15 research outputs found

    Constraint satisfaction problems in clausal form

    Full text link
    This is the report-version of a mini-series of two articles on the foundations of satisfiability of conjunctive normal forms with non-boolean variables, to appear in Fundamenta Informaticae, 2011. These two parts are here bundled in one report, each part yielding a chapter. Generalised conjunctive normal forms are considered, allowing literals of the form "variable not-equal value". The first part sets the foundations for the theory of autarkies, with emphasise on matching autarkies. Main results concern various polynomial time results in dependency on the deficiency. The second part considers translations to boolean clause-sets and irredundancy as well as minimal unsatisfiability. Main results concern classification of minimally unsatisfiable clause-sets and the relations to the hermitian rank of graphs. Both parts contain also discussions of many open problems.Comment: 91 pages, to appear in Fundamenta Informaticae, 2011, as Constraint satisfaction problems in clausal form I: Autarkies and deficiency, Constraint satisfaction problems in clausal form II: Minimal unsatisfiability and conflict structur

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition. (C) 2021 The Authors. Published by Elsevier B.V.Peer reviewe

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition

    Searching for patterns in Conway's Game of Life

    Get PDF
    Conway’s Game of Life (Life) is a simple cellular automaton, discovered by John Conway in 1970, that exhibits complex emergent behavior. Life-enthusiasts have been looking for building blocks with specific properties (patterns) to answer unsolved problems in Life for the past five decades. Finding patterns in Life is difficult due to the large search space. Current search algorithms use an explorative approach based on the rules of the game, but this can only sample a small fraction of the search space. More recently, people have used Sat solvers to search for patterns. These solvers are not specifically tuned to this problem and thus waste a lot of time processing Life’s rules in an engine that does not understand them. We propose a novel Sat-based approach that replaces the binary tree used by traditional Sat solvers with a grid-based approach, complemented by an injection of Game of Life specific knowledge. This leads to a significant speedup in searching. As a fortunate side effect, our solver can be generalized to solve general Sat problems. Because it is grid-based, all manipulations are embarrassingly parallel, allowing implementation on massively parallel hardware

    Implementation methodology for using concurrent and collaborative approaches for theorem provers, with case studies of SAT and LCF style provers

    Get PDF
    Theorem provers are faced with the challenges of size and complexity, fueled by the increasing range of applications. The use of concurrent/ distributed programming paradigms to engineer better theorem provers merits serious investigation, as it provides: more processing power and opportunities for implementing novel approaches to address theorem proving tasks hitherto infeasible in a sequential setting. Investigation of these opportunities for two diverse theorem prover settings with an emphasis on desirable implementation criteria is the core focus of this thesis. Concurrent programming is notoriously error prone, hard to debug and evaluate. Thus, implementation approaches which promote easy prototyping, portability, incremental development and effective isolation of design and implementation can greatly aid the enterprise of experimentation with the application of concurrent techniques to address specific theorem proving tasks. In this thesis, we have explored one such approach by using Alice ML, a functional programming language with support for concurrency and distribution, to implement the prototypes and have used programming abstractions to encapsulate the implementations of the concurrent techniques used. The utility of this approach is illustrated via proof-of-concept prototypes of concurrent systems for two diverse case studies of theorem proving: the propositional satisfiability problem (SAT) and LCF style (first-order) theorem proving, addressing some previously unexplored parallelisation opportunities for each, as follows:. SAT: We have developed a novel hybrid approach for SAT and implemented a prototype for the same: DPLL-Stalmarck. It uses two complementary algorithms for SAT, DPLL and Stalmarck’s. The two solvers run asynchronously and dynamic information exchange is used for co-operative solving. Interaction of the solvers has been encapsulated as a programming abstraction. Compared to the standalone DPLL solver, DPLL-Stalmarck shows significant performance gains for two of the three problem classes considered and comparable behaviour otherwise. As an exploratory research effort, we have developed a novel algorithm, Concurrent Stalmarck, by applying concurrent techniques to the Stalmarck algorithm. A proof-of-concept prototype for the same has been implemented. Implementation of the saturation technique of the Stalmarck algorithm in a parallel setting, as implemented in Concurrent Stalmarck, has been encapsulated as a programming abstraction. LCF: Provision of programmable concurrent primitives enables customisation of concurrent techniques to specific theorem proving scenarios. In this case study, we have developed a multilayered approach to support programmable, sound extensions for an LCF prover: use programming abstractions to implement the concurrent techniques; use these to develop novel tacticals (control structures to apply tactics), incorporating concurrent techniques; and use these to develop novel proof search procedures. This approach has been implemented in a prototypical LCF style first-order prover, using Alice ML. New tacticals developed are: fastest-first; distributed composition; crossTalk: a novel tactic which uses dynamic, collaborative information exchange to handle unification across multiple sub-goals, with shared meta-variables; a new tactic, performing simultaneous proof-refutation attempts on propositional (sub- )goals, by invoking an external SAT solver (SAT case study), as a counter-example finder. Examples of concrete theorem proving scenarios are provided, demonstrating the utility of these extensions. Synthesis of a variety of automatic proof search procedures has been demonstrated, illustrating the scope of programmability and customisation, enabled by our multilayered approach

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore