
Algorithms for Parameterized Constraint

Satisfaction Problems

Robert Edward Crowston

A thesis submitted to Royal Holloway, University of London
for the degree of Doctor of Philosophy

May 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28903544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I Robert Edward Crowston hereby declare that this thesis is the record of
work carried out by me. Wherever contributions of others are involved, this is
indicated clearly, with due reference to the literature and acknowledgement of
collaborative research and discussions.

1

Abstract

There are many problems requiring superpolynomial time in the size of the
instance. Parameterized complexity considers the problem having an addi-
tional parameter, isolating the superpolynomial behaviour. A problem is fixed-
parameter tractable if it has an algorithm which has running time polynomial
in the size of the instance multiplied by a (usually superpolynomial) function
of the parameter.

This thesis considers the parameterized complexity of several problems where
the aim is to satisfy a set of constraints. For such problems, it is known that
a certain proportion of constraints can be satisfied. We consider the parame-
terized complexity of such problems with respect to the number of constraints
satisfied above this, as well as with respect to other structural parameters.

2

Acknowledgements

I would like to thank my supervisors, Gregory Gutin and Anders Yeo for their
support and encouragement. In particular, thanks go to Gregory for sharing
his wisdom and being generous with his time. I would also like to thank my
examiners, Mark Jerrum and Stefan Szeider for providing thoughtful feedback
and discussion.

I would like to thank my co-authors: Michael Fellows, Mark Jones, Eun
Jung Kim, Gabriele Muciaccia, Venkatesh Raman, Frances Rosamond, Imre
Z. Ruzsa, Saket Saurabh and Stéphan Thomassé. Their encouragement and
enthusiasm have made my studies all the more enjoyable.

3

Contents

Declaration . 1
Abstract . 2
Acknowledgements . 3

1 Introduction 7
1.1 Parameterizations above/below a bound . 9
1.2 MaxLin2 . 10
1.3 Pseudo-Boolean Functions . 13
1.4 Satisfiability . 14
1.5 The Edwards-Erdős and Poljak-Turzík Bounds . 17
1.6 Acyclic Subgraph . 18
1.7 Signed Max Cut . 19
1.8 Summary of Results . 21
1.9 Bibliographic Notes . 22

2 Notation 23
2.1 Graph Theory . 23

2.1.1 Graphs and Hypergraphs . 23
2.1.2 Directed Graphs . 24
2.1.3 Treewidth . 24

2.2 Pseudo-Boolean Functions . 25
2.3 Fixed-Parameter Tractability . 25

2.3.1 Kernelization . 26
2.3.2 Bikernelization . 26
2.3.3 Parameterized Complexity classes . 26

2.4 CNF formulas . 27

I Parameterized Complexity of MaxLin2 29

3 Motivating Results 30

4

3.1 Introduction . 30
3.2 Max r(n)-Lin-2 above Average . 30
3.3 Boolean Constraint Satisfaction Problems above Average 33

4 MaxLin2 Parameterized Above Average 35
4.1 Maximum Excess, Irreducible Systems and Algorithm B 36
4.2 MaxLin2-AA . 39
4.3 Max-rLin2-AA . 42
4.4 Applications of Theorem 7 . 44

5 MaxLin2 Parameterized Below W 46
5.1 Introduction . 46
5.2 Hardness Results . 47
5.3 Algorithmic Results . 50

II Parameterized Complexity of MaxSAT 53

6 Parameterized Complexity of MaxSAT Above Average 54
6.1 Introduction . 54
6.2 Hardness Results . 55
6.3 Algorithmic Results . 57

7 MaxSAT Above the number of variables 62
7.1 Introduction . 62
7.2 Preprocessing Rules . 63
7.3 Branching Rules and Reduction to (m− k)-Hitting Set 66
7.4 Algorithms for (m− k)-Hitting Set . 68

7.4.1 Deterministic Algorithm . 69
7.4.2 Randomized Algorithm . 70

7.5 Complete Algorithm, Correctness and Analysis . 72
7.6 Hardness of Kernelization . 74

8 Unit-Conflict Free MaxSAT 76
8.1 Introduction . 76
8.2 Additional Terminology, Notation and Basic Results 77
8.3 New Lower Bound for sat(F) . 78
8.4 Proof of Lemma 37 . 80
8.5 Parameterized Complexity Results . 85

5

III Parameterizations above Poljak-Turzík Bound 87

9 Acyclic Subgraph 88
9.1 Introduction . 88
9.2 Basic Results on Oriented Graphs . 89
9.3 Two-way Reduction Rules . 90
9.4 One-way Reduction Rules . 91
9.5 Fixed-Parameter Tractability of ASAPT . 92
9.6 Polynomial Kernel . 94

10 Signed MaxCut 98
10.1 Introduction . 98
10.2 Terminology, Notation and Preliminaries . 98
10.3 Fixed-Parameter Tractability . 101
10.4 Kernelization . 106

11 Discussion and Future Work 113
11.1 MaxLin2 . 113
11.2 MaxSAT . 114
11.3 Problems above Poljak-Turzík . 115

Bibliography 117

6

Chapter 1

Introduction

In computational complexity, it is desirable to obtain an efficient algorithm to solve a given problem.
Ideally, one would like to obtain a polynomial-time algorithm, that is show the problem is in the
class P. However many problems are unlikely to have a polynomial-time algorithm. Such problems
have been studied in order to obtain practically useful solutions efficiently. For example, in the
study of approximation algorithms one relaxes the aim of finding an optimal solution, and instead
searches for a solution within a certain ratio of the optimal solution.

One might instead sacrifice a guaranteed running time, and instead produce an algorithm that
is often efficient, but in the worst case may be very slow. What if, in fact, the algorithm appeared
to run fast in practical instances, even if the theoretical running time was poor? This might suggest
that practical instances have extra structural properties, and in which case, the theoretical study
of how a problem behaves under such restrictions would be highly worthwhile.

Downey and Fellows [33] initialized the study of parameterized complexity. Given a problem
x, and a parameter k, one is interested in obtaining an algorithm with running time f(k) · nO(1).
By doing so, we contain the combinatorial explosion to the parameter k. When k is small, it is
often the case that f(k) is not too large, so the algorithm has a practical running time.

We have a choice as to what meaning is applied to the parameter. In the simplest form, given a
maximization problem, the parameterized form of the problem might ask for a solution of size/value
at least k (for a minimization problem, one might instead ask for a solution of size at most k). As
we will see later on, it might also be interesting to consider the question of finding a solution of
size at least g(x) + k, where g is a problem-specific function we will introduce later.

One might also use k to capture structural properties. For example, if the problem was on
a graph, one might restrict the treewidth of the graph to at most k. Of course, looking at how
structural properties influence the running time of algorithms for a problem has been considered
before the framework of parameterized complexity was introduced. However, the framework has
opened the field up to a much more systematic study.

It is often the case that a fixed-parameter tractable (FPT) algorithm for a problem can be

7

demonstrated by applying some polynomial-time reductions to the problem, obtaining an equiv-
alent instance with size bounded by a function of k. Using any known algorithm on the newly
created instance will thus solve the problem in FPT time. Such a reduction is called a kernel-
ization. The study of the existence, or lack of existence, of polynomial-sized kernels has received
considerable interest in recent years.

We will focus on the parameterizations of constraint satisfaction problems. In such problems,
one is given a set of constraints, and a set of variables, with the aim of finding an assignment to the
variables to satisfy all the constraints. In the maximization version of such problems, one might
wish to obtain an assignment maximizing the number of constraints satisfied. For each problem,
we will explore the possible natural parameterizations, whether there exists an FPT algorithm for
the problem, and whether the problem has a kernel. We will also show that some parameterizations
do not have an FPT algorithm, assuming reasonable complexity-theory assumptions.

A related notion to that of FPT is that of kernelization. Informally, a kernelization algorithm
is an algorithm that maps every instance to a new instance of size at most f(k), such that the new
instance is a Yes-instance if and only if the original instance is a Yes-instance (see Section 2.3
for the formal definition of a parameterized problems and kernelization). The size of the kernel is
f(k).

Kernelization algorithms are advantageous in several ways. Since the kernelization algorithm
occurs as an efficient pre-processing stage, it may be studied independently of the algorithm to
solve the reduced instance. We are often concerned with finding polynomial-sized kernels, and if the
kernel is polynomial, minimizing the degree of the polynomial. There are also tools to enable us to
show the non-existence of polynomial kernels, or non-existence of a polynomial kernel of a specific
size, under reasonable complexity-theory assumptions (more precisely, unless coNP⊆NP/poly [9,
11, 32]). Thus, for a particular problem it is possible to show the existence of a kernel, and that
the kernel is of optimal size.

If a problem has a kernel, then it is fixed-parameter tractable, by observing that firstly applying
a kernelization algorithm, then applying any known algorithm to the reduced instance gives a fixed-
parameter tractable algorithm. In fact, the other direction of this implication holds too, as the
following well-known lemma shows.

Lemma 1. A parameterized problem is fixed-parameter tractable if and only if it is decidable and
has a kernel.

Proof. Given an algorithm for the problem with running time h(|x|) and a kernelization with kernel
of size g(k), by firstly running the kernelization algorithm, and then solving the resulting instance
in time (h(g(k)) a fixed-parameter tractable algorithm is formed.

In the other direction, assume there is a fixed parameter tractable algorithm with running time
f(k) · |x|c for some constant c. Run this algorithm for time |x|c+1. If this algorithm terminates,
the reduced instance consists of a trivial Yes or No-instance of the problem. If the algorithm does
not terminate, then |x|c+1 ≤ |x|c · f(k). So |x| ≤ f(k), and the instance is already a kernel of size

8

f(k).

Note that the kernel generated by this proof is likely to be large.
We now consider the Vertex Cover problem, as an example of the use of FPT and kernel-

izations.

Vertex Cover

Instance: A graph G = (V,E) and a nonnegative integer k.

Parameter: The integer k.

Question: Does there exist a vertex cover of size at most k. That is to say, is there a
subset of vertices V ′ ⊆ V such that for every edge uv ∈ E, u ∈ V ′ or v ∈ V ′.

Lemma 2. Vertex Cover can be solved in time 2k · nO(1).

Proof. Consider an instance (G, k). Firstly, observe that any isolated vertices of Gmay be removed,
since an isolated vertex cannot cover any edges. We now describe a branching algorithm. Consider
an edge xy. Either x is in the vertex cover, or y is, giving a two-way branching. When branching
on x, assume x is in the vertex cover, and remove x and all edges containing x from G. Continue
branching at most k times, one of the leaves will either give a vertex cover, or the instance is a
No-instance. The tree has at most 2k leaves. Thus, the algorithm has running time 2k ·nO(1).

To obtain a kernel, the algorithm applies a reduction based on when a vertex must necessarily
be in the vertex cover.

Lemma 3. Vertex Cover has a kernel with at most k2 edges.

Proof. Consider an instance (G, k). Firstly, observe that any isolated vertices of Gmay be removed,
since an isolated vertex cannot cover any edges. Also observe that if there is a vertex x of degree
greater than k it must be in the vertex cover. For, suppose not. Then all of N(x) would be in the
vertex cover, but then the vertex cover would be too large. Hence, if there is a vertex cover of size
k it must contain x. Remove x (and the edges containing x), and decrease k by one.

In the new instance formed (G′, k′), each vertex has degree bounded by k′. Thus, each vertex
can only cover k′ edges. If the number of edges is greater than k′2, the instance must be a No-
instance. Otherwise, the number of edges is bounded by k′2 ≤ k2, as claimed.

1.1 Parameterizations above/below a bound

In this section, we give an introduction to parameterizations above and below tight bounds
(ATLB/BTLB). Consider the problem Max Acyclic Subgraph. In this problem, one is given a
digraph D = (V,A), and one aims to find an acyclic subdigraph of D with the maximum number

9

of arcs. Lets firstly consider the parameterized problem formed by asking whether D contains an
acyclic subdigraph with at least k arcs. Assign an arbitrary ordering to the vertices of the digraph,
and consider two arc sets, A′, the set of arc going forward in this ordering, and A′′, the set of
backwards arcs. Observe A = A′ ∪ A′′, each of these sets induce acyclic subdigraphs, and so D
certainly has an acyclic subdigraph of size at least |A|/2. Hence if, k ≤ |A|/2, the instance is a
Yes-instance, and if k > |A|/2 then |V | ≤ |A| + 1 ≤ 2k, and so the problem has a linear kernel.
This problem has an |A|O(1)(2k)!-time algorithm. To see this, for each of the |V |! ≤ (2k)! orderings
of V , and construct the subdigraphs of D induced by the forward arcs, and check whether this
forms an acyclic subgraph of the required size.

The lower bound motivates the study of a different parameterization of this problem:

Max Acyclic Subgraph-ATLB

Instance: A digraph D = (V,A) and a nonnegative integer k.

Parameter: The integer k.

Question: Does there exist an acyclic subdigraphs with at least |A|/2 + k arcs?

Gutin et al. [50] have proved that Max Acyclic Subgraph-ATLB is fixed-parameter
tractable.

More generally, if one is given a maximization problem, that is to find a solution maximizing the
value of some function P , and it is known P always achieves some value Pmin for any assignment,
then one can parameterize above this above the bound by asking if there is an assignment giving
P ≥ Pmin + k. However, the parameterization asking for an assignment giving P ≥ k may still be
of interest, depending on the problem under consideration.

Problems parameterized above tight lower bounds were first considered by Mahajan and Raman
[85]. They observed that often such parameterizations are of practical value. More recently, such
problems have gained more interest, with Mahajan et al. [87] proving several results for problems,
and also stating several open problems. Parameterizations above lower bounds are often resistant to
traditional techniques in parameterized complexity. Gutin et. al. [49] developed a new probabilistic
methodology for such problems.

1.2 MaxLin2

An important problem we will study is that of MaxLin2. The problem is of interest for two
reasons - it is interesting as a problem in it’s own right, and it is a useful tool in our study of many
other constraint satisfaction problems. Usefully, it can be related to the parameterization of other
constraint satisfactions above average, where the lower bound is non-trivial and unwelcoming to
direct attacks. In particular, it can be used as a tool for the widely studied problem of MaxSat.

In the problem MaxLin2 we are given a system of m linear equations in n variables over F2,

10

x1, . . . , xn. The task is to maximize the total weight of satisfied equations. The problem Max-r-

Lin2 has the additional constraint that each equation contains at most r variables (we may allow
r to be a function of n, if this is the case, r(n) is used for clarity). This form of the problem is
useful when reducing from Max-r-Sat. Håstad [61] highlighted the importance of MaxLin2 and
Max-r-Lin2 by stating that they are “as basic as satisfiability”. For the application of MaxLin2

to other problems, see, e.g., [3, 4, 23, 25, 61, 70].
The problem MaxLin2 has previously received attention in the study of approximation algo-

rithms (see [61, 62]). In this thesis, we consider the problem from a parameterized perspective.
We firstly state the general form for the problem:

MaxLin2

Instance: A system S of m linear equations in n variables over F2, where equation j is
assigned a positive integral weight wj , j = 1, . . . ,m, and a nonnegative integer k.
We will write equation j in S as

∑
i∈αj

zi = bj , where ∅ 6= αj ⊆ {1, 2, . . . , n} and
|αj | = rj .

Parameter: k.

Task: Find an assignment of values to the n variables maximizing the weight of satisfied
equations.

This formulation is the natural formulation for the problem when considered in isolation. How-
ever, it becomes convenient to consider the problem phrased with the equations in product form
when making use of MaxLin2 to solve other problems:

MaxLin2

Instance: A system S of equations
∏
i∈αj

xi = bj , where xi, bj ∈ {−1, 1}, j = 1, . . . ,m

and where each equation is assigned a positive integral weight wj and |αj | = rj .

It is clear from inspection that the two formulations are equivalent (xi = 1 if and only if zi = 0).
We now draw our attention to the matter of the choice of parameterization for this problem.

Define W =
∑m
j=1 wj . Then it is certainly true that equations of total weight at least W/2

equations can be satisfied simultaneously - the expected weight of equations satisfied by a uniform
random assignment is W/2, and an algorithm using the method of conditional expectations would
achieve such an assignment. We now observe that furthermore, this bound is tight. Consider a
system consisting of pairs of equations of the form

∏
i∈I xi = −1,

∏
i∈I xi = 1, each equation in the

pair being of the same weight. Any assignment to the variables will satisfy exactly one equation
from each pair, so at most W/2 equations can be satisfied simultaneously.

We will let sat(S) denote the maximum total weight of equations that can be satisfied simul-
taneously.

11

MaxLin2-AA

Instance: A system S of equations
∏
i∈Ij xi = bj , where xi, bj ∈ {−1, 1}, j = 1, . . . ,m

and where each equation is assigned a positive integral weight wj ; and a nonneg-
ative integer k.

Parameter: k.

Question: sat(S) ≥W/2 + k?

When the number of variables in each equation is bounded by r, the problem is stated as
follows:

Max-r-Lin2-AA

Instance: A system S of equations
∏
i∈Ij xi = bj , where xi, bj ∈ {−1, 1}, |Ij | ≤ r, j =

1, . . . ,m; equation j is assigned a positive integral weight wj , and a nonnegative
integer k.

Parameter: k.

Question: sat(S) ≥W/2 + k?

The best previously known results for MaxLin2 are those of Håstad. In particular, he showed
an inapproximability result: for each ε > 0 there is no polynomial time algorithm to distinguishing
instances of Max-3-Lin in which at least (1 − ε)m equations can be simultaneously satisfied
from instances in which less than (1/2 + ε)m equations can be simultaneously satisfied, unless
P = NP. Hence, Max-r-Lin2-AA cannot be approximated within a constant factor c > 1 unless
P = NP. Later work by Håstad and Venkatesh [62] showed that the problem does, however, admit
a randomized polynomial-time algorithm which for any constant c > 1 outputs an assignment with
approximation ratio at most cr

√
m with probability at least 3/4.

Fellows [38] and Niedermeier [92] introduced the notion of multivariate parameterized algo-
rithms. Here, instead of having one parameter, k, the problem can be considered as having
multiple parameters k1, k2, . . . , kl. We note that for the problem Max-r-Lin2-AA it would be
interesting to consider the behaviour of the problem in both k and r. Thus we will consider both
the problems MaxLin2-AA[k], which only has k as the parameter, and Max-r-Lin2-AA[k, r],
where the problem is parameterized by both k and r. We observe that it is possible to reduce a
problem with multiple parameters, k1, k2, . . . , kl into a problem with one parameter by defining
k = k1 + k2 + . . .+ kl.

In Chapter 4 we show a kernelization algorithm for MaxLin2-AA[k], admitting a kernel with
at most O(k2 log k) variables. Using a new notion of a sum-free subset of vectors we obtain an
FPT algorithm for MaxLin2-AA[k] with running time 2O(k log k)(nm)O(1). For the problem Max-

r-Lin2-AA[k, r], Gutin et al. [49] gave a n ≤ m = O(9rk2) kernel. We show that, in fact, the

12

problem has a kernel with n ≤ (2k − 1)r, and as a consequence, that the maximization problem
Max-r-Lin2-AA is in APX if restricted to m = O(n) for all fixed r, if the weight of each equation
is bounded by a constant. This is in sharp contrast to the fact previously observed fact that
Max-r-Lin2-AA is not in APX for each r ≥ 3.

In Chapter 5 we consider a different parameterization of MaxLin2:

MaxLin2-BW

Question: Is there an assignment of values to the n variables such that the total weight
of the satisfied equations is at least W − k, where W = w1 + · · ·+ wm ?

This parameterization is of interest when one wishes to satisfy almost all but k equations of
the system.

We show that if one imposes the additional constrain that each equation contains at most two
variables, then this problem is FPT. If instead, one assumes each variable appears in at most
two equations, the problem has a polynomial-time algorithm. However, even if each equation
has exactly three variables, and each variables appears in exactly three equations, the problem is
W [1]-hard.

1.3 Pseudo-Boolean Functions

Optimization of pseudo-boolean function, that is to say a function f : {−1, 1}n → R (see Section
2.2 for a full definition), is a useful, applicable area of research. Such functions arise in statistical
mechanics, reliability theory, and manufacturing, for example, see the survey of Boros and Hammer
[14]. In classic analysis, lower bounds on the maxima of trigonometric Fourier expansions, see [15].
We will focus our attention on applications in computer science and discrete maths (see [3, 94]
other uses in computer science).

In Fourier analysis, the Boolean domain is often assumed to be {−1, 1}n rather than more usual
{0, 1}n and we will follow this assumption here. Here we use the following well-known and easy to
prove fact (see, e.g., [94]): each function f : {−1, 1}n → R can be uniquely written as

f(x) = f̂(∅) +
∑
I∈F

f̂(I)
∏
i∈I

xi. (1.1)

where F ⊆ {I : ∅ 6= I ⊆ [n]}, [n] = {1, 2, . . . , n} and f̂(I) are non-zero reals. Formula (1.1) is
the Fourier expansion of f and f̂(I) are the Fourier coefficients of f . The right hand side of (1.1)
is a polynomial and the degree max{|I| : I ∈ F} of this polynomial will be called the degree of
f . Writing F = {I1, I2, . . . , I|F|}, let A be a (0, 1)-matrix with n rows and |F| columns and with
entries aij such that aij = 1 if and only if the term corresponding to Ij in (1.1) contains xi.

In Section 4.4, we obtain the following lower bound on the maximum of a pseudo-boolean
function f of degree r:

13

max
x

f(x) ≥ f̂(∅) + b(rankA+ r − 1)/rc ·min{|f̂(I)| : I ∈ F}, (1.2)

where rankA is the rank of A over F2. (Note that since rankA does not depend on the order of
the columns in A, we may order the terms in (1.1) arbitrarily.)

To demonstrate the combinatorial usefulness of (1.2), we apply it to obtain a short proof of the
well-known lower bound of Edwards-Erdős on the maximum size of a bipartite subgraph in a graph
(the Max Cut problem). Erdős [36] conjectured and Edwards [35] proved that every connected
graph with n vertices and m edges has a bipartite subgraph with at least m/2 + (n− 1)/4 edges.
For short graph-theoretical proofs, see, e.g., Bollobás and Scott [12] and Erdős et al. [37]. We
consider the Balanced Subgraph problem [8] that generalizes Max Cut and show that our
proof of the Edwards-Erdős bound can be easily extended to Balanced Subgraph. By contrast,
the graph-theoretical proofs of the Edwards-Erdős bound do no seem to extend to the Balanced

Subgraph problem.
Pseudo-boolean functions are a useful tool in the application of the MaxLin2 to other problems.

However, there are still advantages to be had by directly applying the methodology to a problem.
We do this for the important problem of Satisfiability, which we will consider in the next section.

1.4 Satisfiability

The problem of Satisfiability is a fundamental problem in Computer Science. In it, one is given
a CNF formula F with m clauses (c1, . . . , cm), and n variables (x1, . . . , xn). We will view a CNF
formula as being a set of clauses, and thus ci ∈ F is a clause of the formula. The general aim is
to find a truth assignment to the variables to satisfy the clauses. A truth assignment is a function
τ : V (F) → {true, false}. A truth assignment τ satisfies a clause C if there exists x ∈ V (F)

such that x ∈ C and τ(x) = true, or x̄ ∈ C and τ(x) = false.
The class of problem where the aim is to maximise the number of satisfied clauses is known as

MaxSat. We state the general version of the problem, in a parameterized form, below:

MaxSatf [k]

Instance: A CNF formula F with clauses c1, . . . , cm, and variables x1, . . . , xn, and a
nonnegative integer k. Clause ci has ri literals, i = 1, . . . ,m.

Parameter: k.

Task: Decide whether there is a truth assignment satisfying at least f(F, k) clauses.

There are several natural questions that can be asked. The first is the task of finding an
assignment satisfying at least k clauses. However, it is easy to see that for any CNF formula on
m clauses, there exists an assignment to the variables satisfying at least m/2 clauses, by random

14

assignment. Using this observation Mahajan and Raman [85] showed that for this task, the problem
is fixed-parameter tractable.

This lower bound generates a natural question. Let the task be to find an assignment satisfying
m/2+k clauses. Is this problem fixed-parameter tractable? Mahajan and Raman [85] showed that
this problem is indeed fixed-parameter tractable. We note, however, that the bound is very rarely
tight. A tight instance would consist of pairs of conflicting clauses (x) and (x̄), for each variable
x. It would be desirable to consider parameterizations of the problem where there are more tight
instances, or alternatively instances where this case is removed.

In this thesis, we consider both types of such parameterizations. Observe that if a clause has
r literals, then the probability it is satisfied by a uniform random assignment to the variables is
(1 − 1/2r). Hence, if we assume clause ci contains ri literals, then by linearity of expectation, a
uniform random assignment will satisfy at least asat(F) =

∑m
i=1(1− 2−ri) clauses. In the problem

MaxSat-AA we ask for a truth assignment satisfying at least asat(F) + k clauses:

MaxSat-AA

Task: Decide whether there is a truth assignment satisfying at least asat(F)+k clauses,
where asat(F) =

∑m
i=1(1− 2−ri).

In Chapter 6 we fully study the problem of MaxSat-AA. We show that Max-r(n)-Sat-AA

is not fixed-parameter tractable unless P=NP for any r(n) ≥ dlog ne. Also, we prove that unless
the exponential time hypothesis (ETH) is false, Max-r(n)Sat-AA is not even in XP (that is
to say that there is no algorithm with running time (nm)O(f(k)), for some function f) for any
r(n) ≥ log log n + ϕ(n), where ϕ(n) is any real-valued unbounded strictly increasing computable
function. These two results are proved in Section 6.2. These hardness results are complemented
by positive results: we show that the lower bound above on r(n) cannot be decreased much further
as we prove that Max-r(n)Sat-AA is in XP for any r(n) ≤ log log n − log log log n and fixed-
parameter tractable for any r(n) ≤ log log n − log log log n − ϕ(n), where ϕ(n) is any real-valued
unbounded strictly increasing computable function. This result generalizes the one of Alon et al.
[3] and is proved in Section 6.3.

These results are in sharp contrast to the complexity status of the related problems MaxLin2-

AA and Max-r-Sat-AA, which are known to be fixed-parameter tractable (Chapter 4). Also this
is one of the very few problems in the ‘above guarantee’ parameterization world, which is known
to be hard. See Mahajan et al. [87], for a number of other hard above guarantee problems.

The problem we study is one of the few problems in the ‘above guarantee parameterization’
where we parameterize above an instance-specific bound, as opposed to a generic bound, see
Mahajan et al. [87] for a discussion on this issue. Another example of such parameterizations is
the problem Vertex Cover parameterized above the maximum matching of the given graph. See
[98, 30, 90, 83] for recent results on this problem.

In Chapter 7 we focus on a different lower bound, based on the matching number. Let BF

15

denote the bipartite graph with partite sets V (F) and F with an edge between v ∈ V (F) and
c ∈ F if v ∈ V (c). The matching number ν(F) of F is the size of a maximum matching in BF .
Clearly, sat(F) ≥ ν(F) and this lower bound for sat(F) is tight as there are formulas F for which
sat(F) = ν(F).

Hence the following parameterization is above a tight lower bound is interesting:

MaxSat-Aν(F)

Instance: A CNF formula F and a positive integer α.

Parameter: k = α− ν(F).

Question: Is sat(F) ≥ α?

In Chapter 7, MaxSat-Aν(F) will be proved fixed-parameter tractable, but unlike other pa-
rameterizations considered so far, MaxSat-Aν(F) will be shown to have no polynomial-size kernel
unless coNP⊆NP/poly, which is highly unlikely [9]. The main result shows that MaxSat-Aν(F)

is fixed-parameter tractable by obtaining an algorithm with running time O((2e)2k+O(log2 k)(n +

m)O(1)), where e is the base of the natural logarithm. We also develop a randomized algorithm for
MaxSat-Aν(F) of expected runtime O(8k+O(

√
k)(m+ n)O(1)).

The deficiency δ(F) of a formula F is |F |−|V (F)|; the maximum deficiency δ∗(F) = max
F ′⊆F

δ(F ′).

A formula F is called variable-matched if ν(F) = |V (F)|. Our main result implies fixed-parameter
tractability of MaxSat parameterized by δ(F) for variable-matched formulas F .

There are two related results: Kullmann [77] obtained an O(nO(δ∗(F)))-time algorithm for
solving MaxSat for formulas F with n variables and Szeider [103] gave an O(f(δ∗(F))n4)-time
algorithm for the problem, where f is a function depending on δ∗(F) only. Note that we cannot just
drop the condition of being variable-matched from our result and expect a similar algorithm: it is
not hard to see that the satisfiability problem remains NP-complete for formulas F with δ(F) = 0.

A formula F is minimal unsatisfiable if it is unsatisfiable but F \ c is satisfiable for every
clause c ∈ F . Papadimitriou and Wolfe [95] showed that recognition of minimal unsatisfiable
CNF formulas is complete for the complexity class1 DP . Kleine Büning [71] conjectured that for
a fixed integer k, it can be decided in polynomial time whether a formula F with δ(F) ≤ k is
minimal unsatisfiable. Independently, Kullmann [77] and Fleischner and Szeider [40] (see also [39])
resolved this conjecture by showing that minimal unsatisfiable formulas with n variables and n+k

clauses can be recognized in nO(k) time. Later, Szeider [103] showed that the problem is fixed-
parameter tractable by obtaining an algorithm of running time O(2kn4). Note that Szeider’s results
follow from his results mentioned in the previous paragraph and the well-known fact that δ∗(F) =

δ(F) holds for every minimal unsatisfiable formula F . Since every minimal unsatisfiable formula
is variable-matched [2], our main result also implies fixed-parameter tractability of recognizing

1DP is the class of problems that can be considered as the difference of two NP-problems; clearly DP contains
all NP and all co-NP problems

16

minimal unsatisfiable formula with n variables and n+ k clauses, parameterized by k.

In Chapter 8 we instead look at the problem formed after removing the tight examples to
the m/2 bound. Recall, this bound is tight when F consists of pairs of conflicting unit clauses
(x) and (x̄). Since each truth assignment satisfies exactly one clause in each pair of conflicting
unit clauses, it is natural to reduce F to the unit-conflict free (UCF) form by deleting all pairs
of conflicting clauses. Let sat(F) be the maximum number of clauses that can be satisfied by a
truth assignment. If F is UCF, then Lieberherr and Specker [79] proved that sat(F) ≥ ϕ̂m, where
ϕ̂ = (

√
5 − 1)/2 (golden ratio inverse), and that for any ε > 0 there are UCF CNF formulae F

for which sat(F) < m(ϕ̂+ ε). Yannakakis [109] gave a short probabilistic proof that sat(F) ≥ ϕ̂m
by showing that if the probability of every variable appearing in a unit clause being assigned
true is ϕ̂ (here we assume that for all such variables x the unit clauses are of the form (x)) and
the probability of every other variable being assigned true is 1/2, then the expected number of
satisfied clauses is ϕ̂m.

Since ϕ̂m rather than m/2 is an asymptotically tight lower bound for UCF CNF formulae,
Mahajan and Raman [85] also introduced the following parameterization of MaxSAT:

MaxSat-UCF-A(ϕ̂m)

Instance: A UCF CNF formula F with m clauses.

Parameter: A nonnegative integer k.

Question: Decide whether sat(F) ≥ ϕ̂m+ k.

Mahajan and Raman conjectured that MaxSat-UCF-A(ϕ̂m) is fixed-parameter tractable.
To solve the conjecture in the affirmative, we show the existence of an O(k)-variable kernel for
MaxSat-UCF-A(ϕ̂m). This result follows from our improvement of the Lieberherr-Specker lower
bound.

1.5 The Edwards-Erdős and Poljak-Turzík Bounds

The last part of this thesis will consider problems parameterized above the Poljak-Turzík bound.
Given a connected graph G on n vertices and m edges, the Edwards-Erdős bound [35] states

that G has a bipartite subgraph with at least m/2 + (n − 1)/4 edges. Poljak and Turzík [96]
extended this bound to λ-extendible properties (0 < λ < 1). Informally, the key feature a λ-
extendible property Π has is that given a graph G ∈ Π, and an extra edge uv, and any set E∗ of
edges with one endpoint in {u, v} and the other in V (G), there exists a graph G′ containing all of
G, the edge uv and at least λ|E∗| edges from E∗.

The unweighted version of the Poljak-Turzík bound [96] states that for any λ-extendible prop-
erty Π, given a connected graph G = (V,E) there exists a spanning subgraph G′ = (V ′, E′) ∈ Π

17

such that |E′| ≤ λ · |E|+ 1−λ
2 (|V | − 1).

Note that the Edwards-Erdős bound is the Poljak-Turzík bound for λ = 1/2. In this thesis we
focus on problems where λ = 1/2, not making direct use of λ-extendibility.

1.6 Acyclic Subgraph

In Chapter 9 we consider the problem of finding the maximum acyclic subgraph in a directed graph.
This problem is well-studied in the literature in graph theory, algorithms and their applications
alongside its dual, the feedback arc set problem, see, e.g., Chapter 15 in [7] and references therein.
This is true, in particular, in the area of parameterized algorithmics [18, 49, 54, 99].

Each directed graph D with m arcs has an acyclic subgraph with at least m/2 arcs. To obtain
such a subgraph, order the vertices x1, . . . , xn ofD arbitrarily and consider two spanning subgraphs
of D: D′ with arcs of the form xixj , and D′′ with arcs of the form xjxi, where i < j. One of D′

and D′′ has at least m/2 arcs. Moreover, m/2 is the largest size of an acyclic subgraph in every
symmetric digraph S (in a symmetric digraph the existence of an arc xy implies the existence of
an arc yx). Thus, it makes sense to consider the parameterization above the tight bound m/2:
decide whether a digraph D contains an acyclic subgraph with at least m/2 + k arcs, where k
is the parameter. Mahajan et al. [87] and Raman and Saurabh [99] asked what the complexity
of this problem is. For the case of oriented graphs (i.e., directed graphs with no directed cycles
of length 2), Raman and Saurabh [99] proved that the problem is fixed-parameter tractable. A
generalization of this problem to integer-arc-weighted digraphs (where m/2 is replaced by the half
of the total weight of D) was proved to be fixed-parameter tractable in [49].

For oriented graphs, m/2 is no longer a tight lower bound on the maximum size of an acyclic
subgraph. Poljak and Turzík [96] proved the following tight bound on the maximum size of an
acyclic subgraph of a connected oriented graph D: m

2 + n−1
4 . To see that the bound is indeed tight

consider a directed path x1x2 . . . x2t+1 and add to it arcs x3x1, x5x3, . . . , x2t+1x2t−1. This oriented
graph Ht consists of t directed 3-cycles and has 2t + 1 vertices and 3t arcs. Thus, m2 + n−1

4 = 2t

and 2t is the maximum size of an acyclic subgraph of Ht: we have to delete an arc from every
directed 3-cycle as the cycles are arc-disjoint.

Raman and Saurabh [99] asked to determine the parameterized complexity of the following
problem: decide whether a connected oriented graph D has an acyclic subgraph with at least
m
2 + n−1

4 + k arcs, where k is the parameter. Observe that we may replace k by k
4 to ensure

that the parameter k is always integral. Therefore, the complexity of the Raman-Saurabh problem
above is equivalent to that of the following parameterized problem.

18

Acyclic Subgraph above Poljak-Turzík Bound (ASAPT)

Instance: An oriented connected graph G with n vertices and m arcs.

Parameter: The integer k.

Question: Does G contain an acyclic subgraph with at least m
2 + n−1

4 + k
4 arcs?

We show this problem is fixed-parameter tractable, giving a kernel with O(k2) vertices and
O(k2) arcs. We do this by combining structural graph-theoretical and algorithmic approaches,
using both one-way, and two-way reduction rules.

1.7 Signed Max Cut

We consider undirected graphs with no parallel edges or loops and in which every edge is labelled
by + or −. We call such graphs signed graphs, and edges, labelled by + and −, positive and
negative edges, respectively. The labels + and − are the signs of the corresponding edges. Signed
graphs are well-studied due to their various applications and interesting theoretical properties, see,
e.g., [19, 31, 44, 55, 59, 64, 110].

Let G = (V,E) be a signed graph and let V = V1 ∪ V2 be a partition of the vertex set of G
(i.e., V1 ∩ V2 = ∅). We say that G is (V1, V2)-balanced if an edge with both endpoints in V1, or
both endpoints in V2 is positive, and an edge with one endpoint in V1 and one endpoint in V2 is
negative; G is balanced if it is (V1, V2)-balanced for some partition V1, V2 of V (V1 or V2 may be
empty).

In some applications, we are interested in finding a maximum-size balanced subgraph of a
signed graph [19, 31, 64, 110]. We will call this problem Signed Max Cut. This problem is a
generalization of Max Cut and as such is NP-hard (Signed Max Cut is equivalent to Max Cut

when all edges of G are negative). Hüffner et al. [64] parameterized Signed Max Cut below a
tight upper bound: decide whether G = (V,E) contains a balanced subgraph with at least |E| − k
edges, where k is the parameter. Hüffner et al. [64] showed that this parameterized problem is
fixed-parameter tractable (FPT) using a simple reduction to the Edge Bipartization Problem:
decide whether an unsigned graph can be made bipartite by deleting at most k edges (k is the
parameter). Using this result and a number of heuristic reductions, Hüffner et al. [64] designed a
nontrivial practical algorithm that allowed them to exactly solve several instances of Signed Max

Cut that were previously solved only approximately by DasGupta et al. [31].
In Chapter 10, we consider a different parameterization of Signed Max Cut:

19

Signed Max Cut ATLB

Instance: A connected signed graph G with n vertices and m edges.

Parameter: The integer k.

Question: Does G contain a balanced subgraph with at least m
2 + n−1

4 + k
4 edges?

Note, that we use k
4 instead of just k to ensure that k is integral and pt(G) = m

2 + n−1
4 is a

tight lower bound on the number of edges in a balanced subgraph of G (this fact was first proved
by Poljak and Turzík [96], for a different proof, see [26]). Whilst the parameterization of Hüffner et
al. of Max Cut ATLB is of interest when the maximum number of edges in a balanced subgraph
H of G is close to the number of edges of G, Signed Max Cut ATLB is of interest when the
maximum number of edges in H is close to the minimum possible value in a signed graph on n

vertices and m edges. Thus, the two parameterizations treat the opposite parts of the Signed

Max Cut “spectrum.”
It appears that it is much harder to prove that Signed Max Cut ATLB is FPT than to

show that the parameterization of Hüffner et al. of Signed Max Cut is. Indeed, Signed Max

Cut ATLB is a generalization of the same parameterization of Max Cut (denoted by Max Cut

ATLB) and the parameterized complexity of the latter was an open problem for many years (and
was stated as an open problem in several papers) until Crowston et al. [29] developed a new
approach for dealing with such parameterized problems (recall that Max Cut is a special case
of Signed Max Cut when all edges are negative). This approach was applied by Crowston et
al. [20] to solve an open problem of Raman and Saurabh [99] on maximum-size acyclic subgraph
of an oriented graph. Independently, this problem was also solved by Mnich et al. [89] who
obtained the solution as a consequence of a meta-theorem which shows that several graph problems
parameterized above a lower bound of Poljak and Turzík [96] are FPT under certain conditions.

While the meta-theorem is for both unlabeled and labeled graphs, all consequences of the
meta-theorem in [89] are proved only for parameterized problems restricted to unlabelled graphs.
A possible reason is that one of the conditions of the meta-theorem requires us to show that the
problem under consideration is FPT on a special family of graphs, called almost forests of cliques.
The meta-theorem is useful when it is relatively easy to find an FPT algorithm on almost forests of
cliques. However, for Signed Max Cut ATLB it is not immediately clear what an FPT algorithm
would be even on a clique.

Our attempts to check that Signed Max Cut ATLB is FPT on almost forests of cliques led
us to reduction rules that are applicable not only to almost forests of cliques, but to arbitrary
instances of Signed Max Cut ATLB. Thus, we found two alternatives to prove that Signed

Max Cut ATLB is FPT: with and without the meta-theorem. Since the first alternative required
stating the meta-theorem and all related notions and led us to a slightly slower algorithm than the
second alternative, we decided to use the second alternative.

We reduce an arbitrary instance of Signed Max Cut ATLB to an instance which is an almost

20

forest of cliques, but with an important additional property which allows us to make use of a slight
modification of a dynamic programming algorithm of Crowston et al. [29] for Max Cut ATLB

on almost forests of cliques.
Apart from showing that Max Cut ATLB is FPT, Crowston et al. [29] proved that the

problem admits a kernel with O(k5) vertices. They also found a kernel with O(k3) vertices for
a variation of Max Cut ATLB, where the lower bound used is weaker than the Poljak-Turzík
bound. They conjectured that a kernel with O(k3) vertices exists for Max Cut ATLB as well. In
the main result of Chapter 10, we show that Signed Max Cut ATLB, which is a more general
problem, also admits a polynomial-size kernel and, moreover, our kernel has O(k3) vertices. Despite
considering a more general problem than in [29], we found a proof which is shorter and simpler
than the one in [29]; in particular, we do not use the probabilistic method. An O(k3)-vertex kernel
for Signed Max Cut ATLB does not immediately imply an O(k3)-vertex kernel for Max Cut

ATLB, but the same argument as for Signed Max Cut ATLB shows that Max Cut ATLB

admits an O(k3)-vertex kernel. This confirms the conjecture above.

1.8 Summary of Results

We conclude this section with a summary of the main results contained in this thesis. In the
constraints, r is the number of variables in each equation/clause, and s is the number of equa-
tions any variable appears in. Some of the results are subject to reasonable complexity-theoretic
assumptions, and ϕ(n) is any real-valued unbounded strictly increasing computable function of n.

Family Problem Constraint Result
MaxLin2 -AA[k] O(k2 log k) vars kernel

-AA[k, r] (2k − 1)r vars kernel
-BW r ≤ 2 FPT
-BW s ≤ 2 Polynomial Time
-BW r = s = 3 W [1]-hard

MaxSAT -AA r ≤ log log n

− log log log n− ϕ(n)

FPT

-AA r ≤ log log n− log log log n XP
-AA r ≥ log log n+ ϕ(n) not in XP
-AA r ≥ dlog ne para-NP-complete
-Aν(F) FPT, no poly kernel
-UCF-A(ϕ̂m) FPT, O(k) vars kernel

Above

Poljak-

Turzík

Acyclic
Subgraph

O(k2) vertices and
O(k2) arcs kernel

Signed Max Cut O(k3) vertex kernel

21

1.9 Bibliographic Notes

Most of our results have been previously published, either in conference proceedings, or in a journal,
as listed below:

[23] Note on Max Lin-2 above average.
R. Crowston, G. Gutin, and M. Jones
Information Processing Letters 110: 451–454, 2010.

[25] Systems of linear equations over F2 and problems parameterized above average.
R. Crowston, G. Gutin, M. Jones, E. J. Kim, and I. Ruzsa.
Proc. SWAT 2010, Lect. Notes Comput. Sci. 6139 (2010), 164–175.

[26] Simultaneously Satisfying Linear Equations Over F2: MaxLin2 and Max-r-Lin2 Parameter-
ized Above Average.
R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé and A. Yeo.
Proc. FSTTCS 2011, LIPICS Vol. 13, 229–240.

[27] Parameterized Complexity of Satisfying Almost All Linear Equations over F2

R. Crowston, G. Gutin, M. Jones, A. Yeo
Theory of Computing Systems, June 2012

[21] Parameterized Complexity of MaxSat Above Average.
R. Crowston, G. Gutin, M. Jones, V. Raman and S. Saurabh
Proc. LATIN 2012, Lecture Notes in Computer Science 7256 (2012), 184–194.

[28] Fixed-Parameter Tractability of Satisfying Beyond the Number of Variables
R. Crowston, G. Gutin, M. Jones, V. Raman, S. Saurabh and A. Yeo
Algorithmica October 2012

[22] A new lower bound on the maximum number of satisfied clauses in Max-SAT and its algo-
rithmic applications.
R. Crowston, G. Gutin, M. Jones, and A. Yeo
Algorithmica 64 (2012), 56–68.

[20] Directed Acyclic Subgraph Problem Parameterized above Poljak-Turzik Bound.
R. Crowston, G. Gutin and M. Jones
Proc. FSTTCS 2012, LIPICS Vol. 18, 400–411.

[24] Maximum balanced subgraph problem parameterized above lower bound.
R. Crowston, G. Gutin, M. Jones, and G. Muciaccia
Proc. COCOON 2013, to appear.

22

Chapter 2

Notation

In this section we define standard terminology and basic facts that will be useful throughout this
thesis.

For an integer n, [n] stands for {1, . . . , n}. A function f is strictly increasing if for every pair
x′, x′′ of values of the argument with x′ < x′′, we have f(x′) < f(x′′).

2.1 Graph Theory

2.1.1 Graphs and Hypergraphs

An (undirected) graph G consists of a set of vertices V (G), and a set of edges E(G). An edge
uv ∈ E(G) is an unordered pair of vertices, and u, v ∈ V (G) are endpoints of this edge. We say
u is adjacent to v. Normally n will be used to denote the number of vertices |V (G)|, and m the
number of edges. Often a graph is viewed as an ordered pair (V,E).

The neigborhood, NG(v) of v ∈ V (G) is the set of all vertices adjacent to v. That is to say
NG(v) = {u ∈ V (G) : uv ∈ E(G)}. For a subset X ⊆ V (G), NG(X) denotes the set of all
neighbours of vertices in X, NG(X) = {u ∈ V (G) : ∃v ∈ X,uv ∈ E(G)} \ X. When G is clear
from the context, we write N(X) instead of NG(X). A path in a graph G is a sequence of disjoint
vertices, v0, v1, . . . , vp and edges v0v1, v1v2, . . . , vp−1vp. A graph is connected if there exists a path
between any pair of vertices.

A bipartite graph G is a graph whose vertices can be split into two disjoint sets V (G) = V1∪V2,
V1 ∩ V2 = ∅, such that each edge has one endpoint in V1 and one endpoint in V2. A matching in a
graph is a subset M ⊆ E(G) such that no two edges share an endpoint. We say that a matching
saturates all end-vertices of its edges. The matching number ν(G) of G is the size of a maximum
matching.

We make use of the classical Hall’s Marriage Theorem, which states a bipartite graph G has a
matching saturating every vertex of V1 if and only if |N(X)| ≥ |X| for every subset X ⊆ V1. The

23

following lemma follows immediately from Hall’s Marriage Theorem. To see this, add d vertices to
V2, each adjacent to every vertex in V1.

Lemma 4. Let G = (V1, V2;E) be a bipartite graph, and suppose that for all subsets X ⊆ V1,
|N(X)| ≥ |X| − d for some d ≥ 0. Then ν(G) ≥ |V1| − d.

We say that a bipartite graph G = (V1, V2;E) is q-expanding if for all V ′1 ⊆ V1, |NG(V ′1)| ≥
|V ′1 |+ q. Given a matching M , an alternating path is a path in which the edges belong alternately
to M and not to M .

A hypergraph generalizes the concept of a graph to allow an edge to contain more than two
vertices.

Formally, a hypergraph H = (V (H),F) consists of a set of vertices V (H) and a family F ⊆ P\∅
of nonempty subsets of V (H) called edges of H. We often denote F as E(H). Note that F may
have parallel edges, i.e., copies of the same subset of V (H). For any vertex v ∈ V (H), and any
E ⊆ F , E [v] is the set of edges in E containing v, N [v] is the set of all vertices contained in edges
of F [v], and the degree of v is d(v) = |F [v]|. For a subset T of vertices, F [T] =

⋃
v∈T F [v]. If for

each e ∈ F , |e| = k, the hypergraph is k-uniform. In particular, a 2-uniform hypergraph where F
is a set is simply a graph.

2.1.2 Directed Graphs

A directed graph D consists of a set of vertices V (G), and a set of arcs A(G). An arc uv ∈ A(G) is
an ordered pair of vertices. For a vertex x in D, the out-degree d+(x) is the number of arcs of D
leaving x and the in-degree d−(x) is the number of arcs of D entering x. For a subset S of vertices
of D, let d+(S) denote the number of arcs of D leaving S and d−(S) the number of arcs of D
entering S. For subsets A and B of vertices of D, let E(A,B) denote the set of arcs with exactly
one endpoint in each of A and B (in both directions). For a set S of vertices, D[S] is the subgraph
of D induced by S. When S = {s1, . . . , sp}, we will write D[s1, . . . , sp] instead of D[{s1, . . . , sp}].
The underlying graph UN(D) of D is the undirected graph obtained from D by replacing all arcs
by edges with the same end-vertices and getting rid of one edge in each pair of parallel edges.
The connected components of D are connected components of UN(D); D is connected if UN(D) is
connected. Vertices x and y of D are neighbors if there is an arc between them.

2.1.3 Treewidth

A tree decomposition of an (undirected) graph G is a pair (U, T) where T is a tree whose vertices
we will call nodes and U = ({Ui | i ∈ V (T)}) is a collection of subsets of V (G) such that

1.
⋃
i∈V (T) Ui = V (G),

2. for each edge vw ∈ E(G), there is an i ∈ V (T) such that v, w ∈ Ui, and

3. for each v ∈ V (G) the set {i : v ∈ Ui} of nodes forms a subtree of T .

24

The Ui’s are called bags. The width of a tree decomposition ({Ui : i ∈ V (T)}, T) equals
maxi∈V (T){|Ui| − 1}. The treewidth of a graph G is the minimum width over all tree decom-
positions of G. We use notation tw(G) to denote the treewidth of a graph G.

2.2 Pseudo-Boolean Functions

A pseudo-boolean function is a function from {−1, 1}n to the set of reals. In Fourier analysis, it is
convenient to assume the boolean domain is {−1, 1}n rather than the more usual {0, 1}n, and we
will follow this assumption here.

It is well-known and easy to prove (see, e.g., [94]) that a pseudo-boolean function, f : {−1, 1}n→
R can be uniquely written as:

f(x) = f̂(∅) +
∑
I∈F

f̂(I)
∏
i∈I

xi. (2.1)

where F ⊆ {I : ∅ 6= I ⊆ [n]}. The terms f̂(I) ∈ R are known as the Fourier coefficients of f ,
and formula 2.1 is the Fourier expansion of f .

Fourier analysis of pseudo-boolean functions has been used in many areas of computer science,
see, e.g. [3, 25, 94].

2.3 Fixed-Parameter Tractability

The definition of fixed-parameter tractability is motivated by the desire to classify NP-complete
problems recognising that some NP-hard problems are solvable in time polynomial in the instance
size but superpolynomial in some parameter k. If the parameter is small, as often it may well be
in a practical instance of a problem, than the problem is practically tractable. Thus, it is desirable
to study such parameters.

We now proceed to give the formal definition. There are two (equivalent) systems of notation
used in defining fixed-parameter tractability in the literature. Each formation can feel natural,
depending on the problems under consideration. We give both definitions for completeness.

We firstly give the definitions in the notation of Downey and Fellows [33].
A parameterized problem is a language L ⊆ Σ∗ × N where Σ is a finite alphabet. The second

component is called the parameter of the problem. L is fixed-parameter tractable if it can be
determined in time f(k) · nO(1) whether or not (x, k) ∈ L, where f is a computable function only
depending on k.

Note that the Downey-Fellows notation implicitly makes the parameter part of the problem.
Often, the parameter may be a structural property of the instance. Flum and Grohe [41] capture
this by making their parameter a function of the problem. They denote a parameterization as a
mapping κ : Σ∗ → N that is polynomial-time computable. A parameterized problem is denoted
by a pair (Q, κ) consisting of a set Q ⊆ Σ∗ of strings over Σ and a parameterization κ of Σ. A

25

problem (Q, κ) is fixed-parameter tractable if there is an algorithm that decides Q with running
time f(κ(x)) · |x|O(1), where f is a computable function.

One can observe that these definitions capture the same concept. Replacing Σ∗ with Σ∗ × N
in Flum-Grohe, and defining κ(x, k) = k, one obtains a problem in Downey-Fellows.

Due to the problems being considered, we will use the Downey-Fellows notation.
We can now observe that for each parameterized problem, there is a corresponding nonparam-

eterized version, formed by taking k as part of the input. If the nonparameterized problem is
NP-hard, then f(k) must be superpolynomial, provided P 6= NP. However, this function might
show the problem is practically tractable for small values of k.

A problem may have several parameters k1, . . . , kt. In which case, it can be reduced to the one
parameter case by setting k = k1 + · · ·+ kt, see, e.g., [32].

2.3.1 Kernelization

Given a parameterized problem L , an instance (x, k) ∈ L, a kernelization is an algorithm that
maps (x, k) to (x′, k′) in time polynomial in |x| and k such that (x, k) ∈ L if and only if (x′, k′) ∈ L,
|x′| ≤ f(k) and k′ ≤ g(k), for some computable functions f , g. The size of the kernel is f(k) and
the new instance (x′, k′) is known as the kernel. The kernelization algorithm should run in time
polynomial in |x| and k.

2.3.2 Bikernelization

The notion of a bikernelization was introduced in [3], it is useful in situations where there may be a
natural, related problem that the problem under consideration may be transformed into. We relax
the requirement that the algorithm maps to instances of the same problem, L, instead allowing a
mapping to a different problem, L′. Such results are sometimes called compression results.

Formally, given parameterized problems L and L′ a bikernelization from L to L′ is an algorithm
that maps (x, k) to (x′, k′) in time polynomial in |x| and k such that (x, k) ∈ L if and only if
(x′, k′) ∈ L′, |x′| ≤ f(k) and k′ ≤ g(k), for some computable functions f , g. The size of the
bikernel is f(k) and the new instance (x′, k′) is known as the bikernel. The kernelization algorithm
should run in time polynomial in |x| and k. Alon et al. [3] observed that a parameterized problem
L is fixed-parameter tractable if and only if it is decidable and admits a bikernelization to a
parameterized problem L′.

2.3.3 Parameterized Complexity classes

Recall for a problem L to be in FPT, the decision problem must be solvable in f(k)|x|O(1) time.
If this requirement is weakened to the question of deciding membership in time |x|O(f(k)), then L
belongs to the parameterized complexity class XP.

It is known that FPT is a proper subset of XP [33]. Analogues of NP are provided by the
classes of parameterized problems of the W [t] Hierarchy giving the tower:

26

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP

Here W[P] is the class of all parameterized problems (x, k) that can be decided in f(k)|x|O(1)

time by a nondeterministic Turing machine that makes at most f(k) log |x| nondeterministic steps
for some computable function f . For the definition of the classes W[t], see, e.g., [41]. It is believed
that W[1] 6= FPT, and thus showing a problem is W[1]-hard shows that it is unlikely to be FPT.

We will also make use of the exponential time hypothesis of Impagliazzo and Paturi [65]. The
exponential time hypothesis is stronger than the P 6= NP assumption, stating that 3-SAT cannot
be solved in subexponential time.

Finally, we introduce the notion of para-NP-completeness. If a problem is para-NP-complete,
there is no FPT algorithm unless P = NP. Let L and L′ be parameterized problems with parame-
ters k and k′, respectively. An fpt-reduction R from L to L′ is a many-to-one transformation from
L to L′, such that (i) (I, k) ∈ L if and only if (I ′, k′) ∈ L′ with k′ ≤ g(k) for a fixed function g,
and (ii) R is of complexity O(f(k)|I|c). Here (I ′, k′) is the image of instance (I, k).

L is in para-NP if membership of (I, k) in L can be decided by a nondeterministic Turing
machine in time O(f(k)|I|c), where |I| is the size of I, f(k) is an arbitrary function of the parameter
k only, and c is a constant independent from k and I. A parameterized problem L′ is para-NP-
complete if it is in para-NP and for any parameterized problem L in para-NP there is an fpt-
reduction from L to L′. It is well-known that a parameterized problem L belonging to para-NP
is para-NP-complete if we can reduce an NP-complete problem to the subproblem of L when the
parameter is equal to some constant [41].

For example, consider the k-Colorability problem, where given a graph G and a positive
integer k (k is the parameter), we are to decide whether G is k-colorable. Since the (unparam-
eterized) Colorability problem is in NP, k-Colorability is in para-NP. k-Colorability is
para-NP-complete since 3-Colorability is NP-complete.

2.4 CNF formulas

We now define the notion of a boolean formula in conjunctive normal form (CNF). Recall that
given a set of variables x1, ..., xn for each variable xi we have a positive literal xi and a negative
literal x̄i. A disjunction, A∨B is true if either A or B is true. A conjunction A∧B is true if both
A and B are true. We say a boolean formula is in conjunctive normal form if it is expressed as a
conjunction of clauses, and each clause is a disjunction of literals. We write such a formula F as,

F =

m∧
i=1

ci

where each ci is a disjunction of literals. We refer to ci as the clauses of the formula.
For a subset X of the variables of CNF formula F , FX denotes the subset of F consisting of

all clauses c such that V (c) ∩X 6= ∅. A formula F is called q-expanding if |X|+ q ≤ |FX | for each

27

X ⊆ V (F). Note that, by Hall’s matching theorem, a formula is variable-matched if and only if it
is 0-expanding. Clearly, a formula F is q-expanding if and only if BF is q-expanding.

For x ∈ V (F), n(x) and n(x̄) denote the number of clauses containing x and the number of
clauses containing x̄, respectively.

A function L : U → {true, false}, where U is a subset of V (F), is called a partial truth
assignment. A partial truth assignment L : U → {true, false} is an autarky if L satisfies all
clauses of FU . We have the following:

Lemma 5 ([22]). Let L : U → {true, false} be an autarky for a CNF formula F and let γ be
any truth assignment on V (F) \ U . Then for the combined assignment τ := L ∪ γ, it holds that
satτ (F) = |FU |+ satγ(F \ FU). Clearly, τ can be constructed in polynomial time given L and γ.

Autarkies were first introduced in [88]; they are the subject of much study, see, e.g., [39, 78, 103],
and see [72] for an overview.

28

Part I

Parameterized Complexity of
MaxLin2

29

Chapter 3

Motivating Results

3.1 Introduction

In this chapter we consider some special cases of MaxLin2, showing fixed parameter tractability
using only combinatorial tools. This problem had previously been considered by Gutin et al. [50]
using a probabilistic method. In this chapter, we extend the special cases considered using only
combinatorial arguments.

Most of the results in this chapter will be strengthened using more advanced techniques in later
chapters. The intention here is to introduce both the framework for solving MaxLin2 as well as
how to relate it to other constraint satisfaction problems. In this chapter we will use the ’sum’
notation for MaxLin2.

3.2 Max r(n)-Lin-2 above Average

Consider the following problem for a fixed function r(n).

Max r(n)-Lin-2 above Average (or Max-r(n)Lin2-AA for short)

Instance: A system S of m linear equations in n variables over F2, where no equation
has more than r = r(n) variables and equation j is assigned a positive integral
weight wj , j = 1, . . . ,m, and a nonnegative integer k. We will write equation j
in S as

∑
i∈αj

zi = bj , where ∅ 6= αj ⊆ {1, 2, . . . , n} and |αj | ≤ r.

Parameter: The integer k.

Question: Is there an assignment of values to the n variables such that the total weight
of the satisfied equations is at least (W + k)/2, where W = w1 + · · ·+ wm ?

We assume that each of the n variables appears in at least one equation of S.

30

Note that W/2 is indeed a tight lower bound for the above problem, as the expected weight of
satisfied equations in a random assignment is W/2, and no assignment of values to the variables
satisfies equations of total weight more than W/2 if S consists of pairs of equations with identical
left-hand sides and contradicting right-hand sides.

Consider two reduction rules for Max-r(n)Lin2-AA introduced in [50].

Reduction Rule 3.1. Let A be the matrix of the coefficients of the variables in S, let t =

rankA and let columns ai1 , . . . , ait of A be linearly independent. Then delete all variables not in
{zi1 , . . . , zit} from the equations of S.

Reduction Rule 3.2. If we have, for a subset α of {1, 2, . . . , n}, an equation
∑
i∈α zi = b′ with

weight w′, and an equation
∑
i∈α zi = b′′ with weight w′′, then we replace this pair by one of these

equations with weight w′ + w′′ if b′ = b′′ and, otherwise, by the equation whose weight is bigger,
modifying its new weight to be the difference of the two old ones. If the resulting weight is 0, we
delete the equation from the system.

Lemma 6. [50] Let T be obtained from S by Rule 3.1 or 3.2. Then T is a yes-instance if and
only if S is a yes-instance. Moreover, T can be obtained from S in time polynomial in n and m.

If we cannot change S using Rule 3.1 (Rule 3.2), S is irreducible by Rule 3.1 (Rule 3.2). If S is
irreducible by Rule 3.1, we have n ≤ m. If S is irreducible by Rule 3.2, the symmetric difference
αj∆αp 6= ∅ for each pair j 6= p.

Consider the following algorithm for Max-r(n)Lin2-AA, which is a modification of an algo-
rithm used in [62]. We assume that, in the beginning, no equation or variable in S is marked.

Algorithm A

While S 6= ∅ and less than k equations are marked, do the following:

1. For 1 ≤ i ≤ n, calculate ρi, the number of equations in S containing zi.

2. Choose zl with minimum ρl among all variables still in S. Mark zl.

3. Choose an arbitrary equation containing zl,
∑
i∈α zi = b.

4. Mark this equation and delete it from S.

5. Replace every equation
∑
i∈α′ zi = b′ in S containing zl by

∑
i∈α∆α′ zi = b′′, where

b′′ = b+ b′.

6. Apply Rule 3.2. (As a result, several equations can be of weight 0 and, thus, are
deleted from the system.)

Observe that A runs in polynomial time. We have the following simple yet important property of
A.

31

Lemma 7. If the input system S is irreducible by Rule 3.2 and algorithm A has marked k equations
in S, then S is a yes-instance.

Proof. Assume that A has marked k equations in the input system S and let T be the system
of equations remaining in S after A has stopped. Observe that for every assignment of values to
the variables z1, . . . , zn that satisfies all marked equations, the operation of Step 5 of A replaces
S by an equivalent system (i.e., both systems have the same difference in weight of satisfied and
falsified equations). Thus, for every such assignment, S is equivalent to T together with the marked
equations. We will show that there is an assignment that satisfies all marked equations and half
of the equations of T (in terms of weight). This will be sufficient due to the following. Let W ′

be the total weight of the marked equations. Then the total weight of the satisfied equations is
W ′ + (W −W ′)/2 = (W +W ′)/2 ≥ (W + k)/2 since W ′ ≥ k by integrality of the weights.

We can find a required assignment as follows. We start by finding an assignment of values to
the variables in T that satisfies half of equations of T (in terms of weight), using the following
algorithm from [62]: Assign values to the variables sequentially, and after each assignment, perform
the obvious algebraic simplifications. When about to assign a value to zj , consider all equations
of the form zj = b, for constant b. Assign zj a value satisfying at least half of these equations (in
terms of weight).

It remains to assign any values to the variables not in T of the marked equations such that they
are all satisfied. This is possible if we find an assignment that satisfies the last marked equation,
then find an assignment satisfying the equation marked before the last, etc. Indeed, the equation
marked before the last contains a (marked) variable zl not appearing in the last equation, etc.

Lemma 8. If an instance of Max-r(n)Lin2-AA is irreducible by Rule 3.2 and its number of
variables n ≥ 2kr(n), then it is a yes-instance.

Proof. Let ρlt be the ρl picked in step 2 of Iteration t of algorithm A, and let Rt be the maximum
number of variables in any equation in S at Iteration t. Observe that R1 = r, and that Rt+1 ≤ 2Rt.
Thus, Rt ≤ 2t−1r.

In iteration t of A at most 2ρlt − 1 equations are removed - the selected equation containing zl,
and for each of the ρlt − 1 equations two equations - the equation itself, and the equation it was
cancelled out with by the application of Rule 3.2. Note that by the minimality of ρlt , every variable
appears in at least ρlt equations. A variable is removed from the system if it is only contained
in a removed equation, hence at most (2ρlt − 1)Rt/ρlt < 2Rt variables will be removed from the
system.

Thus, the total number of variables completely deleted from the system after k − 1 iterations
is less than

∑k−1
t=1 2Rt ≤

∑k−1
t=1 2tr < 2kr. So, if 2kr ≤ n then Iteration k is possible, and hence, by

Lemma 7, we have a yes-instance.

Theorem 1. Max-r(n)Lin2-AA is fixed-parameter tractable if the instance is irreducible by Rule
3.2 and r(n) = o(n).

32

Proof. Let r = o(n). By Lemma 8, if n ≥ 2kr, then we have a yes-instance. Otherwise, n < 2kr

and so n ≤ g(k) for some function g(k) depending on k only. In the last case, in time O(mO(1)2g(k))

we can check whether our instance is a yes-instance.

Gutin et al. [50] prove that Max-r(n)Lin2-AA is fixed-parameter tractable for r = O(1).

Using the method of [50] one can only extend this result to r = o(logm). If r = o(logm) then
r = o(n) (since m < 2n by Rule 3.2) and, thus, Max-r(n)Lin2-AA is fixed-parameter tractable
by Theorem 1. However, if r = Ω(logm) and r = o(n) then Max-r(n)Lin2-AA is fixed-parameter
tractable by Theorem 1, but this result cannot be obtained using the method of [50].

Recall that ρi is the number of equations in S containing zi. Let ρ = max1≤i≤n ρi. Let
MaxLin2-AA be Max-r(n)Lin2-AA with r(n) = n.

Theorem 2. MaxLin2-AA is fixed-parameter tractable when the input system S with m equations
is irreducible by Rules 3.1 and 3.2 and ρ = o(m).

Proof. Let ρ = o(m). Apply algorithm A (for this theorem, there is no need to do Step 1 or select
the zl with minimum ρl on Step 2; we can arbitrarily choose any zl still in S). We will show that
after k− 1 iterations at most 2ρ(k− 1) equations have been deleted. Let Q be the set of equations
that, at the beginning, contain at least one of zl1 , . . . , zlk−1

, where zl1 , . . . , zlk−1
are the variables

marked in the first k−1 iterations. Note that |Q| ≤ ρ(k−1). An equation not in Q is only deleted
if there exists an equation in Q such that, after some applications of the symmetric difference
operation of Step 5, the two equations have the same left-hand side. Furthermore, observe that
each equation in Q can only ever have the same left-hand side as at most one equation not in Q. So
the number of equations removed is at most 2|Q| ≤ 2ρ(k − 1). Observe that either 2ρ(k − 1) < m

in which case Iteration k is possible and we can apply Lemma 7, or m ≤ 2ρ(k − 1) and therefore
m ≤ f(k) for some function f(k) depending on k only. If m ≤ f(k), n ≤ m ≤ f(k) and in time
O(mO(1)2f(k)) we can check whether our instance is a yes-instance.

Using the approach of [50] it is easy to show that if ρ = o(
√
m) then MaxLin2-AA is fixed-

parameter tractable and this cannot be extended even to the case ρ = Θ(
√
m). Thus, Theorem 2

provides a much stronger result.

3.3 Boolean Constraint Satisfaction Problems above Average

In this section we present a reduction from Max-rSat-AA (defined below) to MaxLin2-AA, and
prove that Max-rSat-AA is fixed-parameter tractable for constant r. The aim is to show that in
the proofs of the main results of [3] for a wide family of Boolean Constraint Satisfaction Problems
above Average, Lemma 8 can replace probabilistic and Fourier analysis inequalities. As a result,
the proofs become purely combinatorial and slightly simpler. Alon et al. [3] provide all details
for Max-rSat-AA only and comment that basically the same arguments can be used for a wide
class of Boolean Constraint Satisfaction Problems above Average and, thus, we restrict ourselves
to Max-rSat-AA only.

33

Let r(≥ 2) be a constant.

Max r-Sat above Average (or Max-rSat-AA for short)

Instance: A pair (F, k) where F is a multiset of m clauses, each of size r; F contains
only variables x1, x2, . . . , xn, and k is a nonnegative integer.

Parameter: The integer k.

Question: Is there a truth assignment to the n variables such that the total number of
satisfied clauses is at least E+ k2−r, where E = m(1− 2−r), the average number
of satisfied clauses?

Let F contain clauses C1, . . . , Cm in the variables x1, x2, . . . , xn. We may assume that xi ∈
{−1, 1}, where −1 corresponds to true. For F , consider a polynomial

X =

m∑
j=1

(1−
∏

xi∈vars(Cj)

(1 + ε(i,j)xi)),

where vars(Cj) denotes the set of variables of Cj , that is, the variable xi ∈ Cj if and only if
xi or x̄i ∈ Cj , εi ∈ {−1, 1} and ε(i,j) = 1 if and only if the literal xi is in Cj .

Lemma 9. [3] The answer to Max-rSat-AA is yes if and only if there exists an assignment for
x1, x2, . . . , xn for which X ≥ k.

Theorem 3. The problem Max-rSat-AA is fixed-parameter tractable for each constant r ≥ 2.

Proof. Given a Max-rSat-AA instance, define the polynomial X of degree at most r as above.
After algebraic simplification X = X(x1, x2, . . . , xn) can be written as X =

∑
I∈S XI , where

XI = cI
∏
i∈I xi, each cI is a nonzero integer and S is a family of nonempty subsets of {1, . . . , n}

each with at most r elements. Thus, X is a polynomial of degree at most r.
Now define an instance Max-rLin2-AA with the variables z1, z2, . . . , zn as follows. For each

nonzero term cI
∏
i∈I xi consider the linear equation

∑
i∈I zi = b, where b = 0 if cI is positive,

and b = 1 if cI is negative, and assign this equation the weight wI = |cI |. It is easy to check
that this system of equations has an assignment zi satisfying equations of total weight at least
[
∑
I∈S wI + k]/2 if and only if there are xi ∈ {−1, 1} so that X(x1, x2, . . . , xn) ≥ k. This is

shown by the transformation xi = (−1)zi . Let n′ be the number of variables in the instance of
Max-rLin2-AA; clearly n′ ≤ n. Observe that |S| ≤ nr.

By Lemma 8, if n′ > 2kr, then we have a yes-instance of Max-rLin2-AA and, thus, by Lemma
9, the answer to Max-rSat-AA is yes. If n′ ≤ 2kr then we can find the maximum of X by using
all assignments in time |S|O(1)2n

′
= nO(r)2r2

k

and apply Lemma 9 to check whether the answer to
Max-rSat-AA is yes.

Finally, observe that the instance of Max-rLin2-AA can be constructed in time (m2r)O(1).

34

Chapter 4

MaxLin2 Parameterized Above
Average

In this chapter we focus on two problems. We firstly consider MaxLin2-AA:

MaxLin2-AA (or MaxLin2-AA[k])

Instance: A system S of equations
∏
i∈Ij xi = bj , where xi, bj ∈ {−1, 1}, i = 1, . . . , n,

j = 1, . . . ,m and where each equation is assigned a positive integral weight wj ,
W =

∑
j∈[m] wj ; and a nonnegative integer k.

Parameter: k.

Question: sat(S) ≥W/2 + k?

In situations where the parameter is clear, or we are studying one parameter, the [k] suffix may
be omitted. The first main result of this chapter is Theorem 6. Here we show that MaxLin2-

AA[k], that is MaxLin2 parameterized above average by just k, admits a kernel with at most
O(k2 log k) variables. The number of equations may still be exponential in k, however, the number
of variables is often the important factor when running an exact algorithm. As a consequence of
this, we show that MaxLin2-AA[k] is fixed parameter tractable. The algorithm we present has
running time 2O(k log k)(nm)O(1).

The proof of Theorem 6 is based on two results: (a) If S is an irreducible system (i.e., a
system that cannot be reduced using Rule 4.1 or 4.2 defined in Section 4.1) of MaxLin2-AA[k]
and 2k ≤ m ≤ 2n/(2k−1) − 2, then S is a Yes-instance; (b) there is an algorithm for MaxLin2-

AA[k] of complexity n2k(nm)O(1). To prove (a), we introduce a new notion of a sum-free subset
of vectors over F2 and show the existence of such subsets using linear algebra. We also prove that
MaxLin2-AA[k] can be solved in time 2O(k log k)(nm)O(1) (Corollary 1).

35

We then proceed to consider the problem restricted to the case when the number of variables
in each equation is bounded by r:

Max-r-Lin2-AA

Instance: A system S of equations
∏
i∈Ij xi = bj , where xi, bj ∈ {−1, 1}, |Ij | ≤ r, j =

1, . . . ,m; equation j is assigned a positive integral weight wj , and a nonnegative
integer k.

Parameter: k.

Question: sat(S) ≥W/2 + k?

In the other main result of this chapter, Theorem 7, we give a sharp lower bound on the
maximum excess for Max-r-Lin2-AA as follows. Let S be an irreducible system and suppose that
each equation contains at most r variables. Let n ≥ (k − 1)r + 1 and let wmin be the minimum
weight of an equation of S. Then, in time mO(1), we can find an assignment x0 to variables of S
such that εS(x0) ≥ k · wmin. Essentially Theorem 7 follows from the existence of sum-free sets of
vectors satisfying some simple conditions.

In Section 4.1, we give some reduction rules for Max-r-Lin2-AA, describe an algorithm B,
based on Algorithm A In Chapter 3, and give some properties of the maximum excess, irreducible
systems and Algorithm B. In Section 4.2, we prove Theorem 6 and Corollary 1. A key tool in
our proof of Theorem 7 is a lemma on sum-free subsets in a set of vectors from Fn2 . The lemma
and Theorem 7 are proved in Section 4.3. We prove several corollaries of Theorem 7 in Section
4.4. The corollaries are relevant to parameterized and approximation algorithms, as well as lower
bounds for the maxima of pseudo-boolean functions and their applications in graph theory.

4.1 Maximum Excess, Irreducible Systems and Algorithm B

Define the excess for x0 = (x0
1, . . . , x

0
n) ∈ {−1, 1}n over S to be

εS(x0) =

m∑
j=1

cj
∏
i∈Ij

x0
i , where cj = wjbj .

Note that εS(x0) is the total weight of equations satisfied by x0 minus the total weight of
equations falsified by x0. The maximum possible value of εS(x0) is the maximum excess of S.
Håstad and Venkatesh [62] initiated the study of the excess of a system of equations. In this
chapter, we study the maximum excess for both MaxLin2-AA and Max-r-Lin2-AA. Note that
the excess is a pseudo-boolean function [14], i.e., a function that maps {−1, 1}n to the set of reals.

Remark 1. Observe that the answer to MaxLin2-AA is Yes if and only if the maximum excess
is at least 2k.

36

Remark 2. The excess εS(x) is a pseudo-boolean function and its Fourier expression is εS(x) =∑m
j=1 cj

∏
i∈Ij xi. Moreover, observe that every pseudo-boolean function f(x) =

∑
I∈F f̂(I)

∏
i∈I xi

(where f̂(∅) = 0) is the excess over the system
∏
i∈I xi = bI , I ∈ F , where bI = 1 if f̂(I) > 0 and

bI = −1 if f̂(I) < 0, with weights |f̂(I)|. Thus, studying the maximum excess over a MaxLin2-

AA-system (with real weights) is equivalent to studying the maximum of a pseudo-boolean function.

Consider two reduction rules for MaxLin2 studied in [49], and previously stated in a different
form In Chapter 3. Rule 4.1 was studied before in [62].

Reduction Rule 4.1. If we have, for a subset I of [n], an equation
∏
i∈I xi = b′I with weight w′I ,

and an equation
∏
i∈I xi = b′′I with weight w′′I , then we replace this pair by one of these equations

with weight w′I + w′′I if b′I = b′′I and, otherwise, by the equation whose weight is bigger, setting its
new weight to |w′I − w′′I |. If the resulting weight is 0, we delete the equation from the system.

Hereafter, rankA will denote the rank of A over F2.

Reduction Rule 4.2. Let A be the matrix over F2 corresponding to the set of equations in S,
such that aji = 1 if i ∈ Ij and 0, otherwise. Let t = rankA and suppose columns ai1 , . . . , ait of A
are linearly independent. Then delete all variables not in {xi1 , . . . , xit} from the equations of S.

Lemma 10. [49] Let S′ be obtained from S by Rule 4.1 or 4.2. Then the maximum excess of S′

is equal to the maximum excess of S. Moreover, S′ can be obtained from S in time polynomial in
n and m.

To see the validity of Rule 4.2, consider an independent set I of columns of A of cardinality
rankA and a column aj 6∈ I. Observe that aj =

∑
i∈I′ a

i, where I ′ ⊆ I. Consider an assignment
z = z0. If z0

j = 1 then for each i ∈ I ′ ∪ {j} replace z0
i by z0

i + 1. The new assignment satisfies
exactly the same equations as the initial assignment. Thus, we may assume that zj = 0 and remove
zj from the system. For a different proof, see [50]. If we cannot change a weighted system S using
Rules 4.2 and 4.1, we call it irreducible.

Lemma 11. Let S′ be a system obtained from S by first applying Rule 4.1 as long as possible and
then applying Rule 4.2. Then S′ is irreducible.

Proof. Let S∗ denote the system obtained from S by applying Rule 4.1 as long as possible. Without
loss of generality, assume that x1 6∈ {xi1 , . . . , xit} (see the description of Rule 4.2) and thus Rule
4.2 removes x1 from S∗. To prove the lemma it suffices to show that after x1 removal no pair of
equations has the same left hand side. Suppose that there is a pair of equations in S∗ which has
the same left hand side after x1 removal; let

∏
i∈I′ xi = b′ and

∏
i∈I′′ xi = b′′ be such equations

and let I ′ = I ′′ ∪ {1}. Then the entries of the first column of A, a1, corresponding to the pair
of equations are 1 and 0, but in all the other columns of A the entries corresponding to the the
pair of equations are either 1,1 or 0,0. Thus, a1 is independent from all the other columns of A, a
contradiction.

Note that since the rank is unchanged, only one application of Rule 4.2 is required.

37

Let S be an irreducible system of MaxLin2-AA. Consider the following algorithm. We assume
that, in the beginning, no equation or variable in S is marked.

Algorithm B

While the system S is nonempty do the following:

1. Choose an equation
∏
i∈I xi = b and mark a variable xl such that l ∈ I.

2. Mark this equation and delete it from the system.

3. Replace every equation
∏
i∈I′ xi = b′ in the system containing xl by

∏
i∈I∆I′ xi =

bb′, where I∆I ′ is the symmetric difference of I and I ′ (the weight of the equation
is unchanged).

4. Apply Reduction Rule 4.1 to the system.

Note that algorithm B replaces Az = b with an equivalent system under the assumption that
the marked equations are satisfied; that is, for every assignment of values to the variables z1, . . . , zn

that satisfies the marked equations, both systems have the same excess.
The maximum B-excess of S is the maximum possible total weight of equations marked by B

for S taken over all possible choices in Step 1 of B. The following lemma indicates the potential
power of B.

Lemma 12. Let S be an irreducible system. Then the maximum excess of S equals its maximum
B-excess. Furthermore, for any set of equations marked by Algorithm B, in polynomial time, we
can find an assignment of excess at least the total weight of marked equations.

Proof. We first prove that the maximum excess of S is not smaller than its maximum B-excess.
By construction, for any assignment that satisfies all the marked equations, half of the non-marked
equations by weight are satisfied. Therefore it suffices to find an assignment to the variables such
that all marked equations are satisfied. Assign arbitrary values to the unmarked variables. Then
assign values to the marked variables in the order opposite to which they were marked such that
the corresponding marked equations are satisfied.

The above argument proves also the last statement of the lemma.
Now we prove that the maximum B-excess of S is not smaller than its maximum excess. Let

x0 = (x0
1, . . . , x

0
n) be an assignment that achieves the maximum excess, t. Observe that if at each

iteration of B we mark an equation that is satisfied by x0, then B will mark equations of total
weight t.

Remark 3. It follows from Lemma 12 that the maximum excess of a (nonempty) irreducible
system Az = b with smallest weight wmin is at least wmin. If all weights are integral, then the
maximum excess of Az = b is at least 1.

38

Clearly, the total weight of equations marked by B depends on the choice of equations to mark
in Step 1. In the next section we will use the notion of Sum-free sets to obtain a set of equations
such that we can mark each equation in the set in successive iterations of B. This means we can
run B a guaranteed number of times, which we can use to get a lower bound on the B-excess.

4.2 MaxLin2-AA

The following two theorems provide a basis for proving Theorem 6, the main result of this section.

Theorem 4. There exists an n2k(nm)O(1)-time algorithm for MaxLin2-AA[k] that returns an
assignment of excess of at least 2k if one exists, and returns no otherwise.

Proof. Suppose we have an instance L of MaxLin2-AA[k] that is reduced by Rules 4.1 and 4.2,
and that the maximum excess of L is at least 2k. Let A be the matrix introduced in Rule 4.2.
Pick n equations e1, . . . , en such that their rows in A are linearly independent. An assignment of
excess at least 2k must either satisfy at least one of these equations, or falsify them all. If they
are all falsified, then the system of equations ē1, . . . , ēn, where each ēi is ei with the changed right
hand side, has a unique solution, an assignment of values to x1, . . . , xn. If this assignment does
not give excess at least 2k for L, then any assignment that leads to excess at least 2k must satisfy
at least one of e1, . . . , en. Thus, by Lemma 12, algorithm H can mark one of these equations and
achieve an excess of at least 2k.

This gives us the following depth-bounded search tree. At each node N of the tree, reduce the
system by Rules 4.1 and 4.2, and let n′ be the number of variables in the reduced system. Then
find n′ equations e1, . . . , en′ corresponding to linearly independent vectors. Find an assignment of
values to x1, . . . , xn′ that falsifies all of e1, . . . , en′ . Check whether this assignment achieves excess
of at least 2k − w∗, where w∗ is total weight of equations marked by B in all predecessors of N .
If it does, then return the assignment and stop the algorithm. Otherwise, split into n′ branches.
In the i’th branch, run an iteration of B marking equation ei. Then repeat this algorithm for
each new node. Whenever the total weight of marked equations is at least 2k, return the suitable
assignment. Clearly, the algorithm will terminate without an assignment if the maximum excess
of L is less than 2k.

All the operations at each node take time (nm)O(1), and there are less than n2k+1 nodes in the
search tree. Therefore this algorithm takes time n2k(nm)O(1).

The following lemma is used to prove Theorem 5, but it might be also of independent interest.
Let M be a set of m vectors in Fn2 and let A be a m × n-matrix in which the vectors of M are
rows. Using Gaussian elimination on A one can find a maximum size linearly independent subset
of the rows of M in polynomial time [74]. Let K and M be sets of vectors in Fn2 such that K ⊆M .
We say K is M -sum-free if no sum of two or more distinct vectors in K is equal to a vector in M .
Observe that K is M -sum-free if and only if K is linearly independent and no sum of vectors in
K is equal to a vector in M\K.

39

Lemma 13. Let M be a set in Fn2 such that M contains a basis of Fn2 , the zero vector is in M

and |M | < 2n. If k is a positive integer and k+ 1 ≤ |M | ≤ 2n/k then, in time |M |O(1), we can find
an M -sum-free subset K of k + 1 vectors such that no sum of two or more vectors of K is in M .

Proof. We first consider the case when k = 1. Since |M | < 2n and the zero vector is in M , there is
a non-zero vector v 6∈M . Since M contains a basis for Fn2 (which can be found in polynomial time
using Gaussian elimination, see above), v can be written as a sum of vectors in M and consider
such a sum with the minimum number of summands: v = u1 + · · ·+u`, ` ≥ 2. Since u1 +u2 6∈M ,
we may set K = {u1, u2}. We can find such a set K in polynomial time by looking at every pair
in M ×M .

We now assume that k > 1. Since k + 1 ≤ |M | ≤ 2n/k we have n ≥ k + 1.

We will now proceed with a greedy algorithm to find K. We firstly given an informal outline
of the argument. The algorithm tries to find a set K by constructing a sum-free subset L greedily
one vector at a time. If a set of size k+1 is obtained, the algorithm terminates. Otherwise, the set
L is used to ’compress’ the problem into one on M ′, a set in Fn′2 , n′ < n satisfying the conditions
of the lemma. Since n decreases each time, the algorithm terminates, and we show, in fact, it
terminates in finding the set required. For the reader familiar with vector space terminology, Fn′2 is
Fn2 modulo span(L), the subspace of Fn2 spanned by L, and M ′ is the image of M in Fn′2 , however
the proof that follows will not assume the reader knows this.

We now state the argument more formally. Suppose we have a set L = {a1, . . . , al} of vectors
in M , l ≤ k, such that no sum of two or more elements of L is in M . We can extend this set
to a basis, so a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0) and so on. For every a ∈ M\L we check
whether M\{a1, . . . , al, a} has an element that agrees with a in all co-ordinates l + 1, . . . , n. If no
such element exists, then we add a to the set L, as no element in M can be expressed as a sum of
a and a subset of L.

If our greedy algorithm finds a set L of size at least k + 1, we are done and L is our set K.
Otherwise, we have stopped at l ≤ k. In this case, we do the next iteration as follows. Recall
that L is part of a basis of M such that a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), We create
a new set M ′ in Fn′2 , where n′ = n − l. We do this by removing the first l co-ordinates from M ,
and then identifying together any vectors that agree in the remaining n′ co-ordinates. We are in
effect identifying together any vectors that only differ by a sum of some elements in L. It follows
that every element of M ′ was created by identifying together at least two elements of M , since
otherwise we would have had an element in M\L that should have been added to L by our greedy
algorithm. Therefore it follows that |M ′| ≤ |M |/2 ≤ 2n/k−1. From this inequality and the fact
that n′ ≥ n − k, we get that |M ′| ≤ 2n

′/k. It also follows by construction of M ′ that M ′ has a
basis for Fn′2 , and that the zero vector is in M ′. (Thus, we have |M ′| ≥ n′ + 1.) If n′ ≥ k + 1 we
complete this iteration by running the algorithm on the set M ′ as in the first iteration. Otherwise
(n′ ≤ k), the algorithm stops.

Since each iteration of the algorithm decreases n′, the algorithm terminates. Now we prove
that at some iteration, the algorithm will actually find a set K of k + 1 vectors.

40

Suppose not, then the algorithm reaches the point when 1 ≤ n′ ≤ k. Observe that |M ′| ≥ n′+1

and |M ′| ≤ 2n
′/k. This implies n′+1 ≤ 2n

′/k ≤ 2k/k ≤ 2, which implies n′ = k = 1, a contradiction
with the assumption that k > 1.

It is easy to check that the running time of the algorithm is polynomial in |M |.

Remark 4. It is much easier to prove a non-constructive version of the above result. In fact
we can give a non-constructive proof that k + 1 ≤ |M | ≤ 2n/k can be replaced by 2k < |M | <
2n/k((k − 1)!)1/k. We will extend our proof above for the case k = 1. We may assume that k ≥ 2.
Observe that the number of vectors of Fn2 that can be expressed as the sum of at most k vectors
of M is at most(

|M |
k

)
+

(
|M |
k − 1

)
+ · · ·+

(
|M |

1

)
+ 1 ≤ |M |k/(k − 1)! for |M | > 2k.

Since |M | < 2n/k((k − 1)!)1/k we have |Fn2 | > |M |k/(k − 1)! and, thus, at least for one vector
a of Fn2 we have a = m1 + · · ·+m`, where ` is minimum and ` > k. Note that, by the minimality
of `, no sum of two or more summands of the sum for a is in M and all summands are distinct.
Thus, we can set K = {m1, . . . ,mk+1}.

Theorem 5. Let S be an irreducible system of MaxLin2-AA[k] and let k ≥ 1. If 2k ≤ m ≤
min{2n/(2k−1)− 1, 2n− 2}, then the maximum excess of S is at least 2k. Moreover, we can find an
assignment with excess of at least 2k in time mO(1).

Proof. Consider a set M of vectors in Fn2 corresponding to equations in S as follows: for each
equation

∏
i∈I xi = b in S, define a vector v = (v1, . . . , vn) ∈M , where vi = 1 if i ∈ I and vi = 0,

otherwise. Add the zero vector to M .
As S is reduced by Rule 4.2 and k ≤ m ≤ min{2n/(2k−1)− 1, 2n− 2}, we have that M contains

a basis for Fn2 and k ≤ |M | ≤ min{2n/(2k−1), 2n − 1}. Therefore, using Lemma 13 we can find an
M -sum-free set K of 2k vectors. Let {ej1 , . . . , ej2k} be the corresponding set of equations. Run
Algorithm B, choosing at Step 1 an equation of S from {ej1 , . . . , ej2k} each time, and let S′ be
the resulting system. Algorithm B will run for 2k iterations of the while loop as no equation from
{ej1 , . . . , ej2k} will be deleted before it has been marked.

Indeed, suppose that this is not true. Then for some ejl and some other equation e in S, after
applying Algorithm B for at most l−1 iterations ejl and e contain the same variables. Thus, there
are vectors vj ∈ K and v ∈M and a pair of nonintersecting subsets K ′ and K ′′ of K \ {v, vj} such
that vj +

∑
u∈K′ u = v +

∑
u∈K′′ u. Thus, v = vj +

∑
u∈K′∪K′′ u, contradicting the definition of

K.

Thus, by Lemma 12, we are done.

Theorem 6. The problem MaxLin2-AA[k] has a kernel with at most O(k2 log k) variables.

Proof. Let L be an instance of MaxLin2-AA[k] and let S be the system of L with m equations
and n variables. We may assume that S is irreducible. Let the parameter k be an arbitrary positive
integer.

41

If m < 2k then n < 2k = O(k2 log k). If 2k ≤ m ≤ 2n/(2k−1) − 2 then, by Theorem 5 and
Remark 1, the answer to L is yes and the corresponding assignment can be found in polynomial
time. If m ≥ n2k − 1 then, by Theorem 4, we can solve L in polynomial time.

Finally we consider the case 2n/(2k−1) − 2 ≤ m ≤ n2k − 2. Hence, n2k ≥ 2n/(2k−1). Therefore,
4k2 ≥ 2 + n/ log n ≥

√
n and n ≤ (2k)4. Hence, n ≤ 4k2 log n ≤ 4k2 log(16k4) = O(k2 log k).

Since S is irreducible, m < 2n and thus we have obtained the desired kernel.

Corollary 1. The problem MaxLin2-AA[k] can be solved in time 2O(k log k)(nm)O(1).

Proof. Let L be an instance of MaxLin2-AA[k]. By Theorem 6, in time (nm)O(1) either we solve
L or we obtain a kernel with at most O(k2 log k) variables. In the second case, we can solve the
reduced system (kernel) by the algorithm of Theorem 4 in time [O(k2 log k)]2k[O(k2 log k)m]O(1) =

2O(k log k)mO(1). Thus, the total time is 2O(k log k)(nm)O(1).

Corollary 2. Let p(n) be a fixed function such that p(n) = o(n). If m ≤ 2p(n) then MaxLin2-AA

is fixed-parameter tractable. Moreover, a satisfying assignment can be found in time g(k)mO(1) for
some computable function g.

Proof. We may assume that m ≥ n > k > 1. Observe that m ≤ 2n/2k implies m ≤ 2n/(2k−1) − 2.
Thus, by Theorem 5, if p(n) ≤ n/2k, the answer to MaxLin2-AA is yes, and there is a polynomial
algorithm to find a suitable assignment. Otherwise, n ≤ f(k) for some function dependent on k only
and MaxLin2-AA can be solved in time 2f(k)mO(1) by checking every possible assignment.

Let ρi be the number of equations in Az = b containing zi, i = 1, . . . , n. Let ρ = maxi∈[n] ρi

and let r be the maximum number of variables in an equation of Az = b. Crowston et al. [23]
proved that MaxLin2-AA is fixed-parameter tractable if either r ≤ r(n) for some fixed function
r(n) = o(n) or ρ ≤ ρ(m) for some fixed function ρ(m) = o(m).

For a given r = r(n), we have m ≤
∑r
i=1

(
n
i

)
. By Corollary 23.6 in [67], m ≤ 2nH(r/n), where

H(y) = −y log2 y − (1− y) log2(1− y), the entropy of y. It is easy to see that if y = o(n)/n, then
H(y) = o(n)/n. Hence, if r(n) = o(n), then m ≤ 2o(n). By Corollary 23.5 in [67] (this result was
first proved by Kleitman et al. [73]), for a given ρ = ρ(m) we have m ≤ 2nH(ρ/m). Therefore, if
ρ(m) = o(m) then m ≤ 2n·o(m)/m and, thus, m ≤ 2o(n) (as n ≤ m, if n → ∞ then m → ∞ and
o(m)/m→ 0). Thus, both results of Crowston et al. [23] follow from corollary 2.

4.3 Max-rLin2-AA

We can easily prove Theorem 7 in the same way as we proved Theorem 5, but instead of Lemma
13, we use Lemma 14.

Lemma 14. Let M be a set of vectors in Fn2 such that M contains a basis of Fn2 . Suppose that each
vector of M contains at most r non-zero coordinates. If k ≥ 1 is an integer and n ≥ r(k − 1) + 1,
then in time |M |O(1), we can find a subset K of M of k vectors such that K is M -sum-free.

42

Proof. Since the case of k = 1 is trivial, we may assume that k ≥ 2. Let 1 = (1, . . . , 1) be the
vector in Fn2 in which every coordinate is 1. Note that 1 6∈ M. By our assumption M contains
a basis B of Fn2 and we may write 1 as a sum of some vectors of B. This implies that 1 can be
expressed as follows: 1 = v1 + v2 + · · · + vs, where {v1, . . . , vs} ⊆ B and v1, . . . , vs are linearly
independent, and we can find such an expression in polynomial time.

For each v ∈M\{v1, . . . , vs}, consider the set Sv = {v, v1, . . . , vs}. In polynomial time, we may
check whether Sv is linearly independent. Consider two cases:

Case 1: Sv is linearly independent for each v ∈M\{v1, . . . , vs}. Then {v1, . . . , vs} is M -sum-free
(here we also use the fact that {v1, . . . , vs} is linearly independent). Since each vi has at
most r positive coordinates, we have sr ≥ n > r(k − 1). Hence, s > k − 1 implying that
s ≥ k. Thus, {v1, . . . , vk} is the required set K.

Case 2: Sv is linearly dependent for some v ∈ M\{v1, . . . , vs}. Then we can find (in polynomial
time) I ⊆ [s] such that v =

∑
i∈I vi. Thus, we have a shorter expression for 1: 1 =

v′1 + v′2 + · · ·+ v′s′ , where {v′1, . . . , v′s′} = {v} ∪ {vi : i /∈ I}. Note that {v′1, . . . , v′s′} is linearly
independent.

Since s ≤ n and Case 2 produces a shorter expression for 1, after at most n iterations of Case
2 we will arrive at Case 1.

Remark 5. The assumption that M contains a basis is important as otherwise the vectors of M
span a subspace of Fn2 of dimension n′ < n. Since the subspace is isomorphic to Fn′2 , one has to
replace n in the theorem by n′.

Theorem 7. Let S be an irreducible system and suppose that each equation contains at most r
variables. Let n ≥ (k− 1)r+ 1 and let wmin be the minimum weight of an equation of S. Then, in
time mO(1), we can find an assignment x0 to variables of S such that εS(x0) ≥ k · wmin.

Remark 6. To see that the inequality n ≥ r(k− 1) + 1 in the theorem is best possible assume that
n = r(k − 1) and consider a partition of [n] into k − 1 subsets N1, . . . , Nk−1, each of size r. Let
S be the system consisting of subsystems Sp, p ∈ [k − 1], such that a subsystem Sp is comprised
of equations

∏
i∈I xi = −1 of weight 1 for every I such that ∅ 6= I ⊆ Np. Now assume without

loss of generality that Np = [r]. Observe that the assignment (x1, . . . , xr) = (1, . . . , 1) falsifies all
equations of Sp but by setting xj = −1 for any j ∈ [r] we satisfy the equation xj = −1 and turn the
remaining equations into pairs of the form

∏
i∈I xi = −1 and

∏
i∈I xi = 1. Thus, the maximum

excess of Sp is 1 and the maximum excess of S is k − 1.

Remark 7. It is easy to check that Theorem 7 holds when the weights of equations in S are real
numbers, not necessarily integers.

43

4.4 Applications of Theorem 7

Theorem 8. The problem Max-r-Lin2-AA[k, r] has a kernel with at most (2k − 1)r variables.

Proof. Let T be the system of an instance of Max-r-Lin2-AA[k, r]. After applying Rules 4.1 and
4.2 to T as long as possible, we obtain a new system S which is irreducible. Let n be the number of
variables in S and observe that the number of variables in an equation in S is bounded by r (as in
T). If n ≥ (2k− 1)r+ 1, then, by Theorem 7 and Remark 1, S is a Yes-instance of Max-r-Lin2-

AA[k, r] and, hence, by Lemma 10, S and T are both Yes-instances of Max-r-Lin2-AA[k, r].
Otherwise n ≤ (2k− 1)r and since S is irreducible the number m of equations in S is less than 2n.
Thus, we have the required kernel.

Corollary 3. The maximization problem Max-r-Lin2-AA is in APX if restricted to m = O(n)

and the weight of each equation bounded by a fixed constant.

Proof. It follows from Theorem 7 and Remark 1 that the answer to Max-r-Lin2-AA, as a decision
problem, is Yes as long as 2k ≤ b(n + r − 1)/rc. This implies approximation ratio at most
W/(2b(n+ r − 1)/rc) which is bounded by a constant provided m = O(n) and the weight of each
equation is bounded by a constant (then W = O(n)).

The (parameterized) Boolean Max-r-Constraint Satisfaction Problem (Max-r-CSP) general-
izes MaxLin2-AA[k, r] as follows: We are given a set Φ of Boolean functions, each involving at
most r variables, and a collection F of m Boolean functions, each f ∈ F being a member of Φ,
and each acting on some subset of the n Boolean variables x1, x2, . . . , xn (each xi ∈ {−1, 1}). We
are to decide whether there is a truth assignment to the n variables such that the total number
of satisfied functions is at least E + k, where E is the average value of the number of satisfied
functions. The parameters are k and r.

Using a bikernelization algorithm described in [3, 25] and our new kernel result, it easy to see
that Max-r-CSP with parameters k and r admits a bikernel with at most (k2r+1 − 1)r variables.
This result improves the corresponding result of Kim and Williams [70] (n ≤ kr(r + 1)2r).

The following result is essentially a corollary of Theorem 7 and Remark 7.

Theorem 9. Let
f(x) = f̂(∅) +

∑
I∈F

f̂(I)
∏
i∈I

xi (4.1)

be a pseudo-boolean function of degree r. Then

max
x

f(x) ≥ f̂(∅) + b(rankA+ r − 1)/rc ·min{|f̂(I)| : I ∈ F}, (4.2)

where A is a (0, 1)-matrix with entries aij such that aij = 1 if and only if term j in (4.1) contains
xi and rankA is the rank of A over F2. One can find an assignment of values to x satisfying (4.2)
in time (n|F|)O(1).

44

Proof. By Remark 2 the function f(x)− f̂(∅) =
∑
I∈F f̂(I)

∏
i∈I xi is the excess over the system∏

i∈I xi = bI , I ∈ F , where bI = +1 if f̂(I) > 0 and bI = −1 if f̂(I) < 0, with weights
|f̂(I)|. Clearly, Rule 4.1 will not change the system. Using Rule 4.2 we can replace the system
by an equivalent one (by Lemma 10) with rankA variables. By Lemma 11, the new system
is irreducible and we can now apply Theorem 7. By this theorem, Remark 2 and Remark 7,
maxx f(x) ≥ f̂(∅) + k∗min{|f̂(I)| : I ∈ F}, where k∗ is the maximum value of k satisfying
rankA ≥ (k − 1)r + 1. It remains to observe that k∗ = b(rankA+ r − 1)/rc.

To give a new proof of the Edwards-Erdős bound, we need the following well-known and easy-
to-prove lemma [13]. For a graph G = (V,E), an incidence matrix is a (0, 1)-matrix with entries
me,v, e ∈ E, v ∈ V such that me,v = 1 if and only if v is incident to e.

Lemma 15. The rank over F2 of an incidence matrix M of a connected graph equals |V | − 1.

Theorem 10. Let G = (V,E) be a connected graph with n vertices and m edges. Then G contains
a bipartite subgraph with at least m2 + n−1

4 edges. Such a subgraph can be found in polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and let c : V → {−1, 1} be a 2-coloring of G. Observe that
the maximum number of edges in a bipartite subgraph of G equals the maximum number of
properly colored edges (i.e., edges whose end-vertices received different colors) over all 2-colorings
of G. For an edge e = vivj ∈ E consider the following function fe(x) = 1

2 (1 − xixj), where
xi = c(vi) and xj = c(vj) and observe that fe(x) = 1 if e is properly colored by c and fe(x) = 0,

otherwise. Thus, f(x) =
∑
e∈E fe(x) is the number of properly colored edges for c. We have

f(x) = m
2 −

1
2

∑
e∈E xixj . By Theorem 9, maxx f(x) ≥ m/2 + b(rankA + 2 − 1)/2c/2. Observe

that matrix A in this bound is an incidence matrix of G and, thus, by Lemma 15 rankA = n− 1.
Hence, maxx f(x) ≥ m

2 + 1
2b

n
2 c ≥

m
2 + n−1

4 as required.

This theorem can be extended to the Balanced Subgraph problem [8], where we are given
a graph G = (V,E) in which each edge is labeled either by = or by 6= and we are asked to find
a 2-coloring of V such that the maximum number of edges is satisfied; an edge labeled by = (6=,
resp.) is satisfied if and only if the colors of its end-vertices are the same (different, resp.).

Theorem 11. Let G = (V,E) be a connected graph with n vertices and m edges labeled by either
= or 6=. There is a 2-coloring of V that satisfies at least m

2 + n−1
4 edges of G. Such a 2-coloring

can be found in polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and let c : V → {−1, 1} be a 2-coloring of G. Let xp = c(vp),
p ∈ [n]. For an edge vivj ∈ E we set sij = 1 if vivj is labeled by 6= and sij = −1 if vivj is labeled
by =. Then the function 1

2

∑
vivj∈E(1 − sijxixj) counts the number of edges satisfied by c. The

rest of the proof is similar to that in the previous theorem.

45

Chapter 5

MaxLin2 Parameterized Below W

5.1 Introduction

In this chapter we consider the following problem:

MaxLin2-BW

Instance: A system S of m linear equations in n variables over F2, where no equation
has more than r = r(n) variables and equation j is assigned a positive integral
weight wj , j = 1, . . . ,m, and a positive real k. We will write equation j in S as∑
i∈αj

zi = bj , where ∅ 6= αj ⊆ {1, 2, . . . , n} and |αj | ≤ r.

Parameter: k.

Question: Is there an assignment of values to the n variables such that the total weight
of the satisfied equations is at least W − k, where W = w1 + · · ·+ wm ?

Let Max-(≤ r,≤ s)-Lin2 (Max-(= r,= s)-Lin2, respectively) denote the problem MaxLin2

restricted to instances, which have at most (exactly, respectively) r variables in each equation and
at most (exactly) s appearances of any variable in all equations. In the special case when each
equation has weight 1 and there are no two equations with the same left-hand side, MaxLin2-BW

will be denoted by MaxLin2-B[m]. We will prove that MaxLin2-BW remains hard even after
significant restrictions are imposed on it, namely, even Max-(= 3,= 3)-Lin2-B[m] is W[1]-hard.
This is proved in Section 5.2.

No further improvement of this result is possible unless FPT=W[1] as we will prove that Max-

(≤ 2,*)-Lin2-BW is fixed-parameter tractable, where symbol * indicates that no restriction is
imposed on the number of appearances of a variable in the equations. Moreover, we will show that
the nonparameterized problem Max-(*,≤ 2)-Lin2 is polynomial time solvable, where symbol *
indicates that no restriction is imposed on the number of variables in any equation. These two

46

results are shown in Section 5.3.

5.2 Hardness Results

In the problem Odd Set, given a set V = {1, 2, . . . , n}, distinct sets e1, e2, . . . , em ⊆ V and a
nonnegative integer k, we are to decide whether we can pick a set R of at most k elements in V
such that R intersects all sets ei in an odd number of elements. Downey et al. [34] showed the
problem is W [1]-hard by a reduction from Perfect Code.

We prove that Max-(= 3,= 3)-Lin2-B[m] isW [1]-hard in two parts. First, we give a reduction
from Odd Set to show Max-(≤ 3,*)-Lin2-BW is W [1]-hard. Then, we give a reduction from
Max-(≤ 3,*)-Lin2-BW to Max-(= 3,= 3)-Lin2-B[m].

Lemma 16. The problem Max-(≤ 3,*)-Lin2-BW is W [1]-hard.

Proof. Consider an instance of Odd Set with elements 1, 2, . . . , n and distinct sets e1, e2, . . . , em,
with parameter k.

Create an instance of Max-(≤ 3,*)-Lin2-BW with parameter k as follows. Start with the
variables x1, x2, . . . , xn and equations x1 = 0, x2 = 0, . . . , xn = 0 (each of weight 1). For every set
ei = {j1, j2, j3, . . . , jni

} do the following. Add the variables yi1, . . . , yini−1 and the following set Ei
of equations, each of weight k + 1.

yi1 + xj1 = 0

yi1 + yi2 + xj2 = 0

yi2 + yi3 + xj3 = 0

. . .

yini−2 + yini−1 + xjni−1
= 0

yini−1 + xjni
= 1

Observe that the number of variables and equations is polynomial in nm. It remains to show
that this instance of Max-(≤ 3,*)-Lin2-BW is a Yes-instance if and only if the instance of Odd

Set is a Yes-instance.
Suppose first that we can satisfy simultaneously equations of total weight at least W − k.

Consider the set Ei of equations. Since the equations have weight k+ 1, they must all be satisfied.
By summing them up, we obtain

∑ni

a=1 xja = 1 over F2. Therefore an odd number of the values
of xj1 , xj2 , . . . , xjni

are 1. Note that at most k equations of the type xi = 0 are not satisfied. The
above implies that if R is the set of elements, j, for which the corresponding variable, xj is equal to
1, then the size of R is at most k and for each set ei the intersection of R and ei is odd. Therefore
R has the desired property.

Conversely, suppose R is a set of at most k elements such that for each set ei the intersection
of R and ei is odd. Set xj = 1 if and only if j is in R. Also set yi1 = xj1 and yir+1 = yir + xjr+1

for 1 ≤ r ≤ ni − 2. It now follows immediately that all equations of Ei, apart from the last one,
are satisfied. The last one is satisfied as well because by summing up all the equations, we obtain

47

∑ni

a=1 xja = 1, which is satisfied. Since |R| ≤ k, we will satisfy simultaneously equations of total
weight at least W − k.

Theorem 12. The problem Max-(= 3,= 3)-Lin2-B[m] is W [1]-hard.

Proof. Observe that in the system obtained in the proof of Lemma 16 no two equations have the
same left-hand side. Consider an instance of Max-(≤ 3,*)-Lin2-BW in which no two equations
have the same left-hand side. Hereafter, we view a single equation of weight w as w identical
equations of weight 1. This means we do have equations with the same left-hand side (for k ≥ 1),
but note that these equations also have the same right-hand side.

For each of the reductions that follow, we show that the optimal assignment will falsify the
same number of equations in the original instance as in the reduced instance. This implies that
the original instance is a Yes-instance if and only if the reduced instance is a Yes-instance.

For each variable x, let d(x) denote the total number of equations containing x. We first apply
the following two reduction rules until d(x) ≤ 3 for every variable x.

If d(x) = 4, replace x with four new variables, x1, x2, x3, x4. For each equation containing
x, replace the occurrence of x with one of x1, x2, x3, x4, so that each new variable appears once.
Furthermore, add equations x1 + x2 = 0, x2 + x3 = 0, x3 + x4 = 0, x4 + x1 = 0.

If d(x) ≥ 5, replace x with six new variables, x1, x2, x3, x4, x5, x6. For each equation containing
x, replace the occurrence of x with one of x1, x2, x3, x4, x5, x6, distributing the new xi evenly among
the equations, so that

bd(x)/6c ≤ d(x1) ≤ d(x2) ≤ d(x3) ≤ d(x4) ≤ d(x5) ≤ d(x6) ≤ dd(x)/6e.

Furthermore, add d(d(x)−2)/6e copies of each of the equations x1+x2 = 0, x2+x3 = 0, x3+x4 = 0,
x4 + x5 = 0, x5 + x6 = 0, x6 + x1 = 0, x1 + x4 = 0, x2 + x5 = 0, x3 + x6 = 0.

Observe that each rule replaces a variable with a set of variables, each of which appears in
fewer equations than the original variable. Therefore after enough applications, each variable will
appear in at most three equations. To see that only a polynomial number of applications are needed,
observe that at each iteration maxi d(xi) ≤ 8d(x)/9. Therefore we may view the applications of
reduction rules as a branching tree for each variable, where the depth of the tree for a variable x
is bounded by log9/8 d(x) and the tree branches at most six ways each time.

We now show that each rule is valid.

For the d(x) = 4 case, suppose that the optimal assignment is one in which x1, x2, x3, x4 are not
all the same. Then at least two of the equations x1 +x2 = 0, x2 +x3 = 0, x3 +x4 = 0, x4 +x1 = 0

will be falsified, but then we can satisfy all of them by falsifying at most two other equations.
Hence, there exists an optimal assignment in which x1, x2, x3, x4 all have the same value.

For the d(x) ≥ 5 case, suppose that the optimal assignment is one in which the new variables
x1, x2, x3, x4, x5, x6 are not all the same. Consider the set of nine equations x1+x2 = 0, x2+x3 = 0,
x3 + x4 = 0, x4 + x5 = 0, x5 + x6 = 0, x6 + x1 = 0, x1 + x4 = 0, x2 + x5 = 0, x3 + x6 = 0.

48

If the value of exactly one new variable is different from the values of the rest of the variables,
at least three of the nine equations will be falsified. In the worst case changing the value of
this variable will falsify at most d(x6) ≤ dd(x)/6e ≤ 3d(d(x) − 2)/6e equations. If the values of
exactly two new variables are different from the values of the rest of the variables, at least four
of the nine equations will be falsified. Changing the value of the two variables will falsify at most
d(x5) + d(x6) ≤ 4d(d(x)− 2)/6e equations. If three new variables are assigned one, and three are
assigned zero, at least five of the nine equations will be falsified. Assigning zero to all new variables
will falsify at most d(x4) + d(x5) + d(x6) ≤ 5d(d(x) − 2)/6e equations. (For example, if d(x) = 8

then d(x4) = 1, d(x5) = d(x6) = 2 and d(d(x) − 2)/6e = 5.) Therefore, there exists an optimal
assignment in which x1, x2, x3, x4, x5, x6 all have the same value.

Thus, for each rule the new instance has an optimal assignment in which all the new equations
are satisfied, and all the new variables have the same value. By setting x to this value, we have an
assignment to the original instance that falsifies the same number of equations. Consider now an
optimal assignment to the original instance and produce an assignment to the new variables which
gives each new variable the same value as x. As any of new equations has exactly two variables,
the number of equations falsified in the new instance is the same as in the original one.

We now have an instance in which each equation contains at most three variables and each
variable appears in at most three equations. Next, we observe that we may map this to an
instance where each equation contains exactly three variables.

First consider equations containing one variable. If an equation is of the form x = 0, this may
be replaced with equations a + b + x = 0, u + v + a = 0, u + v + b = 0, where a, b, u, v are new
variables. For x = 1, we replace it with the equations a+ b+ x = 1, u+ v + a = 0, u+ v + b = 0.

For equations containing two variables, if an equation is of the form x + y = 0, this may be
replaced with equations u+ v + x = 0 and u+ v + y = 0, where u, v are new variables. A similar
mapping may be done for x+ y = 1 by replacing y with y + 1.

Observe that for each reduction, if an assignment to the original instance satisfies the original
equation, it can be extended to one that satisfies all the new equations, and if it does not, an
optimal extension will satisfy all but one of the new equations. Thus an optimal assignment to the
original instance falsifies the same number of equations as an optimal assignment to the reduced
instance.

We now have that every equation contains exactly three variables and each variable is in at
most three equations. We now map this to an instance where every variable is in exactly three
equations.

If a variable x only appears in one equation, then we may assume that this equation is satisfied,
and remove it from the system. Since each equation contains exactly 3 variables, the number of
variables x with d(x) = 2 must be a multiple of 3. Thus, we may partition the variables x with
d(x) = 2 into triplets.

Consider each triplet x1, x2, x3 such that d(x1) = d(x2) = d(x3) = 2. Add variables z1, z2, z3,

u1, . . . , u6, and equations x1 + x2 + u1 = 0, u1 + u2 + z1 = 0, u2 + u3 + z1 = 0 (two copies),

49

u3 +u1 + z2 = 0, x3 +u4 + z2 = 0, u4 +u5 + z2 = 0, u5 +u6 + z3 = 0 (two copies), u6 +u4 + z3 = 0.
Observe that for any assignment to x1, x2, x3, it is possible to satisfy all these equations by

setting z1 = z2 = z3 = 0, u1 = u2 = u3 = x1 + x2 and u4 = u5 = u6 = x3. Thus an optimal
assignment to the original instance extends to an optimal assignment to the reduced instance that
falsifies the same number of equations.

We now have that every equation has exactly three variables and every variable appears in
exactly three equations. It remains to show that we can map this to an instance in which these
properties hold and no two equations have the same left-hand side. Since we started the proof
of this theorem from a system where every pair of equations with the same left-hand side had
the same right-hand side, and since our transformations above have not changed this property, it
suffices to get rid of identical equations.

Note that since d(x) = 3 for every variable x, there at most three copies of any given equation
in the system.

If there are three copies of the same equation, then none of the variables appearing in that
equation appear anywhere else. Therefore we may assume the equation is satisfied, and remove
the three copies from the system.

If there are two copies of the equation x+ y+ z = 0, replace them with the following set of six
equations: x + y + c1 = 0, a1 + b1 + c1 = 0, a1 + b1 + z = 0, x + y + c2 = 0, a2 + b2 + c2 = 0,
a2 + b2 + z = 0, a1 + b2 + c1 = 0, a2 + b1 + c2 = 0, where a1, b1, c1, a2, b2, c2 are new variables.
Observe that if x + y + z = 0 is satisfied then by setting a1 = a2 = x, b1 = b2 = y, c1 = c2 = z,
we can satisfy all of these equations. If x + y + z = 0 is falsified, then the first three equations
(x + y + c1 = 0, a1 + b1 + c1 = 0, a1 + b1 + z = 0) are inconsistent, as are x + y + c2 = 0,
a2 + b2 + c2 = 0, a2 + b2 + z = 0, and hence at least two equations of the set of six equations are
falsified. Furthermore, by setting a1 = a2 = b1 = b2 = c1 = c2 = 0 we can satisfy all but two
equations in the set of six equations. Thus in either case, an optimal assignment to the original
instance extends to an optimal assignment to the reduced instance that falsifies the same number
of equations.

If there are two equations of the form x+ y + z = 1, do the same as above but change all the
right-hand sides to 1.

5.3 Algorithmic Results

In this section, we assume that all weights of the equations in MaxLin2-BW belong to the set
{1, 2, . . . , k + 1}. Indeed, replacing any weight larger than k + 1 by k + 1 does not change the
answer to MaxLin2-BW.

In the Edge Bipartization problem, given a graph G and a nonnegative integer k, we are to
decide whether we can make G bipartite by deleting at most k edges. When k is the parameter, the
problem is fixed-parameter tractable and can be solved by an algorithm of running time O(2kM2)

50

[58], where M is the number of edges in G. We prove that Max-(≤ 2,*)-Lin2-BW is fixed-
parameter tractable by giving a reduction to Edge Bipartization.

Theorem 13. The problem Max-(≤ 2,*)-Lin2-BW can be solved in time O(2k(km)2).

Proof. Consider an instance S of Max-(≤ 2,*)-Lin2-BW with m equations and consider an
assignment which minimizes the weight of falsified equations. Now replace every equation, xi+xj =

0, which contains two variables in the left-hand side and 0 in the right-hand side, by two equations
xi + y = 1 and xj + y = 1, where y is a new variable; both equations have the same weight as
xi + xj = 0. If the assignment satisfies xi + xj = 0 then both new equations can be satisfied by
extending the assignment with y = 1 − xi. If the assignment falsifies xi + xj = 0 then exactly
one of the two new equations will be falsified by extending the assignment with y = 0. Thus, the
replacement preserves the minimum weight of falsified equations and can be used to replace the
instance by an equivalent one S′ in which every equation with two variables has right-hand side
equal 1.

Now assume that all equations of the system with two variables have right-hand side equal 1
and construct the following weighted graph G. The vertices of G are the variables of the system
plus two extra vertices, v′ and v′′. For each equation x+ y = 1 in S′, add to G edge xy. For every
equation x = b of S′, add to G edge v′x if b = 0 and xv′′ if b = 1. The weight of each edge coincides
with the weight of the corresponding equation of S′. Finally, add to G edge v′v′′ of weight k + 1.

Let w∗ be a nonnegative integer such that w∗ ≤ k. Observe that there is an assignment which
falsifies equations of total weight w∗ if and only if there is a set F of edges of G of total weight
w∗ such that G− F is bipartite. Indeed, consider an assignment which falsifies equations of total
weight w∗. Initiate sets V ′ and V ′′ as follows: V ′ = {v′} and V ′′ = {v′′}. If an equation u+ v = 1

is satisfied and u = 1, v = 0, then u is added to V ′ and v to V ′′, and if an equation x = b is
satisfied, then x is added to V ′ if b = 1 and to V ′′ if b = 0. Note that the total weight of edges
whose both end-vertices are either in V ′ or in V ′′ equals w∗. Similarly, we can show the other
direction.

To get rid of the weights in G we replace each edge uv of G of weight w with w paths uypuvzpuvv,
p ∈ {1, . . . , w}, where ypuv and zpuv are new vertices. This finally reduces the instance of Max-

(≤ 2,*)-Lin2-BW into an instance of Edge Bipartization with O(mk) edges. It remains to
apply the Edge Bipartization algorithm mentioned before the theorem.

Theorem 14. The problem Max-(*,≤ 2)-Lin2 is polynomial time solvable.

Proof. Consider an instance of Max-(*,≤ 2)-Lin2 with system Ax = b in which each equation has
a weight. We start by applying the following reduction rule as long as possible: if there is a variable
which appears only in one equation, delete the equation from the system. Since we can always
satisfy an equation with a unique variable, the reduction rule produces a new system A′x′ = b′

such that the minimum weight of equations falsified by an assignment is the same in Ax = b as
in A′x′ = b′. Now construct a graph G whose vertices correspond to equations in A′x′ = b′ and a
pair of vertices is adjacent if the corresponding equations share a variable.

51

Consider a connected component H in G and the subsystem A′′x′′ = b′′ corresponding to H.
Let b′′ = (b′′1 , . . . , b

′′
m′′), where m

′′ is the number of rows in A′′. Recall that A′′x′′ = b′′ is a system
over F2, and thus all summations and ranks of matrices considered below are over F2. Since the
sum of rows in A′′ is equal 0 and any subsum of the sum is not equal 0, the rank of A′′ equals
m′′−1. Observe that if

∑m′′

j=1 b
′′ = 0 then the rank of the matrix [A′′b′′] equals the rank of A′′ and,

thus, there is an assignment which satisfies all equations in A′′x′′ = b′′. However, if
∑m′′

j=1 b
′′ = 1,

the rank of [A′′b′′] is m′′ but the rank of A′′ is m′′ − 1. Hence, the system A′′x′′ = b′′ is no longer
consistent and we can satisfy all equations but one. The falsified equation can be chosen arbitrarily
and to maximize the total weight of satisfied equations of A′′x′′ = b′′ we have to choose an equation
of minimum weight.

The above argument leads to a polynomial time algorithm to solve Max-(*,≤ 2)-Lin2.

Remark 8. We can prove Theorem 14 using another approach, whose idea we will briefly describe.
Consider a pair of equations from the system Ax = b which share a variable xi and consider an
assignment which minimizes the weight of falsified equations. Let w∗ be the smallest weight of the
two equations. At least one of the two equations is satisfied by the assignment and if one of the
two equations is falsified, its weight is w∗ (as otherwise we could change the value of xi, arriving
at a contradiction). Replace the two equations in Ax = b by the equation which is the sum of
these two equations and whose weight equals w∗. Observe that the replacement does not change
the minimum total weight of falsified equations. Theorem 14 can be proved by repeatedly using
this reduction.

52

Part II

Parameterized Complexity of
MaxSAT

53

Chapter 6

Parameterized Complexity of
MaxSAT Above Average

6.1 Introduction

In this chapter we consider the problem of MaxSat-AA:

MaxSat-AA

Instance: A CNF formula F with clauses c1, . . . , cm, and variables x1, . . . , xn, and a
nonnegative integer k. Clause ci has ri literals, i = 1, . . . ,m.

Parameter: k.

Task: Decide whether there is a truth assignment satisfying at least asat(F)+k clauses,
where asat(F) =

∑m
i=1(1− 2−ri).

The problem Max-r(n)Sat-AA is a refinement of MaxSat-AA in which each clause has at
most r(n) literals, where r(n) is an integer-valued function.

Note that asat(F) is the average number of satisfied clauses. Indeed, if we assign true or false

to each xj with probability 1/2 independently of the other variables, then the probability of ci being
satisfied is 1 − 2−ri , and by linearity of expectation, asat(F) is the expected number of satisfied
clauses. (Since our distribution is uniform, asat(F) is indeed the average number of satisfied
clauses.) Let sat(F) denote the maximum number of clauses satisfied by a truth assignment. For
Boolean variables y1, . . . , yt, the complete set of clauses on y1, . . . , yt is the set {(z1∨ . . .∨zt) : zi ∈
{yi, yi}, i ∈ [t]}. Any formula F consisting of one or more complete sets of clauses shows that the
lower bound sat(F) ≥ asat(F) on sat(F) is tight. Using the derandomization method of conditional
expectations (see, e.g., Alon and Spencer [5]), it is easy to obtain a polynomial time algorithm

54

which finds a truth assignment satisfying at least asat(F) clauses. Thus, the question asked in
MaxSat-AA is whether we can find a better truth assignment efficiently from the parameterized
complexity point of view.

6.2 Hardness Results

In this section we give our hardness results. A 3-CNF formula contains exactly three literals in
each clause. For our results we need the following problem as a starting point for our reductions.
Here c is a positive integral constant.

Linear-c-3Sat

Instance: A 3-CNF formula F with clauses c1, . . . , cm, and variables x1, . . . , xn such
that m ≤ cn (i.e., the number of clauses in F is linear in the number of variables).

Task: Decide whether there is a truth assignment satisfying F .

It is well known that Linear-c-3Sat is NP-complete for each c ≥ 2: the well-known theorem of
Tovey [104] states that the 3-SAT problem is NP-complete even when the input consists of 3-CNF
formula with every variable appearing in at most four clauses.

We begin with a useful construction of a Max-r(n)Sat-AA instance from an arbitrary Linear-

c-3Sat instance.

Lemma 17. Let c be a positive integral constant. For a Linear-c-3Sat instance F with n variables
and m clauses, we can construct, in polynomial time, a CNF formula F ′ with n′ = 2cn variables,
such that each clause of F ′ has r(n′) = dlog n′e literals, and F is satisfiable if and only if (F ′,2) is
a Yes-instance of Max-r(n′)-Sat-AA.

Proof. Consider a Linear-c-3Sat instance F . Let the variables of F be x1, . . . , xn, and the distinct
clauses c1, . . . , cm. Recall that m ≤ cn.

We form a CNF formula F ′ with n′ = 2cn variables, the existing variables x1, . . . , xn, together
with new variables y1, . . . , yn′−n, and m′ = 2dlogn′e+1 clauses. The set of clauses of F ′ consists of
three sets, C1, C2 and C3, described below:

• C1 is the complete set of clauses on variables y1, . . . , ydlogn′e without the clause consisting of
all negative literals, c = (y1 ∨ y2 ∨ . . . ∨ ydlogn′e).

• C2 = {ci ∨ y4 ∨ y5 ∨ . . . ∨ ydlogn′e : i ∈ [m]}.

• C3 is a set of m′−|C1|− |C2| clauses on the variables ydlogn′e+1, . . . , yn′−n, of length dlog n′e
such that each variable appears in at least one clause and every clause consists of only positive
literals.

55

We claim that F is satisfiable if and only if (F ′, 2) is a Yes-instance of Max-r(n)Sat-AA, thus
completing the proof. Since, in F ′, each clause has r(n′) = dlog n′e literals, we have asat(F ′) =

(1− 2/m′)m′ = m′ − 2. Thus, (F ′, 2) asks whether all the clauses of F ′ can be satisfied.
Suppose F is satisfied by a truth assignment. Extend this assignment to the variables of F ′ by

assigning all yi to be true. Since F is satisfied, all the clauses in C2 are satisfied. Every clause in
C1 and C3 contains at least one positive literal yi, and so is satisfied. Hence F ′ is satisfied.

If F ′ is satisfied, then y1, . . . , ydlogn′e must all be set to true (otherwise, there is a clause in
C1 that is not satisfied). As a result, the set C2 of clauses can be simplified to the 3-SAT formula
F , and thus F must be satisfied.

Lemma 17 implies the following:

Theorem 15. Max-r(n)Sat-AA is para-NP-complete for any r(n) ≥ dlog ne.

Proof. Since it suffices to prove the theorem for r(n) = dlog ne we assume that r(n) = dlog ne.
Max-r(n)Sat-AA is in para-NP as in polynomial time, we can calculate asat(ϕ) + k, and then
decide if there exists an assignment satisfying this many clauses in polynomial time using a non-
deterministic Turing machine. To complete our proof of para-NP-completeness, we observe that
Lemma 17 gives a reduction from Linear-c-3SAT to Max-r(n)Sat-AA with k = 2.

It is not hard to prove Theorem 15 without starting from Linear-c-3SAT. We use Linear-c-

3SAT to ensure that n′ = O(n) which is necessary in the proof of the next theorem. Hereafter,
we will assume the Exponential Time Hypothesis (ETH), which is stated below.

Exponential Time Hypothesis (ETH) (Impagliazzo and Paturi [65]). There is a positive real
s such that 3-SAT on n variables cannot be solved in time O(2sn).

Using the Sparsification Lemma [66, Corollary 1], one may assume that, in the ETH in the
input formula F to 3-SAT, the number of clauses is at most p times the number of variables, for
some positive constant p. For completeness we give a proof below.

Sparsification Lemma (Impagliazzo et al. [66]). For every ε > 0, there is a constant Cε so that
any 3-CNF formula F with n variables, can be expressed as F = ∨ti=1Yi, where t ≤ 2εn and each
Yi is a 3-CNF formula with all variables from F and with at most Cεn clauses. Moreover, this
disjunction can be computed by an algorithm running in time O(2εn).

Proposition 1 ([66]). Assuming the ETH, there is a positive integral constant C and a positive
real s′ such that Linear-C-3SAT cannot be solved in time O(2s

′n), where n is the number of
variables.

Proof. Let s be a positive real such that 3-SAT on n variables cannot be solved in time O(2sn),
let s′ = s/2 and let C = Cs′ be a constant sufficient for the Sparsification Lemma (where ε = s′).

Suppose that Linear-C-3SAT can be solved in time O(2s
′n). Using the Sparsification Lemma,

we can produce 3-CNF formulas Y1, . . . , Yt, t ≤ 2s
′n, in time O(2s

′n). We can solve all of them in
time O(22s′n) = O(2sn) and so can obtain a solution for F in time O(2sn), a contradiction.

56

Thus, it follows that there exists a constant C such that Linear-C-3SAT cannot be solved in
time 2o(n) unless the ETH fails. Using the ETH, we strengthen Theorem 15.

Theorem 16. Assuming the ETH, Max-r(n)Sat-AA is not in XP for any r(n) ≥ log log n+ϕ(n),
where ϕ(n) is any real-valued unbounded strictly increasing computable function of n.

Proof. Let ϕ(n) be a real-valued unbounded strictly increasing function of n. Note that if the
theorem holds for some unbounded strictly increasing function ψ(n) of n, it holds also for any
strictly increasing function ψ′(n) such that ψ′(n) ≥ ψ(n) for every n ≥ 1. Thus, it suffices to give
the proof for ϕ(n) ≤ log log n.

Let C be a constant from Proposition 1. Consider a Linear-C-3SAT instance F ′′ with n′′

variables and m′′ clauses. Using Lemma 17, reduce F ′′ to a Max-r′(n′)-Sat-AA instance (F ′, k)

with n′ variables and r′(n′) = dlog n′e. Note that n′ = 2Cn′′.
Now let n be the minimum integer such that dlog n′e ≤ log log n + ϕ(n). Add n − n′ new

variables to F ′ together with a pair of contradicting unit clauses, (x), (x) for each new variable.
Let F denote the resulting formula and let (F, k) be an instance of Max-r(n)-Sat-AA. (The
extra variables can be seen as padding, so that r(n) has the required value.) The total number n
of variables in F is such that r(n) = dlog n′e ≤ log log n+ ϕ(n). By the minimality of n, we have
1 + log n′ > log log(n− 1) + ϕ(n− 1) and, thus, n− 1 ≤ 22n′/2ϕ(n−1) ≤ 22n′/2ϕ(n′)

= 2o(n
′). Hence,

it takes 2o(n
′) time to construct F , the last equality holding because ϕ(n) is strictly increasing.

Observe that F has O(n) clauses.
Note that (F ′, k) is a Yes-instance of Max-r(n′)-Sat-AA if and only if (F, k) is a Yes-instance

of Max-r(n)-Sat-AA. By Lemma 17, (F ′, 2) is a Yes-instance of Max-r(n′)-Sat-AA if and only
if the Linear-C-3SAT instance F ′′ is satisfiable. Thus, (F, 2) is a Yes-instance of Max-r(n)-Sat-

AA if and only if F ′′ is satisfiable. Therefore, if there was an XP algorithm for Max-r(n)Sat-AA,
then for k = 2 it would have running time O(nc) = 2o(n

′) = 2o(n
′′), where c is a constant, to check

whether the Linear-C-3SAT instance F ′′ is satisfiable, contradicting Proposition 1.

6.3 Algorithmic Results

To prove the main result of this section, Theorem 18, we reduce Max-r(n)Sat-AA to Max-

r(n)Lin2-AA considered in the previous chapter. Recall the problem definition:

Max-r(n)Lin2-AA

Instance: A system S of equations
∏
i∈Ij xi = bj , where bj ∈ {−1, 1}, |Ij | ≤ r(n),

xi ∈ {−1, 1}, and j ∈ [m], in which Equation j is assigned a positive integral
weight wj , and a nonnegative integer k

Parameter: k.

Task: Decide whether sat(S) ≥W/2 + k, where W =
∑m
j=1 wj .

57

If r(n) = n, Max-r(n)Lin2-AA will be denoted MaxLin2-AA.
The excess for x = (x1, . . . , xn) ∈ {−1, 1}n of S is

εS(x) =
1

2

 m∑
j=1

cj
∏
i∈Ij

xi

 ,
where cj = wjbj . Observe that εS(x) is the difference between the total weight of equations
satisfied by x and W/2. The maximum excess of S is max{εS(x) : x ∈ {−1, 1}n}. Thus, the
answer to MaxLin2-AA is Yes if and only if the maximum excess of S is at least k.

Consider two reduction rules for MaxLin2 stated in the previous chapter, and first introduced
in [49]:

Reduction Rule 4.1. If we have, for a subset I of [n], an equation
∏
i∈I xi = b′I with weight w′I ,

and an equation
∏
i∈I xi = b′′I with weight w′′I , then we replace this pair by one of these equations

with weight w′I + w′′I if b′I = b′′I and, otherwise, by the equation whose weight is bigger, modifying
its new weight to be the difference of the two old ones. If the resulting weight is 0, we delete the
equation from the system.

Reduction Rule 4.2. Let A be the matrix over F2 corresponding to the set of equations in S,
such that aji = 1 if variable xi appears in Equation j, and 0 otherwise. Let t = rankA and suppose
columns ai1 , . . . , ait of A are linearly independent. Then delete all variables not in {xi1 , . . . , xit}
from the equations of S.

The two reduction rules are of interest due to the following:

Lemma 18. [49] Let S′ be obtained from S by 4.1 or Rule 4.2. Then the maximum excess of S′

is equal to the maximum excess of S. Moreover, S′ can be obtained from S in time polynomial in
n and m.

Recall In Chapter 4 we showed the following:

Theorem 17. Let (S, k) be an instance of MaxLin2-AA such that system S cannot be reduced
by Rules 4.2 and 4.1. Let n be the number of variables in S and let r be the maximum number of
variables in an equation of S. If n ≥ (2k − 1)r + 1 then the answer to (S, k) is Yes.

Let (F, k) be an instance of MaxSat-AA given by a CNF formula F with clauses c1, . . . , cm,
and variables x1, . . . , xn. It will be convenient for us to denote true and false by −1 and 1,
respectively. For a truth assignment x = (x1, . . . , xn) ∈ {−1, 1}n, the excess εF (x) for x is the
number of clauses satisfied by x minus asat(x). Thus, the answer to (F, k) is Yes if and only if
there is an assignment x with εF (x) ≥ k.

Max-r(n)-Sat-AA is related to Max-r(n)-Lin2-AA as follows. Results similar to Lemma 19
have been proved in the previous papers [3, 25].

58

Lemma 19. Let (F, k) be an instance of Max-r(n)-SAT-AA with n variables, m clauses and
parameter k, and on clause contains both a literal and its complement. Then, in time 2r(n)mO(1),
we can produce an instance (S′, k′) of Max-r(n)-Lin2-AA reduced by Rule 4.1, with parameter
k′ = k2r(n)−1 such that (F, k) is a Yes-instance if and only if (S′, k′) is a Yes-instance. Moreover,
F and S′ have the same set of variables and for any truth assignment x = (x1, . . . , xn) ∈ {−1, 1}n,
εS′(x) = εF (x) · 2r(n)−1.

Proof. Let (F, k) be an instance of Max-r(n)-SAT-AA with clauses c1, . . . , cm and variables
x1, . . . , xn. For a clause cj , var(cj) will denote the set of variables in cj and rj the number of
literals in cj . For every j ∈ [m], let x = (x1, . . . , xn) ∈ {−1, 1}n and

hj(x) = 2r(n)−rj [1−
∏

xi∈var(cj)

(1 + dijxi)],

where dij = 1 if xi is in cj and dij = −1 if xi is in cj .
Let H(x) =

∑m
j=1 hj(x). Let x = (x1, . . . , xn) ∈ {−1, 1}n be a fixed truth assignment. We will

prove that
H(x) = 2r(n)εF (x). (6.1)

Let qj = 1 if cj is satisfied by x and qj = 0, otherwise. Observe that hj(x)/(2r(n)−rj) equals
1− 2rj if qj = 0 and 1, otherwise. Thus,

H(x) =
∑m
j=1[2r(n)−rjqj + (2r(n)−rj − 2r(n))(1− qj)]

= 2r(n)[
∑m
j=1 qj −

∑m
j=1(1− 2−rj)]

= 2r(n)εF (x).

It follows from (6.1) that the answer to (F, k) is Yes if and only if there is a truth assignment
x such that

H(x) ≥ k2r(n). (6.2)

Algebraic simplification of H(x) will lead us to the following (where cL are the nonzero integers
resulting from this simplification1):

H(x) =
∑
L∈F

cL
∏
i∈L

xi, (6.3)

where F ⊆ {∅ 6= L ⊆ [n] : |L| ≤ r(n)}. The simplification can be done in time 2r(n)mO(1).
Observe that by replacing each term cL

∏
i∈L xi with the equation

∏
i∈L xi = 1 if cL > 0 and∏

i∈L xi = −1 if cL < 0, with weight |cL|, the sum
∑
L∈F cL

∏
i∈L xi can be viewed as twice the

excess for x of an instance (S′, k′) of Max-r(n)-Lin2-AA. Let k′ = k2r(n)−1 be the parameter of
(S′, k′). Then, by (6.2), (F, k) and (S′, k′) are equivalent.

1Formula (6.3) is the Fourier expansion of H(x) over basis
∏

i∈L, L ⊆ [n], and cL are nonzero Fourier coefficients
of H(x); for more information, see [25, 26]

59

Note that the algebraic simplification of H(x) ensures that (S′, k′) is reduced by Rule 4.1. This
completes the proof.

It is important to note that the resulting instance (S′, k′) of Max-r(n)-Lin2-AA is not neces-
sarily reduced under Rule 4.2 and, thus, reduction of (S′, k′) by Rule 4.2 may result in less than n
variables.

From Theorem 17 and Lemma 19 we have the following fixed-parameter-tractability result for
Max-r(n)-SAT-AA.

Theorem 18. Max-r(n)Sat-AA is (i) in XP for r(n) ≤ log log n − log log log n and (ii) fixed-
parameter tractable for r(n) ≤ log log n− log log log n−ϕ(n), for any real-valued unbounded strictly
increasing computable function ϕ(n).

Proof. We start by proving Part (ii). Let ϕ(n) be a real-valued unbounded strictly increasing
computable function of n. Note that if Part (ii) holds for some unbounded strictly increas-
ing computable function ψ′(n) of n, it holds also for any strictly increasing computable func-
tion ψ(n) such that ψ(n) ≥ ψ′(n) for every n ≥ 1. Thus, it suffices to give the proof for
ϕ(n) ≤ log log log n, as for any strictly increasing function ψ(n) we can consider the case when
ϕ(n) = min{ψ(n), log log log n, ϕ(n− 1) + 1}.

Observe that log log n − log log log n − ϕ(n) is a nondecreasing function starting from some
value n′0 of n. Let n′′0 be the minimum value of n such that ϕ(n) > 0 for all n ≥ n′′0 and let
n0 = max{n′0, n′′0}.

If n ≤ n0, the problem is trivially solvable in polynomial time. Thus, we may assume that
n > n0 and so ϕ(n) > 0 and log log n− log log log n−ϕ(n) is nondecreasing. Note that ϕ(n) can be
extended to a continuous positive strictly increasing function ϕ(t) of real argument t ≥ 1. Thus,
ϕ(t) has an inverse function ϕ−1(t).

Let r(n) = blog log n− log log log n−ϕ(n)c and consider an instance (F ∗, k) of Max-r(n)-Sat-

AA. From this form an equivalent instance (F, k− δ) of MaxSat-AA where each clause contains
at most r(n) variables, and no clause contains a literal and it’s negation. Note that 2r(n) ≤ n.
Therefore by Lemma 19, in polynomial time we can reduce (F, k) into an instance (S′, k′) of
Max-Lin2-AA where each equation contains at most r(n) variables, such that (F, k− δ) is a Yes-
instance if and only if (S′, k′) is a Yes-instance with parameter k′ = (k − δ) · 2r(n)−1. Consider
the MaxLin2-AA instance (S′′, k′) with n′ variables formed by reducing (S′, k′) by Rules 4.2 and
4.1. If n′ ≤ log n, (S′′, k′) may be solved in polynomial time by trying all 2n

′ ≤ n assignments to
the variables of S′′. Thus, we may assume that n′ > log n. We may also assume that n′ > n0.

Note that no equation of S′′ has more than r(n) variables. If n′ ≥ ((k − δ)2r(n) − 1)r(n) + 1

then, by Theorem 17 and Lemma 19, (F, k − δ) is a Yes-instance. Hence, it remains to consider
the case log n < n′ ≤ ((k −−δ)2r(n) − 1)r(n) ≤ (k2r(n) − 1)r(n). Thus,

log n ≤ (k2r(n) − 1)r(n) and so log n ≤ k(log log n) · log n/(2ϕ(n) log log n).

60

This simplifies to ϕ(n) ≤ log k and so n ≤ ϕ−1(log k). Hence, (F, k − δ) can be solved in time
2ϕ
−1(log k)mO(1) by trying all possible assignments to variables of (S′′, k′).
Now we will prove Part (i). Let r(n) = blog log n − log log log nc and consider an instance

(F ∗, k) of Max-r(n)-Sat-AA. As in the proof of Part (ii), we reduce (F ∗, k) into (F, k−δ) into an
instance (S′, k′) of Max-r(n)-Lin2-AA, such that (F∗, k) is a Yes-instance if and only if (S′, k′) is
a Yes-instance with parameter k′ = (k−δ) ·2r(n)−1. Consider the MaxLin2-AA instance (S′′, k′)

with n′ variables formed by reducing (S′, k′) by Rules 4.2 and 4.1. If n′ ≤ k log n, (S′′, k′) may be
solved in XP time by trying all 2n

′ ≤ nk assignments to the variables of S′′. Thus, we may assume
that n′ > k log n. If n′ ≥ ((k − δ)2r(n) − 1)r(n) + 1, then by Theorem 17 and Lemma 19, (F, k)

is a Yes-instance. Thus, it remains to consider the case k log n < n′ ≤ ((k − δ)2r(n) − 1)r(n) ≤
(k2r(n) − 1)r(n). We have k log n ≤ kr(n)2r(n) and so log log n ≤ r(n) + log r(n) < log log n (as
log r(n) < log log log n), a contradiction. Thus, this case is impossible and we can solve (F∗, k) in
XP time.

We conclude this section with a table summarizing the results:

Constraint Results Assumption
r(n) ≤ log log n− log log log n− ϕ(n) is FPT
r(n) ≤ log log n− log log log n is in XP
r(n) ≥ log log n+ ϕ(n) Not in XP ETH
r(n) ≥ dlog ne para-NP-complete

61

Chapter 7

MaxSAT Above the number of
variables

7.1 Introduction

Given a CNF formula F , let BF denote the bipartite graph with partite sets V (F) and F with
an edge between v ∈ V (F) and c ∈ F if v ∈ V (c). The matching number ν(F) of F is the size of
a maximum matching in BF . Clearly, sat(F) ≥ ν(F) and this lower bound for sat(F) is tight as
there are formulas F for which sat(F) = ν(F). In this chapter we study the following parameterized
problem, where the parameterization is above a tight lower bound.

MaxSat-Aν(F)

Instance: A CNF formula F and a positive integer α.

Parameter: k = α− ν(F).

Question: Is sat(F) ≥ α?

In our main result, we show that MaxSat-Aν(F) is fixed-parameter tractable by obtaining
an algorithm with running time O((2e)2k+O(log2 k)(n+m)O(1)), where e is the base of the natural
logarithm. We also develop a randomized algorithm for MaxSat-Aν(F) of expected runtime
O(8k+O(

√
k)(m+ n)O(1)).

The deficiency δ(F) of a formula F is |F |−|V (F)|; the maximum deficiency δ∗(F) = max
F ′⊆F

δ(F ′).

A formula F is called variable-matched if ν(F) = |V (F)|. Our main result implies fixed-parameter
tractability of MaxSat parameterized by δ(F) for variable-matched formulas F .

To obtain our main result, we introduce some reduction rules and branching steps and reduce
the problem to a parameterized version of Hitting Set, namely, (m − k)-Hitting Set defined

62

below. Let H be a hypergraph. A set S ⊆ V (H) is called a hitting set if e∩S 6= ∅ for all e ∈ E(H).

(m− k)-Hitting Set

Instance: A hypergraph H (n = |V (H)|, m = |E(H)|) and a positive integer k.

Parameter: k.

Question: Does there exist a hitting set S ⊆ V (H) of size m− k?

Gutin et al. [45] showed that (m−k)-Hitting Set is fixed-parameter tractable by obtaining a
kernel for the problem. The kernel result immediately implies a 2O(k2)(m+n)O(1)-time algorithm for
the problem. Here we obtain a faster algorithm for this problem that runs in O((2e)2k+O(log2 k)(m+

n)O(1)) time using the color-coding technique. This happens to be the dominating step for solving
the MaxSat-Aν(F) problem. We also obtain a randomized algorithm for (m− k)-Hitting Set

of expected runtime O(8k+O(
√
k)(m + n)O(1)). To obtain the randomized algorithm, we reduce

(m − k)-Hitting Set into a special case of the Subgraph Isomorphism problem and use a
recent randomized algorithm of Fomin et al. [42] for Subgraph Isomorphism.

It was shown in [45] that the (m− k)-Hitting Set problem cannot have a kernel whose size is
polynomial in k unless NP ⊆ coNP/poly. In this chapter, we give a parameter preserving reduction
from this problem to the MaxSat-Aν(F) problem, thereby showing that MaxSat-Aν(F) problem
has no polynomial-size kernel unless NP ⊆ coNP/poly.

In Section 7.2, we give a sequence of polynomial time preprocessing rules on the given input of
MaxSat-Aν(F) and justify their correctness. In Section 7.3, we give two simple branching rules
and reduce the resulting input to a (m− k)-Hitting Set problem instance. Section 7.4 gives an
improved fixed-parameter algorithm for (m − k)-Hitting Set using color coding. There we also
obtain a faster randomized algorithm for (m−k)-Hitting Set. Section 7.5 summarizes the entire
algorithm for the MaxSat-Aν(F) problem, shows its correctness and analyzes its running time.
Section 7.6 proves the hardness of kernelization result.

7.2 Preprocessing Rules

In this section we give preprocessing rules and their correctness.
Let F be the given CNF formula on n variables and m clauses with a maximum matching M

on BF , the variable-clause bipartite graph corresponding to F . Let α be a given integer and recall
that our goal is to check whether sat(F) ≥ α. For each preprocessing rule below, we let (F ′, α′)

be the instance resulting by the application of the rule on (F, α). We say that a rule is valid if
(F, α) is a Yes instance if and only if (F ′, α′) a Yes instance. We use n(x) to denote the number
of occurrences of literal x.

Reduction Rule 7.1. Let x be a variable such that n(x) = 0 (respectively n(x̄) = 0). Set

63

x = false (x = true) and remove all the clauses that contain x̄ (x). Reduce α by n(x̄) (respectively
n(x)).

The proof of the following lemma is immediate.

Lemma 20. If n(x) = 0 (respectively n(x̄) = 0) then sat(F) = sat(F ′) + n(x̄) (respectively
sat(F) = sat(F ′) + n(x)), and so Rule 7.1 is valid.

Reduction Rule 7.2. Let n(x) = n(x̄) = 1 and let c′ and c′′ be the two clauses containing x and
x̄, respectively. Let c∗ = (c′−x)∪ (c′′− x̄) and let F ′ be obtained from F be deleting c′ and c′′ and
adding the clause c∗. Reduce α by 1.

Lemma 21. For F and F ′ in Reduction Rule 7.2, sat(F) = sat(F ′) + 1, and so Rule 7.2 is valid.

Proof. Consider any assignment for F . If it satisfies both c′ and c′′, then the same assignment
will satisfy c∗. So when restricted to variables of F ′, it will satisfy at least sat(F) − 1 clauses
of F ′. Thus sat(F ′) ≥ sat(F) − 1 which is equivalent to sat(F) ≤ sat(F ′) + 1. Similarly if an
assignment γ to F ′ satisfies c∗ then at least one of c′, c′′ is satisfied by γ. Therefore by setting x
true if γ satisfies c′′ and false otherwise, we can extend γ to an assignment on F that satisfies both
of c′, c′′. On the other hand, if c∗ is not satisfied by γ then neither c′ nor c′′ is satisfied by γ, and
any extension of γ will satisfy exactly one of c′, c′′. Therefore in either case sat(F) ≥ sat(F ′) + 1.
We conclude that sat(F) = sat(F ′) + 1, as required.

Our next reduction rule is based on the following lemma proved in Fleischner et al. [39, Lemma
10], Kullmann [78, Lemma 7.7] and Szeider [103, Lemma 9].

Lemma 22. Let F be a CNF formula. Given a maximum matching in BF , in time O(|F |) we can
find an autarky L : U → {true, false} such that F \ FU is 1-expanding.

Reduction Rule 7.3. Find an autarky L : U → {true, false} such that F \FU is 1-expanding.
Set F ′ = F \ FU and reduce α by |FU |.

The next lemma follows from Lemma 5.

Lemma 23. For F and F ′ in Reduction Rule 7.3, sat(F) = sat(F ′) + |FU | and so Rule 7.3 is
valid.

After exhaustive application of Rule 7.3, we may assume that the resulting formula is 1-
expanding. For the next reduction rule, we need the following results.

Theorem 19 (Szeider [103]). Given a variable-matched formula F , with |F | = |V (F)|+ 1, we can
decide whether F is satisfiable in time O(|V (F)|3).

Consider a bipartite graph G = (A,B;E). Recall that a formula F is q-expanding if and only if
BF is q-expanding. From a bipartite graph G = (A,B;E), x ∈ A and q ≥ 1, we obtain a bipartite
graph Gqx, by adding new vertices x1, . . . , xq to A and adding edges such that new vertices have
exactly the same neighborhood as x, that is, Gqx = (A∪{x1, . . . , xq}, B;E∪{(xi, y) : (x, y) ∈ E}).
The following result is well known.

64

Lemma 24. [84, Theorem 1.3.6] Let G = (A,B;E) be a 0-expanding bipartite graph. Then G is
q-expanding if and only if Gqx is 0-expanding for all x ∈ A.

Lemma 25. Let G = (A,B;E) be a 1-expanding bipartite graph. In polynomial time, we can check
whether G is 2-expanding, and if it is not, find a set S ⊆ A such that |NG(S)| = |S|+ 1.

Proof. Let x ∈ A. By Hall’s Matching Theorem, G2x is 0-expanding if and only if ν(G2x) = |A|+2.

Since we can check the last condition in polynomial time, by Lemma 24 we can decide whether
G is 2-expanding in polynomial time. So, assume that G is not 2-expanding and we know this
because G2y is not 0-expanding for some y ∈ A. By Lemma 3(4) in [103], in polynomial time, we
can find a set T ⊆ A ∪ {y1, y2} such that |NG2y (T)| < |T |. Since G is 1-expanding, y1, y2 ∈ T and
|NG2y (T)| = |T | − 1. Hence, |S|+ 1 = |NG(S)|, where S = T \ {y1, y2}.

For a formula F and a set S ⊆ V (F), F [S] denotes the formula obtained from FS by deleting all
variables not in S.

Reduction Rule 7.4. Let F be a 1-expanding formula and let B = BF . Using Lemma 25, check
whether F is 2-expanding. If it is then do not change F , otherwise find a set S ⊆ V (F) with
|NB(S)| = |S|+ 1. Use Theorem 19 to decide whether F [S] is satisfiable, and proceed as follows.

F [S] is satisfiable: Obtain a new formula F ′ by removing all clauses in NB(S) from F . Reduce
α by |NB(S)|.

F [S] is not satisfiable: Delete all variables in S from ∪
c′′∈NB(S)

c′′ to form the clause c′. That is,

a literal l belongs to c′ if and only if it belongs to some clause in NB(S) and the variable
corresponding to l is not in S. Obtain a new formula F ′ by removing all clauses in NB(S)

from F and adding c′. Reduce α by |S|.

Lemma 26. For F , F ′ and S introduced in Rule 7.4, if F [S] is satisfiable sat(F) = sat(F ′) +

|NB(S)|, otherwise sat(F) = sat(F ′) + |S| and thus Rule 7.4 is valid.

Proof. We consider two cases.
Case 1: F [S] is satisfiable. Observe that there is an autarky on S and thus by Lemma 5,
sat(F) = sat(F ′) + |NB(S)|.
Case 2: F [S] is not satisfiable. Let F ′′ = F ′ \ c′. As any optimal truth assignment to F
will satisfy at least sat(F)− |NB(S)| clauses of F ′′, it follows that sat(F) ≤ sat(F ′′) + |NB(S)| ≤
sat(F ′) + |NB(S)|.

Let M be a matching that saturates S in B[S ∪ NB(S)] (that exists as B[S ∪ NB(S)] is 1-
expanding), and let y denote the clause in NB(S) that is not matched to a variable in S by M .
Let S′ be the set of variables, and Z the set of clauses, that can be reached from y with an M -
alternating path in B[S ∪NB(S)]. We argue now that Z = NB(S). Since Z is made up of clauses
that are reachable in B[S ∪NB(S)] by an M -alternating path from the single unmatched clause y,
|Z| = |S′|+ 1. It follows that |NB(S)\Z| = |S\S′|, and M matches every clause in NB(S)\Z with

65

a variable in S\S′. Furthermore, NB(S\S′) ∩ Z = ∅ as otherwise the matching partners of some
elements of S\S′ would have been reachable by an M -alternating path from y, contradicting the
definition of NB(S) and S′. Thus S \ S′ has an autarky such that F \ FS\S′ is 1-expanding which
would have been detected by Rule 7.3, hence S \ S′ = ∅ and so S = S′. That is, all clauses in
NB(S) are reachable from the unmatched clause y by an M -alternating path. We have now shown
that Z = NB(S), as desired.

Suppose that there exists an assignment γ to F ′, that satisfies sat(F ′) clauses of F ′ that also
satisfies c′. Then there exists a clause c′′ ∈ NB(S) that is satisfied by γ. As c′′ is reachable from y

by an M -alternating path, we can modify M to include y and exclude c′′, by taking the symmetric
difference of the matching and the M -alternating path from y to c′′. This will give a matching
saturating S and NB(S) \ c′′, and we use this matching to extend the assignment γ to one which
satisfies all of NB(S)\c′′. We therefore have satisfied all the clauses of NB(S). Therefore since c′ is
satisfied in F ′ but does not appear in F, we have satisfied extra |NB(S)|−1 = |S| clauses. Suppose
on the other hand that every assignment γ for F ′ that satisfies sat(F ′) clauses does not satisfy c′.
We can use the matching on B[S ∪NB(S)] to satisfy |NB(S)| − 1 clauses in NB(S), which would
give us an additional |S| clauses in NB(S). Thus sat(F) ≥ sat(F ′) + |S|.

As |NB(S)| = |S|+ 1, it suffices to show that sat(F) < sat(F ′) + |NB(S)|. Suppose that there
exists an assignment γ to F that satisfies sat(F ′) + |NB(S)| clauses, then it must satisfy all the
clauses of NB(S) and sat(F ′) clauses of F ′′. As F [S] is not satisfiable, variables in S alone can
not satisfy all of NB(S). Hence there exists a clause c′′ ∈ NB(S) such that there is a variable
v ∈ V (c′′) \ S that satisfies c′′. But then v ∈ V (c′) and hence c′ would be satisfiable by γ, a
contradiction as γ satisfies sat(F ′) clauses of F ′′.

7.3 Branching Rules and Reduction to (m− k)-Hitting Set

Our algorithm first applies Reduction Rules 7.1, 7.2, 7.3 and 7.4 exhaustively on (F, α). Then it
applies two branching rules we describe below, in the following order.

Branching on a variable x means that the algorithm constructs two instances of the problem,
one by substituting x = true and simplifying the instance and the other by substituting x = false

and simplifying the instance. Branching on x or y being false means that the algorithm constructs
two instances of the problem, one by substituting x = false and simplifying the instance and the
other by substituting y = false and simplifying the instance. Simplifying an instance is done as
follows. For any clause c, if c contains a literal z with z = true, remove c and reduce α by 1. If c
contains a literal z with z = false and c contains other literals, remove z from c. If c consists of
the single literal z = false, remove c.

A branching rule is correct if the instance on which it is applied is a Yes-instance if and only
if the simplified instance of (at least) one of the branches is a Yes-instance.

Branching Rule 7.1. If n(x) ≥ 2 and n(x̄) ≥ 2 then we branch on x.

66

Before attempting to apply Branching Rule 7.2, we apply the following rearranging step: For
all variables x such that n(x̄) = 1, swap literals x and x̄ in all clauses. Clearly, this will not change
sat(F). Observe that now for every variable n(x) = 1 and n(x̄) ≥ 2.

Branching Rule 7.2. If there is a clause c such that positive literals x, y ∈ c then we branch on
x being false or y being false.

Branching Rule 7.1 is exhaustive and thus its correctness also follows. When we reach Branching
Rule 7.2 for every variable n(x) = 1 and n(x̄) ≥ 2. As n(x) = 1 and n(y) = 1 we note that c is the
only clause containing these literals. Therefore there exists an optimal solution with x or y being
false (if they are both true just change one of them to false). Thus, we have the following:

Lemma 27. Branching Rules 7.1 and 7.2 are correct.

Let (F, α) be the given instance on which Reduction Rules 7.1, 7.2, 7.3 and 7.4, and Branching
Rules 7.1 and 7.2 do not apply. Observe that for such an instance F the following holds:

1. For every variable x, n(x) = 1 and n(x̄) ≥ 2.

2. Every clause contains at most one positive literal.

We call a formula F satisfying the above properties special. In what follows we describe an
algorithm for our problem on special instances. Let c(x) denote the unique clause containing
positive literal x. We can obtain a matching saturating V (F) in BF by taking the edge connecting
the variable x and the clause c(x). We denote the resulting matching by Mu.

We first describe a transformation that will be helpful in reducing our problem to (m − k)-
Hitting Set. Given a formula F we obtain a new formula F ′ by changing the clauses of F as
follows. If there exists some c(x) such that |c(x)| ≥ 2, do the following. Let c′ = c(x)− x (that is,
c′ contain the same literals as c(x) except for x) and add c′ to all clauses containing the literal x̄.
Furthermore remove c′ from c(x) (which results in c(x) = (x) and therefore |c(x)| = 1).

Next we prove the validity of the above transformation.

Lemma 28. Let F ′ be the formula obtained by applying the transformation described above on F .
Then sat(F ′) = sat(F) and ν(BF) = ν(BF ′).

Proof. We note that the matching Mu remains a matching in BF ′ and thus ν(BF) = ν(BF ′). Let
γ be any truth assignment to the variables in F (and F ′) and note that if c′ is false under γ then
F and F ′ satisfy exactly the same clauses under γ (as we add and subtract something false to the
clauses). So assume that c′ is true under γ.

If γ maximizes the number of satisfied clauses in F then clearly we may assume that x is false
(as c(x) is true due to c′). Now let γ′ be equal to γ except the value of x has been flipped to true.
Note that exactly the same clauses are satisfied in F and F ′ by γ and γ′, respectively. Analogously,
if an assignment maximizes the number of satisfied clauses in F ′ we may assume that x is true and
by changing it to false we satisfy equally many clauses in F . Hence, sat(F ′) = sat(F).

67

Given a special instance (F, α) we apply the above transformation repeatedly until no longer
possible and obtain an instance (F ′, α) such that sat(F ′) = sat(F), ν(BF) = ν(BF ′) and |c(x)| = 1

for all x ∈ V (F ′). We call such an instance (F ′, α) transformed special. Observe that, it takes
polynomial time, to obtain the transformed special instance from a given special instance.

For simplicity of presentation we denote the transformed special instance by (F, α). Let C∗

denote all clauses that are not matched by Mu (and therefore only contain negated literals). We
associate a hypergraph H∗ with the transformed special instance. Let H∗ be the hypergraph with
vertex set V (F) and edge set E∗ = {V (c) | c ∈ C∗}.

We now show the following equivalence between MaxSat-Aν(F) on transformed special in-
stances and (m− k)-Hitting Set.

Lemma 29. Let (F, α) be the transformed special instance and H∗ be the hypergraph associated
with it. Then sat(F) ≥ α if and only if there is a hitting set in H∗ of size at most |E(H∗)| − k,
where k = α− ν(F).

Proof. We start with a simple observation about an assignment satisfying the maximum number
of clauses of F . There exists an optimal truth assignment to F , such that all clauses in C∗ are
true. Assume that this is not the case and let γ be an optimal truth assignment satisfying as many
clauses from C∗ as possible and assume that c ∈ C∗ is not satisfied. Let x̄ ∈ c be an arbitrary
literal and note that γ(x) = true. However, changing x to false does not decrease the number of
satisfied clauses in F and increases the number of satisfied clauses in C∗.

Now we show that sat(F) ≥ α if and only if there is a hitting set in H∗ of size at most
|E(H∗)| − k. Assume that γ is an optimal truth assignment to F , such that all clauses in C∗

are true. Let U ⊆ V (F) be all variables that are false in γ and note that U is a hitting set in
H∗. Analogously if U ′ is a hitting set in H∗ then by letting all variables in U ′ be false and all
other variables in V (F) be true we get a truth assignment that satisfies |F | − |U ′| clauses in F .
Therefore if τ(H∗) is the size of a minimum hitting set in H∗ we have sat(F) = |F |−τ(H∗). Hence,
sat(F) = |F |−τ(H∗) = |V (F)|+ |C∗|−τ(H∗) and thus sat(F) ≥ α if and only if |C∗|−τ(H∗) ≥ k,
which is equivalent to τ(H∗) ≤ |E(H∗)| − k.

Therefore our problem is fixed-parameter tractable on transformed special instances, by the
next theorem that follows from the kernelization result in [45].

Theorem 20. There exists an algorithm for (m−k)-Hitting Set running in time 2O(k2)+O((n+

m)O(1)).

In the next section we give faster algorithms for MaxSat-Aν(F) on transformed special in-
stances by giving faster algorithms for (m− k)-Hitting Set.

7.4 Algorithms for (m− k)-Hitting Set

To obtain faster algorithms for (m− k)-Hitting Set, we utilize the following concept of k-mini-
hitting set introduced in [45].

68

Definition 1. Let H = (V,F) be a hypergraph and k be a nonnegative integer. A k-mini-hitting
set is a set Smini ⊆ V such that |Smini| ≤ k and |F [Smini]| ≥ |Smini|+ k.

Lemma 30 ([45]). A hypergraph H has a hitting set of size at most m − k if and only if it has
a k-mini-hitting set. Moreover, given a k-mini-hitting set Smini, we can construct a hitting set S
with |S| ≤ m− k such that Smini ⊆ S in polynomial time.

7.4.1 Deterministic Algorithm

Next we give an algorithm that finds a k-mini-hitting set Smini if it exists, in time ck(m+ n)O(1),
where c is a constant. We first describe a randomized algorithm based on color-coding [6] and then
derandomize it using hash functions. Let χ : E(H)→ [q] be a function. For a subset S ⊆ V (H),
χ(S) denotes the maximum subset X ⊆ [q] such that for all i ∈ X there exists an edge e ∈ E(H)

with χ(e) = i and e ∩ S 6= ∅. A subset S ⊆ V (H) is called a colorful hitting set if χ(S) = [q]. We
now give a procedure that given a coloring function χ finds a minimum colorful hitting set, if it
exists. This algorithm will be useful in obtaining a k-mini-hitting set Smini.

Lemma 31. Given a hypergraph H and a coloring function χ : E(H) → [q], we can find a
minimum colorful hitting set if there exists one in time O(2qq(m+ n)).

Proof. We first check whether for every i ∈ [q], χ−1(i) 6= ∅. If for any i we have that χ−1(i) = ∅,
then we return that there is no colorful hitting set. So we may assume that for all i ∈ [q], χ−1(i) 6= ∅.
We will give an algorithm using dynamic programming over subsets of [q]. Let γ be an array of
size 2q indexed by the subsets of [q]. For a subset X ⊆ [q], let γ[X] denote the size of a smallest
set W ⊆ V (H) such that X ⊆ χ(W). We obtain a recurrence for γ[X] as follows:

γ[X] =

{
min(v∈V (H),χ({v})∩X 6=∅){1 + γ[X \ χ({v})]} if |X| ≥ 1,

0 if X = ∅.

The correctness of the above recurrence is clear. The algorithm computes γ[[q]] by filling the γ
in the order of increasing set sizes. Clearly, each cell can be filled in time O(q(n + m)) and thus
the whole array can be filled in time O(2qq(n+m)). The size of a minimum colorful hitting set is
given by γ[[q]]. We can obtain a minimum colorful hitting set by the routine back-tracking.

Now we describe a randomized procedure to obtain a k-mini-hitting set Smini in a hypergraphH,
if there exists one. We do the following for each possible value p of |Smini| (that is, for 1 ≤ p ≤ k).
Color E(H) uniformly at random with colors from [p + k]; we denote this random coloring by
χ. Assume that there is a k-mini-hitting set Smini of size p and some p + k edges e1, . . . , ep+k

such that for all i ∈ [p + k], ei ∩ Smini 6= ∅. The probability that for all 1 ≤ i < j ≤ p + k we
have that χ(ei) 6= χ(ej) is (p+k)!

(p+k)p+k ≥ e−(p+k) ≥ e−2k. Now, using Lemma 31 we can test in
time O(2p+k(p + k)(m + n)) whether there is a colorful hitting set of size at most p. Thus with
probability at least e−2k we can find a Smini, if there exits one. To boost the probability we repeat
the procedure e2k times and thus in time O((2e)2k2k(m + n)O(1)) we find a Smini, if there exists

69

one, with probability at least 1− (1− 1
e2k

)e
2k ≥ 1

2 . If we obtained Smini then using Lemma 30 we
can construct a hitting set of H of size at most m− k.

To derandomize the procedure, we need to replace the first step of the procedure where we color
the edges of E(H) uniformly at random from the set [p + k] to a deterministic one. This is done
by making use of an (m, p+ k, p+ k)-perfect hash family. An (m, p+ k, p+ k)-perfect hash family,
H, is a set of functions from [m] to [p + k] such that for every subset S ⊆ [m] of size p + k there
exists a function f ∈ H such that f is injective on S. That is, for all i, j ∈ S, f(i) 6= f(j). There
exists a construction of an (m, p + k, p + k)-perfect hash family of size O(ep+k · kO(log k) · logm)

and one can produce this family in time linear in the output size [102]. Using an (m, p+ k, p+ k)-
perfect hash family H of size at most O(e2k ·kO(log k) · logm) rather than a random coloring we get
the desired deterministic algorithm. To see this, it is enough to observe that if there is a subset
Smini ⊆ V (H) such that |F [Smini]| ≥ |Smini| + k then there exists a coloring f ∈ H such that the
p+ k edges e1, . . . , ep+k that intersect Smini are distinctly colored. So if we generate all colorings
from H we will encounter the desired f . Hence for the given f , when we apply Lemma 31 we get
the desired result. This concludes the description. The total time of the derandomized algorithm
is O(k22k(m+ n)e2k · kO(log k) · logm) = O((2e)2k+O(log2 k)(m+ n)O(1)).

Theorem 21. There exists an algorithm solving (m− k)-Hitting Set in time
O((2e)2k+O(log2 k)(m+ n)O(1)).

By Theorem 21 and the transformation discussed in Section 7.3 we have the following theorem.

Theorem 22. There exists an algorithm solving a transformed special instance of MaxSat-Aν(F)

in time O((2e)2k+O(log2 k)(m+ n)O(1)).

7.4.2 Randomized Algorithm

In this subsection we give a randomized algorithm for (m − k)-Hitting Set running in time
O(8k+O(

√
k)(m + n)O(1)). However, unlike the algorithm presented in the previous subsection we

do not know how to derandomize this algorithm. Essentially, we give a randomized algorithm to
find a k-mini-hitting set Smini in the hypergraph H, if it exists.

Towards this we introduce notions of a star-forest and a bush. We call K1,` a star of size `; a
vertex of degree ` in K1,` is a central vertex (thus, both vertices in K1,1 are central). A star-forest
is a forest consisting of stars. A star-forest F is said to have dimension (a1, a2, . . . , ap) if F has p
stars with sizes a1, a2, . . ., ap respectively. Given a star-forest F of dimension (a1, a2, . . . , ap), we
construct a graph, which we call a bush of dimension (a1, a2, . . . , ap), by adding a triangle (x, y, z)

and making y adjacent to a central vertex of in every star of F .
For a hypergraph H = (V,F), the incidence bipartite graph BH of H has partite sets V and

F , and there is an edge between v ∈ V and e ∈ F in H if v ∈ e. Given BH , we construct B∗H by
adding a triangle (x, y, z) and making y adjacent to every vertex in the V . The following lemma
relates k-mini-hitting sets to bushes.

70

Lemma 32. A hypergraph H = (V,F) has a k-mini-hitting set Smini if and only if there exists a
tuple (a1, . . . , ap) such that

(a) p ≤ k, ai ≥ 1 for all i ∈ [p], and
∑p
i=1 ai = p+ k; and

(b) there exists a subgraph of B∗H isomorphic to a bush of dimension (a1, . . . , ap).

Proof. We first prove that the existence of a k-mini-hitting set in H implies the existence of a bush
in B∗H of dimension satisfying (a) and (b). Let Smini = {w1, . . . , wq} be a k-mini-hitting set and let
Si = {w1, . . . , wi}. We know that q ≤ k and |F [Smini]| ≥ |Smini|+k. We define Ei := F [Si]\F [Si−1]

for every i ≥ 2, and E1 := F [S1]. Let Es1 , . . . , Esr be the subsequence of the sequence E1, . . . , Eq
consisting only of non-empty sets Ei, and let bj = |Esj | for each j ∈ [r]. Let p be the least integer
from [r] such that

∑p
i=1 bi ≥ k + p.

Observe that for every j ∈ [p], the vertex wsj belongs to each hyperedge of Esj . Thus, the
bipartite graph BH contains a star-forest F of dimension (b1, . . . , bp), such that p ≤ k, bj ≥ 1 for
all j ∈ [p], and c :=

∑p
j=1 bj ≥ p + k. Moreover, each star in F has a central vertex in V. By the

minimality of p, we have
∑p−1
j=1 bj < p − 1 + k and so bp ≥ c + 1 − (p + k). Thus, the integers aj

defined as follows are positive: aj := bj for every j ∈ [p− 1] and ap := bp− c+ (p+ k). Hence, BH
contains a star-forest F ′ of dimension (a1, . . . , ap), such that each star in F ′ has a central vertex
in V.

Thus, all central vertices are in V , p ≤ k, ai ≥ 1 for all i ∈ [p], and
∑p
i=1 ai = p + k,

which implies that B∗H contains, as a subgraph, a bush with dimension (a1, . . . , ap) satisfying the
conditions above.

The construction above relating a k-mini-hitting set of H with the required bush of B∗H can be
easily reversed in the following sense: the existence of a bush of dimension satisfying (a) and (b)
in B∗H implies the existence of a k-mini-hitting set in H. Here the triangle ensures that the central
vertices are in V. This completes the proof.

Next we describe a fast randomized algorithm for deciding the existence of a k-mini-hitting
set using the characterization obtained in Lemma 32. Towards this we will use a fast randomized
algorithm for the Subgraph Isomorphism problem. In the Subgraph Isomorphism problem
we are given two graphs F and G on k and n vertices, respectively, as an input, and the question
is whether there exists a subgraph of G isomorphic to F . Recall that tw(G) denotes the treewidth
of a graph G. We will use the following result.

Theorem 23 (Fomin et al. [42]). Let F and G be two graphs on q and n vertices respectively and
tw(F) ≤ t. Then, there is a randomized algorithm for the Subgraph Isomorphism problem that
runs in expected time O(2q(nt)t+O(1)).

Let P`(s) be the set of all unordered partitions of an integer s into ` parts. Nijenhuis and
Wilf [93] designed a polynomial delay generation algorithm for partitions of P`(s). Let p(s) be the
partition function, i.e., the overall number of partitions of s. The asymptotic behavior of p(s) was

71

first evaluated by Hardy and Ramanujan in the paper in which they develop the famous “circle
method.”

Theorem 24 (Hardy and Ramanujan [60]). We have p(s) ∼ eL
√

2s
3 /(4s

√
3), as s→∞.

This theorem and the algorithm of Nijenhuis and Wilf [93] imply the following:

Proposition 2. There is an algorithm of runtime 2O(
√
s) for generating all partitions in P`(s).

Now we are ready to describe and analyze a fast randomized algorithm for deciding the existence
of a k-mini-hitting set in a hypergraph H. By Lemma 32, it suffices to design and analyze a fast
randomized algorithm for deciding the existence of a bush in B∗H of dimension (a1, . . . , ap) satisfying
conditions (a) and (b) of Lemma 32. Our algorithm starts by building B∗H . Then it considers all
possible values of p one by one (p ∈ [k]) and generates all partitions in Pp(p + k) using the
algorithm of Proposition 2. For each such partition (a1, . . . , ap) that satisfies conditions (a) and
(b) of Lemma 32, the algorithm of Fomin et al.[42] mentioned in Theorem 23 decides whether B∗H
contains a bush of dimension (a1, . . . , ap). If such a bush exists, we output Yes and we output
No, otherwise.

To evaluate the runtime of our algorithm, observe that the treewidth of any bush is 2 and any
bush in Lemma 32 has at most 3k+3 vertices. This observation, the algorithm above, Theorem 23
and Proposition 2 imply the following:

Theorem 25. There exists a randomized algorithm solving (m−k)-Hitting Set in expected time
O(8k+O(

√
k)(m+ n)O(1)).

This theorem, in turn, implies the following:

Theorem 26. There exists a randomized algorithm solving a transformed special instance of
MaxSat-Aν(F) in expected time O(8k+O(

√
k)(m+ n)O(1)).

7.5 Complete Algorithm, Correctness and Analysis

The complete algorithm for an instance (F, α) of MaxSat-Aν(F) is as follows.
Find a maximum matching M on BF and let k = α − |M |. If k ≤ 0, return Yes. Otherwise,

apply Reduction Rules 7.1 to 7.4, whichever is applicable, in that order and then run the algorithm
on the reduced instance and return the answer. If none of the Reduction Rules apply, then apply
Branching Rule 7.1 if possible, to get two instances (F ′, α′) and (F ′′, α′′). Run the algorithm
on both instances; if one of them returns Yes, return Yes, otherwise return No. If Branching
Rule 7.1 does not apply then we rearrange the formula and attempt to apply Branching Rule
7.2 in the same way. Finally if k > 0 and none of the reduction or branching rules apply, then
we have for all variables x, n(x) = 1 and every clause contains at most one positive literal, i.e.
(F, α) is a special instance. Then solve the problem by first obtaining the transformed special

72

instance, then the corresponding instance H∗ of (m − k)-Hitting Set and solving H∗ in time
O((2e)2k+O(log2 k)(m+ n)O(1)) as described in Sections 7.3 and 7.4.

Correctness of all the preprocessing rules and the branching rules follows from Lemmata 20,
21, 23, 26 and 27.

Analysis of the algorithm. Let (F, α) be the input instance. Let µ(F)=µ=α−ν(F) be the
measure. We will first show that our preprocessing rules do not increase this measure. Following
this, we will prove a lower bound on the decrease in the measure occurring as a result of the
branching, thus allowing us to bound the running time of the algorithm in terms of the measure
µ. For each case, we let (F ′, α′) be the instance resulting by the application of the rule or branch.
Also let M ′ be a maximum matching of BF ′ .

Reduction Rule 7.1: We consider the case when n(x) = 0; the other case when n(x̄) = 0 is
analogous. We know that α′ = α − n(x̄) and ν(F ′) ≥ ν(F) − n(x̄) as removing n(x̄) clauses can
only decrease the matching size by n(x̄). This implies that µ(F)−µ(F ′) = α−ν(F)−α′+ν(F ′) =

(α− α′) + (ν(F ′)− ν(F)) ≥ n(x̄)− n(x̄). Thus, µ(F ′) ≤ µ(F).

Reduction Rule 7.2: We know that α′ = α− 1. We show that ν(F ′) ≥ ν(F)− 1. In this case
we remove the clauses c′ and c′′ and add c∗ = (c′ − x) ∪ (c′′ − x̄). We can obtain a matching of
size ν(F)− 1 in BF ′ as follows. If at most one of the c′ and c′′ is the end-point of some matching
edge in M then removing that edge gives a matching of size ν(F) − 1 for BF ′ . So let us assume
that some edges (a, c′) and (b, c′′) are in M . Clearly, either a 6= x or b 6= x. Assume a 6= x. Then
M \ {(a, c′), (b, c′′)} ∪ {(a, c∗)} is a matching of size ν(F) − 1 in BF ′ . Thus, we conclude that
µ(F ′) ≤ µ(F).

Reduction Rule 7.3: The proof is the same as in the case of Reduction Rule 7.1.

Reduction Rule 7.4: The proof that µ(F ′) ≤ µ(F) in the case when F [S] is satisfiable is the
same as in the case of Reduction Rule 7.1 and in the case when F [S] is not satisfiable is the same
as in the case of Reduction Rule 7.2.

Branching Rule 7.1: Consider the case when we set x = true. In this case, α′ = α − n(x).
Also, since no reduction rules are applicable we have that F is 2-expanding. Hence, ν(F) =

|V (F)|. We will show that in (F ′, α′) the matching size will remain at least ν(F) − n(x) + 1

(= |V (F)| − n(x) + 1 = |V (F ′)| − n(x) + 2.) This will imply that µ(F ′) ≤ µ(F) − 1. By Lemma
4 and the fact that n(x) − 2 ≥ 0, it suffices to show that in B′ = BF ′ , every subset S ⊆ V (F ′),
|NB′(S)| ≥ |S|− (n(x)−2). The only clauses that have been removed by the simplification process
after setting x = true are those where x appears positively and the singleton clauses (x̄). Hence,
the only edges of G[S ∪NB [S]] that are in NB(S) \NB′(S) are those corresponding to clauses that
contain x as a pure literal and some variable in S. Thus, |NB′(S)| ≥ |S|+2−n(x) = |S|−(n(x)−2)

(as F is 2-expanding).
The case when we set x = false is similar to the case when we set x = true. Here, also we

can show that µ(F ′) ≤ µ(F) − 1. Thus, we get two instances, with each instance (F ′, α′) having
µ(F ′) ≤ µ(F)− 1.

73

Branching Rule 7.2: The analysis here is the same as for Branching Rule 7.1 and again we get
two instances with µ(F ′) ≤ µ(F)− 1.

We therefore have a depth-bounded search tree of size of depth at most µ = α− ν(F) = k, in
which any branching splits an instance into two instances. Thus, the search tree has at most 2k

instances. As each reduction and branching rule takes polynomial time, every rule decreases the
number of variables, the number of clauses, or the value of µ, and an instance to which none of
the rules apply can be solved in time O((2e)2µµO(log µ)(m+ n)O(1)) (by Theorem 22), we have by
induction that any instance can be solved in time

O(2 · (2e)2(µ−1)(µ− 1)O(log(µ−1))(m+ n)O(1)) = O((2e)2µµO(log µ)(m+ n)O(1)).

Thus the total running time of the algorithm is at most O((2e)2k+O(log2 k)(n+m)O(1)). Applying
Theorem 26 instead of Theorem 22, we conclude that MaxSat-Aν(F) can be solved in expected
time O(8k+O(

√
k)(n+m)O(1)). Summarizing, we have the following:

Theorem 27. There are algorithms solving MaxSat-Aν(F) in time
O((2e)2k+O(log2 k)(n+m)O(1)) or expected time O(8k+O(

√
k)(n+m)O(1)).

7.6 Hardness of Kernelization

In this section, we show that MaxSat-Aν(F) does not have a polynomial-size kernel, unless coNP
⊆ NP/poly. To do this, we use the concept of a polynomial parameter transformation [11, 32]: Let
L and Q be parameterized problems. We say a polynomial time computable function f : Σ∗×N→
Σ∗×N is a polynomial parameter transformation from L to Q if there exists a polynomial p : N→ N
such that for any (x, k) ∈ Σ∗ × N, (x, k) ∈ L if and only if f(x, k) = (x′, k′) ∈ Q, and k′ ≤ p(k).

Lemma 33. [11, Theorem 3] Let L and Q be parameterized problems, and suppose that Lc and
Qc are the derived classical problems1. Suppose that Lc is NP-complete, and Qc ∈ NP. Suppose
that f is a polynomial parameter transformation from L to Q. Then, if Q has a polynomial-size
kernel, then L has a polynomial-size kernel.

Recall that whilst a decidable problem is FPT if an only if it has a kernel, the kernel obtain
from the FPT algorithm is not polynomial-size. The next theorem shows MaxSat-Aν(F) has no
polynomial-size kernel under a reasonable complexity-theoretic assumption. The proof is similar
to the proof of Lemma 29.

Theorem 28. MaxSat-Aν(F) has no polynomial-size kernel, unless coNP ⊆ NP/poly.

Proof. By [45, Theorem 3], there is no polynomial-size kernel for the problem of deciding whether
a hypergraph H has a hitting set of size |E(H)| − k, where k is the parameter unless coNP ⊆

1The parameters of L and Q are no longer parameters in Lc and Qc; they are part of input.

74

NP/poly. We prove the theorem by a polynomial parameter reduction from this problem. Then
the theorem follows from Lemma 33, as MaxSat-Aν(F) is NP-complete.

Given a hypergraph H on n vertices, construct a CNF formula F as follows. Let the variables
of F be the vertices of H. For each variable x, let the unit clause (x) be a clause in F . For every
edge e in H, let ce be the clause containing the literal x̄ for every x ∈ E. Observe that F is
matched, and that H has a hitting set of size |E(H)| − k if and only if sat(F) ≥ n+ k.

75

Chapter 8

Unit-Conflict Free MaxSAT

8.1 Introduction

For a CNF formula F a pair of clauses are conflicting if they can not both be simultaneously
satisfied. The unit-conflict free (UCF) form of a CNF formula F is formed by deleting all pairs
of conflicting clauses. If F is UCF, then Lieberherr and Specker [79] proved that sat(F) ≥ ϕ̂m,
where ϕ̂ = (

√
5− 1)/2.

In this chapter we consider the following parameterization of MaxSAT, introduced by Mahajan
and Raman [85] since ϕ̂m is an asymptotically tight lower bound for UCF CNF formulae:

MaxSat-UCF-A(ϕ̂m)

Instance: A UCF CNF formula F with m clauses.

Parameter: A nonnegative integer k.

Question: Decide whether sat(F) ≥ ϕ̂m+ k.

Mahajan and Raman conjectured that MaxSat-UCF-A(ϕ̂m) is fixed-parameter tractable.
To solve the conjecture in the affirmative, we show the existence of an O(k)-variable kernel for
MaxSat-UCF-A(ϕ̂m) by obtaining an improvement of the Lieberherr-Specker lower bound.

A formula F ′ = (V ′, C ′) is called a subformula of a CNF formula F = (V,C) if C ′ ⊆ C and
V ′ is the set of variables in C ′. If F ′ is a subformula of F then F \ F ′ denotes the subformula
obtained from F by deleting all clauses of F ′. A formula F = (V,C) is called expanding if for
each X ⊆ V , the number of clauses containing at least one variable from X is at least |X| [103].
It is known (this involves so-called matching autarkies, see Section 8.2 for details) that for each
CNF formula F = (V,C) a subformula F ′ = (V ′, C ′) can be found in polynomial time such that
sat(F) = sat(F \ F ′) + |C ′| and the subformula F \ F ′ is expanding. The main technical result
of this chapter is that sat(F) ≥ ϕ̂|C| + (2 − 3ϕ̂)|V |/2 for every expanding UCF CNF formula

76

F = (V,C). Combining this inequality with the previous equality for sat(F), we conclude that for
each UCF CNF formula F = (V,C) a subformula F ′ = (V ′, C ′) can be found in polynomial time
such that

sat(F) ≥ ϕ̂|C|+ (1− ϕ̂)|C ′|+ (2− 3ϕ̂)|V \ V ′|/2.

The last inequality improves the Lieberherr-Specker lower bound on sat(F).
The rest of this chapter is organized as follows. In Section 8.2, we give further terminology and

notation and some basic results. Section 8.3 proves the improvement of the Lieberherr-Specker
lower bound on sat(F) assuming correctness of the following lemma: if F = (V,C) is a compact
CNF formula, then sat(F) ≥ ϕ̂|C|+ (2− 3ϕ̂)|V |/2 (we give definition of a compact CNF formula
in the next section). We prove this non-trivial lemma in Section 8.4. In Section 8.5 we solve the
conjecture of Mahajan and Raman [85] in the affirmative and improve their result on SAT-A(m/2).
We conclude the chapter with discussions and open problems.

8.2 Additional Terminology, Notation and Basic Results

We let F = (V,C) denote a CNF formula with a set of variables V and a multiset of clauses C. It
is normally assumed that each clause may appear multiple times in C. For the sake of convenience,
we assume that each clause appears at most once, but allow each clause to have an integer weight.
(Thus, instead of saying a clause c appears t times, we will say that c has weight t). If at any
point a particular clause c appears more than once in C, we replace all occurrences of c with a
single occurrence of the same total weight. We use w(c) to denote the weight of a clause c. For
any clause c /∈ C we set w(c) = 0. If C ′ ⊆ C is a subset of clauses, then w(C ′) denotes the sum
of the weights of the clauses in C ′. For a formula F = (V,C) we will often write w(F) instead of
w(C).

For a formula F = (V,C) and a subset U ⊆ V of variables, FU denotes the subformula of F
obtained from F by deleting all clauses without variables in U .

For a CNF formula F = (V,C), a truth assignment is a function α : V → {true, false}. A
truth assignment α satisfies a clause c if there exists x ∈ V such that x ∈ c and α(x) = true,
or x̄ ∈ c and α(x) = false. The weight of a truth assignment is the sum of the weights of all
clauses satisfied by the assignment. The maximum weight of a truth assignment for F is denoted
by sat(F).

A function β : U → {true, false}, where U is a subset of V is called a partial truth assignment.
A partial truth assignment β : U → {true, false} is an autarky if β satisfies all clauses of FU .
Autarkies are of interest, in particular, due to the following simple fact whose trivial proof is
omitted.

Lemma 34. Let β : U → {true, false} be an autarky for a CNF formula F . Then sat(F) =

w(FU) + sat(F \ FU).

A version of Lemma 34 can be traced back to Monien and Speckenmeyer [88].

77

Recall that a formula F = (V,C) is called expanding if |X| ≤ w(FX) for each X ⊆ V . We
associate a bipartite graph with a CNF formula F = (V,C) as follows: the bipartite graph BF of
F has partite sets V and C and the edge vc is in BF if and only if the variable v or its negation v̄
appears in the clause c. Later we will make use of the following result which is a version of Hall’s
Theorem on matchings in bipartite graphs (cf. [107]).

Lemma 35. The bipartite graph BF has a matching covering V if and only if F is expanding.

We call a CNF formula F = (V,C) compact if the following conditions hold:

1. All clauses in F have the form (x) or (x̄ ∨ ȳ) for some x, y ∈ V .

2. For every variable x ∈ V , the clause (x) is in C.

8.3 New Lower Bound for sat(F)

We would like to prove a lower bound on sat(F) that has a term dependent on the number of
variables. It is clear that for general CNF formula F such a bound is impossible. For consider
a formula containing a single clause c containing a large number of variables. We can arbitrarily
increase the number of variables in the formula, and the maximum number of satisfiable clauses
will always be 1. We therefore need a reduction rule that cuts out ’excess’ variables. Our reduction
rule is based on the following lemma proved in Fleischner et al. [39] (Lemma 10) and Szeider [103]
(Lemma 9).

Lemma 36. Let F = (V,C) be a CNF formula. Given a maximum matching in the bipartite graph
BF , in time O(|C|) we can find an autarky β : U → {true, false} such that |X| + 1 ≤ w(FX)

for every X ⊆ V \U.

Note that the autarky found in Lemma 36 can be empty, i.e., U = ∅. An autarky found by
the algorithm of Lemma 36 is of a special kind, called a matching autarky; such autarkies were
used first by Aharoni and Linial [2]. Results similar to Lemma 36 have been obtained in the
parameterized complexity literature as well, see, e.g., [81].

Lemmas 34 and 36 immediately imply the following:

Theorem 29. [39, 103] Let F be a CNF formula and let β : U → {true, false} be an autarky
found by the algorithm of Lemma 34. Then sat(F) = sat(F \ FU) + w(FU) and F \ FU is an
expanding formula.

Our improvement of the Lieberherr-Specker lower bound on sat(F) for a UCF CNF formula
F will follow immediately from Theorems 29 and 30 (stated below). It is much harder to prove
Theorem 30 than Theorem 29, and our proof of Theorem 30 is based on the following quite non-
trivial lemma that will be proved in the next section.

78

Lemma 37. If F = (V,C) is a compact CNF formula, then there exists a truth assignment with
weight at least

ϕ̂w(C) +
|V |(2− 3ϕ̂)

2
,

where ϕ̂ = (
√

5− 1)/2, and such an assignment can be found in polynomial time.

The next proof builds on some of the basic ideas in [79].

Theorem 30. If F = (V,C) is an expanding UCF CNF formula, then there exists a truth assign-
ment with weight at least

ϕ̂w(C) +
|V |(2− 3ϕ̂)

2
,

where ϕ̂ = (
√

5− 1)/2 and such an assignment can be found in polynomial time.

Proof. We will describe a polynomial-time transformation from F to a compact CNF formula F ′,
such that |V ′| = |V | and w(C ′) = w(C), and any truth assignment for F ′ can be turned into truth
assignment for F of greater or equal weight. The theorem then follows from Lemma 37.

By Lemma 35, there is a matching in the bipartite graph BF covering V. For each x ∈ V let
cx be the unique clause associated with x in this matching. For each variable x, if the unit clause
(x) or (x̄) appears in C, leave cx as it is for now. Otherwise, remove all variables except x from
cx. We now have that for every x, exactly one of (x), (x̄) appears in C.

If (x̄) is in C, replace every occurrence of the literal x̄ in the clauses of C with x, and replace
every occurrence of x with x̄. We now have that Condition 2 in the definition of a compact formula
is satisfied. For any clause c which contains more than one variable and at least one positive
literal, remove all variables except one that occurs as a positive. For any clause which contains
only negative literals, remove all but two variables. We now have that Condition 1 is satisfied.
This completes the transformation.

In the transformation, no clauses or variables were completely removed, so |V ′| = |V | and
w(C ′) = w(C). Observe that the transformation takes polynomial time, and that any truth
assignment for the compact formula F ′ can be turned into a truth assignment for F of greater or
equal weight. Indeed, for some truth assignment for F ′, flip the assignment to x if and only if we
replaced occurrences of x with x̄ in the transformation. This gives a truth assignment for F such
that every clause will be satisfied if its corresponding clause in F ′ is satisfied.

Our main result follows immediately from Theorems 29 and 30.

Theorem 31. Every UCF CNF formula F = (V,C) contains a (possibly empty) subformula
F ′ = (V ′, C ′) that can be found in polynomial time and such that

sat(F) ≥ ϕ̂w(C) + (1− ϕ̂)w(C ′) + (2− 3ϕ̂)|V \ V ′|/2.

79

8.4 Proof of Lemma 37

In this section, we use the fact that ϕ̂ = (
√

5−1)/2 is the positive root of the polynomial ϕ̂2 +ϕ̂−1.
We call a clause (x̄ ∨ ȳ) good if for every literal z̄, the set of clauses containing z̄ is not equal to
{(x̄ ∨ z̄), (ȳ ∨ z̄)}. We define wv(x) to be the total weight of all clauses containing the literal x,
and wv(x̄) the total weight of all clauses containing the literal x̄. (Note that wv(x̄) is different
from w(x̄), which is the weight of the particular clause (x̄).) Let ε(x) = wv(x) − ϕ̂wv(x̄). Let
γ = (2− 3ϕ̂)/2 = (1− ϕ̂)2/2 and let ∆(F) = sat(F)− ϕ̂w(C).

To prove Lemma 37, we will use an algorithm, Algorithm C, described below. We will show
that, for any compact CNF formula F = (V,C), Algorithm C finds a truth assignment with weight
at least ϕ̂w(C) + γ|V |. Step 3 of the algorithm removes any clauses which are satisfied or falsified
by the given assignment of truth values to the variables. The purpose of Step 4 is to make sure
the new formula is compact.

Algorithm C works as follows. Let F be a compact CNF formula. If F contains a variable x
such that we can assign x true and increase sufficiently the average number of satisfied clauses, we
do just that (see Cases A and B of the algorithm). Otherwise, to achieve similar effect we have to
assign truth values to two or three variables (see Cases C and D). Step 3 of the algorithm removes
any clauses which are satisfied or falsified by the given assignment of truth values to the variables.
The purpose of Step 4 is to make sure the new formula is compact.

80

Algorithm C

While |V | > 0, repeat the following steps:

1. For each x ∈ V , calculate wv(x) and wv(x̄).

2. Mark some of the variables as true or false, according to the following cases:

Case A: There exists x ∈ V with wv(x) ≥ wv(x̄). Pick one such x and assign it
true.

Case B: Case A is false, and there exists x ∈ V with (1 − ϕ̂)ε(x) ≥ γ. Pick one
such x and assign it true.

Case C: Cases A and B are false, and there exists a good clause. Pick such a
good clause (x̄ ∨ ȳ), with (without loss of generality) ε(x) ≥ ε(y), and assign
y false and x true.

Case D: Cases A, B and C are false. Pick any clause (x̄∨ ȳ) and pick z such that
both clauses (x̄∨ z̄) and (ȳ∨ z̄) exist. Consider the six clauses (x), (y), (z), (x̄∨
ȳ), (x̄ ∨ z̄), (ȳ ∨ z̄) and all 23 assignments to the variables x, y, z, and pick an
assignment maximizing the total weight of satisfied clauses among the six
clauses.

3. Perform the following simplification: For any variable x assigned False, remove
any clause containing x̄, remove the unit clause (x), and remove x from V . For any
variable x assigned true, remove the unit clause (x), remove x̄ from any clause
containing x̄ and remove x from V .

4. For each y remaining, if there is a clause of the form (ȳ), do the following: If the
weight of this clause is greater than wv(y), then replace all clauses containing the
variable y (that is, literals y or ȳ) with one clause (y) of weight wv(ȳ) − wv(y).
Otherwise remove (ȳ) from C and change the weight of (y) to w(y)− w(ȳ).

In order to show that the algorithm finds a truth assignment with weight at least ϕ̂w(C) +
|V |(2−3ϕ̂)

2 , we need the following two lemmas.

Lemma 38. For a formula F , if we assign a variable x true, and run Steps 3 and 4 of the
algorithm, the resulting formula F ∗ = (V ∗, C∗) satisfies

∆(F) ≥ ∆(F ∗) + (1− ϕ̂)ε(x).

Furthermore, we have |V ∗| = |V | − 1, unless there exists y ∈ V ∗ such that (y) and (x̄ ∨ ȳ) are the
only clauses containing y and they have the same weight. In this case, y is removed from V ∗.

Proof. Observe that at Step 3, the clause (x) (of weight wv(x)) is removed, clauses of the form
(x̄ ∨ ȳ) (total weight wv(x̄)) become (ȳ), and the variable x is removed from V .

81

At Step 4, observe that for each y such that (ȳ) is now a clause, w(C) is decreased by 2wy

and sat(F) is decreased by wy, where wy = min{w(y), w(ȳ)}. Let q =
∑
y wy, and observe that

q ≤ wv(x̄). A variable y will only be removed at this stage if the clause (x̄ ∨ ȳ) was originally in
C. We therefore have

1. sat(F ∗) ≤ sat(F)− wv(x)− q

2. w(C∗) = w(C)− wv(x)− 2q

Using the above, we get

∆(F) = sat(F)− ϕ̂ · w(C)

≥ (wv(x) + sat(F ∗) + q)− ϕ̂(w(C∗) + 2q + wv(x))

= ∆(F ∗) + (1− ϕ̂)wv(x)− (2ϕ̂− 1)q

≥ ∆(F ∗) + (1− ϕ̂)(ε(x) + ϕ̂ · wv(x̄))− (2ϕ̂− 1)wv(x̄)

= ∆(F ∗) + (1− ϕ̂− ϕ̂2)wv(x̄) + (1− ϕ̂)ε(x)

= ∆(F ∗) + (1− ϕ̂)ε(x).

Lemma 39. For a formula F , if we assign a variable x False, and run Steps 3 and 4 of the
algorithm, the resulting formula F ∗∗ = (V ∗∗, C∗∗) has |V ∗∗| = |V | − 1 and satisfies ∆(F) ≥
∆(F ∗∗)− ϕ̂ε(x).

Proof. Observe that at Step 3, every clause containing the variable x is removed, and no other
clauses will be removed at Steps 3 and 4. Since the clause (y) appears for every other variable
y, this implies that |V ∗∗| = |V | − 1. We also have the following: sat(F ∗∗) ≤ sat(F) − wv(x̄) and
w(C∗∗) = w(C)− wv(x̄)− wv(x). Thus,

∆(F) = sat(F)− ϕ̂w(C)

≥ (wv(x̄) + sat(F ∗∗))− ϕ̂(w(C∗∗) + wv(x̄) + wv(x))

= ∆(F ∗∗) + (1− ϕ̂)wv(x̄)− ϕ̂wv(x)

= ∆(F ∗∗) + (1− ϕ̂)wv(x̄)− ϕ̂(ε(x) + ϕ̂ · wv(x̄))

= ∆(F ∗∗) + (1− ϕ̂− ϕ̂2)wv(x̄)− ϕ̂ε(x)

= ∆(F ∗∗)− ϕ̂ε(x).

Now we are ready to prove Lemma 37.

Proof of Lemma 37: We will show that Algorithm C finds a truth assignment with weight at least
ϕ̂w(C) + |V |(2−3ϕ̂)

2 . Note that the inequality in the lemma can be reformulated as ∆(F) ≥ γ|V |.
Let F and ϕ̂ be defined as in the statement of the lemma. Note that at each iteration of the

algorithm, at least one variable is removed. Therefore, we will show the lemma by induction on |V |.

82

If |V | = 0 then we are done trivially and if |V | = 1 then we are done as sat(F) = w(C) ≥ ϕ̂w(C)+γ

(as w(C) ≥ 1). So assume that |V | ≥ 2.
For the induction step, let F ′ = (V ′, C ′) be the formula resulting from F after running Steps

1-4 of the algorithm, and assume that ∆(F ′) ≥ γ|V ′|. We show that ∆(F) ≥ γ|V |, by analyzing
each possible case in Step 2 separately.

Case A: wv(x) ≥ wv(x̄) for some x ∈ V . In this case we let x be true, which by Lemma 38
implies the following:

∆(F) ≥ ∆(F ′) + (1− ϕ̂)ε(x)

= ∆(F ′) + (1− ϕ̂)(wv(x)− ϕ̂wv(x̄))

≥ ∆(F ′) + (1− ϕ̂)(wv(x)− ϕ̂wv(x))

= ∆(F ′) + (1− ϕ̂)2wv(x)

= ∆(F ′) + 2γwv(x).

If y ∈ V \ V ′, then either y = x or (x̄ ∨ ȳ) ∈ C. Therefore |V | − |V ′| ≤ wv(x̄) + 1 ≤ wv(x) + 1.
As wv(x) ≥ 1 we note that 2γwv(x) ≥ γ(wv(x) + 1). This implies the following, by induction,
which completes the proof of Case A.

∆(F) ≥ ∆(F ′) + γ(wv(x) + 1)

≥ γ|V ′|+ γ(wv(x) + 1) ≥ γ|V |.

Case B: Case A is false, and (1− ϕ̂)ε(x) ≥ γ for some x ∈ V .
Again we let x be true. Since wv(y) < wv(ȳ) for all y ∈ V , we have |V | = |V ′|+1. Analogously

to Case A, using Lemma 38, we get the following:

∆(F) ≥ ∆(F ′) + (1− ϕ̂)ε(x)

≥ γ|V ′|+ γ = γ|V |.

For Cases C and D, we generate a graph G from the set of clauses. The vertex set of G is the
variables in V (i.e. V (G) = V) and there is an edge between x and y if and only if the clause (x̄∨ ȳ)

exists in C. A good edge in G is an edge uv ∈ E(G) such that no vertex z ∈ V has N(z) = {u, v}
(that is, an edge is good if and only if the corresponding clause is good).

Case C: Cases A and B are false, and there exists a good clause (x̄ ∨ ȳ). Without loss of
generality assume that ε(x) ≥ ε(y). We will first let y be False and then we will let x be true.
By letting y be False we get the following by Lemma 39, where F ∗∗ is defined in Lemma 39:
∆(F) ≥ ∆(F ∗∗)− ϕ̂ε(x).

Note that the clause (x̄∨ ȳ) has been removed so w∗∗v (x̄) = wv(x̄)−w(x̄∨ ȳ) and w∗∗v (x) = wv(x)

(where w∗∗v (.) denote the weights in F ∗∗). Therefore using Lemma 38 on F ∗∗ instead of F we get
the following, where the formula F ∗ in Lemma 38 is denoted by F ′ below and w0 = w(x̄ ∨ ȳ):

∆(F ∗∗) ≥ ∆(F ′) + (1− ϕ̂)(wv(x)− ϕ̂(wv(x̄)− w0)).

83

First we show that |V ′| = |V ∗∗| − 1 = |V | − 2. Assume that z ∈ V \ (V ′ ∪{x, y}) and note that
N(z) ⊆ {x, y}. Clearly |N(z)| = 1 as xy is a good edge. If N(z) = {y} then (z) ∈ C ′, so we must
have N(z) = {x}. However the only way z 6∈ V ′ is if wv(z) = wv(z̄), a contradiction as Case A is
false. Therefore, |V ′| = |V | − 2, and the following holds by the induction hypothesis.

∆(F) ≥ ∆(F ∗∗)− ϕ̂ε(x)

≥ ∆(F ′) + (1− ϕ̂)(wv(x)− ϕ̂(wv(x̄)− w0))− ϕ̂ε(x)

≥ γ|V ′|+ (1− ϕ̂)(ε(x) + ϕ̂w0)− ϕ̂ε(x)

= γ|V | − 2γ + (1− ϕ̂)ϕ̂w0 − (2ϕ̂− 1)ε(x).

We would be done if we can show that 2γ ≤ (1 − ϕ̂)ϕ̂w0 − (2ϕ̂ − 1)ε(x). As w0 ≥ 1 and we
know that, since Case B does not hold, (1 − ϕ̂)ε(x) < γ, we would be done if we can show that
2γ ≤ (1 − ϕ̂)ϕ̂ − (2ϕ̂ − 1)γ/(1 − ϕ̂). This is equivalent to γ = (1 − ϕ̂)2/2 ≤ ϕ̂(1 − ϕ̂)2, which is
true, completing the proof of Case C.

Case D: Cases A, B and C are false. Then G has no good edge.
Assume xy is some edge in G and z ∈ V such that N(z) = {x, y}. As xz is not a good

edge there exists a v ∈ V , such that N(v) = {x, z}. However v is adjacent to z and, thus,
v ∈ N(z) = {x, y}, which implies that v = y. This shows that N(y) = {x, z}. Analogously we can
show that N(x) = {y, z}. Therefore, the only clauses in C that contain a variable from {x, y, z}
form the following set: S = {(x), (y), (z), (x̄ ∨ ȳ), (x̄ ∨ z̄), (ȳ ∨ z̄)}.

Let F ′ be the formula obtained by deleting the variables x, y and z and all clauses containing
them. Now consider the three assignments of truth values to x, y, z such that only one of the
three variables is assigned False. Observe that the total weight of clauses satisfied by these three
assignments equals

wv(x̄) + wv(ȳ) + wv(z̄) + 2(w(x) + w(y) + w(z)) = 2W,

where W is the total weight of the clauses in S. Thus, one of the three assignments satisfies the
weight of at least 2W/3 among the clauses in S. Observe also that w(C)− w(C ′) ≥ 6, and, thus,
the following holds.

∆(F) ≥ 2(w(C)− w(C ′))/3 + sat(F ′)− ϕ̂(w(C ′) + w(C)− w(C ′))

≥ γ|V ′|+ 2(w(C)− w(C ′))/3− ϕ̂(w(C)− w(C ′))

= γ|V | − 3γ + (2− 3ϕ̂)(w(C)− w(C ′))/3

≥ γ|V | − 3γ + 2(2− 3ϕ̂) > γ|V |.

This completes the proof of the correctness of Algorithm C. It remains to show that Algorithm
C takes polynomial time.

Each iteration of the algorithm takes O(nm) time. The algorithm stops when V is empty, and
at each iteration some variables are removed from V . Therefore, the algorithm goes through at
most n iterations and, in total, it takes O(n2m) time. This completes the proof of Lemma 37.

84

Note that the bound (2−3ϕ̂)/2 in Lemma 37 cannot be improved due to the following example.
Let l be any positive integer and let F=(V,C) be defined such that V={x1, x2, . . . , xl, y1, y2, . . . , yl}
and C contain the constraints (x1), (x2),. . . , (xl), (y1), (y2),. . . , (yl) and (x̄1 ∨ ȳ1), (x̄2 ∨ ȳ2),. . . ,
(x̄l ∨ ȳl). Let the weight of every constraint be one and note that for every i we can only satisfy
two of the three constraints (xi), (yi) and (x̄i ∨ ȳi). Therefore sat(F) = 2l and the following holds:

ϕ̂w(C) + |V |(2−3ϕ̂)
2 = 3lϕ̂+ 2l(2−3ϕ̂)

2 = l(3ϕ̂+ 2− 3ϕ̂) = 2l = sat(F).

8.5 Parameterized Complexity Results

Recall that formulations of parameterized problems SAT-A(m/2) and MaxSat-UCF-A(ϕ̂m)

were given in Section 8.1.

Theorem 32. The problem MaxSat-UCF-A(ϕ̂m) has a proper kernel with at most b(7+3
√

5)kc
variables.

Proof. Consider an instance (F = (V,C), k) of the problem. By Theorem 29, there is an autarky
β : U → {true, false} which can be found by the polynomial algorithm of Lemma 34 such that
sat(F) = sat(F \ FU) + w(FU) and F \ FU is an expanding formula.

If U = V , then sat(F) = w(F), and the kernel is trivial.
Now suppose that U 6= V and denote F \ FU by F ′ = (V ′, C ′). We want to choose an integral

parameter k′ such that (F, k) is a yes-instance of the problem if and only if (F ′, k′) is a yes-instance
of the problem. It is enough for k′ to satisfy sat(F)−bϕ̂w(F)c− k = sat(F ′)−bϕ̂w(F ′)c− k′. By
Theorem 29, sat(F ′) = sat(F) − w(F) + w(F ′). Therefore, we can set k′ = k − w(F) + w(F ′) +

bϕ̂w(F)c − bϕ̂w(F ′)c. Since w(F)−w(F ′) ≥ dϕ̂(w(F)−w(F ′))e ≥ bϕ̂w(F)c − bϕ̂w(F ′)c, we have
k′ ≤ k.

By Theorem 30, if k′ ≤ |V ′|(2−3ϕ̂)
2 , then F is a yes-instance of the problem. Otherwise,

|V ′| < 2k
2−3ϕ̂ = (7 + 3

√
5)k. Note that F ′ is not necessarily a kernel as w(F ′) is not necessarily

bounded by a function of k. However, if w(F ′) ≥ 22k/(2−3ϕ̂) then we can solve the instance (F ′, k′)

in time O(w(F ′)2) and, thus, we may assume that w(F ′) < 22k/(2−3ϕ̂), in which case, F ′ is the
required kernel.

Theorem 33. The problem SAT-A(m/2) has a proper kernel with at most 4k variables and
(2
√

5 + 4)k ≤ 8.473k clauses.

Proof. First, we reduce the instance to a UCF instance F = (V,C). As in Theorem 32, in poly-
nomial time, we can obtain an expanding formula F ′ = (V ′, C ′). Again, we want to choose a
parameter k′ such that (F, k) is a yes-instance if and only if (F ′, k′) is a yes-instance.

It is enough for k′ to satisfy sat(F)− bw(F)/2c − k = sat(F ′)− bw(F ′)/2c − k′. By Theorem
29, sat(F ′) = sat(F)− w(F) + w(F ′). Therefore, we can set k′ = k − dw(F)/2e+ dw(F ′)/2e. As
w(F ′) ≤ w(F), we have k′ ≤ k.

85

By Theorem 30, there is a truth assignment for F ′ with weight at least ϕ̂w(F ′) + |V ′|(2−3ϕ̂)
2 .

Hence, if k′ ≤ (ϕ̂− 1/2)w(F ′) + |V ′|(2−3ϕ̂)
2 , the instance is a yes-instance. Otherwise,

k′ − |V
′|(2− 3ϕ̂)

2
> (ϕ̂− 1

2
)w(F ′). (8.1)

The weaker bound k′ > (ϕ̂− 1
2)w(F ′) is enough to give us the claimed bound on the total weight

(i.e., the number) of clauses. To bound the number of variables, note that since F ′ is expanding,
we can satisfy at least |V ′| clauses. Thus, if w(F ′)/2 + k′ ≤ |V ′|, the instance is a yes-instance.
Otherwise, w(F ′)/2 + k′ > |V ′| and

2(ϕ̂− 1

2
)(|V ′| − k′) < (ϕ̂− 1

2
)w(F ′). (8.2)

Combining Inequalities (8.1) and (8.2), we obtain:

2(ϕ̂− 1

2
)(|V ′| − k′) < (ϕ̂− 1

2
)w(F ′) < k′ − |V

′|(2− 3ϕ̂)

2
.

This simplifies to |V ′| < 4k′ ≤ 4k, giving the required kernel.

86

Part III

Parameterizations above
Poljak-Turzík Bound

87

Chapter 9

Acyclic Subgraph

9.1 Introduction

In this section we focus on the Acyclic Subgraph above Poljak-Turzík Bound problem:

Acyclic Subgraph above Poljak-Turzík Bound (ASAPT)

Instance: An oriented connected graph G with n vertices and m arcs.

Parameter: The integer k.

Question: Does G contain an acyclic subgraph with at least m
2 + n−1

4 + k
4 arcs?

In doing so, we build on the method introduced in [29], showing that the methodology can be
modified and applied to other families of graphs.

In a nutshell, the method uses both two-way reduction rules (i.e., rules reducing an instance
to an equivalent one) and one-way reduction rules (in such a rule if the reduced instance is a
Yes-instance, then the original instance is also a Yes-instance) to transform the input instance
to a trivial graph. If the reduction rules do not allow us to conclude that the input instance is a
Yes-instance, then the input instance has a relatively “regular” structure that can be used to solve
the problem by a fixed-parameter dynamic programming algorithm. To establish the reduction
rules and to show their “completeness”, a structural result on undirected graphs is used, such as
Lemma 47 in our case or Lemma 3 in [29].

Whilst our underlying approach is the same as [29], the proofs used are different, making use
of the specific structure of each problem. In particular, the “regular” structure obtained here is
rather different, and the dynamic programming algorithm and kernel proof are also completely
different, other than the fact that in both papers the proofs are based on the “regular” structure
of the graph. Finally, note that whilst the kernel obtained in [29] has O(k5) vertices, we obtain a
kernel with just O(k2) vertices and O(k2) arcs.

88

In the next section, we obtain two basic results on oriented graphs. Two-way and one-way
reduction rules are introduced in Sections 9.3 and 9.4, respectively. Fixed-parameter tractability
of ASAPT is proved in Section 9.5. Section 9.6 is devoted to proving the existence of a polynomial
kernel.

The maximum number of arcs in an acyclic subgraph of D will be denoted by a(D). Let
γ(D) = m

2 + n−c
4 , where c is the number of connected components of D. By the Poljak-Turzík

bound, we have
a(G) ≥ γ(G) (9.1)

for every oriented graph G. A tournament is an oriented graph obtained from a complete graph
by orienting its edges arbitrarily. A directed p-cycle is a directed cycle with p arcs.

9.2 Basic Results on Oriented Graphs

In our arguments we use the following simple correspondence between acyclic digraphs and or-
derings of vertices in digraphs. Let H be an acyclic spanning subgraph of a digraph D. It is
well-known [7] and easy to see that there is an ordering x1, . . . , xn of vertices of D such that if
xixj is an arc of H then i < j. On the other hand, any ordering x1, . . . , xn of vertices of a di-
graph D = (V,A) leads to an acyclic spanning subgraph of D: consider the subgraph induced by
{xixj : xixj ∈ A, i < j}. As we study maximum-size acyclic subgraphs, we may restrict ourselves
to acyclic spanning subgraphs. Thus, we may use interchangeably the notions of acyclic spanning
subgraphs and vertex orderings.

There are some known lower bounds on a(T) for tournaments T on n vertices, see, e.g., [101]
and references therein. We show the following useful bound which we were unable to find in the
literature.

Lemma 40. For a tournament T on n vertices with m =
(
n
2

)
arcs, we can, in polynomial time, find

an acyclic subgraph with at least m2 + 3n
4 − 1 = γ(T) + 2n−3

4 arcs, if n is even, or m
2 + 3(n−1)

4 − 1 =

γ(T) + 2n−6
4 arcs, if n is odd.

Proof. We prove the lemma by induction. The claim can easily be checked for n = 1 and n = 2

and we may assume that n ≥ 3.
Consider first the case when n is even. Suppose that there exists a vertex x such that d+(x) ≥

n
2 + 1. Consider the tournament T ′ = T − x, with m′ = m− (n− 1) arcs and n′ = n− 1 vertices.
By induction, there is an ordering on T ′ that produces an acyclic spanning subgraph H ′ of T ′ such
that

a(H ′) ≥ m′

2
+

3(n′ − 1)

4
− 1 =

m− (n− 1)

2
+

3(n− 2)

4
− 1 =

m

2
+

3n

4
− n

2
− 2.

Now add x to the beginning of this ordering. This produces an acyclic spanning subgraph H of T
such that a(H) ≥ a(H ′) + n

2 + 1 ≥ m
2 + 3n

4 − 1.

89

If there is a vertex x such that d−(x) ≥ n
2 + 1, the same argument applies, but x is added to

the end of the ordering.
Otherwise, for every vertex x of T , d+(x) ∈ {n2 − 1, n2 }. Moreover, by considering the sum

of out-degrees, exactly half the vertices have out-degree n
2 . Hence, if n ≥ 4, there are at least

two vertices with out-degree n
2 . Let x and y be two such vertices, and suppose, without loss of

generality, that there is an arc from x to y. Now consider T ′ = T −{x, y} with m′ = m− (2n− 3)

edges and n′ = n−2 vertices. By induction, there is an ordering on the vertices of T ′ that produces
an acyclic subgraph with at least m

′

2 + 3n′

4 −1 = m
2 + 3n

4 −n−1 arcs. Place x and y at the beginning
of this ordering, with x occurring before y. Then this will add all the arcs from x and y to the
acyclic subgraph. Thus, a(T) ≥ m

2 + 3n
4 − n− 1 + n = m

2 + 3n
4 − 1.

Now suppose that n is odd. Let x be any vertex in T , and let T ′ = T − x. By induction,
there is an ordering on T ′ that produces an acyclic subgraph with at least m′

2 + 3n′

4 − 1 arcs,
where n′ = n− 1 is the number of vertices and m′ = m− (n− 1) is the number of arcs in T ′. By
placing x either at the beginning or end of this ordering, we may add at least (n−1)/2 arcs. Thus,
a(T) ≥ m−(n−1)

2 + 3(n−1)
4 − 1 + n−1

2 = m
2 + 3(n−1)

4 − 1.

Lemma 41. Let S be a nonempty set of vertices of an oriented graph G such that both G − S
and G[S] are connected. If a(G − S) ≥ γ(G − S) + k′

4 and a(G[S]) ≥ γ(G[S]) + k′′

4 , then a(G) ≥
γ(G) + k′+k′′−1

4 + |d+(S)−d−(S)|
2 . In particular, a(G) ≥ γ(G) + k′+k′′−1

4 if |E(S, V (G) \ S)| is even
and a(G) ≥ γ(G) + k′+k′′+1

4 , if |E(S, V (G) \ S)| is odd.

Proof. Form an acyclic subgraph on G as follows. Assume without loss of generality that d+(S) ≥
d−(S). Pick the arcs leaving S together with the arcs of the acyclic subgraphs in G− S and G[S].
This forms an acyclic subgraph H. Let m = m′ + m′′ + m̄ and n = n′ + n′′, where G − S has
m′ arcs and n′ vertices, G[S] has m′′ arcs and n′′ vertices and m̄ = d+(S) + d−(S). The acyclic
subgraph H has at least γ(G− S) + k′

4 + γ(G[S]) + k′′

4 + m̄
2 + d+(S)−d−(S)

2 = m′+m′′+m̄
2 + n′−1

4 +
n′′−1

4 + k′

4 + k′′

4 + d+(S)−d−(S)
2 = γ(G) + k′+k′′−1

4 + d+(S)−d−(S)
2 arcs, as required.

9.3 Two-way Reduction Rules

In the rest of this chapter, G stands for an arbitrary connected oriented graph with n vertices and
m arcs. We initially apply two ‘two-way’ reduction rules to (G, k) to form a new instance (G′, k)

such that (G′, k) is a Yes-instance of ASAPT if and only if (G, k) is a Yes-instance of ASAPT

(i.e., the value of the parameter remains unchanged). We denote the number of vertices and arcs
in G′ by n′ and m′, respectively.

Reduction Rule 9.1. Let x be a vertex and S a set of two vertices such that G[S] is a component
of G− x and G[S ∪ {x}] is a directed 3-cycle. Then G′ := G− S.

Lemma 42. If (G′, k) is an instance obtained from (G, k) by an application of Rule 9.1, then G′

is connected, and (G′, k) is a Yes-instance of ASAPT if and only if (G, k) is a Yes-instance of
ASAPT.

90

Proof. Any two components of G′ − x will be connected by x and so G′ is connected. Since
a(G′) = a(G) − 2, m′ = m − 3 and n′ = n − 2, we have a(G) ≥ m

2 + n−1
4 + k

4 if and only if
a(G′) ≥ m′

2 + n′−1
4 + k

4 .

Reduction Rule 9.2. Let a, b, c, d, e be five vertices in G such that G[a, b, c] and G[c, d, e] are
directed 3-cycles, G[a, b, c, d, e] = G[a, b, c] ∪G[c, d, e] and a, e are the only vertices in {a, b, c, d, e}
that are adjacent to a vertex in G − {a, b, c, d, e}. To obtain G′ from G, delete b, c and d, add a
new vertex x and three arcs such that G[a, x, e] is a directed 3-cycle.

Lemma 43. If (G′, k) is an instance obtained from (G, k) by an application of Rule 9.2, then G′

is connected, and (G′, k) is a Yes-instance of ASAPT if and only if (G, k) is a Yes-instance of
ASAPT.

Proof. Clearly, G′ is connected. Note that a(G′) = a(G) − 2, m′ = m − 3 and n′ = n − 2. Thus,
we have a(G) ≥ m

2 + n−1
4 + k

4 if and only if a(G′) ≥ m′

2 + n′−1
4 + k

4 .

9.4 One-way Reduction Rules

Recall that G stands for an arbitrary connected oriented graph with n vertices and m arcs. We
will apply reduction rules transforming an instance (G, k) of ASAPT into a new instance (G′, k′),
where G′ is an oriented graph with n′ vertices andm′ arcs, and k′ is the new value of the parameter.
We will see that for the reduction rules of this section the following property will hold: if (G′, k′)

is a Yes-instance then (G, k) is a Yes-instance, but not necessarily vice versa. Thus, the rules of
this section are called one-way reduction rules.

Reduction Rule 9.3. Let x be a vertex such that G − x is connected, and d+(x) 6= d−(x). To
obtain (G′, k′) remove x from G and reduce k by 2|d+(x)− d−(x)| − 1.

Lemma 44. If (G′, k′) is an instance reduced from (G, k) by an application of Rule 9.3, then G′

is connected, and if (G′, k′) is a Yes-instance then (G, k) is a Yes-instance.

Proof. Let (G′, k′) be a Yes-instance. Then by Lemma 41 with S = {x} and k′′ = 0, a(G) ≥
γ(G) + k′−1

4 + |d+(S)−d−(S)|
2 = γ(G) + k

4 , as required.

Reduction Rule 9.4. Let S be a set of vertices such that G−S is connected, G[S] is a tournament,
and |S| ≥ 4. To obtain (G′, k′), remove S from G and reduce k by 2|S|− 4 if S is even, or 2|S|− 7

if |S| is odd.

Lemma 45. If (G′, k′) is an instance obtained from (G, k) by an application of Rule 9.4, then G′

is connected, and if (G′, k′) is a Yes-instance then (G, k) is a Yes-instance.

Proof. Suppose |S| is even. By Lemma 40, a(G[S]) ≥ γ(G[S]) + 2|S|−3
4 . By Lemma 41, if a(G′) ≥

γ(G′) + (k − 2|S|+ 4)/4, then a(G) ≥ γ(G) + (k−2|S|+4)+(2|S|−3)−1
4 = γ(G) + k

4 , as required.
A similar argument applies in the case when |S| is odd, except the bound from Lemma 40 is

γ(G[S]) + 2|S|−6
4 , and so k′ = k − (2|S| − 7) is applied.

91

Reduction Rule 9.5. Let S be a set of three vertices such that the underlying graph of G[S] is
isomorphic to P3, and G−S is connected. To obtain (G′, k′), remove S from G and reduce k by 1.

Lemma 46. If (G′, k′) is an instance obtained from (G, k) by an application of Rule 9.5, then G′

is connected, and if (G′, k′) is a Yes-instance then (G, k) is a Yes-instance.

Proof. Observe that a(G[S]) = γ(G[S]) + 1
2 . Hence, by Lemma 41, if a(G′) ≥ γ(G′) + (k − 1)/4,

then a(G) ≥ γ(G) + k/4.

9.5 Fixed-Parameter Tractability of ASAPT

The next lemma follows immediately from a nontrivial structural result of Crowston et al. (Lemma
3 in [29]).

Lemma 47. Given any connected undirected graph H, at least one of the following properties
holds:

A There exist v ∈ V (H) and X ⊆ V (H) such that X is a connected component of H − v and X
is a clique;

B There exist a, b, c ∈ V (H) such that H[{a, b, c}] is isomorphic to P3 and H−{a, b, c} is connected;

C There exist x, y ∈ V (H) such that {x, y} /∈ E(H), H − {x, y} is disconnected, and for all
connected components X of H−{x, y}, except possibly one, X ∪{x} and X ∪{y} are cliques.

Lemma 48. For any connected oriented graph G with at least one edge, one of Rules 9.1, 9.3,
9.4, 9.5 applies.

Proof. If there is a vertex x ∈ X such that G − x is connected and d+(x) 6= d−(x) (we will call
such a case an unbalanced case), then Rule 9.3 applies. Thus, assume that for each x ∈ X such
that G− x is connected we have d+(x) = d−(x).

Consider the case when property A holds. If |X| ≥ 4, Rule 9.4 applies on S = X. If |X| = 3,
there has to be exactly one arc between X and v and G[X] is a directed 3-cycle as otherwise we
have an unbalanced case. Let x ∈ X be the endpoint of this arc in X. Then Rule 9.1 applies with
S = X\{x}. If |X| = 2, then G[X ∪{v}] is a directed 3-cycle (as otherwise we have an unbalanced
case) and so Rule 9.1 applies. We cannot have |X| = 1 as this is an unbalanced case.

If property B holds, then Rule 9.5 can be applied to the path P3 formed by a, b, c in the
underlying graph of G.

Consider the case when property C holds. We may assume without loss of generality that the
non-tournament component is adjacent to y.

Consider the subcase when G − {x, y} has two connected components, X1 and X2, that are
tournaments. Let x1 ∈ X1, x2 ∈ X2 and observe that the subgraph induced by x1, x, x2 forms a
P3 in the underlying graph of G and G− {x1, x, x2} is connected, and so Rule 9.5 applies.

92

Now consider the subcase when G − {x, y} has only one connected component X that is a
tournament. If |X| ≥ 3, then X ∪ {x} is a tournament with least four vertices, and so Rule 9.4
applies. If |X| = 2, then let X = {a, b}. Observe that a is adjacent to three vertices, b, x, y, and
so we have an unbalanced case to which Rule 9.3 applies. Finally, X = {a} is a singleton, then
observe that x, a, y form a P3 in the underlying graph of G and G− {x, a, y} is connected, and so
Rule 9.5 applies.

In this chapter, we consider the one-vertex undirected graph as 2-connected. A maximal 2-
connected induced subgraph of an undirected graph is called a block. An undirected graph H is
called a forest of cliques if each block of H is a clique. A subgraph B of an oriented graph G is a
block if UN(B) is a block in UN(G). An oriented graph G is a forest of cliques if UN(G) is a forest
of cliques. A connected graph H that is a forest of cliques is known as a tree of cliques.

Lemma 49. Given a connected oriented graph G and integer k, we can either show that (G, k) is
a Yes-instance of ASAPT, or find a set U of at most 3k vertices such that G − U is a forest of
cliques with the following properties:

1. Every block in G− U contains at most three vertices;

2. Every block X in G− U with |X| = 3 induces a directed 3-cycle in G;

3. Every connected component in G− U has at most one block X with |X| = 2 vertices;

4. There is at most one block in G−U with one vertex (i.e., there is at most one isolated vertex
in G− U).

Proof. Apply Rules 9.1, 9.3, 9.4, 9.5 exhaustively, and let U be the set of vertices removed by Rules
9.3, 9.4, and 9.5 (but not Rule 9.1). If we reduce to an instance (G′′, k′′) with k′′ ≤ 0, then by
Lemmas 42, 44, 45 and 46, (G, k) is a Yes-instance and we may return Yes. Now assume that, in
the completely reduced instance (G′′, k′′), k′′ > 0. We will prove that |U | ≤ 3k and G−U satisfies
the four properties of the lemma.

Observe that each time k is decreased by a positive integer q, at most 3q vertices are added
to U . Thus, |U | ≤ 3k. The rest of our proof is by induction. Observe that, by Lemma 48, for
the completely reduced instance (G′′, k′′) either G′′ = ∅ or G′′ consists of a single vertex. Thus,
G′′ − U satisfies the four properties of the lemma, which forms the basis of our induction.

For the induction step, consider an instance (G′′, k′′) obtained from the previous instance
(G′, k′) by the application of a reduction rule. By the induction hypothesis, G′′ − U satisfies the
four properties of the lemma. In the application of each of Rules 9.3, 9.4 and 9.5, the vertices
deleted are added to U . Hence G′′ − U = G′ − U and we are done unless G′′ is obtained from
G′ by an application of Rule 9.1. Recall that in Rule 9.1 we delete a set S such that G[S ∪ {x}]
forms a directed 3-cycle. We do not add S to U . If x ∈ G′′ − U , then in G′ − U , S ∪ {x} forms a
block of size 3 that is a directed 3-cycle. If x /∈ G′′ − U , then in G′ − U , S forms a new connected
component with one block S with |S| = 2 vertices. Thus, G′ − U satisfies the four properties.

93

Theorem 34. There is an algorithm for ASAPT of runtime O((3k)!nO(1)).

Proof. We may assume that for a connected oriented graph G we have the second alternative in
the proof of Lemma 49, i.e., we are also given the set U of at most 3k vertices satisfying the
four properties of Lemma 49. Consider an algorithm which generates all orderings of U , in time
O((3k)!) as |U | ≤ 3k. An ordering u1, u2, ..., u|U | of U means that in the acyclic subgraph of G we
are constructing, we keep only arcs of G[U] of the form uiuj , i < j. For each ordering we perform
the following polynomial-time dynamic programming procedure.

For each vertex x ∈ G−U , we define a vector (x0, . . . , xt+1). Initially, set xi to be the number
of vertices uj ∈ U with an arc from uj to x if j ≤ i, or an arc from x to uj if i < j. Note that xi
is the number of arcs between x and U in the acyclic subgraph under the assumption that in the
ordering of the vertices of G, x is between ui and ui+1.

Given v, w ∈ V (G− U) and an ordering of U ∪ {v, w}, an arc vw is satisfiable if there is no up
such that v is after up and w is before up, for some p ∈ [|U |]. Let T be a set of arcs and let V (T)

be the set of end-vertices of T . For an ordering U ∪ V (T), T is satisfiable if each arc is satisfiable,
and the set T induces an acyclic subgraph.

If G − U contains a block S that is itself a connected component, consider S and arbitrarily
select a vertex x of S. Otherwise, find a block S in G−U with only one vertex x adjacent to other
vertices in G− U (such a block exists as every block including an end-vertex of a longest path in
UN(G) − U is such a block). Without loss of generality, assume that S has three vertices x, y, z
(the case |S| = 2 can be considered similarly).

For each i ∈ {0, . . . , t+ 1}, we let αi be the maximum size of a set of satisfiable arcs between S
and U under the restriction that x lies between ui and ui+1. Observe that αi = maxj,h(xi + yj +

zh + β(i, j, h)), where β(i, j, h) is the maximum size of a set of satisfiable arcs in G[S] under the
restriction that x lies between ui and ui+1, y lies between uj and uj+1, and z lies between uh and
uh+1. Now delete S\{x} from G, and set xi = αi for each i.

Continue until each component of G − U consists of a single vertex. Let x be such a single
vertex, let G∗ be the original graph G (i.e., given as input to our algorithm), and let X be the
component of G∗ − U containing x. By construction, xi is the maximum number of satisfiable
arcs from arcs in X and arcs between X and U in G∗, under the assumption x is between ui and
ui+1. Since each vertex x represents a separate component, the maximum acyclic subgraph in G
has Q+

∑
x∈V (G−U)(maxi xi) arcs, where Q is the number of arcs uiuj in G[U] such that i < j.

Since the dynamic programming algorithm runs in time polynomial in n, running the algorithm
for each permutation of U gives a runtime of O((3k)!nO(1)).

9.6 Polynomial Kernel

Lemma 50. Let T be a directed 3-cycle, with vertices labeled 0 or 1. Then there exists an acyclic
subgraph of T with two arcs, such that there is no arc from a vertex labeled 1 to a vertex labeled 0.

94

Proof. Let V (T) = {a, b, c} and assume that a, b are labeled 0. Since T is a cycle, either the arc ac
or bc exists. This arc, together with the arc between a and b, form the required acyclic subgraph.
A similar argument holds when two vertices in T are labeled 1.

Recall that U was introduced in Lemma 49 as the set of vertices removed by Rules 9.3, 9.4,
and 9.5. We say that a set {u, a, b} of vertices is a dangerous triangle if u ∈ U , G[a, b] is a block
in G− U , and G[u, a, b] is a directed 3-cycle.

Lemma 51. For a vertex u ∈ U , let tu denote the number of neighbors of u in G − U which do
not appear in a dangerous triangle containing u. If tu ≥ 4k, then we have a Yes-instance.

Proof. Let S denote the subgraph of G − U consisting of all components C of G − U which have
a neighbor of u. For each component C of S, let tu(C) denote the number of neighbors of u in C
which do not appear in a dangerous triangle containing u.

For each vertex x ∈ G− U , label it 0 if there exists an arc from x to u, or 1 if there is an arc
from u to x. Recall from Lemma 49 each connected component in G − U has at most one block
X = {x, y} with |X| = 2. If one vertex x is labeled, assign y the same label. Finally, assign label
1 to any remaining unlabeled vertices in G− U .

We will now construct an acyclic subgraph H ′ of G−U such that there is no arc from a vertex
labeled 1 to a vertex labeled 0. We then extend this to an acyclic subgraph H containing all the
arcs between u and S.

Consider each block X in G − U . If |X| = 3, and X is a directed 3-cycle, then by Lemma 50
there is an acyclic subgraph of X with two arcs. Add this to H ′. Now suppose |X| = 2, and let
a, b be the vertices of X with an arc from a to b. If G[X ∪ {u}] is a dangerous triangle, then a

is labeled 1 and b is labeled 0. In this case we do not include the arc ab in H ′. However, H will
include the two arcs between X and u, which do not count towards tu(C). If G[X ∪ {u}] is not a
dangerous triangle, then we include the arc ab in the acyclic subgraph H ′. Finally, let H be the
acyclic subgraph formed by adding all arcs between u and S to H ′.

Observe that for each component C of S, if G[C ∪ {u}] contains no dangerous triangle then H
contains at least γ(C) arcs in G[C] (by the construction of H ′) and tu(C) arcs between C and u
(since all arcs between S and u are in H), and γ(C ∪{u}) := γ(G[C ∪{u}]) = γ(C)+ tu(C)

2 + 1
4 . So

H contains at least γ(C ∪ {u}) + tu(C)
2 − 1

4 arcs. Since G[C ∪ {u}] contains no dangerous triangle
but C is adjacent to u, tu(C) ≥ 1, and so H contains at least γ(C ∪ {u}) + tu(C)

4 arcs.
If G[C ∪ {u}] contains a dangerous triangle then H contains at least γ(C) − 3

4 arcs in G[C]

(this can be seen by contracting the arc in C appearing in the dangerous triangle, and observing
that in the resulting component C ′, H has at least γ(C ′) arcs) and tu(C) + 2 arcs between C and
u, and γ(C ∪ {u}) = γ(C) + tu(C)+2

2 + 1
4 . Thus, H contains at least γ(C ∪ {u}) + tu(C)

2 arcs.
Let C1, C2, . . . , Cq be the components of S. Observe that γ(S ∪ {u}) =

∑q
i=1 γ(Ci ∪ {u}).

Then by combining the acyclic subgraphs for each G[Ci ∪ {u}], we have that a(G[S ∪ {u}]) ≥∑q
i=1(γ(Ci ∪ {u}) + tu(Ci)

4) = γ(S ∪ {u}) + tu
4 .

95

Finally, observe G − S − u has at most 3k component, since each component must contain a
vertex of U . By repeated application of Lemma 41, this implies there is an acyclic subgraph of G
with at least γ(G) + tu−3k

4 arcs. Hence, if tu ≥ 4k, we have a Yes-instance.

Using the above lemma and the fact that |U | ≤ 3k (by Lemma 49), we have that unless (G, k)

is a Yes-instance, there are at most 12k2 vertices in G−U that are adjacent to a vertex in U and
do not appear in a dangerous triangle with that vertex.

Lemma 52. Let s be the number of components in G − U in which every neighbor x of a vertex
u ∈ U appears in a dangerous triangle together with u. If s ≥ k, we have a Yes-instance.

Proof. By Lemma 49 such a component Ci contains at most one block of size 2. Since only blocks
of size 2 can have vertices in dangerous triangles, only the vertices from this block in Ci may be
adjacent to a vertex in U . But since G is reduced by Rule 9.1, component Ci must consist of only
this block. Moreover, this block must appear in at least two dangerous triangles. Let ai, bi be the
vertices of Ci, i = 1, . . . , s and let C = ∪si=1{ai, bi}. Let aibi be an arc for each i = 1, . . . , s and
note that every arc of G containing ai (bi, respectively) is either aibi or is from U to ai (from bi

to U , respectively). Let δi be the number of dangerous triangles containing ai and bi; note that
δi ≥ 2.

By (9.1), G− C has an acyclic subgraph H with at least γ(G− C) arcs. Observe that we can
add to H all arcs entering each ai and leaving each bi, i = 1, . . . , s, and obtain an acyclic subgraph
H∗ of G. We will prove that H∗ contains enough arcs to show that (G, k) is a Yes-instance.
Observe that G−C has at most |U | ≤ 3k components and G[C] has 2s vertices and 2

∑s
i=1 δi + s

arcs, and recall that each δi ≥ 2. Thus, the number of arcs in H∗ is at least

γ(G− C) + 2

s∑
i=1

δi ≥
m− 2

∑s
i=1 δi − s
2

+
n− 2s− 3k

4
+ 2

s∑
i=1

δi

≥ γ(G) +

s∑
i=1

δi − s−
3k

4
≥ γ(G) +

k

4
.

Let H be an undirected forest of cliques, where each block contains at most three vertices. A
block B of H is called a leaf-block if there is at most one vertex of B belonging to another block of
H. We denote the set of leaf-blocks of H by L(H). A block B of H is called a path-block if there
is another block B′ of H such that B and B′ have a common vertex c which belongs only to these
two blocks, at most one vertex of B belongs to a block other than B′, and at most one vertex of
B′ belongs to a block other than B. We denote the set of path-blocks which are not leaf-blocks by
P(H).

Lemma 53. For a forest of cliques H, with each block of size at most three, if l = |L(H)| and
p = |P(H)| then |V (H)| ≤ 8l + 2p.

96

Proof. We prove the claim by induction on the number of blocks in H. The case when H has only
one block is trivial. Thus, we may assume that H has at least two blocks and H is connected. Let
B be a leaf-block of H, and obtain subgraph H ′ by deleting the vertices of B not belonging to
another block. Note that |V (H)| ≤ |V (H ′)|+ 2.

Assume that H ′ has a leaf-block B′ which is not a leaf-block in H. Observe that B′ ∈ P(H)

and by induction |V (H)| ≤ 2 + 8l + 2(p− 1) ≤ 8l + 2p.
Now assume that |L(H ′)| = l− 1. Observe that removal of B from H may lead to a neighbour

of B, B′, becoming a path-block in H ′, together with at most two blocks neighbouring B′. Thus,
at most three blocks may become path-blocks in H ′. By the induction hypothesis, |V (H ′)| ≤
8(l − 1) + 2(p+ 3). Hence, |V (H)| ≤ 8(l − 1) + 2(p+ 3) + 2 ≤ 8l + 2p.

Theorem 35. Acyclic Subgraph above Poljak-Turzík Bound (ASAPT) has a kernel with
O(k2) vertices and O(k2) arcs.

Proof. Consider an instance of (G∗, k) of ASAPT. Apply Rules 9.1 and 9.2 to obtain an instance
(G, k) reduced by Rules 9.1 and 9.2.

Assume that (G, k) is reduced by Rules 9.1 and 9.2 and it is a No-instance.
Now we will apply all reduction rules but Rule 9.2. As a result, we will obtain the set U of

vertices deleted in Rules 9.3, 9.4, and 9.5. By Lemma 49, |U | ≤ 3k and, by Lemma 51, each u ∈ U
has at most 4k neighbors that do not appear in a dangerous triangle with u. By Lemma 52, there
are at most 2k vertices in G − U that appear in a dangerous triangle with every neighbor in U

(there are at most k components, and each component has two vertices). Hence the number of
neighbors in G− U of vertices of U is at most 4k|U |+ 2k = 12k2 + 2k.

Now we will adopt the terminology and notation of Lemma 53 (we extend it from UN(G− U)

to G− U as we have done earlier). Consider a leaf-block B. Since G is reduced by Rules 9.1 and
9.3, B must contain a vertex v adjacent to U , and furthermore, v is not contained in any other
block. Hence, |L(G− U)| ≤ 12k2 + 2k.

Next, we observe that Rule 9.2 implies there do not exist two adjacent 3-vertex blocks B =

{a, b, c}, B′ = {c, d, e} such that only a and e belong to other blocks, unless one of b, c, d has a
neighbor in U . Observe that each connected component of G − U contains at most one 2-vertex
block, so there are at most 12k2 + 2k 2-vertex path blocks. Each 2-vertex path block is adjacent
to at most two 3-vertex path blocks. Hence, |P(G − U)| ≤ 6(12k2 + 2k). So, by Lemma 53,
|V (G− U)| ≤ 8(12k2 + 2k) + 2 · 6(12k2 + 2k) = O(k2), and so |V (G)| ≤ O(k2) + 3k = O(k2).

Finally, we showG has O(k2) arcs. There are at most |U |2 arcs in U . BetweenG−U and U there
are at most (4k+2k)|U | arcs. Finally, observe that G−U has at most |V (G−U)| ≤ 20(12k2 +2k)

blocks, and each block contains at most 3 arcs. Hence, |A(G)| ≤ |U |2 + 60(12k2 + 2k) ≤ 9k2 +

60(12k2 + 2k) = O(k2).
Thus, either (G, k) is a Yes-instance, or (G, k) forms a kernel with O(k2) vertices and O(k2)

arcs.

97

Chapter 10

Signed MaxCut

10.1 Introduction

In this chapter we consider the problem of finding a balanced subgraph in a signed graph, param-
eterized above the Poljak-Turzík Bound:

Signed Max Cut ATLB

Instance: A connected signed graph G with n vertices and m edges.

Parameter: The integer k.

Question: Does G contain a balanced subgraph with at least m
2 + n−1

4 + k
4 edges?

10.2 Terminology, Notation and Preliminaries

A cycle C in G is called positive (negative) if the number of negative edges in C is even (odd)1.
The following characterization of balanced graphs is well-known.

Theorem 36. [59] A signed graph G is balanced if and only if every cycle in G is positive.

Let G = (V,E) be a signed graph. For a subset W of V , the W -switch of G is the signed graph
GW obtained from G by changing the signs of the edges betweenW and V \W . Note that a signed
graph G is balanced if and only if there exists a subset W of V (W may coincide with V) such
that GW has no negative edges. Indeed, if GW has no negative edges, G is (W,V \W)-balanced.
If G is (V1, V2)-balanced, then GV1 has no negative edges.

Deciding whether a signed graph is balanced is polynomial-time solvable.
1To obtain the sign of C simply compute the product of the signs of its edges.

98

Theorem 37. [44] Let G = (V,E) be a signed graph. Deciding whether G is balanced is polynomial-
time solvable. Moreover, if G is balanced then, in polynomial time, we can find a subset W of V
such that GW has no negative edges.

For a signed graph G, β(G) will denote the maximum number of edges in a balanced subgraph
of G. Furthermore, for a signed graph G = (V,E), pt(G) denotes the Poljak-Turzík bound:
β(G) ≥ pt(G). If G is connected, then pt(G) = |E(G)|

2 + |V (G)|−1
4 , and if G has t components, then

pt(G) = |E(G)|
2 + |V (G)|−t

4 . It is possible to find, in polynomial time, a balanced subgraph of G of
size at least pt(G) [96].

The following easy property will be very useful in later proofs. It follows from Theorem 36 by
observing that for a signed graph the Poljak-Turzík bound does not depend on the signs of the
edges and that, for any cycle in G, the sign of the cycle in G and in GW is the same.

Corollary 4. Let G = (V,E) be a signed graph and let W ⊂ V . Then pt(GW) = pt(G) and
β(GW) = β(G).

For a vertex set X in a graph G, G[X] denotes the subgraph of G induced by X. For disjoint
vertex sets X,Y of graph G, E(X,Y) denotes the set of edges between X and Y . A bridge in a
graph is an edge that, if deleted, increases the number of connected components of the graph. A
block of a graph is either a maximal 2-connected subgraph or a connected component containing
only one vertex.

For an edge set F of a signed graph G, F+ and F− denote the set of positive and negative edges
of F , respectively. For a signed graph G = (V,E), the dual of G is the signed graph Ḡ = (V, Ē),
where Ē+ = E− and Ē− = E+. A cycle in G is dually positive (dually negative) if the same cycle
in Ḡ is positive (negative).

For a graph G = (V,E), the neighborhood NG(W) ofW ⊆ V is defined as {v ∈ V : vw ∈ E,w ∈
W} \W ; the vertices in NG(W) are called neighbors of W . If G is a signed graph, the positive
neighbors of W ⊆ V are the neighbors of W in G+ = (V,E+); the set of positive neighbors is
denoted N+

G (W). Similarly, for the negative neighbors and N−G (W).
The next theorem is the ‘dual’ of Theorem 36, in the sense that it is its equivalent formulation

on the dual of a graph.

Theorem 38. Let G = (V,E) be a signed graph. Then the dual graph Ḡ is balanced if and only if
G does not contain a dually negative cycle.

In the next sections, the notion of forest of cliques introduced in [29] plays a key role. A
connected graph is a tree of cliques if the vertices of every cycle induce a clique. A forest of cliques
is a graph whose components are trees of cliques. It follows from the definition that in a forest of
cliques any block is a clique.

Note that a forest of cliques is a chordal graph, i.e., a graph in which every cycle has a chord,
that is an edge between two vertices which are not adjacent in the cycle. The next lemma is a
characterization of chordal graphs which have a balanced dual. A triangle is a cycle with three
edges.

99

Corollary 5. Let G = (V,E) be a signed chordal graph. Then Ḡ is balanced if and only if G does
not contain a positive triangle.

Proof. If G contains a positive triangle, then, by Theorem 38, Ḡ is not balanced.
Now suppose that G is not balanced. By Theorem 38, G contains a dually negative cycle, i.e.,

a cycle with odd number of positive edges, but all triangles in G are negative by hypothesis. Let
C = v1v2 . . . vlv1 be a dually negative cycle of minimum length and note that l > 3 as a dually
negative triangle is positive. Since the graph is chordal, we can find three consecutive vertices of
C that form a triangle T . Suppose T = v1v2v3v1. Recall that T is negative. So, if both v1v2 and
v2v3 are positive edges (or negative edges), then v1v3 must be a negative edge; otherwise if one
of the two edges is positive and the other negative, then v1v3 is a positive edge. In both cases,
we conclude that C contains an odd number of positive edges if and only if C ′ = v1v3v4 . . . vlv1

does, which is a contradiction since we supposed l to be the minimum length of a dually negative
cycle.

Corollary 6. Let (G = (V,E), k) be an instance I of Signed Max Cut ATLB, let X ⊆ V (G)

and let G[X] be a chordal graph which does not contain a positive triangle. Then there exists a set
W ⊆ X, such that Ĩ = (GW , k) is equivalent to I, and GW [X] does not contain positive edges.

Proof. By Corollary 5, Ḡ[X] is balanced: hence, by definition of balanced graph, there exists
W ⊆ X such that ḠW [X] contains only positive edges, which means that GW [X] contains only
negative edges. By Corollary 4, (GW , k) is an instance equivalent to the original one.

Lastly, the next lemmas describe useful properties of Max Cut ATLB which still hold for
Signed Max Cut ATLB.

Lemma 54. Let G = (V,E) be a connected signed graph and let V = U ∪W such that U ∩W = ∅,
U 6= ∅ and W 6= ∅. Then β(G) ≥ β(G[U]) + β(G[W]) + 1

2 |E(U,W)|. In addition, if G[U] has c1
components, G[W] has c2 components, β(G[U]) ≥ pt(G[U]) + k1

4 and β(G[W]) ≥ pt(G[W]) + k2
4 ,

then β(G) ≥ pt(G) + k1+k2−(c1+c2−1)
4 .

Proof. Let H (F) be a balanced subgraph of G[U] (G[W]) with maximum number of edges and
let H (F) be (U1, U2)-balanced ((W1,W2)-balanced). Let E1 = E+(U1,W1) ∪ E+(U2,W2) ∪
E−(U1,W2) ∪ E−(U2,W1) and E2 = E(U,W) \ E1. Observe that both E(H) ∪ E(F) ∪ E1 and
E(H)∪E(F)∪E2 induce balanced subgraphs of G and the largest of them has at least β(G[U]) +

β(G[W]) + 1
2 |E(U,W)| edges.

Now, observe that pt(G) = pt(G[U]) + pt(G[W]) + 1
2 |E(U,W)| + c1+c2−1

4 . Hence β(G) ≥
pt(G) + k1+k2−(c1+c2−1)

4 .

Lemma 55. Let G = (V,E) be a signed graph, v ∈ V a cutvertex, Y a connected component of G−v
and G′ = G−Y . Then pt(G) = pt(G[V (Y) ∪ {v}])+pt(G′) and β(G) = β(G[V (Y)∪{v}])+β(G′).

100

Proof. The first equality is easily verified. Concerning the other, let H1 be a (V 1
1 , V

1
2)-balanced

subgraph of G[V (Y) ∪ {v}] of size β(G[V (Y) ∪ {v}]) and H2 be a (V 2
1 , V

2
2)-balanced subgraph of

G′ of size β(G′). One may assume that v ∈ V i1 for i = 1, 2. Therefore the balanced subgraph
H of G induced by V1 = V 1

1 ∪ V 2
1 and V2 = V 1

2 ∪ V 2
2 is of size β(G[V (Y) ∪ {v}]) + β(G′), which

means that β(G) ≥ β(G[V (Y) ∪ {v}]) + β(G′). On the other hand, any balanced subgraph H of
G induces balanced subgraphs of G[V (Y) ∪ {v}] and G′, which implies that β(G) ≤ β(G[V (Y) ∪
{v}]) + β(G′).

10.3 Fixed-Parameter Tractability

In this section, we prove that Signed Max Cut ATLB is FPT by designing an algorithm of
running time2O∗(8k). This algorithm is a generalization of the FPT algorithm obtained in [29] to
solve Max Cut ATLB. Given an instance (G = (V,E), k) of Max Cut ATLB, the algorithm
presented in [29] applies some reduction rules that either answer Yes for Max Cut ATLB or
produce a set S of at most 3k vertices such that G− S is a forest of cliques.

A key idea of this section is that it is possible to extend these rules such that we include into
S at least one vertex for every dually negative cycle of G. As a result, Theorem 38 ensures that
solving Signed Max Cut ATLB on G−S is equivalent to solving Max Cut ATLB. Therefore, it
is possible to guess a partial solution on S and then solve Max-Cut-with-Weighted-Vertices3

on G− S. Since a forest of cliques is a chordal graph, Corollary 5 implies that it is enough to put
into S at least one vertex for every positive triangle in G (instead of every dually negative cycle).
Our reduction rules are inspired by the rules used in [29], but our rules are more involved in order
to deal with positive triangles.

The rules apply to an instance (G, k) of Signed Max Cut ATLB and output an instance
(G′, k′) where G′ is obtained by deleting some vertices of G. In addition, the rules can mark some
of the deleted vertices: marked vertices will form the set S such that G− S is a forest of cliques.
Note that every time a rule marks some vertices, it also decreases the parameter k.

The instance (G′, k′) that the rules produce does not have to be equivalent to (G, k), but it has
the property that if it is a Yes-instance, then (G, k) is a Yes-instance too. For this reason, these
rules are called one-way reduction rules [20].

Note that in the description of the rules, G is a connected signed graph, and C and Y denote
connected components of a signed graph such that C is a clique which does not contain a positive
triangle.

Reduction Rule 10.1. If abca is a positive triangle such that G − {a, b, c} is connected, then
mark a, b, c, delete them and set k′ = k − 3.

2In the O∗-notation widely used in parameterized algorithmics, we omit not only constants, but also polynomial
factors.

3This problem is defined just before Theorem 40.

101

Reduction Rule 10.2. If abca is a positive triangle such that G − {a, b, c} has two connected
components C and Y , then mark a, b, c, delete them, delete C, and set k′ = k − 2.

Reduction Rule 10.3. Let C be a connected component of G− v for some vertex v ∈ G. If there
exist a, b ∈ V (C) such that G − {a, b} is connected and there is an edge av but no edge bv, then
mark a and b, delete them and set k′ = k − 2.

Reduction Rule 10.4. Let C be a connected component of G− v for some vertex v ∈ G. If there
exist a, b ∈ C such that G− {a, b} is connected and vabv is a positive triangle, then mark a and b,
delete them and set k′ = k − 4.

Reduction Rule 10.5. If there is a vertex v ∈ V (G) such that G− v has a connected component
C, G[V (C) ∪ {v}] is a clique in G, and G[V (C) ∪ {v}] does not contain a positive triangle, then
delete C and set k′ = k.

Reduction Rule 10.6. If a, b, c ∈ V (G), {ab, bc} ⊆ E(G) but ac /∈ E(G), and G − {a, b, c} is
connected, then mark a, b, c, delete them and set k′ = k − 1.

Reduction Rule 10.7. Let C, Y be the connected components of G − {v, b} for some vertices
v, b ∈ V (G) such that vb /∈ E(G). If G[V (C) ∪ {v}] and G[V (C) ∪ {b}] are cliques not containing
any positive triangles, then mark v and b, delete them, delete C and set k′ = k − 1.

Definition 2. A one-way reduction rule is safe if it does not transform a No-instance into a
Yes-instance.

The intuitive understanding of how a one-way reduction rule works is that it removes a portion
of the graph (while decreasing the parameter from k to k′) only if given any solution (i.e., a
balanced subgraph) on the rest of the graph there is a way to extend it to the removed portion
while always gaining an additional k − k′ over the Poljak-Turzík bound.

Lemma 56. Let G be a connected graph. If C is a clique of G such that G− C is connected and
if C contains a positive triangle, then either Rule 10.1 or Rule 10.2 applies.

Proof. Let abca be a positive triangle in C. Suppose Rule 10.1 does not apply. This means
that G − {a, b, c} is not connected: more precisely, G − {a, b, c} has two components G − C and
C − {a, b, c}. Note that C − {a, b, c} cannot contain a positive triangle, or otherwise Rule 10.1
would have applied. Therefore, Rule 10.2 applies.

Theorem 39. Rules 10.1-10.7 are safe.

Proof. Rule 10.1: Let abca be a positive triangle as in the description of Rule 10.1. Suppose
β(G′) ≥ pt(G′) + k′

4 , where k
′ = k − 3. Since abca is a positive triangle, by Lemma 54, we obtain

β(G) ≥ pt(G) + k′+3
4 = pt(G) + k

4 .

Rule 10.2: Let abca be a positive triangle such that G− {a, b, c} has two components C and Y .
Suppose β(Y) ≥ pt(Y) + k′

4 , where k
′ = k − 2. We know that β(C) ≥ pt(C), and so by Lemma

102

54 we obtain β(G[V (Y) ∪ V (C)]) ≥ pt(G[V (Y) ∪ V (C)]) + k′−1
4 . Since abca is a positive triangle,

using Lemma 54 again we obtain β(G) ≥ pt(G) + k′+4−2
4 = pt(G) + k

4 .

Rule 10.3: Let v, a, b and C be as in the description of Rule 10.3. Assume there exists a (V ′1 , V
′
2)-

balanced subgraphH ′ ofG′ with at least pt(G′)+ k′

4 edges, where k′ = k−2. By Corollary 6, we may
assume that all edges in C are negative. In addition, we may assume that the edge av is negative
(the other case is similar). Lastly, without loss of generality assume that v ∈ V ′1 . Now, consider
the balanced subgraph H of G induced by (V1, V2), where V1 = V ′1 ∪ {b} and V2 = V ′2 ∪ {a}.
Since |E(a, V1 ∩ V (C)) ∪ E(b, V2 ∩ V (C))| = |E(a, V2 ∩ V (C)) ∪ E(b, V1 ∩ V (C))|, it holds that
|E(H)| = |E(H ′)| + |E({a,b},V [C−{a,b}])|

2 + 2. Moreover, pt(G) = pt(G′) + |E({a,b},V [C−{a,b}])|
2 + 3

2 .
Thus, β(G) ≥ pt(G) + k′+2

4 = pt(G) + k
4 .

Rule 10.4: Let v, a, b and C be as in the description of Rule 10.4. Assume there exists a (V ′1 , V
′
2)-

balanced subgraph H ′ of G′ with at least pt(G′) + k′

4 edges, where k′ = k − 4. As in the proof for
Rule 10.3, assume C only contains negative edges, the edge av is negative and v ∈ V ′1 . Since vabv
is a positive triangle, this implies that the edge bv is positive.

Now, consider the balanced subgraph H of G induced by (V1, V2), where V1 = V ′1 ∪ {b} and
V2 = V ′2 ∪ {a}. As in the proof for Rule 10.3, it holds that |E(a, V1 ∩ V (C)) ∪ E(b, V2 ∩ V (C))| =
|E(a, V2 ∩ V (C)) ∪ E(b, V1 ∩ V (C))|. Hence, |E(H)| = |E(H ′)| + |E({a,b},V [C−{a,b}])|

2 + 3, while
pt(G) = pt(G′) + |E({a,b},V [C−{a,b}])|

2 + 2. Thus, β(G) ≥ pt(G) + k′+4
4 = pt(G) + k

4 .

Rule 10.5: Let v and C be as in the description of Rule 10.5. Suppose β(G′) ≥ pt(G′) + k
4 . We

know that β(G[V (C) ∪ {v}]) ≥ pt(G[V (C) ∪ {v}]). Then, by Lemma 55, β(G) ≥ pt(G) + k
4 .

Rule 10.6: Let a, b, c be as in the description of Rule 10.6 and let P = G[{a, b, c}]. Note that
pt(P) = 2

2 + 3−1
4 = 3

2 and, whatever the signs of its edges, P is a balanced graph by Theorem
36. Therefore, β(P) = 2 = pt(P) + 1

2 . Suppose β(G′) ≥ pt(G′) + k′

4 , where k
′ = k − 1. Then by

Lemma 54, β(G) ≥ pt(G) + k′+2−1
4 = pt(G) + k

4 edges.

Rule 10.7: Let v, b and C, Y be as in the description of Rule 10.7. Suppose β(Y) ≥ pt(Y) + k′

4 ,
where k′ = k − 1. We claim that β(G − Y) ≥ pt(G− Y) + 1

2 . If this holds, using Lemma 54 we
obtain that β(G) ≥ pt(G) + k′+1

4 = pt(G) + k
4 .

Let G′′ = G− Y and V (C) = {v1, . . . , vn}. Note that pt(G′′) = n(n−1)
4 + n+ n+1

4 .
By Corollary 6 we may assume that G′′ contains only negative edges. If n is even, consider the

partition (V1, V2) of V (G′′) where V1 = {v, b, v1, . . . , vn
2−1} and V2 = {vn

2
, . . . , vn}. The balanced

subgraph induced by this partition contains (n2 + 1)2 = pt(G′′) + 3
4 edges. On the other hand,

if n is odd, consider the partition (V1, V2) of V (G′′) where V1 = {v, b, v1, . . . , vn−1
2
} and V2 =

{vn+1
2
, . . . , vn}. The balanced subgraph induced by this partition contains n+3

2 ·
n+1

2 = pt(G′′) + 2
4

edges.

We now show that the reduction rules preserve connectedness and that there is always one of
them which applies to a graph with at least one edge. To show this, we use the following lemma,
based on a result in [29] but first expressed in the following form in [20].

Lemma 57. [20] For any connected graph Q, at least one of the following properties holds:

103

A There exist v ∈ V (Q) and X ⊆ V (Q) such that G[X] is a connected component of Q − v and
G[X] is a clique;

B There exist a, b, c ∈ V (Q) such that Q[{a, b, c}] is isomorphic to path P3 and Q − {a, b, c} is
connected;

C There exist v, b ∈ V (Q) such that vb /∈ E(Q), Q− {v, b} is disconnected, and for all connected
components G[X] of Q− {v, b}, except possibly one, G[X ∪ {v}] and G[X ∪ {b}] are cliques.

Lemma 58. For a connected graph G with at least one edge, at least one of Rules 10.1-10.7 applies.
In addition, the graph G′ which is produced is connected.

Proof. It is not difficult to see that the graph G′ is connected, since when it is not obvious, its
connectedness is part of the conditions for the rule to apply.

If property A of Lemma 57 holds, and G[X] contains a positive triangle abca, then by Lemma
56 either Rule 10.1 or Rule 10.2 applies. If 2 ≤ |NG(v) ∩ X| ≤ |X| − 1, then Rule 10.3 applies.
If |NG(v) ∩ X| = |X| and there exist a, b ∈ X such that vabv is a positive triangle, Rule 10.4
applies; otherwise, G[X ∪ {v}] contains no positive triangles, and Rule 10.5 applies. Finally, if
NG(v) ∩X = {x}, Rule 10.5 applies for x with clique G[X \ {x}].

If property B of Lemma 57 holds, then Rule 10.6 applies. If property C of Lemma 57 holds,
consider the case when G − {v, b} has two connected components. Let Z be the other connected
component. If Z is connected to only one of v or b, then property A holds. Otherwise, if G[X∪{x}]
contains a positive triangle, where x ∈ {v, b}, then by Lemma 56 either Rule 10.1 or Rule 10.2
applies. So we may assume that G[X ∪ {b, v}] contains no positive triangles, in which case Rule
10.7 applies.

If G−{v, b} has at least three connected components, at least two of them, X1, X2, form cliques
with both v and b and possibly one component Y does not. Assume without loss of generality that
Y has an edge to v. Then Rule 10.6 applies for the path x1bx2, where x1 ∈ X1, x2 ∈ X2.

The following lemma gives structural results on S and G − S. Note that from now on, (G =

(V,E), k) denotes the original instance of Signed Max Cut ATLB and (G′ = (V ′, E′), k′) denotes
the instance obtained by applying Rules 10.1-10.7 exhaustively. The set S ⊆ V denotes the set of
vertices which are marked by the rules.

Lemma 59. Given a connected graph G, if we apply Rules 10.1-10.7 exhaustively, either the set
S of marked vertices has cardinality at most 3k, or k′ ≤ 0. In addition, G−S is a forest of cliques
that does not contain a positive triangle.

Proof. Observe that for every reduction rule where some vertices are marked, at most 3 vertices are
marked, and the parameter descreases by at least 1. This means that if k′ > 0, then the reduction
rules cannot have marked more than 3k vertices.

To show that G− S is a forest of cliques that does not contain a positive triangle, proceed by
induction. It is trivially true that the empty graph and the graph with only one vertex are forests

104

of cliques that do not contain positive triangles. Now suppose that we apply one of the rules,
transforming a graph G1 into a graph G2; suppose in addition that G2 − (S ∩ V (G2)) is a forest
of cliques that does not contain a positive triangle: we claim that G1 − (S ∩ V (G1)) is a forest of
cliques that does not contain a positive triangle, too. In the case of Rules 10.1, 10.3, 10.4 and 10.6,
G1− (S ∩V (G1)) is equal to G2− (S ∩V (G2)), therefore the claim is trivially true. For Rule 10.5,
note that G1 − (S ∩ V (G1)) is obtained from G2 − (S ∩ V (G2)) by either adding a disjoint clique
not containing a positive triangle if v ∈ S, or adding a clique not containing a positive triangle and
identifying one of its vertices with v (where v is a cutvertex as in the description of Rule 10.5).
Finally, for Rules 10.2 and 10.7, G1 − (S ∩ V (G1)) is obtained from G2 − (S ∩ V (G2)) by adding
one disjoint clique not containing a positive triangle.

Finally, it is possible to prove that Signed Max Cut ATLB is FPT. First we state Max-

Cut-with-Weighted-Vertices as in [29].

Max-Cut-with-Weighted-Vertices

Instance: A graph G with weight functions w1 : V (G) → N0 and w2 : V (G) → N0,
and an integer t ∈ N.

Question: Does there exist an assignment f : V (G)→ {1, 2} such that
∑
xy∈E |f(x)−

f(y)|+
∑
f(x)=1 w1(x) +

∑
f(x)=2 w2(x) ≥ t?

Theorem 40. Signed Max Cut ATLB can be solved in time O∗(8k).

Proof. Let (G = (V,E), k) be an instance of Signed Max Cut ATLB. Apply Rules 10.1-10.7
exhaustively, producing an instance (G′ = (V ′, E′), k′) and a set S ⊆ V of marked vertices. If
k′ ≤ 0, (G′, k′) is a trivial Yes-instance. Since the rules are safe, it follows that (G, k) is a
Yes-instance, too.

Otherwise, k′ > 0. Note that by Lemma 59, |S| ≤ 3k and G − S is a forest of cliques, which
is a chordal graph without positive triangles. Hence, by Corollary 6, we may assume that G − S
does not contain positive edges.

Therefore, to solve Signed Max Cut ATLB on G, we can guess a balanced subgraph of G[S],
induced by a partition (V1, V2), and then solve Max-Cut-with-Weighted-Vertices for G− S.
The weight of a vertex v ∈ V (G − S) is defined in the following way: let n+

i (v) be the number
of positive neighbors of v in Vi and n−i (v) be the number of negative neighbors of v in Vi; then
w1(v) = n+

1 (v) + n−2 (v) and w2(v) = n+
2 (v) + n−1 (v).

Since Max-Cut-with-Weighted-Vertices is solvable in polynomial time on a forest of
cliques (see Lemma 9 in [29]) and the number of possible partitions of S is bounded by 23k, this
gives an O∗(8k)-algorithm to solve Signed Max Cut ATLB.

105

10.4 Kernelization

In this section, we show that Signed Max Cut ATLB admits a kernel with O(k3) vertices. The
proof of Theorem 40 implies the following key result for our kernelization.

Corollary 7. Let (G = (V,E), k) be an instance of Signed Max Cut ATLB. In polynomial
time, either we can conclude that (G, k) is a Yes-instance or we can find a set S of at most 3k

vertices for which we may assume that G− S is a forest of cliques without positive edges.

The kernel is obtained via the application of a new set of reduction rules and using structural
results that bound the size of No-instances (G, k). First, we need some additional terminology.
For a block C in G − S, let Cint = {x ∈ V (C) : NG−S(x) ⊆ V (C)} be the interior of C, and let
Cext = V (C) \ Cint be the exterior of C. If a block C is such that Cint ∩NG(S) 6= ∅, C is a special
block. We say a block C is a path block if |V (C)| = 2 = |Cext|. A path vertex is a vertex which is
contained only in path blocks. A block C in G− S is a leaf block if |Cext| ≤ 1.

The following reduction rules are two-way reduction rules: they apply to an instance (G, k) and
produce an equivalent instance (G′, k′).

Reduction Rule 10.8. Let C be a block in G − S. If there exists X ⊆ Cint such that |X| >
|V (C)|+|NG(X)∩S|

2 ≥ 1, N+
G (x) ∩ S = N+

G (X) ∩ S and N−G (x) ∩ S = N−G (X) ∩ S for all x ∈ X, then
delete two arbitrary vertices x1, x2 ∈ X and set k′ = k.

Reduction Rule 10.9. Let C be a block in G − S. If |V (C)| is even and there exists X ⊆ Cint

such that |X| = |V (C)|
2 and NG(X) ∩ S = ∅, then delete a vertex x ∈ X and set k′ = k − 1.

Reduction Rule 10.10. Let C be a block in G− S with vertex set {x, y, u}, such that NG(u) =

{x, y}. If the edge xy is a bridge in G−{u}, delete C, add a new vertex z, positive edges {zv : v ∈
N+
G−u({x, y})}, negative edges {zv : v ∈ N−G−u({x, y})} and set k′ = k. Otherwise, delete u and

the edge xy and set k′ = k − 1.

Reduction Rule 10.11. Let T be a connected component of G − S only adjacent to a vertex
s ∈ S. Form a Max-Cut-with-Weighted2-Vertices instance on T by defining w1(x) = 1 if
x ∈ N+

G (s) ∩ T (w1(x) = 0 otherwise) and w2(y) = 1 if y ∈ N−G (s) ∩ T (w2(y) = 0 otherwise). Let
β(G[V (T) ∪ {s}]) = pt(G[V (T) ∪ {s}]) + p

4 . Then delete T and set k′ = k − p.

Note that the value of p in Rule 10.11 can be found in polynomial time by solving Max-Cut-

with-Weighted-Vertices on T .
A two-way reduction rule is valid if it transforms Yes-instances into Yes-instances and No-

instances into No-instances. Theorem 41 shows that Rules 10.8-10.11 are valid. To prove Theorem
41, we need the following two lemmas.

Lemma 60. Let C be a block in G−S. If there exists X ⊆ Cint such that |X| ≥ |V (C)|
2 , then there

exists a (V1, V2)-balanced subgraph H of G with β(G) edges such that at least one of the following
inequalities holds:

106

• |V2 ∩ V (C)| ≤ |V1 ∩ V (C)| ≤ |NG(X) ∩ S|+ |V2 ∩ V (C)|;

• |V2 ∩ V (C)| ≤ |V1 ∩ V (C)| ≤ |V2 ∩ V (C)|+ 1.

Proof. We may assume that |V1 ∩ V (C)| ≥ |V2 ∩ V (C)|. Note that if |V1 ∩ V (C)| > |V2 ∩ V (C)|,
then X ∩ V1 6= ∅ (because |X| ≥ |V (C)|

2).
First, if NG(X) ∩ S = ∅ and |V1 ∩ V (C)| ≥ |V2 ∩ V (C)| + 2, then, for any x ∈ X ∩ V1, the

subgraph induced by the partition (V1 \ {x}, V2 ∪ {x}) has more edges than the subgraph induced
by (V1, V2), which is a contradiction.

Now, suppose that NG(X)∩S 6= ∅ and suppose also that |V1 ∩V (C)| − |V2 ∩V (C)| is minimal.
If |V1∩V (C)| ≤ |V2∩V (C)|+1 we are done, so suppose |V1∩V (C)| ≥ |V2∩V (C)|+2. Consider the
partition V ′1 = V1 \ {x}, V ′2 = V2 ∪ {x}, where x ∈ V1 ∩X, and the balanced subgraph H ′ induced
by this partition. Then |E(H ′)| ≥ |E(H)|+ |E(V1 \ {x}, x)|− |E(V2, x)| ≥ |E(H)|+ (|V1 ∩V (C)|−
1− |NG(X) ∩ S| − |V2 ∩ V (C)|). Since |V ′1 ∩ V (C)| − |V ′2 ∩ V (C)| < |V1 ∩ V (C)| − |V2 ∩ V (C)|, it
holds that |E(H ′)| ≤ |E(H)| − 1. Therefore, |V1 ∩ V (C)| ≤ |NG(X) ∩ S|+ |V2 ∩ V (C)|.

Lemma 61. Let C be a block in G−S. If there exists X ⊆ Cint such that |X| > |V (C)|+|NG(X)∩S|
2 ,

N+
G (x) ∩ S = N+

G (X) ∩ S and N−G (x) ∩ S = N−G (X) ∩ S for all x ∈ X, then, for any x1, x2 ∈ X,
there exists a (V1, V2)-balanced subgraph H of G with β(G) edges such that x1 ∈ V1 and x2 ∈ V2.

Proof. First, we claim that there exist vertices x1, x2 ∈ X for which the result holds. Let H be a
(V1, V2)-balanced subgraph of G with β(G) edges as given by Lemma 60.

Suppose NG(X) ∩ S = ∅. Then, by Lemma 60 it holds that |V2 ∩ V (C)| ≤ |V1 ∩ V (C)| ≤
|V2 ∩ V (C)| + 1; in addition, |X| > |V (C)|

2 . Hence, either we can find x1 and x2 as required, or
X = V1 ∩ V (C) and |V1 ∩ V (C)| = |V2 ∩ V (C)| + 1. In the second case, pick a vertex x ∈ V1

and form the partition V ′1 = V1 \ {x} and V ′2 = V2 ∪ {x}. Consider the balanced subgraph
H ′ induced by this partition. Observe that |E(H ′)| = |E(H)| − |E(x, V2)| + |E(x, V1 \ {x})| =

|E(H)| − |V2 ∩ V (C)| + |V1 ∩ V (C)| − 1 = |E(H)|, so H ′ is a maximum balanced subgraph for
which we can find x1 and x2 as required.

Now, suppose NG(X) ∩ S 6= ∅. Then by Lemma 60 it holds that |V2 ∩ V (C)| ≤ |V1 ∩ V (C)| ≤
|NG(X)∩S|+|V2∩V (C)|. For the sake of contradiction, suppose X ⊆ V1∩V (C) or X ⊆ V2∩V (C):
in both cases, this means that |X| ≤ |V1 ∩V (C)|. Note that |V (C)| = |V1 ∩V (C)|+ |V2 ∩V (C)| =
2|V2 ∩ V (C)| + t, where t ≤ |NG(X) ∩ S|. Hence, |V1 ∩ V (C)| ≥ |X| > |V (C)|+|NG(X)∩S|

2 =

|V2 ∩ V (C)|+ t
2 + |NG(X)∩S|

2 ≥ |V2 ∩ V (C)|+ t = |V1 ∩ V (C)|, which is a contradiction.
To conclude the proof, notice that for a (V1, V2)-balanced subgraph H of G with β(G) edges

and vertices x1, x2 ∈ X such that x1 ∈ V1 and x2 ∈ V2, we have |E(H)| = |E(H ′)|, where H ′ is
a balanced subgraph induced by V ′1 = V1 \ {x1} ∪ {x2} and V ′2 = V2 \ {x2} ∪ {x1}: this is true
because N+

G (x1) ∩ S = N+
G (x2) ∩ S and N−G (x1) ∩ S = N−G (x2) ∩ S.

Theorem 41. Rules 10.8-10.11 are valid.

Proof. Rule 10.8: Let C,X be as in the description of Rule 10.8. Let x1, x2 ∈ X. By Lemma
61, there exists a (V1, V2)-balanced subgraph H of G with β(G) edges such that x1 ∈ V1 and

107

x2 ∈ V2. Now, let G′ = G − {x1, x2} and H ′ = H − {x1, x2}. Since N+
G (x1) ∩ S = N+

G (x2) ∩ S
and N−G (x1) ∩ S = N−G (x2) ∩ S, it holds that |E(H)| = |E(H ′)| + |E(G,{x1,x2})|

2 + 1, and so
β(G′) + |E(G,{x1,x2})|

2 + 1 ≥ β(G). Conversely, by Lemma 54, β(G) ≥ β(G′) + |E(G,{x1,x2})|
2 + 1.

Finally, observe that pt(G) = pt(G′) + |E(G,{x1,x2})|
2 + 1, which implies that β(G) − pt(G) =

β(G′)− pt(G′). Hence, G admits a balanced subgraph of size pt(G) + k
4 if and only if G′ admits a

balanced subgraph of size pt(G′) + k
4 .

Rule 10.9: Let C,X and x ∈ X be as in the description of Rule 10.9. By Lemma 60, there
exists a (V1, V2)-balanced subgraph H of G with β(G) edges, such that |V1 ∩ V (C)| = |V2 ∩ V (C)|.
Consider the graph G′ = G−{x} formed by the application of the rule and the balanced subgraph
H ′ = H − {x}. Then |E(H)| = |E(H ′)|+ |V (C)|

2 , and thus β(G′) ≥ β(G)− |V (C)|
2 . Conversely, by

Lemma 54, β(G) ≥ β(G′) + |V (C)|
2 . However, pt(G) = pt(G′) + |V (C)|

2 − 1
4 . Hence, β(G)− pt(G) =

β(G′) − pt(G′) + 1
4 . Therefore, G admits a balanced subgraph of size pt(G) + k

4 if and only if G′

admits a balanced subgraph of size pt(G′) + k−1
4 .

Rule 10.10: Let C and {x, y, u} be as in the description of Rule 10.10. Firstly consider the
case when xy is a bridge in G − {u}. For any maximal balanced subgraph H of G, without loss
of generality one may assume that xu, yu ∈ E(H) and xy /∈ E(H). Suppose H is induced by a
partition (V1, V2) and x, y ∈ V1. Form a balanced subgraph of G′ from H − {x, y, u} by placing z
in V1. Therefore, β(G) = β(G′) + 2. Since pt(G) = pt(G′) + 3

2 + 2
4 = pt(G′) + 2, it follows that

β(G) = pt(G) + k
4 if and only if β(G′) = pt(G′) + k

4 .
Now consider the case when xy is not a bridge in G−{u}. Then the graph G′ formed by deleting

the vertex u and the edge xy is connected. Furthermore, regardless of whether x and y are in the
same partition that induces a balanced subgraph H ′ of G′, H ′ can be extended to a balanced
subgraph H of G such that |E(H)| = |E(H ′)|+ 2. This means that, as before, β(G) = β(G′) + 2.
But in this case pt(G) = pt(G′)+ 7

4 and thus β(G) = pt(G)+ k
4 if and only if β(G′) = pt(G′)+ k−1

4 .

Rule 10.11: Let T and s ∈ S be as in the description of Rule 10.11. Since β(G[V (T) ∪ {s}]) =

pt(G[V (T) ∪ {s}]) + p
4 , by Lemma 55, β(G) = β(G−T) +pt(G[V (T) ∪ {s}]) + p

4 . Also, by Lemma
55, pt(G) = pt(G− T) + pt(G[V (T) ∪ {s}]). Hence β(G) − pt(G) = β(G − T) − pt(G− T) + p

4 ,
which implies that G admits a balanced subgraph of size pt(G) + k

4 if and only if G− T admits a
balanced subgraph of size pt(G− T) + k−p

4 .

To show the existence of a kernel with O(k3) vertices, it is enough to give a bound on the number
of non-path blocks, the number of vertices in these blocks and the number of path vertices. This
is done by Corollaries 9 and 10 and Lemma 67.

While Lemma 67 applies to any graph reduced by Rule 10.8, the proofs of Corollaries 9 and
10 rely on Lemma 66, which gives a general structural result on forest of cliques with a bounded
number of special blocks and bounded path length. Corollary 8 and Lemma 64 provide sufficient
conditions for a reduced instance to be a Yes-instance, thus producing a bound on the number of
special blocks and the path length of No-instances. Lastly, Theorem 42 puts the results together
to show the existence of the kernel.

108

Henceforth, we assume that the instance (G, k) is such that G is reduced by Rules 10.8-10.11,
G− S is a forest of cliques which does not contain a positive edge and |S| ≤ 3k.

Lemma 62. Let T be a connected component of G − S. Then for every leaf block C of T ,
NG(Cint) ∩ S 6= ∅. Furthermore, if |NG(S) ∩ V (T)| = 1, then T consists of a single vertex.

Proof. We start by proving the first claim. Note that if T = C consists of a single vertex, then
NG(Cint) ∩ S 6= ∅ since G is connected. So assume that C has at least two vertices. Suppose that
NG(Cint) ∩ S = ∅ and let X = Cint. Then if |Cint| > |Cext|, Rule 10.8 applies. If |Cint| = |Cext|
then Rule 10.9 applies. Otherwise, |Cint| < |Cext| and since |Cext| ≤ 1 (as C is a leaf block), C
has only one vertex, which contradicts our assumption above. For the second claim, first note
that since |NG(S) ∩ V (T)| = 1, Q has one leaf block and so T consists of a single block. Let
NG(S) ∩ V (T) = {v} and X = V (T) − {v}. If |X| > 1, Rule 10.8 applies. If |X| = 1, Rule 10.9
applies. Hence V (T) = {v}.

Let B be the set of non-path blocks.

Lemma 63. If there exists a vertex s ∈ S such that
∑
C∈B |NG(Cint)∩ {s}| ≥ 2(|S| − 1 + k), then

(G, k) is a Yes-instance.

Proof. Form T ⊆ NG(s) by picking a vertex from each block C for which |NG(Cint) ∩ {s}| = 1:
if there exists a vertex x ∈ Cint such that NG(x) ∩ S = {s}, pick this, otherwise pick x ∈ Cint

arbitrarily. Let U = T ∪ {s} and W = V \ U .
Observe that G[U] is balanced by Theorem 36 as G[U] is a tree. Thus β(G[U]) = |T | =

|T |
2 + |T |

4 + |T |
4 = pt(G[U]) + |T |

4 .
Consider a connected component Q of G− S. By Rule 10.11, |NG(Q) ∩ S| ≥ 2 and by Lemma

62, if |NG(S)∩ V (Q)| = 1 then Q consists of a single vertex. Otherwise, either (NG(S) \NG(s))∩
V (Q) 6= ∅, or Q has at least two vertices in T . Moreover, note that the removal of interior vertices
does not disconnect the component itself. Hence G[W] has at most (|S| − 1) + |T |

2 connected

components. Applying Lemma 54, β(G) ≥ pt(G) + |T |
4 −

(|S|−1)+
|T |
2

4 = pt(G) + |T |
8 −

|S|−1
4 . Hence

if |T | ≥ 2(|S| − 1 + k), then (G, k) is a Yes-instance.

Corollary 8. If
∑
C∈B |NG(Cint) ∩ S| ≥ |S|(2|S| − 3 + 2k) + 1, the instance is a Yes-instance.

Otherwise,
∑
C∈B |NG(Cint) ∩ S| ≤ 3k(8k − 3).

Proof. If
∑
C∈B |NG(Cint)∩S| ≥ |S|(2|S|−3+2k)+1, then for some s ∈ S we have

∑
C∈B |NG(Cint)∩

{s}| ≥ 2|S| − 3 + 2k+ 1/|S| and, since the sum is integral,
∑
C∈B |NG(Cint)∩{s}| ≥ 2(|S| − 1 + k).

Thus, (G, k), by Lemma 63, is a Yes-instance. The second inequality of the corollary follows from
the fact that |S| ≤ 3k.

Lemma 64. If in G−S there exist vertices U={u1, u2, . . . , up} such that NG−S(ui) = {ui−1, ui+1}
for 2 ≤ i ≤ p− 1, and p ≥ |S|+ k + 1, then (G, k) is Yes-instance. Otherwise, p ≤ 4k.

109

Proof. Observe that G[U] is balanced by Theorem 36. Thus β(G[U]) = p − 1 = pt(G[U]) + p−1
4 .

Let W = V \ U and observe that G[W] has at most |S| components, since, by Lemma 62, every
vertex in G − U has a path to a vertex in S. Applying Lemma 54, β(G) ≥ pt(G) + p−1

4 −
|S|
4 .

Hence if p− 1− |S| ≥ k, (G, k) is a Yes-instance.

Lemma 65. A block C in G− S such that |Cext| = 2 is either special or it is a path block.

Proof. Suppose C is not special. If |V (C)| ≥ 5, then Reduction Rule 10.8 would apply. If |V (C)| =
4, then Reduction Rule 10.9 would apply. If |V (C)| = 3, then Reduction Rule 10.10 would apply.
Hence |V (C)| = 2 and it is a path block.

In G − S, a pure path is a path consisting exclusively of path vertices. Note that every path
vertex belongs to a unique pure path.

Lemma 66. Suppose G − S has at most l special blocks and the number of vertices in each pure
path is bounded by p. Then G− S contains at most 2l non-path blocks and 2pl path vertices.

Proof. It suffices to prove that if every connected component T of G − S has at most lT special
blocks, then T contains at most 2lT non-path blocks and 2plT path vertices. So, we may assume that
T = G−S is connected. Pick an arbitrary non-path block CR as the ‘root’ node. Define the distance
d(CR, C) as the number of non-path blocks different from CR visited in a path from a vertex in
CR to a vertex in C. For every non-path block C in T , the parent block C ′ is the unique non-path
block such that C ′ contains an edge of any path from CR to C and d(CR, C)− d(CR, C

′) = 1. In
addition, CR is the parent of every block C such that d(CR, C) = 1.

Consider the tree F that contains a vertex for every non-path block of T and such that there
is an edge between two vertices if and only if one of the corresponding blocks is the parent of the
other. Observe that given a vertex v ∈ F which corresponds to a block C of T , it holds that
dF (v) ≥ |Cext|. In addition, by Lemma 62, every leaf in F corresponds to a special block.

Now, we know that in a tree the number of vertices of degree greater or equal to three is
bounded by the number of leaves. Moreover, by Lemma 65, if a block C is such that |Cext| = 2,
then it is either special or a path block. Thus, the number of non-path blocks is bounded by 2l.

Furthermore, note that the number of pure paths in T is bounded by the number of edges in
F , which is bounded by 2l−1. Since every pure path contains at most p path vertices, the number
of path vertices is bounded by (2l − 1)p < 2pl.

Corollary 9. G− S contains at most 6k(8k − 3) non-path blocks and 24k2(8k − 3) path vertices.

Proof. By Corollary 8, G − S contains at most 3k(8k − 3) special blocks and by Lemma 64, the
length of every pure path is bounded by 4k. Thus, Lemma 66 implies that G−S contains at most
6k(8k − 3) non-path blocks and 24k2(8k − 3) path vertices.

Corollary 10. G− S contains at most 12k(8k − 3) vertices in the exteriors of non-path blocks.

110

Proof. For any component T of G − S, consider the tree F defined in the proof of Lemma 66.
For any block C of T and any vertex v in Cext, v corresponds to an edge of F . Furthermore,
for any edge of F there are at most two exterior vertices in T that correspond to it. Therefore,
| ∪C∈B Cext| ≤ 2|B| ≤ 12k(8k − 3).

Lemma 67. For a block C, if |V (C)| ≥ 2|Cext| + |NG(Cint) ∩ S|(2|S| + 2k + 1), then (G, k) is a
Yes-instance. Otherwise, |V (C)| ≤ 2|Cext|+ |NG(Cint) ∩ S|(8k + 1).

Proof. Consider a fixed s ∈ NG(Cint)∩ S. We will show that we may assume that either |N+
G (s)∩

Cint| ≤ k+|S|
2 or |N+

G (s) ∩ Cint| ≥ |Cint| − k+|S|
2 , because otherwise (G, k) is a Yes-instance.

Indeed, suppose dk+|S|
2 e ≤ |N+

G (s) ∩ Cint| ≤ |Cint| − dk+|S|
2 e. Let U1 ⊆ N+

G (s) ∩ Cint, |U1| =

dk+|S|
2 e, and let U2 ⊆ Cint\N+

G (s), |U2| = dk+|S|
2 e. Let U = U1∪U2∪{s} and consider the subgraph

H of G[U] induced by the edges E(U1, U2)∪E(s, (U1∩N+
G (s)))∪E(s, (U2∩N−G (s))). Observe that

H is (U1 ∪ {s}, U2)-balanced and so β(G[U]) ≥ |U1|2 + |U1 ∩N+
G (s)|+ |U2 ∩N−G (s)|. Furthermore,

pt(G[U]) = |U1|2+
|U1∩N+

G (s)|
2 +

|U2∩N−G (s)|
2 , and hence β(G[U]) ≥ pt(G[U])+

|U1∩N+
G (s)|+|U2∩N−G (s)|

2 ≥
pt(G[U]) + k+|S|

4 .
Now consider W = V \ U . Any connected component of G− S is connected to two vertices in

S, hence G[W] has at most |S| − 1 components adjacent to vertices in S \ {s} and one component
corresponding to the block C. Applying Lemma 54, β(G) ≥ pt(G) + (k+|S|)−|S|

4 , which means that
(G, k) is a Yes-instance.

Similarly, we can show that we may assume that either |N−G (s)∩Cint| ≤ k+|S|
2 or |N−G (s)∩Cint| ≥

|Cint| − k+|S|
2 , because otherwise (G, k) is a Yes-instance.

Let S+
1 = {s ∈ S : 0 < |N+

G (s) ∩ Cint| ≤ k+|S|
2 }, S+

2 = (N+
G (Cint) ∩ S) \ S+

1 and X+ = {v ∈
Cint \N+

G (S+
1) : v ∈ N+

G (s),∀s ∈ S+
2 }. Observe that for all s ∈ S+

2 , |N+
G (s)∩Cint| ≥ |Cint| − k+|S|

2 ,
which means that |X+| ≥ |Cint \N+

G (S+
1)| − |S+

2 |
k+|S|

2 . In addition, |N+
G (S+

1) ∩Cint| ≤ |S+
1 |

k+|S|
2 ,

hence |Cint \ N+
G (S+

1)| ≥ |Cint| − |S+
1 |

k+|S|
2 . Therefore, |X+| ≥ |Cint| − (|S+

1 | + |S
+
2 |)

k+|S|
2 =

|Cint| − |N+
G (Cint) ∩ S|k+|S|

2 ≥ |Cint| − |NG(Cint) ∩ S|k+|S|
2 .

With similar definitions and the same argument we obtain |X−| ≥ |Cint| − |NG(Cint)∩S|k+|S|
2 .

Now let X = X+ ∩X− and observe that and |X| ≥ |Cint| − |NG(Cint) ∩ S|(k + |S|).
However, by Rule 10.8, |X| ≤ |V (C)|+|NG(Cint)∩S|

2 . So, |Cint| ≤ |NG(Cint)∩S|(|S|+k+ 1
2)+ |V (C)|

2 ,
and so |V (C)| ≤ 2|Cext|+ |NG(Cint) ∩ S|(2|S|+ 2k + 1) as claimed.

Theorem 42. Signed Max Cut ATLB has a kernel with O(k3) vertices.

Proof. Let (G = (V,E), k) be an instance of Signed Max Cut ATLB. As in Theorem 40, apply
Rules 10.1-10.7 exhaustively: either the instance is a Yes-instance, or there exists S ⊆ V such
that |S| ≤ 3k and G− S is a forest of cliques which does not contain a positive edge.

Now, apply Rules 10.8–10.11 exhaustively to (G, k) to obtain a new instance (G′, k′). If k′ ≤ 0,
then (G, k) is a Yes-instance since Rules 10.8–10.11 are valid. Now let G = G′, k = k′. Check
whether (G, k) is a Yes-instance due to Corollary 8, Lemma 64 or Lemma 67. If this is not the
case, by Corollary 9, G − S contains at most 6k(8k − 3) non-path blocks and 24k2(8k − 3) path

111

vertices. Hence, by Lemma 67, |V (G)| is at most

|S|+ 24k2(8k − 3) +
∑
C∈B
|V (C)| ≤ O(k3) + 2

∑
C∈B
|Cext|+ (8k + 1)

∑
C∈B
|NG(Cint) ∩ S|

Now, applying Corollary 8 and Corollary 10, we obtain:

|V (G)| ≤ O(k3) + 48k(8k − 3) + 3k(8k − 3)(8k + 1) = O(k3).

It is not hard to verify that none of our reduction rule increase the number of positive edges.
Thus, considering an input G of Max Cut ATLB as an input of Signed Max Cut ATLB by
assigning minus to each edge of G, we have the following:

Corollary 11. Max Cut ATLB has a kernel with O(k3) vertices.

112

Chapter 11

Discussion and Future Work

11.1 MaxLin2

In Chapter 4 we studied the problem MaxLin2 parameterized above average. Whilst the kernels
obtained in Theorems 6 and 8 bounded the number of variables by a polynomial, they did not
bound the number of equations, and are thus not polynomial size kernels. The question of the
existence of polynomial-size kernels for MaxLin2-AA[k] and Max-r-Lin2-AA[k, r] remains an
interesting open question.

One could also look into improving the kernel - perhaps by finding a structural characterization
of irreducible system with excess bounded by k. Indeed, understanding the structural properties
of irreducible systems would be of interest independently of any gain in the size of a kernel.

In a graph G = (V,E), a bisection (X,Y) is a partition of V into sets X and Y such that
|X| ≤ |Y | ≤ |X| + 1. The size of (X,Y) is the number of edges between X and Y . In Max

Bisection, we are given a graph G with n ≥ 2 vertices and m edges and asked to find a bisection
of maximum size. It is not hard to see that dm/2e is a tight lower bound on the maximum size
of a bisection of G. Gutin and Yeo [53] proved that Max Bisection parameterized above dm/2e
has a kernel with O(k2) vertices and O(k3) edges. Gutin and Yeo [53] also showed that d nm

2(n−1)e
is another tight lower bound on the maximum size of a bisection of G. Clearly, d nm

2(n−1)e ≥ dm/2e.
Gutin and Yeo [53] left it as an open problem to determine the complexity of Max Bisection

parameterized above d nm
2(n−1)e.

In Chapter 5 we focused on MaxLin2 parameterized below the total weight of the system. Our
study was thorough, showing that Max-(= 3,= 3)-Lin2-B[m] is W[1]-hard, but Max-(≤ 2,*)-

Lin2-BW is fixed-parameter tractable and Max-(*,≤ 2)-Lin2 is polynomial time solvable. This
gives a boundary between parameterized intractability and tractability for MaxLin2-BW.

113

11.2 MaxSAT

In Chapter 6 we considered the problem MaxSAT parameterized above average. Our results leave
a small set of open questions. There is a gap between the inequalities of Theorem 16 and 18(i), it
would be interesting to close this gap. We also would like to know whether Max-r(n)Sat-AA is
fixed-parameter tractable if r(n) ≤ log log n−log log log n (recall currently we know Max-r(n)Sat-

AA is fixed-parameter tractable if r(n) ≤ log log n− log log log n− ϕ(n)).
Apart from MaxLin-AA and MaxSat-AA mentioned above, there are some other constraint

satisfaction problems parameterized above a tight lower bound whose complexity has been estab-
lished in the last few years. One example is r-Linear-Ordering-AA for r = 2 and 3. Let r ≥ 2

be a fixed integer. In r-Linear-Ordering, given a positive integer n and a multiset C of r-tuples
of distinct elements from [n], we wish to find a permutation L : [n] → [n] which maximizes that
the number of satisfied r-tuples, i.e., r-tuples (i1, i2, . . . , ir) such that L(i1) < L(i2) < · · · < L(ir).

Let m stand for the number of r-tuples in C.
Let τ : [n] → [n] be a random permutation (chosen uniformly from the set of all permuta-

tions). Observe that the probability that an r-tuple is satisfied by τ is 1/r!. Thus, by linearity
of expectation, the expected number of r-tuples satisfied by τ is m/r!. Using the conditional ex-
pectation derandomization method [5], it is not difficult to obtain a polynomial time algorithm for
finding a permutation L which satisfies at least m/r! r-tuples. Thus, we can easily obtain an 1/r!-
approximation algorithm for r-Linear Ordering. It is remarkable that for any positive ε there
exists no polynomial (1/r! + ε)-approximation algorithm provided the Unique Games Conjecture
(UGC) of Khot [69] holds. This result was proved by Guruswami et al. [57] for r = 2, Charikar et
al. [16] for r = 3 and, finally, by Guruswami et al. [56] for any r.

Observe that every permutation L satisfies exactly one r-tuple in the set {(i1, i2, . . . , ir) :

{i1, i2, . . . , ir} = [r]} and, thus, m/r! is a tight lower bound on the maximum number of r-tuples
that can be satisfied by a permutation L. It is natural to ask what is the parameterized complexity
of the following problem r-Linear-Ordering-AA: decide whether there is a permutation L which
satisfies at least m/r! + k r-tuples, where k ≥ 0 is the parameter. Gutin et al. [49] and [47] proved
that r-Linear-Ordering-AA is fixed-parameter tractable for r = 2 and r = 3, respectively. The
complexity of r-Linear-Ordering-AA for r ≥ 4 remains an open problem [47]. Note that if
r-Linear-Ordering-AA is fixed-parameter tractable for some r, then all permutation constraint
satisfaction problems of arity r parameterized above average are fixed-parameter tractable too (see
Gutin et al. [47] for the definition of a permutation constraint satisfaction problem of arity r and
a proof of the above-mentioned fact).

In Chapter 7 we showed that for any CNF formula F , it is fixed-parameter tractable to decide
if F has a satisfiable subformula containing α clauses, where α − ν(F) is the parameter. Our
result implies fixed-parameter tractability for the problem of deciding satisfiability of F when F is
variable-matched and δ(F) ≤ k, where k is the parameter. In addition, we show that the problem
does not have a polynomial-size kernel unless coNP ⊆ NP/poly.

114

Clearly, parameterizations of MaxSat above m/2 and ν(F) are “stronger” than the standard
parameterization (i.e., when the parameter is the size of the solution). Whilst the two non-standard
parameterizations have smaller parameter than the standard one, they are incomparable to each
other as for some formulas F , m/2 < ν(F) (e.g., for variable-matched formulas with m < 2n)
and for some formulas F , m/2 > ν(F) (e.g., when m > 2n). Recall that Mahajan and Raman
[85] proved that MaxSat parameterized above m/2 is fixed-parameter tractable. This result and
our main result imply that MaxSat parameterized above max{m/2, ν(F)} is fixed-parameter
tractable: if m/2 > ν(F) then apply the algorithm of [85], otherwise apply our algorithm.

If every clause of a formula with m clauses contains exactly two literals then it is well known
that we can satisfy at least 3m/4 clauses. From this, and by applying Reduction Rules 7.1 and
7.2, we can get a linear kernel for this version of the MaxSat-Aν(F) problem. It would be nice
to see whether a linear or a polynomial-size kernel exists for the MaxSat-Aν(F) problem if every
clause has exactly r literals.

In Chapter 8 we considered Unit-Conflict Free Max-SAT. A CNF formula is unit-conflict
free if and only if it is 2-satisfiable. A CNF formula I is t-satisfiable if any subset of t clauses
of I can be satisfied simultaneously. Let rt be the largest real such that in any t-satisfiable CNF
formula at least rt-th fraction of its clauses can be satisfied simultaneously. Note that r1 = 1/2 and
r2 = (

√
5 − 1)/2. Lieberherr and Specker [80] and, later, Yannakakis [109] proved that r3 ≥ 2/3.

Käppeli and Scheder [68] proved that r3 ≤ 2/3 and, thus, r3 = 2/3. Král [76] established the value
of r4: r4 = 3/(5 + [(3

√
69− 11)/2]1/3 − [3

√
69 + 11)/2]1/3) ≈ 0.6992.

For general t, Huang and Lieberherr [63] showed that limt→∞ rt ≤ 3/4 and Trevisan [105]
proved that limt→∞ rt = 3/4 (a different proof of this result is later given by Král [76]).

For a 3-satisfiable CNF formula F = (V,C), Gutin et. al. [46] considered the question of
deciding whether sat(F) ≥ 2|C|/3 + k, where k is the parameter. Using the probabilistic method,
they showed the problem has a kernel with a linear number of variables.

Similar question for any fixed t > 3 remains open.

11.3 Problems above Poljak-Turzík

In Chapter 9 we showed a kernel with O(k2) vertices and O(k2) arcs for the Acyclic Subgraph

above Poljak-Turzík Bound (ASAPT) problem. In Chapter 10 we showed that Signed Max

Cut ATLB has a kernel with O(k3) vertices.
Both of these problems are in the family of problems parameterized above the Poljak-Turzík

bound. Independently, Mnich et al. [89] have combined modified approaches of [29] and [96] to
prove that a number of graph problems parameterized above tight lower bounds are fixed-parameter
tractable. In particular, they proved that ASAPT is fixed-parameter tractable. However, [89] did
not obtain any results on polynomial kernels.

Our algorithms for Acyclic Subgraph above Poljak-Turzík Bound (ASAPT) (theo-
rem 34) has runtime 2O(k log k)nO(1). It would be interesting to design an algorithm of runtime

115

2O(k)nO(1) or to prove that such an algorithm does not exist, subject to a certain complexity hy-
pothesis, as in [82]. It would also be interesting to see whether ASAPT admits a kernel with O(k)

vertices.
In Chapter 10 the input of Signed Max Cut ATLB is a signed graph without parallel edges.

However, in some applications (cf. [44, 55]), signed graphs may have parallel edges of opposite
signs. We may easily extend inputs of Signed Max Cut ATLB to such graphs. Indeed, if G is
such a graph we may remove all pairs of parallel edges from G and obtain an equivalent instance
of Signed Max Cut ATLB. In fact, the Poljak-Turzík bound can be extended to edge-weighted
graphs [96]. Let G be a connected signed graph in which each edge e is assigned a positive weight
w(e). The weight w(Q) of an edge-weighted graph Q is the sum of weights of its edges. Then
G contains a balanced subgraph with weight at least w(G)/2 + w(T)/4, where T is a spanning
tree of G of minimum weight [96]. It would be interesting to establish parameterized complexities
of Max Cut ATLB and Signed Max Cut ATLB extended to edge-weighted graphs using the
Poljak-Turzík bound above.

116

Bibliography

[1] F.N. Abu-Khzam and H. Fernau, Kernels: Annotated, proper and induced. Proc. IWPEC
2006, Lect. Notes Comput. Sci. 4169:264–275, 2006.

[2] R. Aharoni and N. Linial, Minimal non-two-colorable hypergraphs and minimal unsatisfiable
formulas. J. Combin. Th. Ser. A, 43: 196–204, 1986.

[3] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. Solving MAX-r-SAT above a tight
lower bound. Algorithmica 61(3): 638–655 (2011).
A preliminary version was published in Proc. ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), pp. 511–517.

[4] N. Alon, G. Gutin and M. Krivelevich. Algorithms with large domination ratio, J. Algorithms
50: 118–131, 2004.

[5] N. Alon and J. Spencer, The Probabilistic Method, 2nd Edition, Wiley, 2000.

[6] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[7] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-
Verlag, London, 2nd Ed., 2009.

[8] S. Böcker, F. Hüffner, A. Truss and M. Wahlström, A faster fixed-parameter approach to
drawing binary tanglegrams. IWPEC 2009, Lect. Notes Comput. Sci. 5917: 38–49, 2009.

[9] H. L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin, On problems without poly-
nomial kernels. J. Comput. Syst. Sci. 75(8): 423–434, 2009.

[10] H.L. Bodlaender, B.M.P. Jansen and S. Kratsch, Cross-Composition: A new technique for
kernelization lower bounds. STACS 2011: 165–176.

[11] H.L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint
paths, Theor. Comput. Sci. 412(35): 4570–4578, 2011.
A preliminary version was published in ESA 2009, Lect. Notes Comput. Sci. 5757: 635–646,
2009.

117

[12] B. Bollobás and A. Scott, Better bounds for max cut. In Contemporary Combinatorics (B.
Bollobás, ed.), Springer, 2002.

[13] J.A. Bondy and U.S.R. Murty, Graph Theory. Springer, 2008.

[14] E. Boros and P.L. Hammer, Pseudo-Boolean optimization. Discrete Applied Math. 123(1-3):
155–225, 2002.

[15] P. Borwein. Computational excursions in analysis and number theory, Springer, New York,
2002.

[16] M. Charikar, V. Guruswami, and R. Manokaran, Every permutation CSP of arity 3 is approx-
imation resistant. Proc. Computational Complexity 2009, 62–73.

[17] Y. Chen, J. Flum, and M. Müller, Lower bounds for kernelizations and other preprocessing
procedures. Proc. CiE 2009, Lect. Notes Comput. Sci. 5635: 118–128, 2009.

[18] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon, A fixed-parameter algorithm for the
directed feedback vertex set problem. J. ACM 55(5) (2008).

[19] C. Chiang, A. B. Kahng, S. Sinha, X. Xu, and A. Z. Zelikovsky. Fast and efficient bright-field
AAPSM conflict detection and correction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 26(1):11–126, 2007.

[20] R. Crowston, G. Gutin and M. Jones, Directed Acyclic Subgraph Problem Parameterized
above Poljak-Turzik Bound. Proc. FSTTCS 2012, LIPICS Vol. 18, 400–411.

[21] R. Crowston, G. Gutin, M. Jones, V. Raman and S. Saurabh, Parameterized Complexity of
MaxSat Above Average. Proc. LATIN 2012, Lect. Notes Comput. Sci. 7256 (2012), 184–194.

[22] R. Crowston, G. Gutin, M. Jones, and A. Yeo, A new lower bound on the maximum number of
satisfied clauses in Max-SAT and its algorithmic applications. Algorithmica 64 (2012), 56–68.

[23] R. Crowston, G. Gutin, and M. Jones, Note on Max Lin-2 above average. Inform. Proc. Lett.
110: 451–454, 2010.

[24] R. Crowston, G. Gutin, M. Jones, and G. Muciaccia. Maximum balanced subgraph problem
parameterized above lower bound, Proc. COCOON 2013, to appear.

[25] R. Crowston, G. Gutin, M. Jones, E. J. Kim, and I. Ruzsa. Systems of linear equations over
F2 and problems parameterized above average. Proc. SWAT 2010, Lect. Notes Comput. Sci.
6139 (2010), 164–175.

[26] R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé and A. Yeo. Si-
multaneously Satisfying Linear Equations Over F2: MaxLin2 and Max-r-Lin2 Parameterized
Above Average. Proc. FSTTCS 2011, LIPICS Vol. 13, 229–240.

118

[27] R. Crowston, G. Gutin, M. Jones, A. Yeo. Parameterized Complexity of Satisfying Almost
All Linear Equations over F2, Theory of Computing Systems, June 2012

[28] R. Crowston, G. Gutin, M. Jones, V. Raman, S. Saurabh and A. Yeo. Fixed-Parameter
Tractability of Satisfying Beyond the Number of Variables, Algorithmica October 2012.

[29] R. Crowston, M. Jones and M. Mnich, Max-Cut Parameterized above the Edwards-Erdős
Bound, In ICALP 2012, Lect. Notes Comput. Sci. 7391 (2012) 242–253.

[30] M. Cygan, M. Pilipczuk, M. Pilipczuk and J. Wojtaszczyk. On Multiway Cut parameterized
above lower bounds. Proc. IPEC 2011, Lect. Notes Comput. Sci. 7112 (2012), 1–12.

[31] B. DasGupta, G. A. Enciso, E. D. Sontag, and Y. Zhang. Algorithmic and complexity results
for decompositions of biological networks into monotone subsystems. Biosystems 90(1):161–
178, 2007.

[32] M. Dom, D. Lokshtanov and S. Saurabh, Incompressibility though Colors and IDs, Proc. 36th
ICALP, Part I, Lect. Notes Comput. Sci. 5555: 378–389, 2009.

[33] R. G. Downey and M. R. Fellows. Parameterized Complexity, Springer, 1999.

[34] R. G. Downey, M. R. Fellows, A. Vardy and G. Whittle. The parameterized complexity of
some fundamental problems in coding theory. SIAM J. Comput. 29(2): 545–570, 1999

[35] C.S. Edwards, An improved lower bound for the number of edges in a largest bipartite sub-
graph. Recent Advances in Graph Theory, Proc. 2nd Czecholslovac Symp., Academia, Prague,
1995, 167–181.

[36] P. Erdős, On some extremal problems in graph theory. Israel J. Math. 3: 113–116, 1965.

[37] P. Erdős, A. Gyárfás and Y. Kohayakawa, The size of the largest bipartite subgraphs. Discrete
Math. 117: 267–271, 1997.

[38] M. R. Fellows, Towards Fully Multivariate Algorithmics: Some New Results and Directions in
Parameter Ecology. 20th International Workshop on Combinatorial Algorithms (IWOCA09),
Lect. Notes Comput. Sci., 5874: 2–10, 2009.

[39] H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of minimal unsat-
isfiable formulas with fixed clause-variable difference. Theor. Comput. Sci., 289(1):503–516,
2002.

[40] H. Fleischner and S. Szeider. Polynomial-time recognition of minimal unsatisfiable formulas
with fixed clause-variable difference. Electronic Colloquium on Computational Complexity
(ECCC), 7(49), 2000.

[41] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.

119

[42] F. V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh and B. V. R. Rao. Faster algorithms for
finding and counting subgraphs. J. Comput. Syst. Sci., 78(3):698–706, 2012.

[43] F.V. Fomin, D. Lokshtanov, N. Misra, G. Philip and S. Saurabh, Hitting forbidden minors:
Approximation and kernelization. Proc. STACS 2011, LIPICS Vol. 9, 189–200.

[44] N. Gülpınar, G. Gutin, G. Mitra and A. Zverovitch, Extracting Pure Network Submatrices in
Linear Programs Using Signed Graphs. Discrete Applied Mathematics 137 (2004) 359–372.

[45] G. Gutin, M. Jones, and A. Yeo. Kernels for below-upper-bound parameterizations of the
hitting set and directed dominating set problems. Theor. Comput. Sci., 412(41):5744–5751,
2011.

[46] G. Gutin, M. Jones and A. Yeo, A New Bound for 3-Satisfiable MaxSat and its Algorithmic
Application. Proc. FCT 2011, Lect. Notes Comput. Sci. 6914 (2011), 138–147.

[47] G. Gutin, L. van Iersel, M. Mnich, and A. Yeo, Every ternary permutation constraint satisfac-
tion problem parameterized above average has a kernel with a quadratic number of variables,
J. Comput. System Sci. 78 (2012), 151–163.

[48] G. Gutin, E. J. Kim, M. Mnich, and A. Yeo. Betweenness parameterized above tight lower
bound. J. Comput. Syst. Sci. 76 (2010), 872–878.

[49] G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. A probabilistic approach to problems parame-
terized above or below tight bounds. J. Comput. Sys. Sci. 77 (2011), 422–429.

[50] G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. A probabilistic approach to problems param-
eterized above tight lower bound. Proc. IWPEC’09, Lect. Notes Comput. Sci. 5917 (2009),
234–245.

[51] G. Gutin, A. Rafiey, S. Szeider, and A. Yeo. The linear arrangement problem parameterized
above guaranteed value. Theory Comput. Syst., 41:521–538, 2007.

[52] G. Gutin, S. Szeider, and A. Yeo. Fixed-parameter complexity of minimum profile problems.
Algorithmica, 52(2):133–152, 2008.

[53] G. Gutin and A. Yeo, Note on Maximal Bisection above Tight Lower Bound. Inform. Proc.
Lett. 110: 966–969, 2010.

[54] G. Gutin and A. Yeo, Some Parameterized Problems on Digraphs. The Computer Journal 51
(2008) 363–371.

[55] G. Gutin and A. Zverovitch, Extracting pure network submatrices in linear programs using
signed graphs, Part 2. Communications of DQM 6 (2003) 58–65.

120

[56] V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra, and M. Charikar, Beating the
random ordering is hard: Every ordering CSP is approximation resistant. SIAM J. Comput.
40(3) (2011), 878–914.

[57] V. Guruswami, R. Manokaran, and P. Raghavendra, Beating the random ordering is hard:
Inapproximability of maximum acyclic subgraph. Proc. FOCS 2008, 573–582.

[58] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression based fixed-
parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci.,
72(8):1386–1396, 2006.

[59] F. Harary. On the notion of balance of a signed graph. Michigan Math. J., 2(2):143–146, 1953.

[60] G. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis. Proc. London
Math. Soc., 17:75–115, 1918.

[61] J. Håstad, Some optimal inapproximability results. J. ACM 48: 798–859, 2001.

[62] J. Håstad and S. Venkatesh, On the advantage over a random assignment. Random Structures
& Algorithms 25(2):117–149, 2004.

[63] M.A. Huang and K.J. Lieberherr, Implications of forbidden structures for extremal algorithmic
problems. Theoret. Comput. Sci. 40: 195–210, 1985.

[64] F. Hüffner, N. Betzler, and R. Niedermeier. Optimal edge deletions for signed graph balancing.
In 6th international Conf. on Experimental Algorithms (WEA’07), 297–310, 2007.

[65] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Sys. Sci. 62 (2001),
367–375.

[66] R. Impagliazzo, R. Paturi and F. Zane. Which problems have strongly exponential complexity?
J. Comput. Sys. Sci. 63 (2001), 512–530.

[67] S. Jukna, Extremal combinatorics: with applications in computer science, Springer, 2001.

[68] C. Käppeli and D. Scheder, Partial satisfaction of k-satisfiable formulas. Electronic Notes in
Discrete Math. 29:497–501, (2007).

[69] S. Khot, On the power of unique 2-prover 1-round games. Proc. STOC 2002, 767–775.

[70] E.J. Kim and R. Williams, Improved Parameterized Algorithms for Above Average Constraint
Satisfaction. Proc. IPEC 2011, Lect. Notes Comput. Sci. 7112 (2011), 118-131.

[71] H. Kleine Büning. On subclasses of minimal unsatisfiable formulas. Discr. Appl. Math.,
107(1-3):83–98, 2000.

[72] H. Kleine Büning and O. Kullmann, Minimal Unsatisfiability and Autarkies, Handbook of
Satisfiability, chapter 11, 339–401.

121

[73] D.J. Kleitman, J.B. Shearer and D. Sturtevant. Intersection of k-element sets, Combinatorica,
1:381–384, 1981.

[74] B. Korte and J. Vygen, Combinatorial Optimization: theory and algorithms, 3rd Edition,
Springer, 2006.

[75] S. Kratsch and M. Wahlström, Compression via Matroids: A Randomized Polynomial Kernel
for Odd Cycle Transversal. Proc. SODA 2012: 94-103.

[76] D. Král, Locally satisfiable formulas. Proc. SODA 2004, 330–339, 2004.

[77] O. Kullmann. An application of matroid theory to the sat problem. In IEEE Conference on
Computational Complexity, pages 116–124, 2000.

[78] O. Kullmann, Lean clause-sets: Generalizations of minimally unsatisfiable clause-sets, Discr.
Appl. Math.,130:209-249, 2003.

[79] K.J. Lieberherr and E. Specker, Complexity of partial satisfaction. J. ACM 28(2):411-421,
1981.

[80] K.J. Lieberherr and E. Specker, Complexity of partial satisfaction, II. Tech. Report 293 of
Dept. of EECS, Princeton Univ., 1982.

[81] D. Lokshtanov, New Methods in Parameterized Algorithms and Complexity, PhD thesis,
Bergen, April 2009.

[82] D. Lokshtanov, D. Marx and S. Saurabh, Slightly superexponential parameterized problems,
In SODA 2011, 760–776, 2011.

[83] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, S. Saurabh, Faster
Parameterized Algorithms using Linear Programming, Arxiv preprint: http://arxiv.org/

abs/1203.0833v2

[84] L. Lovász and M. D. Plummer. Matching theory. AMS Chelsea Publ., 2009.

[85] M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut.
J. Algorithms 31(2):335–354, 1999.

[86] M. Mahajan, V. Raman, and S. Sikdar. Parameterizing MAX SNP problems above guaranteed
values. Proc. IWPEC’06, Lect. Notes Comput. Sci. 4169 (2006), 38–49.

[87] M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed values. J.
Computer System Sciences, 75(2):137–153, 2009. A preliminary version appeared in the 2nd
IWPEC, Lect. Notes Comput. Sci. 4169:38–49, 2006.

[88] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discr. Appl. Math.
10:287–295, 1985.

122

http://arxiv.org/abs/1203.0833v2
http://arxiv.org/abs/1203.0833v2

[89] M. Mnich, G. Philip, S. Saurabh, and O. Suchý, Beyond Max-Cut: λ-Extendible Properties
Parameterized Above the Poljak-Turzík Bound. In FSTTCS 2012, LIPICS 18, 412–423, 2012.

[90] N. S. Narayanaswamy, V. Raman, M. S. Ramanujan and S. Saurabh. LP can be a cure
for parameterized problems. Proc. 29th International Symposium on Theoretical Aspects of
Computer Science (STACS 2012), Leibniz International Proceedings in Informatics (LIPIcs),
Volume 14, 2012, 338-349.

[91] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[92] R. Niedermeier, Reflections on Multivariate Algorithmics and Problem Parameterization.
STACS 2010: 17–32.

[93] A. Nijenhuis and H. S. Wilf. Combinatorial Algorithms. Academic Press, Inc. 1978.

[94] R. O’Donnell, Some topics in analysis of Boolean functions. Technical report, ECCC Re-
port TR08-055, 2008. Paper for an invited talk at STOC’08, www.eccc.uni-trier.de/

eccc-reports/2008/TR08-055/ .

[95] C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. J. Comput. Syst. Sci.,
37(1):2–13, 1988.

[96] S. Poljak and D. Turzík, A polynomial time heuristic for certain subgraph optimization prob-
lems with guaranteed worst case bound. Discrete Mathematics, 58 (1) (1986) 99–104.

[97] Arash Rafiey, Private Communication, Sept. 2011.

[98] V. Raman, M.S. Ramanujan and S. Saurabh, Paths, Flowers and Vertex Cover. Proc. ESA
2011, Lect. Notes Comput. Sci. 6942: 382–393, 2011.

[99] V. Raman and S. Saurabh, Parameterized algorithms for feedback set problems and their
duals in tournaments. Theor. Comput. Sci., 351 (3) (2006) 446–458.

[100] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst.
Sci. 75(8):435–450, 2009.

[101] J. Spencer, Optimal ranking of tournaments. Networks 1 (1971) 135–138.

[102] A. Srinivasan. Improved approximations of packing and covering problems. In STOC’95,
pages 268–276, 1995.

[103] S. Szeider, Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-
parameter tractable. J. Comput. Syst. Sci., 69(4):656–674, 2004.

[104] C.A. Tovey, A simplified satisfiability problem, Discr. Appl. Math. 8 (1984), 85–89.

[105] L. Trevisan. On local versus global satisfiability. SIAM J. Discret. Math. 17(4):541–547, 2004.

123

www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/
www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/

[106] Y. Villanger, P. Heggernes, C. Paul and J. A. Telle. Interval Completion Is Fixed Parameter
Tractable. SIAM J. Comput., 38(5):2007–2020, 2009.

[107] D.B. West, Introduction to Graph Theory, 2nd Ed., Prentice Hall, 2001.

[108] R. de Wolf, A Brief Introduction to fourier analysis on the boolean cube, Theory Of Com-
puting Library Graduate Surveys 1 (2008), 1–20, http://theoryofcomputing.org .

[109] M. Yannakakis. On the approximation of maximum satisfiability. J. Algorithms, 17:475–502,
1994.

[110] T. Zaslavsky. Bibliography of signed and gain graphs. Electronic Journal of Combinatorics,
DS8, 1998.

124

http://theoryofcomputing.org

	Declaration
	Abstract
	Acknowledgements
	Introduction
	Parameterizations above/below a bound
	MaxLin2
	Pseudo-Boolean Functions
	Satisfiability
	The Edwards-Erdos and Poljak-Turzík Bounds
	Acyclic Subgraph
	Signed Max Cut
	Summary of Results
	Bibliographic Notes

	Notation
	Graph Theory
	Graphs and Hypergraphs
	Directed Graphs
	Treewidth

	Pseudo-Boolean Functions
	Fixed-Parameter Tractability
	Kernelization
	Bikernelization
	Parameterized Complexity classes

	CNF formulas

	I Parameterized Complexity of MaxLin2
	Motivating Results
	Introduction
	Max r(n)-Lin-2 above Average
	Boolean Constraint Satisfaction Problems above Average

	MaxLin2 Parameterized Above Average
	Maximum Excess, Irreducible Systems and Algorithm B
	MaxLin2-AA
	Max-r-Lin2-AA
	Applications of Theorem 7

	MaxLin2 Parameterized Below W
	Introduction
	Hardness Results
	Algorithmic Results

	II Parameterized Complexity of MaxSAT
	Parameterized Complexity of MaxSAT Above Average
	Introduction
	Hardness Results
	Algorithmic Results

	MaxSAT Above the number of variables
	Introduction
	Preprocessing Rules
	Branching Rules and Reduction to (m-k)-Hitting Set
	Algorithms for (m-k)-Hitting Set
	Deterministic Algorithm
	Randomized Algorithm

	Complete Algorithm, Correctness and Analysis
	Hardness of Kernelization

	Unit-Conflict Free MaxSAT
	Introduction
	Additional Terminology, Notation and Basic Results
	New Lower Bound for sat(F)
	Proof of Lemma 37
	Parameterized Complexity Results

	III Parameterizations above Poljak-Turzík Bound
	Acyclic Subgraph
	Introduction
	Basic Results on Oriented Graphs
	Two-way Reduction Rules
	One-way Reduction Rules
	Fixed-Parameter Tractability of ASAPT
	Polynomial Kernel

	Signed MaxCut
	Introduction
	Terminology, Notation and Preliminaries
	Fixed-Parameter Tractability
	Kernelization

	Discussion and Future Work
	MaxLin2
	MaxSAT
	Problems above Poljak-Turzík

	Bibliography

