hierarchies

and investigate the guaranteed quality of the cut clusterings in terms of expansion as well as the

modularity quality reached by these cut clusterings. Since the intra-cluster expansion of a cluster

and a clustering is hard to compute, we consider lower bounds in the analysis. Our study gives

evidence that trivial bounds do not match up to the given guarantee. The analysis of a special

non-trivial bound further indicates that the true intra-cluster expansion of the cut clusterings

even surpasses the guarantee, and also the inter-cluster expansion turns out to be better than

guaranteed.

Within the modularity analysis of the cut clusterings, we additionally consider reference

clusterings obtained from a common modularity-optimizing heuristic [121]. Our study documents

that for many of the tested graphs the cut clusterings reach modularity values quite close to

the references. On the other hand the cut-clustering algorithm returns fine clusterings with

small clusters and low modularity values if there are no other plausible clusterings supported

by the graph structure. The reference clusterings found by the modularity-optimizing heuristic,

however, often provide high modularity values even for those graphs. Thus, in contrast to

clusterings of best possible modularity, the modularity values of cut clusterings admit to indicate

how well a graph can be clustered.

Experimental Setting. The experiments in this work aim at three questions. The first ques-

tion asks how much more information the given guarantee on intra-cluster expansion provides,

compared to lower intra-cluster expansion bounds that are easy to compute. Additionally, we

also consider the exact inter-cluster expansion, which can be e�ciently computed. The sec-

ond question focuses on the modularity values that can be reached by cut clusterings, and the

plausibility of these values with respect to the graph structure. The third question finally asks

whether the reference clusterings obtained by the modularity-optimizing heuristic outperform

the cut clusterings in terms of intra-cluster expansion.

For our experiments, we use instances taken from the testbed of the 10th DIMACS Implemen-

tation Challenge, and additionally, the protein interaction network bo cluster published by Jeong
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et al. [86] and a snapshot of the linked wiki pages at www.dokuwiki.org, which we gathered our-

selves. The exact names of these instances are listed in the upper charts of the figures illustrating

our experimental results. A more detailed description of the instances as well as overview on the

sizes is given in Section 1.4. Moreover, we consider 275 snapshots of the email-communication

network of the Department of Informatics at KIT also described in Section 1.4. The latter have

around 200 up to 400 vertices.

Our analysis considers one cut clustering per instance, namely the cut clustering with the best

modularity value of all clusterings in the complete hierarchy. The complete hierarchies of the

instances are computed with the parametric search approach introduced in the previous section.

We used the same implementation, based on the LEMON framework, as for the brief running

time experiment in the previous section. For the computation of the reference clusterings, we

used an implementation of Lisowski [101]. The underlying modularity-optimizing heuristic [121]

is described in more detail in Section 11.3.2.

The results of our experiments are illustrated by three figures, one for each question we focus

on. For the sake of a better readability, each figure consists of two parts. The first/upper part

depicts the results for all instances except the snapshots of the email network. The second/lower

part depicts the results for the latter instances. The instances, respectively their clusterings, are

depicted on the x-axis, and all instances are decreasingly ordered by the amount of unclustered

vertices in the cut clusterings, which corresponds to an increasing order by coarseness.

11.3.1 Intra- and Inter-Cluster-Expansion Analysis of Cut Clusterings

We consider the true inter-cluster expansion, which is easy to compute, and two lower and also

an upper bound on intra-cluster expansion, since the true intra-cluster expansion is hard to

compute. For a cluster C the first lower bound B`(C) and the upper bound Bu(C) are trivially

obtained from a global minimum cut (M,C \M) in C:

B`(C) :=
c(M,C \M)

b|C|/2c   (C)  c(M,C \M)

min{|M |, |C \M |} =: Bu(C).

Note that Bu(C) is simply the expansion of the global minimum cut. The corresponding

bounds B`(⌦) and Bu(⌦) for a whole clustering ⌦ are again given by the minimum among all

clusters. Figure 11.8 considers for each instance the clustering of the complete hierarchy with the

best modularity value. For these clusterings it shows how the bounds B` (solid black line) and Bu

(dotted blue line) behave compared to the guarantee interval of the clustering given by the level

breakpoints in the hierarchy (filled red area). For a better comparability, we normalized the

upper interval boundary to 1. All further values are displayed proportionally. For the instances

in the upper chart, Fig. 11.8 further shows the inter-cluster expansion  . Comparing these values

to the lower boundary of the guarantee interval proves that many clusterings have a better inter-

cluster quality (that is, a lower value for  ) than guaranteed. See for example the instances

lesmis, power and netscience. Moreover, this also holds for most of the snapshots of the email

network depicted in the lower chart of Fig. 11.8. There, however, we omitted the presentation

of the inter-cluster expansion for the sake of a better readability.

Regarding the intra-cluster quality, we observe that for most instances the trivial lower

bound B` stays below the upper boundary of the guarantee interval. This reveals a true advan-

tage from knowing the guarantee besides the trivial bound. The few exceptions, see for example
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Figure 11.8: Expansion Analysis of Cut Clusterings: Inter-cluster expansion  and bounds
on intra-cluster expansion: trivial lower bound B` and trivial upper bound Bu based on global
minimum cut, alternative non-trivial lower bound A`. The upper boundary of the guarantee
interval is normalized to 1, further values are displayed proportional. Instances where the
guarantee meets Bu are marked by * in the upper chart. For the first four instances, the
cut-clustering algorithm returns only singletons. For the sake of readability,  is omitted in

the lower chart.

the instance polbooks, can be explained by the shape of the found cut clusterings. If the clus-

tering contains only small clusters, the value of the global minimum cut in each cluster is only

divided by a small number of vertices when computing the trivial lower bound B`. In unweighted

graphs this often yields a value bigger than 1, that is, bigger than the maximum edge costs. The

upper boundary of the guarantee interval, however, cannot exceed the maximum edge costs in

the graph. For instance where the upper boundary of the guarantee interval meets the upper

bound Bu, the guarantee equals the true intra-cluster expansion. In the upper chart of Fig. 11.8,

these instances are marked by a star. For the snapshots of the email network, we counted 3.6%

of the instances where the exact intra-cluster expansion is known. However, in most cases there

is still a large gap between the guaranteed intra-cluster expansion and the upper bound Bu.

In order to explore this gap, we further consider an alternative non-trivial lower bound A`

on intra-cluster expansion. This bound results from individually applying the hierarchical cut-

clustering algorithm to the subgraphs induced by the clusters in a clustering. The algorithm

returns a complete clustering hierarchy for each subgraph, thereby finding the breakpoint be-

tween the most upper hierarchy level, which consists of connected components, and the next

lower level. If we assume that the considered subgraph is connected (otherwise the expansion

is 0), this breakpoint ↵ is the largest parameter value where CutC returns the whole subgraph

as a cluster. According to the expansion guarantee of CutC the subgraph thus has at least

intra-cluster expansion ↵, that is, the found breakpoint constitutes a non-trivial lower bound A`

on the intra-cluster expansion of the considered cluster in the original clustering. This bound

again expands to the whole clustering by taking the minimum value of all clusters. Since this

method considers the clusters as independent instances ignoring the edges between the clusters,

the resulting bound A` potentially lies above the guarantee interval, which is also confirmed by

our experiment (see the solid red line in Fig. 11.8). That is, most of the cut clusterings are
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even better than guaranteed. Moreover, the lower bound A` increases the instances for which

we know the intra-cluster expansion for sure to 20%, by reaching the upper bound Bu in some

additional cases.

11.3.2 Modularity Analysis of Cut Clusterings

In the following we examine the modularity values of the best cut clusterings in the cut-clustering

hierarchies. In order to justify whether a given modularity value is a good value for the partic-

ular instance, we also generate reference clusterings of high modularity, using a state-of-the-art

modularity-optimizing greedy approach [121]. This multilevel greedy approach is widely used

and has turned out to be reliable in many experiments. It starts with an initial clustering

consisting of singleton clusters and moves vertices between clusters as long as this operation

increases modularity. Then the found clusters are contracted and the algorithm continues on the

next level. Finally the di↵erent levels are expanded top-down and the algorithm again allows

single vertices to move in order to further increase modularity. In this way, a local maximum

among all possible clusterings is found. Recall that computing a globally optimal clustering is

NP-hard [20].

Since high modularity values are known to be misleading in some cases, we further establish a

plausibility check by testing whether the clusters of the reference clusterings satisfy the following

significance property. This property guarantees that the clusters are clearly indicated by the

graph structure. A non-trivial cluster C in the reference clustering satisfies the significance

property if there exists a vertex r 2 C such that c(U,C \ U) > c(U, V \ C) for all U ✓ C \ {r}.
Note that this is exactly the first source-community condition (recall Table 11.1), and thus, the

clusters of the cut clusterings satisfy this property due to their construction. Figure 11.9 shows

the percentage amount of significant clusters, that is, clusters with significance property, in the

reference clusterings (dashed black line in the upper chart of each part).

To get also a better idea of the structure of the cut clusterings, we further present the

percentage amount of unclustered vertices in these clusterings (solid red line in the upper chart

of each part). Unclustered vertices may occur due to the strict behavior of the cut-clustering

algorithm, which is necessary in order to guarantee the significance property. We remark that

in contrast none of the reference clusterings contains unclustered vertices. As an additional

structural information on both types of clusterings, Fig. 11.9 depicts the cluster sizes in form of

whisker-bars (lower chart of the first part, red bars for cut clusterings, black bars for reference

clusterings, cluster sizes are omitted for snapshots of the email network in the second part). The

results on modularity are depicted in the middle chart of the first part and the lower chart of

the second part.

With this bunch of information at hand, we observe the following. In some cases, the modular-

ity of the cut clustering is quite low, however, modularity increases with the amount of clustered

vertices and the size of the clusters. It also reaches very high values, in particular for the snap-

shots of the email network and the instance netscience. The corresponding cut clustering is shown

in Fig. 1.5(a). The latter is a rather unexpected behavior, since the cut-clustering algorithm is

not designed to optimize modularity. We further observe a gap between the modularity values

of many cut clusterings and the values of the corresponding reference clusterings. We conjecture

that this is caused more by an implausibility of the modularity values of the reference clusterings

than by an implausibility of the cut clusterings. Our conjecture is based on the observation that
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Figure 11.9: Modularity Analysis of Cut Clusterings: Results for the best cut clusterings
and the reference clusterings. The upper charts in both parts show the ratio of (nontrivial)
significant clusters in the reference clusterings and the ratio of unclustered vertices in the
cut clusterings. The lower chart in the first part shows the cluster sizes for both types of
clusterings in the form of whisker-bars with maximum (+) and minimum (•) of the outliers.
Values greater than 20 are placed at the edge of the displayed range. Due to the high number
of email snapshots, we omitted whisker-bars there. The results on modularity are depicted in

the middle chart of the first part and the lower chart of the second part.
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more significant clusters in the reference clustering lead to a modularity value closer to the value

of the cut clustering, suggesting that the cut clusterings are more reliable.

Furthermore, comparing the results for the Delaunay triangulations and the snapshots of the

email network also vividly reveals the meaningfulness and plausibility of the cut clusterings.

The latter consider emails that were sent at most 72 hours ago. In contrast to other email

networks, which consider a longer period of time, this makes the snapshots very sparse and

stresses recent communication links, which yields clear clusters of people that recently work

together, see Fig. 1.6(a) for an exemplary email snapshots. Thus, we would expect a reliable

clustering approach to return meaningful non-trivial clusters. This is exactly what the cut-

clustering algorithm does. In contrast, the Delaunay triangulations generated from random

points in the plane are quite uniform structures (see Fig. 1.5(b)), and by intuition, significant

clusters are rare therein. The cut-clustering algorithm confirms our intuition by leaving all

vertices unclustered. This explains the low modularity values of these clusterings and indicates

that the underlying graph can not be clustered well. The reference clusterings, however, which

consist of larger clusters, contradict the intuition.

11.3.3 Intra-Cluster-Expansion Analysis of Reference Clusterings

Finally, we also examine whether the reference clusterings outperform the cut clusterings in

terms of intra-cluster expansion. To this end, we study the same lower and upper bounds for

as in Section 11.3.1. Figure 11.10 compares the guarantee interval and the non-trivial lower

bound A` for the cut clusterings (solid red line, already seen in Section 11.3.1) to the bounds A`

(solid black line), B` (dashed black line) and Bu (dotted blue line) for the reference clusterings

(A` for cut clusterings only in the upper, B` for reference clusterings only in the lower chart).

We observe that the trivial lower bound B` for the reference clusterings stays clearly below

the guaranteed intra-cluster expansion for the cut clusterings, and compared to the trivial lower

bound B` for the cut clusterings in Section 11.3.1 (Fig. 11.8), this behavior is even more evi-

dent. In contrast, the non-trivial lower bound A` for the reference clusterings often exceeds the

guarantee interval, particularly for the email snapshots. Nevertheless, it does rarely reach the

corresponding bound for the cut clusterings. We counted 85% of the instances where it rather

stays below the best lower bound for the cut clusterings. Thus, with respect to the lower bounds,

there is no evidence that the intra-cluster expansion of the reference clusterings surpasses that

of the cut clusterings. The upper bound Bu, which drops below the best lower bound for the

cut clusterings in 23% of the cases, even proves a lower intra-cluster expansion for the reference

clusterings. The corresponding instances are marked by a star in the upper chart of Fig. 11.10.

Conclusion. The experiments in this study document that the given guarantee on intra-cluster

expansion provides a deeper insight compared to a trivial bound that is easy to compute. The

true intra-cluster expansion and inter-cluster expansion often turned out to be even better than

guaranteed. An analog analysis of the expansion of the reference clusterings could further give no

evidence that modularity-optimizing clusterings surpass cut clusterings in terms of intra-cluster

expansion. On the contrary, around one fourth of the considered reference clusterings could be

proven to be worse than the cut clusterings.

Within the modularity analysis, we could reveal that, although it is not designed to optimize

modularity, the hierarchical cut-clustering algorithm reliably finds clusterings of good modularity

if such a clustering is structurally indicated. Otherwise, if no good clustering is indicated by
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Figure 11.10: Expansion Analysis of Reference Clusterings: Guarantee interval and non-
trivial lower bound A` for cut clusterings (only in upper chart), and bounds on intra-cluster
expansion for the reference clusterings: trivial lower bound B` (only in lower chart) and trivial
upper bound Bu based on global minimum cut, alternative non-trivial lower bound A`. The
upper boundary of the guarantee interval is normalized to 1, further values are displayed
proportional. Instances where the upper bound Bu for the reference clustering drops below
the lower bound A` for the cut clustering are marked by * in the upper chart. For the first

four instances, the cut-clustering algorithm returns only singletons.

the graph structure, the cut-clustering algorithm returns clusterings of low modularity. This

confirms a high reliability of the cut-clustering approach and justifies modularity applied to cut

clusterings as a feasible measure for how well a graph can be clustered.



CHAPTER 12

Maximum Source-Community Clusterings

In the previous chapter, we have seen that computing all existing cut clusterings for a given

undirected, weighted graph is possible with an appropriate strategy for choosing the parameter

values ↵ (Section 11.2). However, depending on the graph structure, it might happen also in a

complete hierarchy that no appropriate clustering with respect to a certain application is found.

Consider for example the co-appearance network of the characters in the novel Les Miserables [94]

(called lesmis) presented in Fig. 12.1. The complete cut-clustering hierarchy for this weighted

network consists of 11 levels, three of which are depicted in the figure. Intuitively, the first

clustering ⌦3 (Fig. 12.1(a)), which consists of only four small, non-trivial clusters and many

unclustered vertices, is not desirable for most applications. On the other hand, the next higher

clustering ⌦4 (Fig. 12.1(b)) contains already a very large cluster that covers a big part of the

graph, while the remaining clusters are rather small or even singletons. In the third clustering ⌦5

(Fig. 12.1(c)) this large cluster even expands covering six further vertices. Hence, one might ask

if there is no other, somehow nicer clustering indicated by the graph structure, which just is not

found by the cut-clustering approach; a clustering that, for example, contains less unclustered

vertices than ⌦3 or is more balanced than ⌦4 and ⌦5. Of course, such a clustering cannot be a

cut clustering anymore, since we already know all existing cut clusterings, but there might be

still a nicer clustering consisting of source communities, since the source communities that can

C

B
A1

A2

(a) Cut clustering ⌦
3

.

C

A

C

B

(b) Next higher level ⌦
4

.

A

C

B

(c) Next higher level ⌦
5

.

Figure 12.1: Three consecutive cut clusterings ⌦
3

, ⌦
4

, ⌦
5

in the complete hierarchy for the
weighted instance lesmis. Note that the edge costs are not depicted here. The clusters A

1

and A
2

in ⌦
3

are covered by a larger cluster A in ⌦
4

, while in ⌦
5

the cluster A even expands.
The clusters B and C appear in all three clusterings.
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be detected by the cut-clustering algorithm form a proper subclass of the class of all existing

source communities (recall Section 11.1.3).

In this chapter, we present a possibility to investigate the source community structure of

a given graph beyond the cut clusterings found by the cut-clustering algorithm. To this end,

we e�ciently construct maximum clusterings that are close or equal to the highest level of any

clustering hierarchy that consists of source communities and contains a set of designated clusters.

More precisely, we show that the unique-cut tree presented in Part II (Section 7.2) admits to

answer the following queries in linear time.

(1) For a given source community S, return a clustering ⌦(S) that consists of source commu-

nities, contains S, and is maximum in the sense that each clustering that also consists of S

and further source communities is hierarchically nested in ⌦(S).

(2) For k disjoint source communities S1, . . . , Sk, return an inclusion maximal clustering, de-

noted by ⌦(S1, . . . , Sk), that contains S1, . . . , Sk, is hierarchically nested in each clustering

⌦(S1), . . . ,⌦(Sk) defined in (1), and is maximum in the sense that each clustering that con-

sists of S1, . . . , Sk and further source communities is hierarchically nested in ⌦(S1, . . . , Sk).

If a clustering ⌦(S), as required in (1), exists for a given source community S, it follows directly

that ⌦(S) is the unique inclusion-maximal clustering with respect to the required properties,

since then each clustering that also consists of S and further source communities is already hier-

archically nested in ⌦(S). Thus, we call ⌦(S) the maximum SC-clustering for S. In the following

we will see that ⌦(S) always exists and how it can be constructed. The clustering ⌦(S1, . . . , Sk),

as required in (2), will also turn out to always exist and to be unique. We call ⌦(S1, . . . , Sk) the

overlay clustering for S1, . . . , Sk.

The linear query time of this approach admits an e�cient computation of many such maxi-

mum clusterings with respect to di↵erent designated clusters, and thus, a broad analysis of the

source-community structure of a given graph beyond cut clusterings. The designated clusters

may result from the cut-clustering algorithm or other preliminary knowledge about the graph.

The precomputation of the underlying unique-cut tree needs at most 2(n � 1) maximum-flow

computations (see Section 7.2). Recall further that source communities correspond to gener-

alized M-sets. Thus, in the following, we identify source communities and generalized M-sets

without further notice.

The Shape of Source Communities in Unique-Cut Trees. The key to the algorithms

for constructing maximum SC-clusterings and overlay clusterings is the following lemma, which

describes the shape of source communities with respect to the unique-cut tree of the underlying

graph G. Recall the structure of the unique-cut tree T (G) for an undirected, weighted graph G =

(V,E, c). The unique-cut tree T (G) represents all regular M-set of G and consists of two parts.

The first part is a rooted cut tree T (G) = (V,ET , cT ) with edges directed to the leaves such that

each edge (t, s) 2 ET represents the U-cut uc(s, t), and for the opposing M-sets holds |m(s, t)| 
|m(t, s)|. The second part is an (n� 1)⇥n matrix where the rows store the opposite M-sets (the

so-called matrix sets) assigned to the edges in T (G). The following lemma now limits the shape

of arbitrary source communities in G to subtrees in T (G), which admits an e�cient enumeration

of disjoint source communities by a depth-first search (DFS), as we will see in this chapter.

Lemma 12.1. Let S denote an arbitrary source community in G. The subgraph T [S] induced

by S in the unique-cut tree T (G) is connected.
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Figure 12.2: Di↵erent situations considered in the proof of Lemma 12.1.

st

m(s, t)

u

r

Figure 12.3: Situation considered in the proof Lemma 12.2. The subtree U rooted in u is
marked by a circle.

Proof. If S is a (regular) M-set that belongs to a U-cut that is represented by an edge in T (G), the

lemma obviously holds. Hence, assume S is a matrix set or another arbitrary source community,

that is, a generalized M-set. In order to prove the connectivity of T [S], we first focus on the

predecessors of the source s of S in the directed tree T (G). Let p denote a predecessor of s

with p 2 T [S] and q a successor of p on the path ⇡(p, s) between p and s (see Fig. 12.2(a)). We

prove that q 2 T [S]. Assume q /2 T [S]. Since s is a successor of q, s is in the M-set m(s, q).

With q /2 T [S], it follows from Lemma 7.6(2i) that S ✓ m(s, q). This, however, contradicts p 2
T [S]. Hence, the path ⇡(p, s) is completely contained in T [S].

In a second step, we consider the remaining vertices. Let u be a vertex that is no predecessor

of s. Let r denote the nearest common predecessor of u and s (if u is a successor of s, it

is r = s). We first show, that (i) if u 2 T [S], then r 2 T [S]. Then we suppose there is also a

predecessor p 6= r of u on the path ⇡(r, u) between r and u (see Fig. 12.2(b) for the case where u

is no successor of s) and prove (ii) that if u 2 T [S], then p 2 T [S]. Together with the result on

the predecessors of s, this ensures the connectivity of T [S].

Proof of (i): If r = s, we are done. Hence, assume r 6= s and r /2 T [S]. Since s is a successor

of r, s is in the M-set m(s, r), while u /2 m(s, r). With r /2 T [S], it follows from Lemma 7.6(2i)

that S ✓ m(s, r). This, however, contradicts the assumption that u 2 T [S]. Hence, it is r 2 T [S]

if u 2 T [S].

Proof of (ii): From (i) we already know that r 2 T [S]. Assume p /2 T [S] and consider the M-

set m(r, p). It is u 2 m(r, p), but s /2 (r, p). With p also not in T [S], it follows from Lemma 7.6(1)

that m(r, p) and T [S] are disjoint. This, however, contradicts the assumption that u 2 T [S],

since u 2 m(r, p). Hence, the path ⇡(r, u) is completely contained in T [S].

If the source community S is a regular M-set, we can describe the shape of the induced

subtree T [S] in T (G) in even more detail.

Lemma 12.2. If S is a regular M-set and u 2 T [S] is no predecessor of the source s of S, then

the subtree rooted at u in T (G) is also contained in T [S].
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r0 p0

m(p0, r0)

S
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Figure 12.4: Initial situation when constructing a maximum SC-clustering. Clusters S is
framed by a solid line, vertices in T

1

are filled green. Dashed red lines indicate found source
communities. Dashed black lines describe m(r

0

, p
0

) and m(p
0

, r
0

).

Proof. The lemma obviously holds if S belongs to a U-cut that is represented by an edge in T (G).

Hence, assume S is a matrix set and let (s, t) 2 ET denote the edge where S is assigned to (see

Fig. 12.3). That is, S = m(s, t). Let further u 2 T [S] denote a vertex that is no predecessor of S,

and let r denote the nearest common predecessor of u and s. Note that then u is in particular

no successor of s, since all successors of s are outside of T [S]. We denote the subtree rooted at u

in T (G), by U . Obviously, s, t /2 U . However, the subtree U is also a regular M-set, and thus, a

source community with source u. Since we assumed u 2 T [S], it thus follows from Lemma 7.6(2i)

that U ✓ T [S].

12.1 Constructing Maximum SC-Clusterings

Given an arbitrary source community S in an undirected, weighted graph G = (V,E, c), we show

how to construct the maximum SC-clustering for S, that is, a clustering ⌦(S) of G that consists

of source communities, contains S, and is maximum in the sense that each clustering that also

consists of S and further source communities is hierarchically nested in ⌦(S). This construction

is based on the unique-cut tree of the underlying graph G.

Theorem 12.3. Let S denote an arbitrary source community in G. The maximum SC-clustering

for S can be determined in O(n) time after preprocessing T (G).

The maximum SC-clustering for S =: S0 can be determined by the following construction,

which proves Theorem 12.3 and directly implies a simple and e�cient algorithm. Let r denote

the root of T (G) =: T0 and T [S0] the subtree induced by S0 in T0 (Lemma 12.1). Deleting T [S0]

decomposes T0 into connected components, each of which representing a source community,

except the one that contains r if r /2 S0 (see Fig. 12.4). If r 2 S0, we are done. Otherwise,

let T1 denote the component containing r, and r0 the root of T [S0]. Obviously, it is p0 2 T1
for (p0, r0) 2 ET . The matrix set m(p0, r0) =: S1 does not intersect with m(r0, p0), which

contains S0 and all further components found so far besides T1. That is, S1 ✓ T1. According

to Lemma 12.1, S1 thus induces a subtree T [S1] in T1. Hence, S1 and T1 adopt the roles of S0

and T0. Continuing in this way, we finally end up with a matrix set Sk containing r, such

that deleting T [Sk] yields only source communities. The resulting clustering ⌦(S) consists of

the source communities S = S0, . . . , Sk, and the remaining source communities resulting from

the decompositions of T0, . . . , Tk. We remark further that all source communities found by the

construction correspond either to a U-cut that is represented by an edge in T (G) or to a matrix

set. Hence, besides S, all clusters in ⌦(S) are regular M-sets, by construction.

If we assume that we can crawl the edges in T (G) in both directions and that we can decide

in constant time whether or not a vertex belongs to the currently considered source community,



Chapter 12 : Maximum Source-Community Clusterings 209

S

s tc cc

Ca Cc

ta
ca

s0t0

cb

tb

Cb

S0

(a) Three examples C
a

, C
b

, C
c

of clusters (filled green)
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Figure 12.5: Situations considered in the proof of Lemma 12.4. Cluster S in (a) is filled gray,
matrix sets are framed by solid lines, remaining M-sets by dotted lines.

this construction can be easily done in linear time by a DFS starting from the first vertex found

in the current community. Recall that the matrix sets in T (G) can be accessed in constant time.

Thus, it su�ces to explicitly require a constant access time for the initial source community S.

The remaining source communities appear in form of subtrees that contain all successors of their

root in T (G). Thus, the vertices of these communities can be easily enumerated by the DFS,

without checking the membership for each vertex. The maximality of ⌦(S) finally follows from

the following lemma.

Lemma 12.4. Let Q denote an arbitrary source community of G that does not intersect with S.

Then, Q is nested in a cluster of ⌦(S).

Proof. Let q denote a source of Q and s a source of S. Let further C 2 ⌦(S)\S denote the cluster

that contains q and recall that C is a regular M-set according to the construction. Moreover, C

is associated to the edge (c, t) in T (G) if C is a matrix set, and otherwise, the U-cut of C is

represented by the edge (t, c). That is, in both cases holds C = m(c, t). In the following we show

that C is also an M-set with respect to s, that is, m(c, t) = m(c, s). Lemma 12.4 then follows

directly by applying Lemma 7.6(2i) to Q and C with q 2 Q \ C, but s /2 Q.

In order to proof that C = m(c, t) = m(c, s), we observe the following. For each cluster C =

m(c, t) in ⌦(S), it holds by construction that t is either in S or in a cluster S0 that is a matrix set

m(s0, t0) associated to the edge (s0, t0) in T (G), where (s0, t0) is on the (undirected) path ⇡(c, s)

between the source c of C and the source s of S (see Fig. 12.5(a)). The matrix sets in ⌦(S) in

particular form a kind of a path. The idea is now to apply the following claims recursively along

the clusters on this path.

Claim 1: Let C1 and C2 denote two clusters in ⌦(S) with sources c1 and c2 and let further C2

be the regular M-set m(c2, t) with t 2 C1. Then, C2 is also an M-set with respect to c2, that

is, C2 = m(c2, t) = m(c2, c1).

Claim 2: Let ⇡(c1, s) denote the (directed) path in T (G) from a vertex c1 to the source s

of S. Let further C1 and C2 denote two clusters in ⌦(S) \ S with C1 = m(c1, t) a matrix set

with t 2 ⇡(c1, s) and C2 = m(c2, c1) where the (undirected) path ⇡(c2, c1) shares exactly the

vertex c1 with ⇡(c1, s) (see Fig. 12.5(b)). Then, C2 is also an M-set with respect to t, that

is, C2 = m(c2, c1) = m(c2, t).

If the opponent t of C = m(c, t) is in S, we are done according to the first claim, identifying S

with C1 and C with C2. Otherwise, t is in a matrix set S0, it holds again by Claim 1 that C =

m(c, s0).
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If now the opponent t0 of S0 is in S, according to the first claim, we get analogously that S0 =

m(s0, s). With C = m(c, s0) , the second claim then ensures that C = m(c, s). Otherwise,

if t0 /2 S, we apply Claim 1 and Claim 2 recursively to the path of matrix sets ending up with

S0 = m(s0, s) and again C = m(c, s). This finishes the proof of Lemma 12.4.

Proof of the Claim 1: We first consider the nesting behavior of c1 and the M-set m(c2, c1).

Since C2 and C1 do not intersect, it is c2 /2 C1. Furthermore, it is clearly c1 /2 m(c2, c1). Thus,

according to Lemma 7.6(1), m(c2, c1) and C1 do also not intersect, that is, C1 \ m(c2, c1) = ;.
If now the opponent t of C2 = m(c2, t) is in C1, we get the situation of Lemma 7.6(2ii) for C2

and m(c2, c1) as follows. The vertex t is not in m(c2, c1), since m(c2, c1) and C1 do not intersect,

as we have just seen above. On the other hand, c1 is not in C2, since C2 and C1 do not intersect.

Finally c2 is in C2 \m(c2, c1). Hence, according to the lemma, it is C2 = m(c2, c1). This finishes

the proof of Claim 1.

Proof of Claim 2: We consider the nesting behavior of C2 = m(c2, c1) and the M-set m(c2, t).

If the opponent c1 of C2 is not in the M-set m(c2, t), we get the situation of Lemma 7.6(2ii), since t

is also not in C2 (by assumption) and clearly it is c2 2 C2\m(c2, t). Hence, it holds C2 = m(c2, t),

and we are done. We show now by contradiction that the remaining case c1 2 m(c2, t) does not

occur.

Assume c1 2 m(c2, t). Since t /2 C2, but clearly c2 2 C2 \ m(c2, t), applying Lemma 7.6(2i)

to C2 and m(c2, t) yields C2 ✓ m(c2, t). Consequently, (C2, V \C2) also separates c2 and t and it

is c(C2, V \ C2) = �(c2, c1) > �(c2, t). Again by Lemma 7.6(2i), we also get C1 ✓ m(c2, t), since

clearly t /2 C1, but c1 2 C1 \ m(c2, t). Consequently, the U-cut uc(c2, t) also separates c1 and t

and it is c(uc(c2, t)) = �(c2, t) � �(c1, t). Together, this yields �(c2, c1) > �(c1, t) and C1, C2 ✓
m(c2, t).

Now recall that ⇡(c2, c1) \ ⇡(c1, s) = {c1} and t 2 ⇡(c1, s), and observe that, by construc-

tion, m(c2, t) is assigned to a cheapest edge e1 on ⇡(c2, t), C1 to a cheapest edge e2 on ⇡(c1, t),

and C2 to a cheapest edge e3 on ⇡(c2, c1) in T (G). From C1, C2 ✓ m(c2, t) then follows that

the edge e1 must be the first of the edges e1, e2, e3 when traversing T (G) from s to c2. Then,

however, the algorithm would have found the cluster m(c2, t) instead of the clusters C1 and C2,

which is a contradiction. This finishes the proof of Claim 2.

12.2 Constructing Overlay Clusterings

Given k arbitrary disjoint source communities S1, . . . , Sk in an undirected, weighted graph G =

(V,E, c), we show how to construct the overlay clustering for S1, . . . , Sk, that is, an inclusion-

maximal clustering ⌦(S1, . . . , Sk) of G that contains S1, . . . Sk, is hierarchically nested in each

maximum SC-clustering ⌦(S1), . . . ,⌦(Sk), and is maximum in the sense that each clustering that

consists of S1, . . . , Sk and further source communities is hierarchically nested in ⌦(S1, . . . , Sk).

That such a clustering ⌦(S1, . . . , Sk) exists and is unique can be seen as follows. Con-

sider two vertices as equivalent if they are in a common cluster in all maximum SC-clusterings

⌦(S1), . . . ,⌦(Sk) and let the resulting equivalence classes denote the clusters of a clustering ⌦0.

Since S1, . . . , Sk are pairwise disjoint, according to Lemma 12.4, each set Si 2 {S1, . . . , Sk} is

nested in a cluster C 2 ⌦(Sj) for j = 1, . . . k. Hence, ⌦0 contains the clusters S1, . . . , Sk and

is hierarchically nested in each maximum SC-clustering ⌦(S1), . . . ,⌦(Sk). Clearly, ⌦0 is also

the unique inclusion-maximal clustering that contains S1, . . . , Sk and is hierarchically nested

in ⌦(S1), . . . ,⌦(Sk). Furthermore, due to the maximality of ⌦(S1), . . . ,⌦(Sk), it holds that each
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source community S0 that does not intersect with S1, . . . , Sk is nested in the intersection of the

clusterings in ⌦(S1), . . . ,⌦(Sk) that contain S0. Hence, each clustering that consists of S1, . . . , Sk

and further source communities is hierarchically nested in ⌦0. Consequently, ⌦0, which exists

and is unique, corresponds to the desired overlay clustering ⌦(S1, . . . , Sk). The construction

of ⌦(S1, . . . , Sk) is possible in linear time as described below.

Theorem 12.5. Let S1, . . . , Sk denote arbitrary disjoint source communities in G. The unique

overlay clustering for S1, . . . , Sk can be determined in O(kn) time after preprocessing M � T (G).

The overlay clustering for S1, . . . , Sk can be determined by the following inductive construc-

tion, which directly implies a simple algorithm. We first compute the maximal SC-clustering

⌦(S1) and color the vertices in each cluster, using di↵erent colors for di↵erent clusters. Now

consider the overlay clustering ⌦(S1, . . . , Si) for the first i maximal SC-clusterings and color the

vertices in Si+1, which is nested in a cluster of ⌦(S1, . . . , Si) (based on Lemma 12.4 and the

maximality of ⌦(S1), . . . ,⌦(Sk)), with a new color. Then we execute the algorithm for comput-

ing ⌦(Si+1), and during this computation, we construct the intersections of each newly found

cluster C with the clusters in ⌦(S1, . . . , Si). We exploit that the intersection of two subtrees in a

tree is again a subtree. Hence, the clusters in ⌦(S1, . . . , Si, Si+1) will be subtrees in T (G), since

the clusters in ⌦(S1), . . . ,⌦(Si) and ⌦(Si+1) are subtrees in T (G) by Lemma 12.1.

The intersection of a cluster C in ⌦(Si+1) with each existing (that is, already colored) cluster

in ⌦(S1, . . . , Si) can be constructed as follows. Let r0 denote the first vertex found in C during the

computation of ⌦(Si+1). We mark r0 as root of a new cluster in ⌦(S1, . . . , Si, Si+1) and choose

a new color x for r0, besides the color it already has in ⌦(S1, . . . , Si). When constructing C

(by applying a DFS), we assign the current color x to all vertices visited by the DFS as long

as the underlying color in ⌦(S1, . . . , Si) does not change. Whenever the DFS visits a vertex r00

(still in C) with a new underlying color, we chose a new color y for r00 and mark r00 as root

of a subtree of a new cluster in ⌦(S1, . . . , Si, Si+1). When the DFS passes r00 on the way back

to the parent1 p of r00, the color of p in ⌦(S1, . . . , Si, Si+1) becomes the current color again.

Continuing in this way yields a coloring that indicates the intersections of C with ⌦(S1, . . . , Si).

Repeating this procedure for all clusters in ⌦(Si+1) finally yields ⌦(S1, . . . , Si+1). The running

time is in O(kn), since we just apply k computations of maximal SC-clusterings.

12.3 An Exemplary Analysis of the Lesmis Network

We exemplarily extract two of the many faces of the source-community structure of the weighted

lesmis network that we have already seen in the introduction. Suppose, for example, we want

to know if there exists a clustering of source communities that also contains the cluster A but

less singletons than the cut clustering ⌦4 found by the cut-clustering algorithm (Fig. 12.1(b)).

To answer this question, we construct the maximum SC-clustering ⌦(A) for A, which is shown

in Fig. 12.6(b). Besides A this clustering also contains the cluster B from ⌦4, a cluster C 0 that

covers C from ⌦4 and three further non-singleton clusters.

Furthermore, we observe that the clustering ⌦5 (Fig. 12.1(c)) on the next higher level in

the cut-clustering hierarchy cannot be nested in ⌦(A) due to the size of the cluster A in ⌦5.

Hence, the maximum SC-clustering ⌦(A) does not appear above ⌦5 in cut-clustering hierarchy.

Conversely, ⌦(A) can neither be nested in ⌦5 nor in ⌦4 due to the cluster C 0 in ⌦(A). That is,

1The predecessor adjacent to r

00 in the rooted subtree induced by the DFS.
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Figure 12.6: Exemplary clusterings of the lesmis network; clusters B,C0, D appear in both
clusterings and in the underlying unique-cut tree.

we found a completely new clustering of source communities that contains the given cluster A

from ⌦4, but less unclustered vertices. Due to the maximality of ⌦(A), we further know that any

clustering of source communities that contains A contains at least as many singletons as ⌦(A).

Figure 12.6(a) shows the underlying unique-cut tree T (lesmis). The root r of T (lesmis) is

depicted as filled square. The subtree T [A] induced by A in T (lesmis) is indicated by filled

vertices. Since the root r of T (lesmis) is in A, deleting T [A] immediately decomposes T (lesmis)

into the unframed singletons and the round framed clusters of ⌦(A) shown in Fig. 12.6(b).

The second example (Fig. 12.6(c)) considers the overlay clustering ⌦(S1, . . . , S6, E) with the

given source communities S1, . . . , S6 defined by the non-singleton subtrees of the root r in

T (lesmis). The source community E (filled vertices in squared box) has been computed ad-

ditionally. It equals the generalized M-set m(r, T ) with T :=
S6

i=1 Si. If we consider the filled

vertices in Fig. 12.6(c) as one cluster F := V \ T , then S1, . . . , S6 together with F represent

the overlay clustering ⌦(S1, . . . , S6). However, F is no source community, since for the two

vertices v1, v2 2 F \ E there exists a vertex u 2 T (unfilled square) such that m(vi, u) ✓ F

(i = 1, 2) is a singleton. Hence, according to Lemma 7.6(2i), any source community nested in F ,

apart from {v1} and {v2}, must be in E. This further shows that, in contrast to ⌦(S1, . . . , S6),

the overlay clustering ⌦(S1, . . . , S6, E) indeed consists of source communities and any clustering

that also consists of source communities and contains S1, . . . , S6, E is nested in ⌦(S1, . . . , S6, E).

Compared to the other clusterings that we have seen so far, ⌦(S1, . . . , S6, E) contains only two

singletons and the clusters are more balanced. Hence, we conclude that the lesmis network ad-

mits several diverse decompositions into source communities, which are not all found by the

cut-clustering algorithm. A further example of a maximum SC-clustering is shown in Fig. 1.4.



CHAPTER 13

The Unrestricted Cut-Clustering Algorithm

As already mentioned in Section 11.1, Flake et al. [42] develop their final cut-clustering method

step-by-step, each time simplifying a previous version. The first version, for which they already

prove the quality guarantee, but do not consider a hierarchical approach, admits the use of

arbitrary minimum separating cuts instead of U-cuts. Although arbitrary minimum separating

cuts may cross, even if they all share a common vertex t in their cut pairs, their use for the

cut-clustering technique is possible due to the close relation of the cut-clustering approach to

Gomory-Hu trees. The cut-clustering algorithm described by CutC is basically a partial Cut

Tree execution on the graph G↵ with a special sequence of split cuts, namely U-cuts with

respect to the artificial vertex t and the later representatives of the clusters (recall Fig. 11.1(a)).

Hence, replacing a few lines in the Gomory-Hu tree construction Cut Tree would result in

an algorithm that basically does the same as CutC. In this light it is also easy to formulate

a cut-clustering approach that admits the use of arbitrary minimum separating cuts instead of

U-cuts. We just replace line 2, line 3, and line 4, which define the choice of step pairs and split

cuts in Cut Tree (see Algorithm 8). As input graph for the resulting unrestricted cut-clustering

approach, called Unrestricted CutC, we use G↵, and to obtain the final clustering from the

returned intermediate tree T⇤, we simply delete the artificial vertex t, which is a singleton in T⇤

due to the condition of the while-loop in line 2. This decomposes T⇤ into connected components,

which are interpreted as clusters. We call a clustering that can be found by Unrestricted

CutC an unrestricted cut clustering.

In this way, any intermediate tree on G↵ that contains t as a singleton node induces an

unrestricted cut clustering. We call such a tree a clustering tree. We remark further that

continuing the execution of Cut Tree on a clustering tree might change the edge structure of

the subtrees incident to t, but does not change the set of vertices contained in each subtree.

That is, the resulting Gomory-Hu tree would induce the same clustering as the clustering tree.

Hence, for each clustering tree we may assume an underlying Gomory-Hu tree, that is, a fictional

edge structure within the induced clusters (see also Fig. 13.1(b)). Vice versa, the clusters of

an unrestricted cut clustering and their representatives induce a sequence of step pairs and

split cuts, and thus, an Unrestricted CutC execution that returns a clustering tree that

induces the clustering (Fig. 13.1(a)). Note that an unrestricted cut clustering can be induced

by several clustering trees that di↵er in those edges that are not incident to t. Hence, as a

convention, we identify an unrestricted cut clustering with the clustering tree that results from

the Unrestricted CutC execution induced by the clustering. This clustering tree contains,

besides t, exactly the clusters as nodes (see Fig. 13.1). This view on unrestricted cut clusterings

213
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Algorithm 8: Unrestricted CutC

Input: Graph G↵ = (V↵, E↵, c↵)
Output: Gomory-Hu tree of G↵

1 Initialize tree T⇤ = (V,Et, Ef , cf ) with Et  thin edges forming an arbitrary spanning tree
of V , Ef  ; and cf empty

2 while t is no singleton node do // unfold node of t
3 S  subtree of thin edges that contains t // choose node

4 {u, t} step pair with u arbitrary vertex in S // choose step pair

5 (U, V \ U) min-u-t-cut in G↵, cost �G
↵

(u, t), u 2 U // choose split cut

6 Et  Et \ S
7 forall the x 2 S \ {u, t} do // split S = Su ·[St

8 if x 2 U then Et  Et [ {{u, x}}; // reconnect x to u
9 if x 2 V \ U then Et  Et [ {{v, x}}; // reconnect x to t

10 N  all vertices x that are linked by a fat edge to a vertex vx 2 S
11 forall the x 2 N do // reconnect subtrees to Su and St

12 if x 2 U then Et  (Et \ {{vx, x}}) [ {{u, x}}; // reconnect x to u
13 if x 2 (V \ U) then Et  (Et \ {{vx, x}}) [ {{v, x}}; // reconnect x to t

14 Ef  Ef [ {{u, t}}, Et  Et \ {{u, t}}, cf (u, t) �G
↵

(u, t) // draw {u, t} fat

15 return T⇤

t

u3

u2

u1

u4

u5

u6

(a) Clustering tree resulting from an Unrestricted
CutC execution using the cuts induced by a given clus-
tering.

t

u3

u2

u1

u4

u5

u6

(b) Clustering tree with underlying Gomory-Hu tree, fic-
tive edges as dashed lines.

Figure 13.1: Schematic illustration of the clustering tree induced by an unrestricted cut
clustering via an Unrestricted CutC execution with step pairs consisting of t and the
representatives u

2

, . . . , u
6

of the clusters and split cuts induced by the clusters. Note that,
in contrast to the edges of the clustering tree (a), the edges incident to t in the underlying
Gomory-Hu tree (b) may be also connected to vertices di↵erent from the representatives ui.

will become in particular important in the next chapter, where we consider dynamic updates on

unrestricted cut clusterings based on the results for dynamic Gomory-Hu trees.

The algorithm Unrestricted CutC is able to return also any cut clustering that can be

found by CutC. To this end, we simply restrict the used split cuts again to U-cuts. In the

following we call an unrestricted cut clustering that can be also found by CutC a restricted

cut clustering. If we want to stress the di↵erence between Unrestricted CutC and CutC,

we further call CutC the restricted cut-clustering algorithm. We finally point out that, in

contrast to restricted cut clusterings, unrestricted cut clusterings are not unique for a designated

parameter value ↵.

Flake et al. already showed that unrestricted cut clusterings provide the same quality guar-

antee as restricted cut clusterings, but the authors did not investigate the nesting behavior of

unrestricted cut clusterings for di↵erent values of ↵. Since unrestricted cut clusterings are not
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(c) New restricted cut
clustering.

Figure 13.2: Example how unrestricted cut clusterings may support temporal smoothness.
After a change of the cost of edge {a, b} from 10↵ to 3/2↵, the unrestricted cut-clustering

approach allows to retain the old clustering and avoids singletons.

unique for fixed values of ↵, one might ask whether it is even possible to e�ciently find clus-

terings that are hierarchically nested. In this chapter we show that arbitrary unrestricted cut

clusterings with respect to di↵erent values of ↵ are always hierarchically nested, independent

from the chosen step pairs and split cuts in Unrestricted CutC. Hence, analogous to the hi-

erarchical restricted cut-clustering approach based on CutC, we get a hierarchical unrestricted

cut-clustering approach based onUnrestricted CutC. In other words, we prove Theorem 13.1,

which implies that applying Unrestricted CutC iteratively with decreasing ↵ always yields

a hierarchy of at most n di↵erent unrestricted cut clusterings, where the clustering quality on

level i depends on ↵i (recall the indexing of hierarchy levels and clusterings in Fig. 11.2).

Theorem 13.1. Given a sequence ↵1 > · · · > ↵r of parameter values each set of unrestricted

cut clusterings ⌦1(G), . . . ,⌦r(G) forms a hierarchy.

In the next chapter we will further develop a dynamic unrestricted cut-clustering approach

that applies for single unrestricted cut clusterings as well as for hierarchies of unrestricted cut

clusterings. In dynamic scenarios, unrestricted cut clusterings reveal their hidden strength.

Since, in contrast to the restricted approach, the unrestricted cut clustering algorithm is able to

choose the most appropriate cut with respect to a given task, it is able to employ its additional

degree of freedom for example to the benefit of temporal smoothness, thus compensating the fact

that the found clusters are not guaranteed to be source communities. Figure 13.2 gives a brief

example of a dynamic graph, where the initial unique cut clustering is restricted, while after an

atomic change the resulting graph also admits an unrestricted cut clustering besides the unique

restricted one. This unrestricted cut clustering, which still provides a quality with respect to

the same bounds as the previous clustering, since the parameter value did not change, equals

the previous clustering and is thus optimal in terms of temporal smoothness. The restricted

cut clustering for the new graph however di↵ers from the previous clustering and contains some

singletons.

Proof of Theorem 13.1. The main ingredient of Theorem 13.1 is the nesting behavior of ar-

bitrary minimum separating cuts with respect to di↵erent values of ↵. Lemma 13.2 characterizes

the important aspects of this nesting behavior with respect to unrestricted cut clusterings.

Lemma 13.2. Let (U, V↵
j

\ U) denote a minimum u-t-cut in G↵
j

(u 2 U), and for ↵i > ↵j let

(X,V↵
i

\X) denote a minimum x-t-cut in G↵
i

(x 2 X). Then it holds (a) X ✓ U if x 2 U , (b)

X \ U = ; if x /2 U , u /2 X, and (c) the case x /2 U , u 2 X does not occur if there exists an

unrestricted cut clustering ⌦j(G) that contains U as a cluster.
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t

x

U

;

X\U

X

(a) If x 2 U , then X ✓ U .

t

u

X

U X\U

x;

(b) If x /2 U and u /2 X, then
X \ U = ;.

Figure 13.3: Situation of Lemma 13.2. Filled areas are proven to not exist. Instead, U is
shaped as indicated by the dashed red lines.

From Lemma 13.2 follows directly that two unrestricted cut clusterings ⌦i(G) and ⌦j(G)

with respect to di↵erent values ↵i > ↵j are hierarchically nested, that is, ⌦i(G)  ⌦j(G).

This immediately proves Theorem 13.1. Finally, the following corollary, which we will apply in

Chapter 14 in the context of dynamic clustering hierarchies, can be deduced from Theorem 13.1.

Corollary 13.3. A cluster C 2 ⌦j(G) separates G into C and V \ C such that both parts are

clustered independently with respect to ↵i > ↵j, that is, no minimum s-t-cut in G↵
i

with s 2 C

separates any vertex in V \ C from t, and vice versa.

Otherwise there would exist a cut clustering ⌦i(G) that is not hierarchically nested in ⌦j(G)

contradicting Theorem 13.1.

Proof of Lemma 13.2. Consider ✓i := (X,V↵
i

\ X) and ✓j := (U, V↵
j

\ U). We distinguish two

cases depending on the shape of ✓j . Case (a) is characterized by x 2 U , Case (b) by x 2 X \ U
and u 2 U \X (see also Fig. 13.3). Finally, we show that the situation where x /2 U but u 2 X

(Case (c)) does not occur if U is a cluster in an unrestricted cut clustering ⌦j(G).

Case (a): If x 2 U , then X ✓ U . We assume X \ U 6= ; and show that in this case

(U [ X,V↵
j

\ (U [ X)) in G↵
j

is cheaper than ✓j . This contradicts ✓j being a minimum u-

t-cut in G↵
j

and we conclude X \ U = ;, that is, ✓j does not cut through X (dashed line in

Fig. 13.3(a)). In the following, we compare di↵erent costs, which we express in terms of costs

in G and an addend depending on ↵. For ✓i and (U \X,V↵
i

\ (U \X)) we get

c↵
i

(✓i) = c↵
i

(X,V↵
i

\X) = c(X \ U, V \ (U [X)) + c(U \X,V \ (U [X))

+ c(X \ U,U \X) + c(U \X,U \X)

+ ↵i|X|
c↵

i

(U \X,V↵
i

\ (U \X)) = c(X \ U,U \X) + c(U \X,V \ (U [X))

+ ↵i|U \X| + c(U \X,U \X)

Since ✓i is a minimum x-t-cut in G↵
i

it holds c↵
i

(U \ X,V↵
i

\ (U \ X)) � c↵
i

(✓i), such that

expressing these costs as shown above yields c(X \ U,U \X) � c(X \ U, V \ (U [X)) + c(X \
U,U \X) + ↵i|X \ U |. With the trivial insight that c(X \ U,U \X) � 0, it holds in particular

(i) c(X \ U,U \X) + c(X \ U,U \X) � c(X \ U, V \ (U [X)) + ↵i|X \ U |

For ✓j and (U [X,V↵
j

\ (U [X)) we get
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c↵
j

(✓j) = c↵
j

(U, V↵
j

\ U) = c(U \X,V \ (U [X)) + c(U \X,V \ (U [X))

+ c(X \ U,U \X) + c(X \ U,U \X)

+ ↵j |U |
c↵

j

(U [X,V \ (U [X)) = c(U \X,V \ (U [X)) + c(U \X,V \ (U [X))

+ c(X \ U, V \ (U [X)) + ↵j |U [X|
and finally

c↵
j

(U [X,V \ (U [X))� c↵
j

(✓j) = [c(X \ U, V \ (U [X)) + ↵j |X \ U |]
� [c(X \ U,U \X) + c(X \ U,U \X)]

< 0

since assuming that X \ U 6= ; and replacing ↵i in (i) by ↵j , which is lower, yields c(X \ U, V \
(U [X)) + ↵j |X \ U | < c(X \ U,U \X) + c(X \ U,U \X).

Case (b): If x /2 U and u /2 X, then X \U = ;. We assume X \U 6= ; and show that in this

case (U \X,V↵
j

\ (U \X)) in G↵
j

is cheaper than ✓j . This contradicts ✓j being a minimum

u-t-cut in G↵
j

and we conclude X \ U = ;, that is, ✓j does not cut through X (dashed line in

Fig. 13.3(b)). In the following, we compare di↵erent costs, which we express in terms of costs

in G and an addend depending on ↵. For ✓i and (X \ U, V↵
i

\ (X \ U)) we get

c↵
i

(✓i) = c↵
i

(X,V↵
i

\X) = c(X \ U,U \X) + c(X \ U,U \X)

+ c(X \ U, V \ (U [X)) + c(X \ U, V \ (U [X))

+ ↵i|X|
c↵

i

(X \ U, V↵
i

\ (X \ U)) = c(X \ U,X \ U) + c(X \ U,U \X)

+ ↵i|X \ U | + c(X \ U, V \ (U [X))

Since ✓i is a minimum x-t-cut in G↵
i

, it holds c↵
i

(X \ U, V↵
i

\ (X \ U)) � c↵
i

(✓i), and we get

c(X \ U,X \ U) � c(X \ U,U \ X) + c(X \ U, V \ (U [ X)) + ↵i|X \ U | by expressing these

costs as shown above. Replacing ↵i by ↵j , which is lower, and assuming that X \U 6= ; further
yields c(X \U,X \U) > c(X \U,U \X) + c(X \U, V \ (U [X)) + ↵j |X \U |. With the trivial

insight that c(X \ U, V \ (U [X)) + ↵j |X \ U | � 0, it holds in particular

(ii) c(X \ U,X \ U) + c(X \ U, V \ (U [X)) + ↵j |X \ U | > c(X \ U,U \X)

For ✓j and (U \X,V↵
j

\ (U \X)) we get

c↵
j

(✓j) = c↵
j

(U, V↵
j

\ U) = c(U \X,V \ (U [X)) + c(X \ U, V \ (U [X))

+ c(U \X,X \ U) + c(X \ U,X \ U)

+ ↵j |U |
c↵

j

(U \X,V↵
j

\ (U \X)) = c(U \X,V \ (U [X)) + c(X \ U,U \X)

+ c(U \X,X \ U) + ↵j |U \X|
and finally, due to (ii),

c↵
j

(U \X,V↵
j

\ (U \X))� c↵
j

(✓j) = c(X \ U,U \X)

� c(X \ U, V \ (U [X))

� c(X \ U,X \ U)� ↵j |X \ U |
< 0
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Case (c): The situation that x /2 U but u 2 X does not occur if U is a cluster in an

unrestricted cut clustering ⌦j(G). We prove that x /2 U and u 2 X contradicts Case (a).

Assume x 2 X \U and let C denote the cluster in ⌦j(G) containing x. Then, by Lemma 7.6(2i),

the source set m(x, t) is a subset of m(r(C), t) in G↵
j

, and thus, also of C (m(x, t) ✓ C). This

however contradicts Case (a) (with C in the role of U), since X \ m(x, t), and thus, X 6✓ C, if

we additionally assume u 2 X.



CHAPTER 14

Fully-Dynamic Hierarchies of Unrestricted Cut Clusterings

In times of constantly increasing mobility accompanied by a technological progress that admits

to interact with other individuals and most di↵erent devices from almost everywhere at almost

any time, a huge amount of evolving data has emerged in the last few years and will emerge even

more rapidly in the future. Hence, powerful tools to examine the structure of also evolving data

become more and more important. In the context of graph clustering, there are meanwhile many

activities in various scientific fields like physics, biology, sociology, and informatics that aim at

developing new clustering approaches for evolving and dynamic networks or adapting existing

static approaches to dynamic scenarios. For a survey on recent results on clustering evolving

networks see, for example, [76] and the references therein.

In this chapter, we adapt the hierarchical, unrestricted cut-clustering approach, which is a

further development of the elegant cut-clustering approach of Flake et al. [42] (see Chapter 13),

to graphs that evolve due to atomic changes. An atomic change is either the increase or decrease

of an edge cost, the insertion or deletion of an edge, or the insertion or deletion of a vertex, where

vertex changes only occur for isolated vertices. The edge changes induce four di↵erent scenarios

with respect to a cut clustering, namely the increase and decrease of the cost of an intra-cluster

edge, and the increase and decrease of the cost of an inter-cluster edge. We note that, in contrast

to dynamic Gomory-Hu trees (Chapter 8), edge insertion and deletion can be also considered as

special cases of increasing or decreasing edge costs in the context of cut clustering. This is due to

the fact that the extended graph G↵ used by the cut-clustering approach is always connected and

does not contain bridges. Furthermore, an isolated vertex can be easily added by just introducing

a new singleton cluster and deleted without any further action, since an isolated vertex always

forms a singleton cluster in a cut clustering. Hence, in this chapter we focus on the four non-

trivial cases resulting from the edge changes. In a first step, we present an update procedure

for each case that e�ciently and dynamically maintains a single unrestricted cut clustering with

a persisting quality and temporal smoothness, that is, consecutive clusterings are kept similar.

There has already been an attempt to solve this task, by Saha and Mitra [123, 124], however,

we found this attempt to be erroneous beyond straightforward correction. In a second step we

extend these procedures to hierarchies of unrestricted cut clusterings. Due to the close relation

of the unrestricted cut-clustering algorithm to the construction of a Gomory-Hu tree, we can

build upon many insights that we have achieved in Part II in the context of dynamic Gomory-Hu

trees. On the other hand, due to this close relation, it is also not surprising that our update

procedures for unrestricted cut clusterings provide no guarantee on the asymptotic worst-case

running time better than n�1 minimum-cut computations. For updates of Gomory-Hu trees, we

219
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Algorithm 9: Earlier Inter-Edge Insertion

Input: G = (V,E, c), ↵, ⌦(G), {Cb, Cd} ✓ ⌦(G) with b 2 Cb, d 2 Cd

// Recall that {b, d} denotes the changing edge in a dynamic graph G
1 if inter-cluster quality of Cd and Cb is maintained with respect to ↵ then
2 return ⌦ // Case 1: do nothing

3 else if 2c(C
b

,C
d

)
|V | � ↵ then

4 return (⌦ \ {Cb, Cd}) [ {{Cb [ Cd}} // Case 2: merge Cb and Cd

5 obtain G↵ from G according to CutC // Case 3 (default)

6 in G↵, contract all clusters in ⌦(G) \ {Cb, Cd} to one node, dissolve Cb and Cd

7 perform Unrestricted CutC (Algorithm 8) on resulting G↵

8 return (⌦ \ {Cb, Cd}) [ {newly formed clusters from Cb [ Cd}

have already seen a presumably tight bound of the asymptotic worst-case running time of n� 1

minimum-cut computations in Section 9.3. However, as already observed for dynamic Gomory-

Hu trees, these worst cases occur very rarely. Moreover, we will see, by experimentally evaluating

the performance of our procedures in comparison with the original unrestricted cut-clustering

algorithm, that our update approach provides a large potential for saving cut computations. Note

that, in contrast to the construction of a Gomory-Hu tree, the construction of an unrestricted

cut clustering from scratch does not need a fixed number of cut computations. Instead, Flake et

al. [42] observed that the number of computed minimum cuts is proportional to the number of

found clusters, at least for the restricted cut-clustering approach.

14.1 The Dynamic Attempt of Saha and Mitra

Saha and Mitra [123, 124] published an algorithm that aims at the same goal as our work. The

authors describe four procedures for updating a clustering and a data structure for the dele-

tion and the insertion of intra-cluster and inter-cluster edges. Unfortunately, we discovered a

methodical error in their work. Roughly speaking, it seems as if the authors implicitly (and

erroneously) assume an equivalence between clusterings that just provide the quality guarantee

and clusterings that can be indeed found by the unrestricted cut-clustering algorithm. A full

description of issues is beyond the scope of this work, but we briefly point out errors in the

authors’ procedure that deals with the insertion of inter-cluster edges and give counterexam-

ples in the following. These issues, alongside correct parts, are further scrutinized in-depth by

Hartmann [75]. Algorithm 9 sketches the approach given in [124] for handling edge insertions

between clusters. Summarizing, we found that Case 1 does maintain the quality guarantee but

not the invariant that each updated clustering is supposed to be again an unrestricted cut clus-

tering. Case 2 maintains both, the quality guarantee and the invariant, if and only if the input

fulfills the invariant. However it can be shown that this case is of purely theoretical interest and

extremely improbable. Finally, Case 3 neither maintains the quality guarantee nor the invariant.

In the following we illustrate some of these shortcomings with examples. We further remark that

these examples also disprove the correctness of the attempt of Saha and Mitra with respect to

restricted cut clusterings.
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(a) Graph G0 with (restricted) cut clustering ⌦(G0) =
{C

b

, C
d

} (clusters framed by dotted lines) found by the
unrestricted cut-clustering algorithm.
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(b) Adding inter-cluster edge {1, 6} with cost 11/4↵
yields G1 with clustering ⌦(G1) = ⌦(G0) resulting from
Case 1 of Algorithm 9.
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(c) Adding edge {3, 4} with cost ↵ yields G2 with the
trivial clustering ⌦(G2) resulting from Case 2 that violates
the guarantee on intra-cluster quality (see cut indicated
by dashed red line).

Figure 14.1: A dynamic instance violating the quality guarantee. Edge costs are parame-
terized by ↵ corresponding to the parameter used in the cut-clustering algorithm. After two
atomic changes in G0, according to Case 1 and 2, Algorithm 9 returns one cluster which admits

a cut (dashed red line) that violates the intra-cluster quality.

14.1.1 A Counterexample for Case 1 and Case 2

We give an example which Algorithm 9, taken from [124], fails to cluster correctly. Figure 14.1(a)

shows the initial graph G0 and the initial input clustering ⌦(G0) found by the unrestricted cut-

clustering algorithm. This clustering consists of two clusters Cb and Cd of equal size and equal

inter-cluster expansion  (Cb) =  (Cd) = 1/12↵  ↵, which satisfies the guarantee on inter-

cluster quality. Since ⌦(G0) was constructed by the (unrestricted) cut-clustering algorithm, it

also satisfies the guarantee on intra-cluster quality (recall Equation (11.1) in Section 11.1.1). In

Fig. 14.1(b), a first edge insertion then increases the inter-cluster expansion of both clusterings

to ↵, which still satisfies the guarantee on inter-cluster quality, and thus triggers Case 1. Conse-

quently, the clustering in Fig. 14.1(b) is kept unchanged. Obviously, the intra-cluster quality is

also maintained, since the intra-cluster edges did not change. Then, in Fig. 14.1(c), a second edge

with cost ↵ is added between Cb and Cd. This edge insertion is now handled by Case 2, since

the inter-cluster quality is violated ( (Cb) =  (Cd) = 4/3↵ > ↵) and the condition for Case 2

in line 3 of Algorithm 9 is fulfilled (2 · 4/6↵ > ↵). Thus, Cb and Cd are merged, resulting in the

cluster shown in Fig. 14.1(c). In this cluster the dashed line however indicates an intra-cluster

cut with cost 11/4↵ < 3↵, which violates the guarantee on intra-cluster quality.

14.1.2 A Counterexample for Case 3

We also give an example which Algorithm 9, taken from [124], fails to cluster correctly due to

shortcomings in Case 3. Figures 14.2(a) describes again the initial graph and the initial input

clustering ⌦(G0) found by the unrestricted cut-clustering algorithm before edge {2, 12} with

cost 9/2↵ is inserted. The initial clustering consists of four clusters that all satisfy the guarantee

on inter-cluster quality. After the insertion of edge {b, d} = {2, 12}, the inter-cluster expan-

sion of Cb and Cd in the resulting graph G1 increases to  (Cb) = 19/16↵ > ↵ and  (Cd) =

19/18↵ > ↵, which violates the guarantee on inter-cluster quality. Thus, Case 1 does not occur.
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(a) Graph G0 with (restricted) cut clustering ⌦(G0)
(clusters framed by dotted lines) found by the unre-
stricted cut-clustering algorithm. After inserting edge
{2, 12}, G0 becomes G1 (Fig. (c)).

4 1
2 ↵ 7

5 6

3

12 100↵

1↵

4

8

912 10

11

100↵ 100↵

100↵

100↵

100↵ 100↵

t

4↵

5↵

4↵

(b) Graph G0 resulting from G1

↵

by contracting the ver-
tices in ⌦(G0) \ {C

b

, C
d

} and dissolving C
b

and C
d

, ac-
cording to Case 3 of Algorithm 9.
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(c) Applying Unrestricted CutC to G0 (in Fig. (b))
yields only one cluster for G1 that violates the guaran-
tee on intra-cluster quality (see cut indicated by dashed
red line).

Figure 14.2: A dynamic instance violating the quality guarantee. Edge costs are parameter-
ized by ↵ corresponding to the parameter used in the cut-clustering algorithm. After inserting
edge {2, 12} into G0, according to Case 3, Algorithm 9 returns one cluster which admits a cut

(dashed red line) that violates the intra-cluster quality.

Furthermore, the condition of Case 2 is also violated, since 2 · 11/24↵ = 11/12↵ < ↵. Hence,

Case 3 in line 5 is executed. Figure 14.2(b) depicts the instance G0 resulting from contract-

ing ⌦(G0) \ {Cb, Cd} in G1
↵ and dissolving Cb and Cd (see line 6). Applying Unrestricted

CutC to G0 then results in a single cluster for G1 (see Fig. 14.2(c)), since separating t from any

other vertex in G0 costs at least 12↵ and the only minimum s-t-cut with s 2 V and cost 12↵

in G0 is the cut ({t}, V \ {t}). In this cluster the dashed line, however, indicates an intra-cluster

cut with cost 2↵ < 3↵, which again violates the guarantee on intra-cluster quality. Furthermore,

the resulting clustering for G1 does not conform to what is attempted to be proven in [124], since

a “newly formed cluster from Cb [Cd” as returned in line 8 does not exist. Instead the resulting

cluster contains all vertices.

14.2 Correct Update Procedures for Single Clusterings

For the design of our update procedures for single unrestricted cut clusterings we exploit the

results that we have already gained in the context of dynamic Gomory-Hu trees. To this end,

we identify an unrestricted cut clustering ⌦(G) of an undirected, weighted graph G with the

clustering tree returned by Unrestricted CutC for the step pairs and split cuts induced by

the clustering, as described in Chapter 13 (recall Fig. 13.1). We denote this clustering tree also

by ⌦(G).
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By simply applying the very fundamental insight of Lemma 8.1, we can thus directly determine

some reusable cuts in this clustering tree. Let ⌦(G) denote an unrestricted cut clustering in an

undirected, weighted graph G = (V,E, c) and let the cost of edge {b, d} 2 E change by � > 0.

Then, the path ⇡(b, d) in an underlying Gomory-Hu tree of the clustering tree ⌦(G) contains

exactly two edges, namely {t, Cb} and {t, Cd}, if {b, d} is an inter-cluster edge, and no edge

if {b, d} is an intra-cluster edge. According to Lemma 8.1, we thus get the following.

(1) Intra-cluster cost increase: Path ⇡(b, d) contains no edge. Hence, each edge in ⌦(G) remains

a minimum separating cut in G�↵ with the previous cost and with respect to the previous

cut pairs.

(2) Inter-cluster cost increase: Path ⇡(b, d) contains {t, Cb} and {t, Cd}. Hence, except for {t, Cb}
and {t, Cd}, each edge in ⌦(G) remains a minimum separating cut in G�↵ with the previous

cost and with respect to the previous cut pairs.

(3) Inter-cluster cost decrease: Path ⇡(b, d) contains {t, Cb} and {t, Cd}. Hence, the edges {t, Cb}
and {t, Cd} remain minimum separating cuts in G ↵ with the previous cost minus � and with

respect to the previous cut pairs.

(4) Intra-cluster cost decrease: Path ⇡(b, d) contains no edge. Hence, applying Lemma 8.1 yields

no reusable cuts.

Analogous to the approach for dynamic Gomory-Hu trees, the idea is now to construct a

valid intermediate tree from ⌦(G) that already contains the found reusable cuts as fat edges and

the remaining old edges as thin edges, and can be further processed by a modified version of

the static algorithm (which is Unrestricted CutC in the case of unrestricted cut clusterings).

Figure 14.3 schematically illustrates the resulting intermediate trees for the four scenarios above.

14.2.1 Procedures for Increasing Costs

Intra-Cluster Cost Increase. In case of an intra-cluster cost increase (Fig. 14.3(a)), the

resulting intermediate tree is already a cluster tree, since t is already a singleton. Hence, there

is no need to further process this tree. It induces the previous clustering.

Inter-Cluster Cost Increase. In case of an inter-cluster cost increase (Fig. 14.3(b)), the two

thin edges {t, Cb} and {t, Cd} represent old minimum separating cuts with respect to t and the

representatives r(Cb), r(Cd). In this case we modify Unrestricted CutC such that it first

considers U-cuts uc(s, t) in G�↵ with s 2 Cb (line 5) until all vertices in Cb are separated from t.

Afterwards, we proceed in the same way with the vertices in Cd that are not yet separated from t.

For each vertex s 2 Cb (analogously for s 2 Cd), we claim that

(i) we can either deduce a minimum s-t-cut from the M-set m(s, t) in G�↵ that equals the one

induced by the old cluster Cb, or otherwise

(ii) the M-set m(s, t) is either a proper subset of Cb in G�↵ , or

(iii) we can deduce a minimum s-t-cut (U, V↵ \U) from m(s, t) in G�↵ with Cb $ U , and there is

no s0 2 Cb such that the cut induced by the old cluster Cb is a minimum s0-t-cut in G�↵ , or

(iv) we can deduce no further cut from m(s, t), but there is still no s0 2 Cb such that the cut

induced by the old cluster Cb is a minimum s0-t-cut in G�↵ .

In each step, we use the resulting cut as split cut. Note that the old clusters in ⌦(G) \ {Cb, Cd}
are not split, since they already form nodes in the intermediate tree in Fig. 14.3(b).
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(a) Intermediate tree for intra-cluster cost increase. All
cuts are reusable.
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t

(b) Intermediate tree for inter-cluster cost increase.
All but two cuts are reusable.
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d

t

(c) Intermediate tree for inter-cluster cost decrease.
Only two cuts are reusable.

d

b
t

(d) Intermediate tree for intra-cluster cost decrease. No
cuts are reusable.

Figure 14.3: Schematic illustration of intermediate trees obtained from cluster trees. Fat
edges represent valid cuts, thin edges represent old cuts for which it is not yet known if they
can be reused. Old nodes are indicated by dotted, new nodes by dashed lines. Black vertices

correspond to singletons.

Proof of (i) to (iv). The proof of the above claims is based on Lemma 9.4, which admits to

bend new cuts in G�↵ along old minimum separating cuts. Form the lemma and the following

proof, we can also see how to reshape the initially found U-cuts such that they satisfy the claimed

conditions.

Let uc(s, t) denote the newly found U-cut in G�↵ . We first distinguish possible costs of uc(s, t).

If c�↵ (uc(s, t)) = c(Cb, V↵ \Cb)+�, then Cb also induces a minimum s-t-cut in G�↵ , and we found

a cut as claimed in (i).

Otherwise, uc(s, t) is cheaper than the cut (Cb, V↵ \ Cb) in G�↵ . Now we distinguish whether

or not uc(s, t) separates b and d. If uc(s, t) separates b and d (as (Cb, V↵ \ Cb) does), it is also

cheaper in G↵. Hence, uc(s, t) does not separate r(Cb) and t, since this would contradict the

fact that Cb induces a minimum r(Cb)-t-cut in G↵. Furthermore, m(s, t) is also the M-set m(s, t)

in G↵. It thus follows that m(s, t) $ Cb in G↵ (and G�↵ ), as claimed in (ii), since otherwise

the corresponding U-cut uc(s, t) could be bent along V↵ \ Cb, deflected by t, according to the

Non-Crossing Lemma (7.2), contradicting the fact that it induces an M-set. Note that, uc(s, t)

is also a minimum r(Cb)-s-cut in G↵ in this situation.

If uc(s, t) does not separate b and d, we distinguish again four cases (see also Fig. 14.4). Recall

that we still assume that uc(s, t) is cheaper than the cut induced by Cb in G�↵ .

Case 1: uc(s, t) separates t and r(Cb) with b on the side of r(Cb). In this case (Fig. 14.4(a)),

Lemma 9.4(i) tells us how to reshape uc(s, t) such that for the resulting cut (U, V↵\U) holds Cb ✓
U . Note that it even holds Cb $ U , since uc(s, t) is cheaper than the cut induced by Cb. If there

further was a vertex s0 2 Cb such that (Cb, V↵ \ Cb) was a minimum s0-t-cut in G�↵ , then the
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), t are separated from
b, d, s. Here, none of the cases of Lemma 9.4 apply.

Figure 14.4: Situations in the proof of Claim (i)-(iv) for the update procedure in case of inter-
cluster cost increase. Lemma 9.4 is applied di↵erently in three of four situations. Cluster Cb

is depicted as dotted black line, original cut as solid black line, and reshaped cut as dashed
red line.

deduced minimum s-t-cut (U, V↵ \U) is also a minimum s0-t-cut, and vice versa, since both cuts

separate s and s0 from t. This contradicts the assumption that uc(s, t) is cheaper than the cut

induced by Cb. Thus, the deduced cut satisfies (iii).

Case 2: uc(s, t) separates t and r(Cb) with d on the side of t. In this case (Fig. 14.4(b)), it is

m(s, t) $ Cb, as claimed in (ii). Otherwise, Lemma 9.4(i) would tell us how to reshape uc(s, t)

such that we get a smaller cut side for s, which contradicts the M-set m(s, t).

Case 3: uc(s, t) does not separate t and r(Cb) with b on the side of r(Cb). In this case

(Fig. 14.4(c)), it is again m(s, t) $ Cb, according to the same argument as in case 2. The only

di↵erence is, that here we apply Lemma 9.4(ii).

Case 4: uc(s, t) does not separate t and r(Cb) with b on the side of s. In this case (Fig. 14.4(d)),

none of the previous arguments apply. If there was a vertex s0 2 Cb\m(s, t) such that (Cb, V↵\Cb)

was a minimum s0-t-cut in G�↵ , then the deduced minimum s-t-cut (U, V↵ \U) is also a minimum

s0-t-cut, and vice versa, since both cuts separate s and s0 from t. This contradicts the assumption

that uc(s, t) is cheaper than (Cb, V↵ \ Cb).

If there was a vertex s0 2 Cb \m(s, t) such that (Cb, V↵ \ Cb) was a minimum s0-t-cut in G�↵ ,

then uc(s, t) would also be a minimum s-s0-cut, since a cheaper s-s0-cut must separate t and s0,

which is a contradiction. Hence, according to the Non-Crossing Lemma (7.2), uc(s, t) could

be reshaped deflected by s0 resulting in a cut with a smaller side for s, which contradicts the

M-set m(s, t). Hence, this case corresponds to (iv).

14.2.2 Procedures for Decreasing Costs

Inter-Cluster Cost Decrease. In case of an inter-cluster cost decrease (Fig. 14.3(c)), the

thin edges {t, Ci} represent old minimum separating cuts with respect to t and the representa-

tives r(Ci) of the clusters Ci in ⌦(G) \ {Cb, Cd}. We modify Unrestricted CutC such that it
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computes in each step a U-cut uc(r(Ci), t) in G ↵ with respect to one of these cut pairs that is not

yet separated (line 5). We claim that for each such cut pair {r(Ci), t} with Ci 2 ⌦(G)\{Cb, Cd}
(i) we can either deduce a minimum r(Ci)-t-cut from uc(r(Ci), t) in G ↵ that equals the one

induced by the old cluster Ci, or

(ii) we can deduce at least a minimum r(Ci)-t-cut from uc(r(Ci), t) in G ↵ that does not split

any old cluster.

In each step, we use the deduced cut as split cut. In this way Unrestricted CutC finishes

after at most |⌦(G) \ {Cb, Cd}| cut computations. Note that Cb and Cd are not split since they

already form nodes in the intermediate tree in Fig. 14.3(c).

Proof of (i) and (ii). The proof of the above claims is based on Lemma 8.9, which admits to

bend new cuts in G ↵ along old minimum separating cuts. Form the theorem and the following

proof, we can also see how to reshape the initially found U-cuts such that they satisfy the

conditions claimed above.

Let uc(r(Ci), t) denote the newly found U-cut in G ↵ . If c ↵ (uc(r(Ci), t)) = c(Ci, V↵ \ Ci),

then Ci also induces a minimum r(Ci)-t-cut in G ↵ , as claimed in (i). Otherwise, uc(r(Ci), t)

is cheaper than (Ci, V↵ \ Ci), and thus, separates b and d. Hence, Lemma 8.9 tells us how to

reshape uc(r(Ci), t) such that it does not split any old cluster in ⌦(G) \ {Cb, Cd} (including Ci).

The resulting cut behaves as claimed in (ii).

Intra-Cluster Cost Decrease. In the case of intra-cluster cost decrease (Fig. 14.3(d)), the

thin edges {t, Ci} represent old minimum separating cuts with respect to t and the represen-

tatives r(Ci) of the clusters Ci 2 ⌦(G). We modify Unrestricted CutC such that it starts

with separating the vertices in Cb/d from t by computing U-cuts in G ↵ (line 5)(line 5). For each

vertex s 2 Cb/d, we claim that

(iii) the M-set m(s, t) ✓ Cb/d in G ↵ .

If for the current U-cut holds that c ↵ (uc(s, t)) = c(Cb/d, V↵ \ Cb/d), then Cb/d also induces a

minimum s-t-cut in G ↵ and the remaining thin edges are also reusable, according to Lemma 8.7.

Then Unrestricted CutC returns ⌦(G). Otherwise, we use the U-cut uc(s, t) as split cut

and continue. When all vertices in Cb/d are separated from t, we proceed with computing in

each step a U-cut uc(r(Ci), t) in G ↵ with respect to one of the remaining cut pairs of the thin

edges that is not yet separated (line 5). We claim that for each such cut pair {r(Ci), t} with

Ci 2 ⌦(G) \ {Cb/d}
(iv) we can either deduce a minimum r(Ci)-t-cut from uc(r(Ci), t) in G ↵ that equals the one

induced by the old cluster Ci, or

(v) we can deduce at least a minimum r(Ci)-t-cut from uc(r(Ci), t) in G ↵ that does not split

any old cluster.

In each step, we use the deduced cut as split cut. When all cut pairs {r(Ci), t} with Ci 2
⌦(G) \ {Cb/d} are separated, we are done.

Proof of (iii), (iv) and (v). The proof of the above claims is again based on Lemma 8.9,

which admits to bend new cuts in G ↵ along old minimum separating cuts. Form the theorem

and the following proof, we can also see how to reshape the initially found U-cuts such that they

satisfy the conditions claimed above.

We start with the proof of (iii). Let uc(s, t) denote the newly found U-cut inG ↵ . If c
 
↵ (uc(s, t)) =

c(Cb/d, V↵ \Cb/d), then Cb/d also induces a minimum s-t-cut in G ↵ , and thus, it is m(s, t) ✓ Cb/d
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in G ↵ , as claimed in (iii). Otherwise, uc(s, t) is cheaper than the old cut (Cb/d, V↵ \ Cb/d).

If uc(s, t) does not separate b and d, it has the same cost also in G↵. Hence, uc(s, t) does

not separate r(Cb/d) and t, since this would contradict the fact that Cb/d induces a mini-

mum r(Cb/d)-t-cut in G↵. Furthermore, m(s, t) is also the M-set m(s, t) in G↵. It thus follows

that m(s, t) ✓ m(r(Cb/d), t) in G↵, according to Lemma 7.6(2i), and hence, m(s, t) ✓ Cb/d in G↵

(and G�↵ ), as claimed in (iii)

If uc(s, t) (in G ↵ ) separates b and d, we can apply Lemma 8.9. Since {t}[ (⌦(G) \ {Cb/d}) is
sheltered by the old cut (Cb/d, V↵\Cb/d), Lemma 8.9 tells us that any minimum s-t-cut in G ↵ can

be reshaped such that the cut side containing s is nested in Cb/d. That is in particular m(s, t) ✓
Cb/d.

The proof of (iv) and (v) also exploits Lemma 8.9. Let uc(r(Ci), t) denote the newly found

U-cut in G ↵ . If c ↵ (uc(r(Ci), t)) = c(Ci, V↵ \ Ci), then Ci also induces a minimum r(Ci)-t-cut

in G ↵ , as claimed in (iv). Otherwise, uc(r(Ci), t) is cheaper than (Ci, V↵ \ Ci), and thus, must

separate b and d. Hence, Lemma 8.9 tells us how to reshape uc(r(Ci), t) such that it does not

split any old cluster in ⌦(G)\{Cb/d} (including Ci). Hence, the resulting cut behaves as claimed

in (v).

14.3 Optimal Temporal Smoothness for Single Clusterings

In general, comparing clusterings is a di�cult task. In the literature, many di↵erent distance

measures are used to evaluate the similarity of clusterings, and each such measure induces an

individual way to quantify temporal smoothness, that is, to evaluate how similar consecutive

clusterings in a dynamic scenario are. For information on distance measures of clusterings see

for example the articles of Fortunato [46] and Wagner et al. [137]. As a first step in the direction

of temporal smoothness, we observe that our update procedures guarantee that each cluster that

neither contains b nor d is nested in a cluster of the next time step. However, the structure of

cut clusterings, which originates from the way they are constructed, admits an even stronger

statement. More precisely, if we measure the similarity of two clusterings on the same vertex set

by the number of clusters that occur in both clusterings, our procedures obtain optimal temporal

smoothness. That is, in each time step, there exists no unrestricted cut clustering that contains

more clusters of the previous clustering than the one found by our update approach. This in

particular implies the stability of our approach, saying that a clustering that can be preserved

indeed is preserved, that is, each procedure returns the previous clustering whenever the previous

clustering is also an unrestricted cut clustering for the modified graph in the next time step.

Theorem 14.1. The update procedures for unrestricted cut clusterings guarantee optimal tem-

poral smoothness.

Proof. Let ⌦(G) and ⌦(GU ) denote two consecutive unrestricted cut clusterings resulting from

our update approach. We prove Theorem 14.1 in two steps. The first step considers clusters

that neither contain b nor d and shows that if such a cluster is not in ⌦(GU ) then it is also in

no other unrestricted cut clustering for GU . The second step shows the same statement for the

clusters that contain a vertex in {b, d}. These two statements already prove optimal temporal

smoothness as follows. Assume an unrestricted cut clustering ⌦0(GU ) that contains more old

clusters than ⌦(GU ). Then, ⌦0(GU ) contains at least one old cluster that is not in ⌦(GU ), which

is already a contradiction.
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First step: Let C 2 ⌦(G) denote a cluster that neither contains b nor d. We have already

observed that C is always nested in a cluster in ⌦(GU ). That is, if C /2 ⌦(GU ), it is a proper

subset of a cluster in ⌦(GU ). Hence, let C 0 denote the cluster in ⌦(GU ) that contains C. In our

update procedure for increasing costs, C 0 results from a computation of a U-cut with respect

to a vertex s0 /2 C, while in the procedures for decreasing costs, C 0 results from a computation

of a U-cut with respect to either r(C) or a vertex s0 /2 C. Note that in all cases C 0 is not

necessarily an M-set due to possible reshaping. But due to the rules for reshaping, we know for

all procedures that r(C) 2 m(s0, t) if C 0 results from a U-cut with respect to a vertex s0 /2 C.

Now assume an unrestricted cut clustering ⌦0(GU ) that contains C. In case that C 0 results

from a U-cut with respect to a vertex s0 /2 C, let bC denote the cluster in ⌦0(GU ) that contains s0.

Then, according to Lemma 7.6(2i), it holds m(s0, t) ✓ m(r( bC), t) ✓ bC. But on the other hand, it

is C \ bC = ;. This contradicts the fact that r(C) 2 m(s0, t). Hence, there exists no unrestricted

cut clustering for GU that contains C. If C 0 results from a U-cut with respect to r(C), we are

in the situation of a cost decrease. Since C is not in ⌦(G ), we know from the structure of the

procedures, that the U-cut uc(r(C), t) is cheaper than the cut induced by C in G ↵ . On the other

hand, since C is in ⌦0(G ), there is vertex s0 in C such that C induces a minimum s0-t-cut

in G ↵ . However, the cheaper split cut deduced from uc(r(C), t) that induces C 0 in ⌦(G ) also

separates s0 and t, and thus yields a contradiction proving that there is no unrestricted cut

clustering for G that contains C.

Second step: We first consider the cluster Cb/d that contains both, b and d. In case of intra-

cluster cost insertion, Cb/d is always contained in ⌦(G�), since in this case it is ⌦(G) = ⌦(G�).

Hence, in the following we consider Cb/d in case of intra-cluster cost decrease. We observe that

if Cb/d is not in ⌦(G ), none of the computed U-cuts uc(s, t) with s 2 Cb/d has the same cost

in G ↵ than the cut induced by Cb/d.

Now assume an unrestricted cut clustering ⌦0(G ) that contains Cb/d and note that the

cluster Cb/d in ⌦0(G ) induces a minimum s0-t-cut in G ↵ with s0 2 Cb/d. Since s0 was not

considered by the update procedure, it must have been separated from t by a M-set m(s, t)

with s 6= s0. This, however means that �G 
↵

(s0, t) = �G 
↵

(s, t) = c ↵ (Cb/d, V↵ \ Cb/d), and the

procedure would have found m(s, t) to have the same cost as the cut induced by Cb/d, which is

a contradiction. Hence, there is no unrestricted cut clustering that contains Cb/d if Cb/d is no

cluster in ⌦(G ).

Now we consider the cluster Cb in case of inter-cluster cost increase. The case for Cd is

symmetric. If Cb is not in ⌦(G�) we distinguish three cases.

Case 1: Cb is a proper subset of another cluster. Due to the structure of the procedure this

only happens if we find a U-cut for Cb as claimed in (iii) or if a cut deduced from a U-cut found

for Cd separates Cb from t. In the first case, it follows directly from (iii) that there is no other

clustering for G� that contains Cb. In the second case, we observe that the found U-cut for Cd

has already separated Cb from t or has at least split Cb. Since the corresponding M-set must be

nested in a cluster in any unrestricted cut clustering for G�, Cb cannot occur in such a clustering.

Case 2: Cb is the union of at least two clusters. Due to the structure of the procedure this

only happens if we find only U-cuts for Cb as claimed in (ii). If Cb was a cluster in another

unrestricted cut clustering for G�, it follows with the same arguments as in the first step that

we would have found the minimum separating cut induced by Cb, and thus, Cb would have been

inn⌦(G�), which is a contradiction.

Case 3: At least two vertices of Cb are in di↵erent clusters and at least one of these clusters



Chapter 14 : Fully-Dynamic Hierarchies of Unrestricted Cut Clusterings 229

contains some more vertices not resulting from Cb. This only occurs if Cb is split by either a

U-cut according to (iv) or a cut deduced for Cd. In the first case it follows directly from (iv),

that Cb does not occur in another unrestricted cut clustering for G�. In the second case, we

can use the same arguments as in Case 1 in order to prove that Cb does not occur in another

clustering. Hence, there is no unrestricted cut clustering for G� that contains Cb if Cb is no

cluster in ⌦(G�).

We still need to consider the cluster Cb in case of inter-cluster cost decrease. Again the case

for Cd is symmetric. If Cb is not in ⌦(G ), then it is a proper subset of a cluster C 0 in ⌦(G ).

Recall, that Cb (and also Cd) are already nodes in the intermediate tree in Fig. 14.3(c) and are

thus never split. Due to the structure of the procedure, C 0 results from a U-cut with respect to

a vertex s0 /2 Cb. Hence, from this point on, the same arguments as presented for the first step

apply, proving that there is no unrestricted cut clustering that contains Cb if Cb is no cluster

in ⌦(G ).

14.4 Running Times for Single Clusterings

As in the analysis of dynamic Gomory-Hu trees, we express running times of our procedures

in terms of the number of necessary minimum-cut computations, leaving open how these are

done. A summary of tight bounds is given in Table 14.1. The columns lower bound/upper bound

denote bounds for the—possibly rather common—case that the old clustering is still valid after

some graph update.

Table 14.1: Bounds on the number of minimum-cut computations.

best case worst case
old clustering still valid

lower bound upper bound

InterDecrease |⌦(G )|� 2 |⌦(G)|� 2 |⌦(G)|� 2 |⌦(G)|� 2

IntraDecrease 1 |⌦(G)|+ |Cb/d|� 1 1 |⌦(G)|+ |Cb/d|� 1

InterIncrease 2 |Cb|+ |Cd| 2 |Cb|+ |Cd|
IntraIncrease 0 0 0 0

After an inter-cluster cost decrease (first line in Table 14.1), in the best case we only calculate

as many cuts as new clusters arise while separating t from all vertices in V , except r(Cb) and r(Cd)

(compare to Figure 14.3(c)). In the worst case, the procedure considers each representative r(Ci)

with Ci 2 ⌦(G) \ {Cb, Cd}, and thus, requires |⌦(G)|� 2 cuts. If the previous clustering is not

preserved, we then calculate more cuts than finally needed to define the new clustering. Since

|⌦(G )| = |⌦(G)| in case the old clustering remains valid, the remaining bounds are also correct,

and since the procedure guarantees stability, we will find the old clustering. After an intra-cluster

cost decrease, in the worst case, our approach needs to examine all clusters in ⌦(G) \ {Cb/d},
and all vertices in Cb/d, even if the previous clustering is retained. We obviously attain the

best case, if the first considered U-cut already yields that Cb/d, and thus, the whole clustering

remains valid. After an inter-cluster cost increase, we potentially end up separating every single

vertex in Cb [ Cd from t, one by one, even if the previous clustering is valid, which yields the

worst case bound and the upper bound in the last column. In case the previous clustering is

still valid, however, we might get away with simply cutting o↵ r(Cb) and r(Cd), alongside their
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Table 14.2: Total number of atomic changes decomposed into di↵erent scenarios.

total InterDecrease IntraDecrease InterIcrease IntraIncrease

atomic changes 61870 3742 26179 10010 21939

% 100 6.0482 42.3129 16.1791 35.4598

advantage static 40 0 40 0 0

of total changes % 0.0647 0.0000 0.0647 0.0000 0.0000

advantage dynamic 61830 3742 26139 10010 21939

of total changes % 99.9353 6.0482 42.2483 16.1791 35.4598

Table 14.3: Total number of clusters, cuts and savings for di↵erent scenarios.

total InterDecr IntraDecr InterIncr IntraIncr

static clusters 3186155 314979 1090890 748442 1031844

% 100 9.8859 34.2384 23.4904 32.3852

dynamic clusters 3185398 314923 1090414 748287 1031774

% 100 9.8865 34.2316 23.4912 32.3907

static cuts 3300413 324098 1131538 773730 1071047

% 100 9.8199 34.2847 23.4434 32.4519

dynamic cuts 736826 308904 403499 24423 0

of total static cuts % 22.3253 9.3596 12.2257 0.7400 0.0000

amortized static costs 1.0359 1.0290 1.0373 1.0338 1.0380

amortized dynamic costs 0.2313 0.9809 0.3700 0.0326 0.0000

cut savings 2563587 15194 728039 749307 1071047

of total static cuts % 77.6747 0.4604 22.0590 22.7034 32.4519

average cut savings 41.4351 4.0604 27.8100 74.8558 48.8193

former clusters, which yields the best case bound. and the lower bound in the third column.

The row for the case of intra-cluster cost increase is obvious.

Note that a computation from scratch (with the static algorithm Unrestricted CutC)

entails a tight upper bound of |V | � 1 minimum-cut computations for all four cases, in the

worst case; although, in practice, the heuristic recommended by Flake et al. usually finds a new

clustering in time proportional to the total number of new clusters. In the best case it needs

as many cut computations as new clusters arise. Comparing this to the bound for updating an

inter-cluster cost decrease in the best case, lets us expect only little e↵ort saving for this case;

while the case of intra-cluster cost increase promises the biggest e↵ect of e↵ort saving.

Experiments. In this brief section, we very roughly describe some experiments we made with

an implementation of the update procedures described above, just for a first proof of concept.

The instance we use is a network of email communications within the Department of Informatics

at KIT, obtained from the email data described in Section 1.4. Vertices represent members

and edges correspond to email contacts, weighted by the number of emails sent between two

individuals during the last 72 hours. This means, each email has a fixed time to live. After

that time the contribution of the email to the weight of the edge expires and the weight of

the edge decreases. We process a queue of 69 739 atomic changes, 61 870 of which are actual

changes of edge costs, on an initial graph with |V | = 247 and |E| = 307. This queue represents
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Figure 14.5: Numbers of clusters and cuts regarding consecutive clusterings (the two y-axes
have a di↵erent o↵set for better readability).

about three months, starting on Sunday (2006-10-22). The number of vertices varies between

172 and 557, the number of edges varies between 165 and 1190. We delete zero-weight edges

and isolated nodes. Following the recommendations of Flake et al. [42], we choose ↵ = 0.15

for the initial graph, yielding 73 clusters. We compare the static algorithm Unrestricted

CutC (see Chapter 13) and our dynamic approach in terms of the number of minimum-cut

computations necessary to maintain a clustering. Forty times out of the 61 870 total operations,

the static computation needed less minimum cuts than the dynamic update. In all remaining

cases (99.93%) the update procedures were at an advantage (see Table 14.2).

The first two rows of Table 14.3 show the numbers of clusters found by the static and dynamic

approach over the whole experiment. As both algorithms range at similar levels we can be sure

the observed savings are not induced by trivial clusterings. Thus, comparing dynamic and static

cut computations is justified: For the 61 870 steps induced by edge changes, static computation

needed 3 300 413 minimum cuts, and our dynamic update needed 736 826, saving more than 77%

minimum cuts, such that one dynamic cluster on average costs 0.23 cut computations. The

amortized costs of 1.03 cuts for a static cluster a�rm the running time to be proportional to

the total number of new clusters, as stated by Flake et al. This running time is also visible

in Figure 14.5, which shows the consecutive development of the graph structure over one day

(Monday, 2006-10-23). Obviously, the static and dynamic clusterings (upper red and lower green

line) behave similarly. Note that the scale for static clusterings and cuts is o↵set by about 20

clusters/cuts for readability. However, the dynamic flows (blue dots) cavort around the clusters

or, even better, near the ground, which means there are only few flow computations needed. In

contrast, most of the static flow amounts (orange dots) are still proportional but clearly higher

than the number of clusters in the associated static clustering.

Regarding the total number of atomic edge changes the savings finally average out at 41.4

cuts (Table 14.3), while inter-cluster cost decreases save the most e↵ort per change. This is, the

case of inter-cluster cost decrease surprisingly outperforms the trivial intra-cluster cost increases.
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14.5 Update Procedures for Hierarchies

The second part of this chapter addresses a dynamic version of the hierarchical unrestricted cut-

clustering approach. We present a method that employs the new degree of freedom (which we gain

compared to the restricted cut-clustering algorithm) for consecutively updating cut-clustering

hierarchies with respect to a given sequence of parameter values. According to the results of

Chapter 13 (Theorem 13.1), where we have seen that arbitrary unrestricted cut clusterings with

respect to di↵erent parameter values are already hierarchically nested, this can be naively done

by simply updating each level independently using the update procedures for single unrestricted

cut clusterings presented in the previous sections. Hence, we also call the update procedures

for single unrestricted cut clusterings level update procedures. In this way, we would already

achieve optimal temporal smoothness, since the level update procedures find all reusable clusters

(Theorem 14.1), and also some remarkable cost savings due to the nice performance of the level

update procedures. However, in the following we present an algorithm that additionally exploits

the hierarchical structure of the clusterings in order to find reusable parts of the hierarchy

even more e↵ective. The remaining parts are finally updated by the update approach for single

clusterings. We say that an unrestricted cut clustering satisfies the copy-property with respect to

an edge change if it remains valid after the change, and thus, can be copied to the new hierarchy.

Note that in the context of clustering hierarchies, atomic edge changes induce four di↵erent

situations with respect to a single level (inter- and intra-cluster cost increase and decrease) but

in the end, we get only two di↵erent update procedures for the hierarchy, one for increasing

costs and one for decreasing costs. We observe further that isolated vertices form singletons in

each unrestricted cut clustering, and thus, on each level in the hierarchy. Hence, inserting and

deleting a vertex can be easily done by simply adding or deleting a singleton on each level.

14.5.1 Reusable Parts of the Hierarchy in a Dynamic Scenario

Given an atomic edge change, a cut-clustering hierarchy decomposes into two parts. Levels where

the change induces an inter-cluster event form the lower part, levels where the change induces

an intra-cluster event form the upper part. Recall Fig. 11.2 and the indexing of hierarchy levels

and clusterings.

The first theorem admits to e�ciently detect reusable levels in the upper part of the hierarchy,

based on the following lemma.

Lemma 14.2. In case of a cost decrease, let ↵k denote the largest value such that an unrestricted

cut clustering ⌦k(G ) exists with b and d in a common cluster (if no such ↵k � ↵max exists, we

define ↵k := 0). Then, each ⌦j(G) with j  k satisfies the copy-property.

Proof. In case of an intra-cluster cost decrease, let ⌦(G) denote an unrestricted cut clustering

before, and ⌦(G ) an unrestricted cut clustering after the change. Based on the level update

procedure for this scenario, we show that ⌦(G) = ⌦(G ) if and only if b and d are in a common

cluster in ⌦(G ). Then, it follows directly that in the situation of Lemma 14.2 the cluster-

ing ⌦k(G) as well as each clustering ⌦j(G) with j < k satisfies the copy-property.

If the consecutive clusterings ⌦(G) and ⌦(G ) are identical, b and d are clearly in a common

cluster in ⌦(G ), since we consider an intra-cluster event in ⌦(G).

If b and d are in a common cluster in ⌦(G ), we can see by the structure of the update proce-

dure for intra-cluster cost decrease, that b and d must be in an M-set m(s, t) in G ↵ with s 2 Cb/d.
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This holds since the remaining cuts considered by the procedure with respect to the represen-

tatives of the clusters in ⌦(G) \ {Cb/d} either equal the previous cluster of the representative

or, if they are cheaper than the cut induced by the old cluster, separate b and d. For the

M-set m(s, t) we know that it is a subset of Cb/d. Now consider the representative r(Cb/d)

of the cluster Cb/d in ⌦(G). If r(Cb/d) is in m(s, t), the corresponding U-cut uc(s, t) (which

does not separate b and d, but r(Cb/d) and t) has the same cost as the cut induced by Cb/d

in G↵ and G ↵ (since m(s, t) ✓ Cb/d). Thus, the update procedure returns the old cluster-

ing ⌦(G). Otherwise, if r(Cb/d) is not in m(s, t), there exists a minimum r(Cb/d)-t-cut in G ↵
that does not separate b and d (since b and d are sheltered by m(s, t)). Then, however, it

is �G
↵

(r(Cb/d), t) = �G 
↵

(r(Cb/d), t) and the update procedure returns ⌦(G).

While Lemma 14.2 tells us how to find reusable levels in the case of decreasing costs, we obtain

a similar statement for the case of increasing costs directly from the level update procedure for

intra-cluster cost increase. Since for an intra-cluster cost increase each clustering satisfies the

copy property, in a hierarchy clearly the whole upper part can be reused in case of increasing

costs.

Theorem 14.3. In a given hierarchy, let k denote the lowest intra-event level that fulfills the

copy-property. Then all levels j  k also satisfy the copy-property, and thus, can be reused as

part of a new hierarchy.

The second theorem admits to e�ciently detect reusable subtrees in the lower part of the

hierarchy, based on Lemma 14.4. A subtree of a cluster C on level i consists of C and all clusters

on lower levels (that is, with higher indices) that are nested in C.

Lemma 14.4. Let C denote a cluster in ⌦j(G) that neither contains b nor d, and let further

C 0 ✓ C denote a cluster in ⌦i(G), i > j. If C induces a minimum separating cut with respect to t

and a further vertex in V after the change (in GU
↵

j

), then C 0 also induces a minimum separating

cut with respect to t and another vertex in V after the change (in GU
↵

i

).

Proof. The cluster C 0 ✓ C is a minimum r(C 0)-t-cut before the change (in G↵
i

) and obviously it

is r(C 0) 2 C. Since C is a minimum s-t-cut (s 2 C) after the change (in GU

↵
j

), by Lemma 7.6(2i),

the M-set m(r(C 0), t) =: Sj in GU

↵
j

is a subset of m(r(C), t) in GU

↵
j

, and thus, of C. Furthermore,

by Lemma 13.2(a), the M-set m(r(C 0), t) =: Si in GU

↵
i

is a subset of Sj . Thus, Si does not

separate b and d. Since the cut induced by C 0 before the change (in G↵
i

) also does not separate b

and d, it is �
G

U

↵

i

(r(C 0), t) = �G
↵

i

(r(C 0), t) and C 0 also induces a minimum r(C 0)-t-cut after the

change (in GU

↵
i

).

If C in Lemma 14.4 induces not only a minimum separating cut (and thus, might be nested

in a final clustering for the new graph), but occurs as a cluster in a new unrestricted cut clus-

tering ⌦j(GU ), according to Corollary 13.3 the following holds:

Theorem 14.5. In a hierarchy of unrestricted cut clusterings, let C denote a cluster in ⌦j(G)

that neither contains b nor d and is also a cluster in a cut clustering ⌦j(GU ). Then the whole

subtree of C can be used as part of a new hierarchy.

14.5.2 Update Procedures for Increasing and Decreasing Costs

Our update approach consists of two phases. The first phase copies reusable parts of the old

hierarchy by employing Theorem 14.3 and Theorem 14.5, the second phase updates the remaining
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Figure 14.6: Sketch of the first phase of the update approach for hierarchies of unrestricted
cut clusterings. Shaded areas represent parts that are simply copied.

part by the help of level update procedures. We estimate the running times in terms of costs of

level update procedures. To this end we denote the time for updating consecutive levels i to j

(bottom-up, with i > j) for a graph GU by T ([i, j], GU ). For one level i, the time T ([i, i], GU )

corresponds to the running time of the applied level update procedure, that is, it depends on the

type of edge change (cost increase or decrease) and on the type of the event the change induces

on the level (intra-cluster or inter-cluster event). The procedure for intra-cluster cost increase

runs in constant time.

We start with the application of Theorem 14.3. In case of increasing cost, the theorem

tells us that we can simply copy each level of the upper part (that is, each intra-cluster event

level) of the old hierarchy to the new hierarchy without further cost (see upper shaded area in

Fig. 14.6(b)). In case of decreasing cost, we search for the lowest intra-cluster event level k in

the old hierarchy that satisfies the copy-property. To this end we start from the lowest over-all

intra-cluster event level ` iteratively updating consecutive levels bottom-up by the help of the

level update procedure for intra-cluster cost decrease. Recall that for level k, which satisfies the

copy property, this procedure stops as soon as it has found a vertex s in Cb/d such that Cb/d

induces a minimum s-t-cut in G ↵
k

. The time for finding level k is T ([`, k], G ). After we have

found level k, we simply copy each level j above level k (j < k) to the new hierarchy (see shaded

area (2) in Fig. 14.6(c)), which already contains level ` to k (see white area (1) in Fig. 14.6(c)).

In both cases, cost increase and cost decrease, we can further apply Theorem 14.5 in order

to maintain subtrees in the lower part of the hierarchy without further cost. In fact, we can

reuse the subtree of each cluster on level ` that is not nested in the cluster Cb/d on level k. This

clearly holds for the case of increasing cost, since in this case it is ` = k (see lower shaded area in

Fig. 14.6(b)). For the case of decreasing cost, we observe that, according to the theorem, we can

reuse the subtrees of the clusters di↵erent from Cb/d on level k, which contain all clusters on `

that are not nested in Cb/d on level k. Note that the upper parts of these subtrees between level `

and k are already part of the new hierarchy, due to the stability of the level update procedure,

which we used to update these levels (see lower shaded area in Fig. 14.6(c)). By updating the

intra-cluster event levels and the corresponding subtrees in this way, we reduce the problem

of updating a hierarchy of r levels for the underlying graph G to the problem of updating a

hierarchy of `� 1 levels for an underlying graph G0 just as big as the cluster Cb/d on level k (see

boxed question marks in Fig. 14.6). We remark, that G0 is no vertex induced subgraph of G,

since the edges incident to vertices outside of Cb/d still count for the computation of minimum

separating cuts. But due to Corollary 13.3, it is however feasible to contract the vertices outside

of Cb/d in G. This remaining part is now handled by the second phase of our update approach.
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The second phase updates the remaining levels ` � 1 to 0 top-down using the level update

procedure for inter-cluster cost increase or inter-cluster cost decrease. Recall that the procedure

for inter-cluster cost increase considers only U-cuts with respect to vertices in Cb [ Cd. Due

to Corollary 13.3 and the stability of the level update procedure, neither the U-cuts nor the

cuts resulting from reshaping touch the clusters we have already found by the reuse of subtrees.

Hence, in terms of minimum-cut computations the running time of this procedure is the same

independent from whether or not we already know some of the clusters. However, we can possibly

speed up the single minimum-cut computations by contracting the already known clusters on

the current level in G. In terms of running time of the level update procedure, the time for

finishing the hierarchy after a cost increase is thus T ([0, `� 1], G�). In contrast, the procedure

for inter-cluster cost decrease considers U-cuts with respect to the representatives of the clusters

di↵erent from Cb and Cd. So when applying this procedure to a level on which we already now

some clusters form the reuse of subtrees, we simply skip the consideration of the representatives

of these clusters in the procedure. This is feasible and does not change the result of the procedure

due to Corollary 13.3 and the stability of the procedure. In particular, the found U-cuts and

the cuts resulting from reshaping leave the already known clusters untouched. Additionally

contracting the known clusters in G may again speed up the single cut computations. In both

cases, increasing and decreasing cost, we can additionally reuse further subtrees whenever a

cluster that neither contains b nor d persists on the current level. In terms of running time of the

level update procedure, the time for finishing the hierarchy after a cost decrease is thus T ([0, `�
1], G )�

P`�1
i=0 |S⇤i |, with S⇤i the set of clusters on level i in the new hierarchy that are already

known at the time level i is processed by the level update procedure.

14.5.3 Performance

We first observe that our update approach inherits optimal temporal smoothness from the level

update procedures.

Theorem 14.6. The update approach for hierarchies of unrestricted cut clusterings guarantees

optimal temporal smoothness.

Summing up the total running times of our update approach (in terms of time of the level

update procedures), we get T ([0, ` � 1], G�) for increasing cost, and T ([`, k], G ) + T ([0, ` �
1], G )�

P`�1
i=0 |S⇤i | for decreasing cost. Note that we assume a fixed height r of the old hierarchy

and a fixed level ` where the lowest intra-cluster event occurs.

Table 14.4: Bounds on the number of minimum-cut computations.

best case worst case
old hierarchy still valid

lower bound upper bound

Inc 2(`� 1)
P`�1

i=0 |Ci
b|+ |Ci

d| 2(`� 1)
P`�1

i=0 |Ci
b|+ |Ci

d|
Dec

Pk
i=`(|⌦i(G )|� 2)+P`�1
i=0 |(⌦i(G )|� 2)

�
P`�1

i=0 |S⇤i |

Pk
i=`(|⌦i(G)|� 2)+P`�1
i=0 |(⌦i(G)|� 2)

�
P`�1

i=0 |S⇤i |

P`
i=0(|⌦i(G)|� 2)

�
P`�1

i=0 |Si|

P`
i=0(|⌦i(G)|� 2)

�
P`�1

i=0 |Si|

Table 14.4 further gives tight bounds of the running time in terms of minimum-cut compu-

tations. The bounds are closely related to the bounds given for the level update procedures
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Figure 14.7: Sketch of the running times of the update approach for hierarchies of unrestricted
cut clusterings. Shaded areas represent parts that are simply copied, and thus, save time

compared to a computation from scratch.

in Table 14.1. We denote the set of clusters on level i that are nested in clusters that neither

contain b nor d on the next higher level i � 1 in the old hierarchy by Si. These clusters are all

maintained by the reuse of subtrees if the hierarchy remains valid. The clusterings and clus-

ters on di↵erent levels are indexed by their level number. Figure 14.7 additionally sketches the

running times for arbitrary hierarchies and the lower bounds in case the hierarchy remains valid.

As for the level update procedure for inter-cluster cost increase, the best and worst-case

running times for increasing cost occur if the old hierarchy remains valid. Both running times

result from only updating the remaining part in the second phase. The running times for

decreasing cost consist of the time for searching levels k in the first phase and the time for

updating the remaining part in the second phase. The best case occurs if the procedure needs

only one cut computation per final cluster in the new hierarchy (apart from those clusters that

are simply copied).



Conclusion of Part III

We examined and further improved the hierarchical cut-clustering algorithm introduced by Flake

et al. [42]. This algorithm returns a set of cut clusterings at di↵erent levels of granularity forming

a clustering hierarchy. The striking feature of the clusterings computed by this method is that

they provide a guaranteed expansion—an NP-hard bottleneck measure—within and between

clusters, tunable by an input parameter ↵.

Experimental and Theoretical Analysis. We comprehensively investigated the cut-cluster-

ing approach from an experimental and theoretical point of view, thereby bringing it together

with the concept of cohesive subsets, which is popular in social network analysis.

In the experimental study in Section 11.3, we examined the behavior of the hierarchical

cut-clustering algorithm in the light of expansion and modularity. Our experiments document

that the given guarantee on intra-cluster expansion provides a deeper insight compared to a

trivial bound that is easy to compute. The true intra-cluster expansion and inter-cluster ex-

pansion turned out to be even better than guaranteed. An analog analysis of the expansion of

modularity-based clusterings could further give no evidence that modularity-based clusterings

surpass cut clusterings in terms of intra-cluster expansion. On the contrary, around one fourth of

the considered modularity-based clusterings could be proven to be worse than the cut clusterings.

Within the modularity analysis we could reveal that, although it is not designed to optimize

modularity, the hierarchical cut-clustering algorithm fairly reliably finds clusterings of good

modularity if those clusterings are structurally indicated. Otherwise, if no good clustering is

clearly indicated, the cut-clustering algorithm returns only clusterings of low modularity. This

confirms a high trustability of the cut-clustering algorithm and justifies the use of modularity

applied to cut clusterings as a feasible measure for how well a graph can be clustered.

Our theoretical considerations in Section 11.1 revealed that, besides the quality guarantee

on expansion, the clusters returned by the cut-clustering algorithm also provide nice cohesion

properties, and thus, form a proper subclass of the class of source communities. The latter is

a class of cohesive subsets squeezed in between the existing concepts of LS-sets/extreme sets

and ↵-sets/web communities. We fully characterized the class of source communities as the set

of regular M-sets and further gave a full characterization of the special subclass defined by the

clusters in cut clusterings.

Improvements in Static Scenarios. Besides the detailed analysis, we further improved the

cut-clustering approach in two directions. The first direction focuses on the cohesion properties of

the clusters and aims at a better understanding of the source-community structure of a network.

In this context we gave a parametric search approach in Section 11.2 that admits to e�ciently

compute complete hierarchies of cut clusterings where the clusterings on each level provide the

guaranteed quality in terms of expansion as well as the cohesion properties. We note that this

237



238 Chapter 14 : Fully-Dynamic Hierarchies of Unrestricted Cut Clusterings

improved complete hierarchical approach was used for the experimental study in Section 11.3.

Furthermore, in Chapter 12, we exploited the structure of unique-cut trees (Section 7.2) in order

to develop a framework that admits the e�cient construction of maximal SC-clusterings and

overlay clusterings for given source communities, after precomputing at most 2(n�1) maximum

flows. Moreover, precomputing only around n� 1 maximum flows often su�ces, since the cases

that cause the additional flow computations (when the matrix set becomes invalid during the

construction of the unique-cut tree) are rare in practice. For the lesmis network in the example

in Section 12.3 we needed only n + 3 maximum-flow computations, where n = 77 denotes the

number of vertices in the network. We point out that a single maximal SC-clustering for a

source community S can be also constructed directly by iteratively computing regular M-sets

with respect to vertices not in S and the source of S. However, in the worst case, this needs

|V \S| flow computations, namely if the M-sets are singletons or if they are considered in an order

that causes many unnecessary computations of nested M-sets. In contrast, due to its short query

times, our framework e�ciently supports the detailed analysis of a network’s source-community

structure based on many di↵erent maximal SC-clusterings and overlay clusterings.

The second direction skips the focus on any cohesion properties to the benefit of more flexibil-

ity in choosing clusters, in particular, in the context of dynamically maintaining cut clusterings

in evolving graphs.

Improvements Related to Dynamic Scenarios. In Chapter 13 we generalized the cut-

clustering method, which so far was restricted to U-cuts, to an unrestricted method that may

choose arbitrary minimum separating cuts for the construction of clustering hierarchies. The

resulting clusters on the di↵erent hierarchy levels still provide a guaranteed expansion. The new

degree of freedom makes the method more powerful, since the algorithm may now use the most

appropriate cut with respect to a given objective.

In Chapter 14 we made use of the new degree of freedom in order to achieve optimal temporal

smoothness for our dynamic version of the unrestricted cut-clustering approach. We presented an

algorithm that e�ciently and fully-dynamically maintains an entire hierarchy of cut clusterings

based on update procedures we previously developed for a single cut clustering. Both dynamic

approaches benefit from insights we gained in the context of dynamic Gomory-Hu trees.

Open Questions. The dynamic approach developed for hierarchies of unrestricted cut cluster-

ings skips the cohesion properties of the clusterings to the benefit of optimal temporal smooth-

ness. Conversely, weakening the notion of temporal smoothness to the benefit of cohesion prop-

erties possibly admits a dynamic approach for hierarchies of also restricted cut clusterings. Such

a dynamic restricted approach can be possibly further extended such that it also guarantees the

completeness of the hierarchy found in each time step. Furthermore, we considered a dynamic

scenario based on atomic changes in the evolving graph. An extension of our results to more

general dynamic scenarios could be addressed in future work.



CHAPTER 15

Conclusion

Graph connectivity is a wide field with many faces regarding di↵erent graph classes and di↵erent

notions of connectivity, as edge and vertex connectivity in a global and local view, and extended

connectivity concepts like, for example, expansion. Many connectivity and cut related problems

are solvable in polynomial time, like the all-pairs minimum cut problem or the 2-connected planar

3-regular augmentation problem with fixed embedding. Others are NP-hard, like determining

the expansion of a graph, or deciding for a planar graph whether it admits a c-connected planar

4-regular augmentation. Interestingly, although representing analogous concepts, edge and ver-

tex connectivity behave diversely in many aspects. For example, it is not possible to represent

all-pairs minimum separating vertex cuts by a tree [12], as it is realized for all-pairs minimum

separating edge cuts by Gomory-Hu trees. The extract of connectivity and cut problems consid-

ered in this thesis also demonstrated the variety of connectivity related problems and presented

di↵erent techniques solutions may rely on.

In Part I, we considered a bunch of regular augmentation problems for simple, planar, un-

weighted graphs, that increase the global vertex connectivity. We found that generalized match-

ings [50] and the characterization of valid node assignments by the help of indicator sets are

convenient instruments to design e�cient algorithm for those problem variants that are not

proven to be NP-hard.

In contrast, Part II addressed the local edge connectivity between vertices in undirected,

weighted graphs. Although there exist
�
n
2

�
vertex pairs in a graph, a minimum separating edge

cut for each vertex pair can be represented by a Gomory-Hu tree, which can be constructed by

the help of only n � 1 maximum-flow computations. Furthermore, due to the special nesting

behavior of U-cuts and M-sets, the whole set of U-cuts can be also represented by a tree-based

data structure, which we called unique-cut tree. Our investigation of the nesting behavior of U-

cuts and M-sets was based on the Non-Crossing-Lemma (7.2) stated for static graphs by Gomory

and Hu [59], and Gusfield [66]. For dynamic graphs, which evolve due to atomic edge and vertex

changes, we could prove similar non-crossing lemmas, which provided the necessary tools for

designing e�cient and optimally smooth update algorithms for Gomory-Hu trees.

In Part III, we finally faced the connectivity indicated by the (sub)global expansion of sub-

graphs and the local expansion of cuts separating subgraphs. Flake et al. [42] discovered an

interesting relation between the expansion of a subgraph, which is NP-hard to compute, and

minimum separating edge cuts in parametric graphs. Based on this relation they designed a

cut-based clustering algorithm that guarantees a lower bound on the expansion of the clusters.

This guarantee is due to the fact that the clusters correspond to cut sides of minimum separating
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edge cuts in a special parametric graph. Based on the knowledge how minimum s-t-cuts and

maximum s-t-flows, respectively, behave in parametric graphs for varying parameter values [54],

Flake et al. further extended their approach to clustering hierarchies.

We investigated the relation between the found cut clusters and cohesive subsets. The latter

are characterized by a special predominant connectivity property and are popular in social net-

work analysis. We further found that the M-sets represented by unique-cut trees also provide

some cohesion properties and that they admit a fast construction of inclusion-maximal cluster-

ings consisting of such cohesive subsets. Moreover, we also employed the nesting behavior of

minimum s-t-cuts in parametric graphs in order to show that complete cut-clustering hierar-

chies can be quickly found by a parametric search approach, and clustering hierarchies with a

guaranteed expansion also exist for slightly more general clusters than those proposed by Flake

et al. Our fully-dynamic update algorithm for these more general (unrestricted) cut-clustering

hierarchies in dynamic scenarios finally benefits from a close relation to dynamic Gomory-Hu

trees.
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[11] D. Barth, P. Berthomé, M. Diallo, and A. Ferreira. Revisiting parametric multi-terminal

problems: Maximum flows, minimum cuts and cut-tree computations. Discrete Optimiza-

tion, 3(3):195–205, 2006. [see pages viii, 5, 103, 129, 131, 173].
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[47] S. Fortunato and M. Barthélemy. Resolution limit in community detection. Proceedings

of the National Academy of Science of the United States of America, 104(1):36–41, 2007.

[see page 184].

[48] A. Frank. Connectivity augmentation problems in network design. In: Mathematical

Programming: State of the Art, pages 34–63. The University of Michigan, 1994. [see pages

vi, 25].

[49] G. N. Frederickson and J. Ja’Ja’. Approximation Algorithms for Several Graph Augmen-

tation Problems. SIAM Journal on Computing, 10(2):270283, 1981. [see page 25].

[50] H. N. Gabow. An e�cient reduction technique for degree-constrained subgraph and bidi-

rected network flow problems. In: Proceedings of the 15th Annual ACM Symposium on the

Theory of Computing (STOC’83), pages 448–456. ACM Press 1983. [see pages 27, 34, 54,

61, 66, 67, 73, 239].

[51] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.

Journal of Computer and System Sciences, 50(2):259–273, 1995. [see page 12].

[52] H. N. Gabow. Path-based depth-first search for strong and biconnected components. In-

formation Processing Letters, 74(3-4):107–114, 2000. [see page 13].

[53] H. N. Gabow. Using expander graphs to find vertex connectivity. Journal of the ACM,

53(5):800–844, 2006. [see page 13].

[54] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm

and applications. SIAM Journal on Computing, 18(1):30–55, 1989. [see pages 129, 180,

186, 240].

[55] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, 1979. [see page 178].

[56] A. V. Goldberg and R. Tarjan. Finding minimum-cost circulations by canceling negative

cycles. Journal of the ACM, 36(4):873–886, 1989. [see page 14].



BIBLIOGRAPHY 245

[57] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal

of the ACM, 35(4):921–940, 1988. [see pages v, 14, 108].

[58] A. V. Goldberg and K. Tsioutsiouliklis. Cut Tree Algorithms. In: Proceedings of the

10th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’99), pages 376–385.

SIAM, 1999. [see page 99].

[59] R. E. Gomory and T. Hu. Multi-terminal network flows. SIAM Journal of the Society for

Industrial and Applied Mathematics, 9(4):551–570, 1961. [see pages vii, 5, 6, 7, 98, 100,

102, 115, 129, 173, 186, 188, 239].

[60] R. Görke. An Algorithmic Walk from Static to Dynamic Graph Clustering. PhD thesis,

Fakultät für Informatik, 2010. [see pages 178, 182].

[61] R. Görke, T. Hartmann, and D. Wagner. Dynamic Graph Clustering Using Minimum-

Cut Trees. In: Proceedings of the 11th International Symposium on Algorithms and Data

Structures (WADS’09), volume 5664 of Lecture Notes in Computer Science, pages 339–350.

Springer, 2009. [see page 182].

[62] R. Görke, T. Hartmann, and D. Wagner. Dynamic Graph Clustering Using Minimum-Cut

Trees. Journal of Graph Algorithms and Applications, 16(2):411–446, 2012. [see page 182].

[63] J. L. Gross and J. Yellen. Handbook of Graph Theory. CRC Press, 2003. [see page 2].
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